JP2008004654A - Magnetoresistive element - Google Patents

Magnetoresistive element Download PDF

Info

Publication number
JP2008004654A
JP2008004654A JP2006170858A JP2006170858A JP2008004654A JP 2008004654 A JP2008004654 A JP 2008004654A JP 2006170858 A JP2006170858 A JP 2006170858A JP 2006170858 A JP2006170858 A JP 2006170858A JP 2008004654 A JP2008004654 A JP 2008004654A
Authority
JP
Japan
Prior art keywords
thin film
ferromagnetic
tunnel barrier
magnetoresistive element
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006170858A
Other languages
Japanese (ja)
Inventor
Isao Tanaka
功 田中
Fumiyasu Oba
史康 大場
Saki Sonoda
早紀 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Kyoto University
Original Assignee
Kyoto Institute of Technology NUC
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Kyoto University filed Critical Kyoto Institute of Technology NUC
Priority to JP2006170858A priority Critical patent/JP2008004654A/en
Publication of JP2008004654A publication Critical patent/JP2008004654A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetoresistive element in which a ferromagnetic conductor thin film and a tunnel barrier thin film can be bonded with sufficient alignment, thereby preventing the characteristics from deteriorating due to poor bonding. <P>SOLUTION: In the magnetoresistive element 10, a tunnel barrier thin film 13 composed of Ga<SB>2</SB>O<SB>3</SB>is arranged between a (Ga, Mn)N thin film 11 where a part of Ga in GaN is replaced by Mn and a (Ga, Mn)<SB>2</SB>O<SB>3</SB>thin film 12 where part of Ga in Ga<SB>2</SB>O<SB>3</SB>is replaced by Mn. Both the (Ga, Mn)N thin film 11 and the (Ga, Mn)<SB>2</SB>O<SB>3</SB>thin film 12 are a p-type semiconductor exhibiting ferromagnetism. The (Ga, Mn)N thin film 11 can be bonded to the tunnel barrier thin film 13 with sufficient alignment by growing it epitaxially on the tunnel barrier thin film 13 as a substrate. The (Ga, Mn)<SB>2</SB>O<SB>3</SB>thin film 12 can be bonded to the tunnel barrier thin film 13 with sufficient alignment because it has basically the same crystal structure as that of the tunnel barrier thin film 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気を用いた情報の記録等に用いられる磁気抵抗素子、特にトンネル磁気抵抗(Tunneling Magneto-Resistance:TMR)素子に関する。   The present invention relates to a magnetoresistive element used for recording information using magnetism, and more particularly to a tunneling magnetoresistive (TMR) element.

TMR素子は、金属又は半導体の電気伝導性と強磁性を併せ持つ材料から成る2枚の強磁性導電体薄膜の間に、電気抵抗の高い薄膜を挟んだものである。この素子においては、2枚の強磁性導電体薄膜の間に電圧を印加した時に、それら2枚の強磁性導電体薄膜の磁化の向きが平行である時には、前記高電気抵抗薄膜を通過するトンネル電流が流れるのに対して、それらの磁化の向きが反平行である時には電流がほとんど流れない。このように、前記高電気抵抗薄膜がトンネル障壁としての役割を有するため、本願ではこの薄膜をトンネル障壁薄膜と呼ぶ、
この磁化の向きの違いによるトンネル電流の有無を利用して、TMR素子は記憶素子として用いることができる。この記憶素子では、2枚の強磁性導電体薄膜の磁化の向きを平行/反平行にすることにより情報を記録することができ、これら2枚の強磁性導電体薄膜の間に電圧を印加した時のトンネル電流の有/無により情報を再生することができる。
A TMR element is obtained by sandwiching a thin film having high electrical resistance between two ferromagnetic conductor thin films made of a material having both electrical conductivity and ferromagnetism of metal or semiconductor. In this element, when a voltage is applied between two ferromagnetic conductor thin films, and the magnetization directions of the two ferromagnetic conductor thin films are parallel, the tunnel passes through the high electrical resistance thin film. While current flows, almost no current flows when their magnetization directions are antiparallel. Thus, since the high electrical resistance thin film has a role as a tunnel barrier, this thin film is referred to as a tunnel barrier thin film in the present application.
The TMR element can be used as a memory element by utilizing the presence or absence of a tunnel current due to the difference in magnetization direction. In this memory element, information can be recorded by making the magnetization directions of the two ferromagnetic conductor thin films parallel / anti-parallel, and a voltage is applied between the two ferromagnetic conductor thin films. Information can be reproduced depending on whether or not the tunnel current is present.

従来より、強磁性導電体薄膜にFe, Co, Niやそれらの合金等から成る良導体の金属強磁性体を用い、トンネル障壁薄膜にAl2O3やMgO等の酸化物絶縁体を用いてTMR素子を作製することが試みられている。しかし、これら金属と酸化物絶縁体は結晶構造が大きく異なるため、両者を整合性よく接合することができなかった。そのため、(i)トンネル障壁薄膜の結晶構造の乱れが生じることにより電流がトンネル障壁薄膜をリークする、(ii)リークを防ぐためにトンネル障壁薄膜を厚くすると電子のトンネリングが生じ難くなる、(iii)強磁性導電体薄膜及びトンネル障壁薄膜内や両薄膜の界面の構造の乱れにより電子の散乱が生じる、等の理由により、トンネル電流による情報の再生を正しく行うことができなくなるおそれがある。 Conventionally, TMR using a ferromagnetic metal thin film made of Fe, Co, Ni or their alloys as the ferromagnetic thin film and an oxide insulator such as Al 2 O 3 or MgO as the tunnel barrier thin film. Attempts have been made to fabricate devices. However, since these metals and oxide insulators have greatly different crystal structures, they cannot be joined with good consistency. Therefore, (i) current leaks through the tunnel barrier thin film due to the disorder of the crystal structure of the tunnel barrier thin film, (ii) electron tunneling is less likely to occur if the tunnel barrier thin film is thickened to prevent leakage, (iii) There is a possibility that the information cannot be correctly reproduced by the tunnel current because the electrons are scattered by the disorder of the structure of the ferromagnetic conductor thin film and the tunnel barrier thin film or at the interface between the two thin films.

TMR素子においては、強磁性導電体薄膜はトンネル障壁薄膜を通過した電流を導通させることができるものであれば足りるため、強磁性導電体薄膜の材料には(良導体に限らず)半導体を用いることもできる。そのような強磁性半導体の1種として、希薄強磁性半導体が知られている。希薄強磁性半導体とは、非磁性の原子から成る半導体の結晶内の原子の一部のみが、磁性を持つ原子又は結晶内でイオン化した時に磁性を持つ原子に置換されたものである。置換される原子の数に明確な基準はないが、従来より知られている希薄磁性半導体はいずれも、構成原子のうちの20%以下のみを、イオン化した時に磁性を持つ原子で置換したものである。この希薄強磁性半導体では、磁性イオンの濃度に応じた量の正孔が存在し、その正孔が半導体としての電気伝導を担う。また、強磁性は、各磁性イオンが持つスピン間に半導体のキャリアを介した磁気的相互作用が働くことにより発現する。   In a TMR element, the ferromagnetic conductor thin film is sufficient if it can conduct the current that has passed through the tunnel barrier thin film. Therefore, the material of the ferromagnetic conductor thin film (not limited to a good conductor) should be a semiconductor. You can also. As one type of such a ferromagnetic semiconductor, a diluted ferromagnetic semiconductor is known. A diluted ferromagnetic semiconductor is one in which only a part of atoms in a semiconductor crystal composed of non-magnetic atoms is substituted with a magnetic atom or a magnetic atom when ionized in the crystal. Although there is no clear standard for the number of atoms to be replaced, all of the conventionally known diluted magnetic semiconductors are those in which only 20% or less of the constituent atoms are replaced with atoms that are magnetic when ionized. is there. In this diluted ferromagnetic semiconductor, there are holes in an amount corresponding to the concentration of magnetic ions, and these holes are responsible for electrical conduction as a semiconductor. In addition, ferromagnetism is manifested by a magnetic interaction between the spins of each magnetic ion via a semiconductor carrier.

そのような希薄強磁性半導体の例として、GaAsのGa原子の一部がMnで置換された(Ga,Mn)As、及びInAsのIn原子の一部がMnで置換された(In,Mn)Asが知られている。これらの希薄磁性半導体は、低温では強磁性を示すが、その強磁性転移温度は(Ga,Mn)Asでは約110K、(In,Mn)Asでは約30Kであり、いずれも室温では強磁性を示さない。そのため、これらの材料をTMR素子等のデバイスの強磁性半導体に用いるには、それらの強磁性転移温度以下まで冷却を行う必要があり、実用的ではない。   Examples of such diluted ferromagnetic semiconductors include (Ga, Mn) As in which some Ga atoms in GaAs are substituted with Mn, and some In atoms in InAs are substituted in with Mn (In, Mn). As is known. Although these diluted magnetic semiconductors exhibit ferromagnetism at low temperatures, their ferromagnetic transition temperatures are about 110K for (Ga, Mn) As and about 30K for (In, Mn) As, both of which are ferromagnetic at room temperature. Not shown. Therefore, in order to use these materials for the ferromagnetic semiconductor of a device such as a TMR element, it is necessary to cool to a temperature lower than their ferromagnetic transition temperature, which is not practical.

特許文献1には、希薄強磁性半導体の別の例として、GaNのGa原子の一部がMnで置換された(Ga,Mn)Nが記載されている。この材料は強磁性転移温度が約940K(約670℃)であるため、室温で動作するデバイスの材料として用いることができる。   Patent Document 1 describes (Ga, Mn) N in which a part of Ga atoms of GaN is replaced with Mn as another example of a diluted ferromagnetic semiconductor. Since this material has a ferromagnetic transition temperature of about 940 K (about 670 ° C.), it can be used as a material for devices operating at room temperature.

特開2003-137698号公報JP2003-137698A

しかし、強磁性導電体薄膜に(Ga,Mn)Nを用いた場合にも、前述の良導体から成る金属強磁性体を用いた場合と同様に、トンネル障壁薄膜の材料である酸化物絶縁体との結晶構造の違いにより両者を整合性よく接合することができず、それにより素子に記録された情報を正しく再生することができないという問題が生じる。   However, even when (Ga, Mn) N is used for the ferromagnetic conductor thin film, the oxide insulator, which is the material of the tunnel barrier thin film, is used in the same manner as the case of using the metal ferromagnetic made of the above-mentioned good conductor Due to the difference in crystal structure, the two cannot be joined with good consistency, thereby causing a problem that information recorded in the element cannot be reproduced correctly.

本発明が解決しようとする課題は、従来のものよりも強磁性導電体薄膜とトンネル障壁薄膜を整合性よく接合することができ、それにより、接合の不具合による特性の低下が生じることを防ぐことができるTMR素子を提供することである。   The problem to be solved by the present invention is that the ferromagnetic conductor thin film and the tunnel barrier thin film can be bonded with higher consistency than the conventional one, thereby preventing the deterioration of the characteristics due to the bonding failure. It is to provide a TMR element capable of performing

上記課題を解決するために成された本発明に係る磁気抵抗素子の第1の態様のものは、2枚の強磁性半導体薄膜の間に絶縁体から成るトンネル障壁薄膜を挟み各強磁性半導体薄膜とトンネル障壁薄膜を接合して成る磁気抵抗素子において、
前記強磁性半導体薄膜のいずれか一方又は両方が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る強磁性p型半導体から成り、
前記トンネル障壁薄膜がGa2O3から成る、
ことを特徴とする
The first aspect of the magnetoresistive element according to the present invention to solve the above-mentioned problems is that each ferromagnetic semiconductor thin film includes a tunnel barrier thin film made of an insulator sandwiched between two ferromagnetic semiconductor thin films. In the magnetoresistive element formed by joining the tunnel barrier thin film,
Either one or both of the ferromagnetic semiconductor thin films have Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is V, Cr, Mn, Fe, Co, Ni. It consists of a ferromagnetic p-type semiconductor substituted by any one or more kinds of atoms,
The tunnel barrier thin film is made of Ga 2 O 3 ;
It is characterized by

本発明に係る磁気抵抗素子の第2の態様のものは、2枚の強磁性半導体薄膜の間に絶縁体から成るトンネル障壁薄膜を挟み各強磁性半導体薄膜とトンネル障壁薄膜を接合して成る磁気抵抗素子において、
前記強磁性半導体薄膜のいずれか一方又は両方が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る強磁性p型半導体から成り、
前記トンネル障壁薄膜が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る常磁性絶縁体から成る、
ことを特徴とする。
The magnetoresistive element according to the second aspect of the present invention is a magnetic element formed by sandwiching a tunnel barrier thin film made of an insulator between two ferromagnetic semiconductor thin films and bonding each ferromagnetic semiconductor thin film and the tunnel barrier thin film. In the resistance element,
Either one or both of the ferromagnetic semiconductor thin films have Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is V, Cr, Mn, Fe, Co, Ni. It consists of a ferromagnetic p-type semiconductor substituted by any one or more kinds of atoms,
The tunnel barrier thin film has Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is one or more of V, Cr, Mn, Fe, Co, and Ni Consisting of a paramagnetic insulator substituted with atoms of
It is characterized by that.

以下、Ga2O3から成る母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る前記強磁性p型半導体を「Ga2O3系希薄強磁性p型半導体」と呼ぶ。また、Ga2O3から成る母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る常磁性絶縁体を「Ga2O3系希薄常磁性絶縁体」と呼ぶ。また、両者を合わせて「Ga2O3系希薄磁性体」と呼ぶ。 Hereinafter, 0.5% to 15% of Ga of the mother phase composed of Ga 2 O 3 is substituted with any one or plural kinds of atoms of V, Cr, Mn, Fe, Co, and Ni. A ferromagnetic p-type semiconductor is called a “Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor”. In addition, 0.5% to 15% of Ga of the parent phase composed of Ga 2 O 3 is usually substituted with any one or more kinds of atoms of V, Cr, Mn, Fe, Co, and Ni. The magnetic insulator is referred to as “Ga 2 O 3 -based diluted paramagnetic insulator”. The two are collectively referred to as “Ga 2 O 3 -based dilute magnetic material”.

Ga2O3系希薄磁性体は、上述のように母相のGaの一部がV等の磁性を持つ原子に置換され、その置換原子が結晶内で磁性を有するイオンになっている、という共通の構成を有する。Ga2O3系希薄磁性体においては、O原子の欠損数や、格子間に混入しているプロトン不純物や過剰なGa原子の数の違いにより、磁性イオンの平均価数の違いが生じ、それにより磁性及び電気伝導性が変化する。具体的には、磁性イオンの平均価数が+2.0価又は+3.0価に近づくと、磁性は常磁性に、電気伝導性は絶縁性に(即ち、Ga2O3系希薄常磁性絶縁体に)なるのに対して、その平均価数が+2.0価及び+3.0価から離れると、磁性は強磁性になり、電気伝導性はp型半導体の性質を示すように(即ち、Ga2O3系希薄強磁性p型半導体に)なる。O原子及び過剰Ga原子の数はGa2O3系希薄磁性体を酸化雰囲気中又は還元雰囲気中でアニールすること等により、プロトン不純物は水蒸気を含む気体中でGa2O3系希薄磁性体をアニールすること等により、それぞれ変化させることができる。これらアニールの際の条件(加熱温度、ガスの濃度等)は、磁性イオンの種類及び濃度により異なるが、予備実験により求めることができる。 Ga 2 O 3 based dilute magnetic material, as mentioned above, part of Ga of the parent phase is replaced by atoms with magnetism such as V, and the substituted atoms are magnetized ions in the crystal Have a common configuration. In Ga 2 O 3 diluted magnetic materials, the difference in the average valence of magnetic ions occurs due to the number of missing O atoms, the number of proton impurities mixed between lattices, and the number of excess Ga atoms. Changes the magnetic and electrical conductivity. Specifically, when the average valence of magnetic ions approaches +2.0 or +3.0, magnetism becomes paramagnetic, and electrical conductivity becomes insulating (that is, Ga 2 O 3 based diluted paramagnetic insulator). On the other hand, when the average valence deviates from +2.0 and +3.0, the magnetism becomes ferromagnetic and the electrical conductivity exhibits the properties of a p-type semiconductor (ie, Ga 2 O 3 System diluted ferromagnetic p-type semiconductor). The number of O atoms and excess Ga atoms, such as by annealing in Ga 2 O 3 system in dilute magnetic oxide atmosphere or in a reducing atmosphere, the Ga 2 O 3 based dilute magnetic proton impurities in a gas containing water vapor Each can be changed by annealing or the like. The annealing conditions (heating temperature, gas concentration, etc.) vary depending on the type and concentration of magnetic ions, but can be determined by preliminary experiments.

Ga2O3系希薄強磁性p型半導体において置換原子にMnを用いた時、最も磁化を大きくすることができる。 Magnetization can be maximized when Mn is used as a substitution atom in a Ga 2 O 3 diluted ferromagnetic p-type semiconductor.

第1の態様において、Ga2O3は真性半導体であるが、バンドギャップ幅は4.9eVであり、ワイドギャップ半導体として知られているGaNにおける値(3.4eV)よりも大きいため、電気抵抗値はTMR素子のトンネル障壁薄膜として用いるのに十分な大きさを有する。 In the first embodiment, Ga 2 O 3 is an intrinsic semiconductor, but the band gap width is 4.9 eV, which is larger than the value in GaN known as a wide gap semiconductor (3.4 eV), so the electric resistance value is It is large enough to be used as a tunnel barrier thin film of a TMR element.

前記強磁性半導体薄膜の一方にGa2O3系希薄強磁性p型半導体を用い、他方に、GaNのGaのうちの0.5%〜15%がMnに置換されて成る強磁性半導体(GaN系希薄強磁性p型半導体)を用いることもできる。Ga2O3系希薄強磁性p型半導体の置換原子にMnを用いた場合、後者よりも前者の方が保磁力が大きい。そのため、このTMR素子に、Ga2O3系希薄強磁性p型半導体の保磁力よりも小さく、GaN系希薄強磁性p型半導体の保磁力よりも大きい磁界を印加した場合、前者の磁化の方向は変化させることなく(固定されたまま)後者の磁化の方向のみを変化させることができる。これにより、2枚の強磁性導電体薄膜の磁化の向きを容易に、互いに平行又は反平行にすることができる。
この場合、Ga2O3系希薄強磁性p型半導体薄膜は磁化の方向が変化しないことから「ピン層」と呼ばれ、GaN系希薄強磁性p型半導体薄膜は磁化の方向が変化することから「フリー層」と呼ばれる。
One of the ferromagnetic semiconductor thin films is a Ga 2 O 3 based diluted ferromagnetic p-type semiconductor, and the other is a ferromagnetic semiconductor in which 0.5% to 15% of GaN Ga is replaced with Mn (GaN based diluted semiconductor). Ferromagnetic p-type semiconductors can also be used. When Mn is used as a substitution atom in a Ga 2 O 3 diluted ferromagnetic p-type semiconductor, the former has a larger coercive force than the latter. Therefore, when a magnetic field smaller than the coercive force of Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor and larger than the coercive force of GaN-based diluted ferromagnetic p-type semiconductor is applied to this TMR element, the former magnetization direction Can change only the direction of magnetization of the latter without changing (while being fixed). Thus, the magnetization directions of the two ferromagnetic conductor thin films can be easily made parallel or antiparallel to each other.
In this case, the Ga 2 O 3 diluted ferromagnetic p-type semiconductor thin film is called “pinned layer” because the magnetization direction does not change, and the GaN-based diluted ferromagnetic p-type semiconductor thin film changes in magnetization direction. It is called “free layer”.

本発明に係る磁気抵抗素子においては、2枚の強磁性半導体薄膜のうちの少なくとも一方にGa2O3系希薄強磁性p型半導体を用い、トンネル障壁薄膜にGa2O3(第1の態様の場合)又はGa2O3系希薄常磁性絶縁体(第2の態様の場合)を用いる。そのため、強磁性半導体薄膜とトンネル障壁薄膜は同様の構造を有する。これにより、両者は整合性よく接合することができるため、接合の不具合による特性低下が生じることを防ぐことができる。 In the magnetoresistive element according to the present invention, a Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor is used for at least one of the two ferromagnetic semiconductor thin films, and Ga 2 O 3 (first embodiment) is used for the tunnel barrier thin film. Or a Ga 2 O 3 -based diluted paramagnetic insulator (in the second embodiment). Therefore, the ferromagnetic semiconductor thin film and the tunnel barrier thin film have the same structure. Thereby, since both can be joined with good consistency, it is possible to prevent the deterioration of characteristics due to joining failure.

第1の態様において、Ga2O3系希薄強磁性p型半導体薄膜とGa2O3絶縁体薄膜が接合された構成は、分子線エピタキシャル法等の通常の薄膜製造方法において、初めに一方の薄膜を成長させ、その上に他方の薄膜を成長させることにより、容易に作製することができる。
同様に、第2の態様において、Ga2O3系希薄強磁性p型半導体とGa2O3系希薄常磁性絶縁体が接合された構成は、初めに一方の薄膜を成長させ、その上に、酸素分圧を変化させて他方の薄膜を成長させることにより、容易に作製することができる。また、第2の態様においては、一方の薄膜を成長させたうえで、その薄膜の表面付近のみ酸化雰囲気又は還元雰囲気に晒すことにより、上記2種の薄膜が接合された構成を作製することもできる。
In the first aspect, the configuration in which the Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor thin film and the Ga 2 O 3 insulator thin film are bonded is firstly used in a normal thin film manufacturing method such as a molecular beam epitaxial method. It can be easily manufactured by growing a thin film and growing the other thin film thereon.
Similarly, in the second embodiment, a structure in which a Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor and a Ga 2 O 3 -based diluted paramagnetic insulator are joined is first grown on one thin film. The other thin film can be easily grown by changing the oxygen partial pressure. In the second aspect, after growing one thin film, only the vicinity of the surface of the thin film is exposed to an oxidizing atmosphere or a reducing atmosphere to produce a structure in which the two kinds of thin films are joined. it can.

強磁性半導体薄膜のうちの一方にGa2O3系希薄強磁性p型半導体薄膜を用い、他方にGaN系希薄強磁性p型半導体薄膜を用いた磁気抵抗素子は以下の効果を奏する。
GaN系希薄強磁性p型半導体の薄膜はGa2O3又はGa2O3系希薄常磁性絶縁体から成る絶縁性薄膜の上にエピタキシャル成長させることにより作製することができる。このように作製されたGaN系希薄強磁性p型半導体薄膜とこの絶縁性薄膜は化学的に結合しているため、その絶縁性薄膜をトンネル障壁薄膜として用いることにより、接合の不具合による特性低下が本質的に生じない磁気抵抗素子を得ることができる。
また、Ga2O3系希薄強磁性p型半導体薄膜の保磁力がGaN系希薄強磁性p型半導体薄膜の保磁力よりも大きいため、前者の保磁力よりも小さく後者の保磁力よりも大きい磁界を印加することにより、2枚の希薄強磁性p型半導体薄膜間のスピンの平行/反平行を容易に切り替えることができる。
A magnetoresistive element using a Ga 2 O 3 -based diluted ferromagnetic p-type semiconductor thin film for one of the ferromagnetic semiconductor thin films and a GaN-based diluted ferromagnetic p-type semiconductor thin film for the other has the following effects.
A thin film of a GaN-based diluted ferromagnetic p-type semiconductor can be produced by epitaxial growth on an insulating thin film made of a Ga 2 O 3 or Ga 2 O 3 -based diluted paramagnetic insulator. Since the GaN-based diluted ferromagnetic p-type semiconductor thin film thus fabricated and this insulating thin film are chemically bonded, the use of the insulating thin film as a tunnel barrier thin film reduces the characteristics due to the bonding failure. A magnetoresistive element that does not occur essentially can be obtained.
Also, since the coercivity of Ga 2 O 3 diluted ferromagnetic p-type semiconductor thin film is larger than that of GaN diluted diluted ferromagnetic p-type semiconductor thin film, the magnetic field is smaller than the former coercive force and larger than the latter coercive force. Can be easily switched between parallel and antiparallel spins between two diluted ferromagnetic p-type semiconductor thin films.

本発明に係る磁気抵抗素子の一実施形態を図1に示す。この磁気抵抗素子10は、GaNのGaの一部をMnに置換したGaN系希薄強磁性p型半導体である(Ga, Mn)Nから成る薄膜11と、Ga2O3のGaの一部をMnに置換したGa2O3系希薄強磁性p型半導体である(Ga, Mn)2O3から成る薄膜12の間に、Ga2O3から成るトンネル障壁薄膜13を挟んだものである。本実施形態では、(Ga, Mn)N薄膜11及び(Ga, Mn)2O3薄膜12におけるGaサイト中のMnの濃度は共に8%とし、(Ga, Mn)N薄膜11及び(Ga, Mn)2O3薄膜12の厚さは共に300nmとする。また、(Ga, Mn)2O3薄膜12を後述のように作製することにより、この薄膜中のMnの平均価数は約+2.1価となり、この薄膜は強磁性及びp型半導体の電気特性を有する。トンネル障壁薄膜13の厚さはここでは10nmとする。 An embodiment of a magnetoresistive element according to the present invention is shown in FIG. This magnetoresistive element 10 includes a thin film 11 made of (Ga, Mn) N, which is a GaN-based diluted ferromagnetic p-type semiconductor in which part of Ga in GaN is replaced with Mn, and part of Ga in Ga 2 O 3. A tunnel barrier thin film 13 made of Ga 2 O 3 is sandwiched between thin films 12 made of (Ga, Mn) 2 O 3 which is a Ga 2 O 3 diluted ferromagnetic p-type semiconductor substituted with Mn. In this embodiment, the concentration of Mn in the Ga site in the (Ga, Mn) N thin film 11 and the (Ga, Mn) 2 O 3 thin film 12 is 8%, and the (Ga, Mn) N thin film 11 and (Ga, M The thickness of the Mn) 2 O 3 thin film 12 is 300 nm. In addition, by producing the (Ga, Mn) 2 O 3 thin film 12 as described later, the average valence of Mn in this thin film becomes about +2.1, and this thin film has ferromagnetic and p-type semiconductor electrical characteristics. Have Here, the thickness of the tunnel barrier thin film 13 is 10 nm.

磁気抵抗素子10の製造方法の一例を、図2及び図3を用いて説明する。まず、GaとMnの原子数の比が93:7になるようにGa2O3とMnOの粉末を混合した原料から成るターゲット21Aと、(0001)面を表面とするサファイア基板22を、内部の酸素分圧を0.05Paに保持した容器23内に配置し、サファイア基板22を500℃に熱しつつ周波数10HzのKrFパルスレーザ光24をターゲットに照射する(図2)ことにより、ターゲット21Aの原料をサファイア基板22上に堆積させる(図3(a))。これにより、サファイア基板22上に(Ga, Mn)2O3薄膜12が作製される。次に、Ga2O3から成るターゲット21Bを容器23内部に配置し容器23内部の酸素分圧を0.2Paに保持して同様の操作を行うことにより、(Ga, Mn)2O3薄膜12上にGa2O3から成るトンネル障壁薄膜13を作製する(図3(b))。そして、従来の(Ga, Mn)N薄膜の作製方法と同様に分子線エピタキシー法を用いて、トンネル障壁薄膜13の上に(Ga, Mn)N薄膜11を作製する(図3(c))。これにより、磁気抵抗素子10が得られる(図3(d))。
なお、サファイア基板22は磁気抵抗素子10の構成要素としては不要であるが、そのまま残しておいても支障はない。サファイア基板22を残す場合、サファイアが絶縁体であるため、例えば図4に示すように(Ga, Mn)2O3薄膜12の表面の一部分にはトンネル障壁薄膜13を形成せず、トンネル電流を検出するための電極151及び152のうちの一方をその部分に設けるとよい。
An example of a method for manufacturing the magnetoresistive element 10 will be described with reference to FIGS. First, a target 21A made of a raw material in which Ga 2 O 3 and MnO powders are mixed so that the ratio of the number of atoms of Ga and Mn is 93: 7, and a sapphire substrate 22 having a (0001) plane as its surface Is placed in a container 23 having an oxygen partial pressure of 0.05 Pa, and the target is irradiated with KrF pulsed laser light 24 having a frequency of 10 Hz while the sapphire substrate 22 is heated to 500 ° C. (FIG. 2). Is deposited on the sapphire substrate 22 (FIG. 3A). Thereby, the (Ga, Mn) 2 O 3 thin film 12 is produced on the sapphire substrate 22. Next, a target 21B made of Ga 2 O 3 is placed inside the container 23, and the same operation is performed while maintaining the oxygen partial pressure inside the container 23 at 0.2 Pa, thereby performing the (Ga, Mn) 2 O 3 thin film 12 A tunnel barrier thin film 13 made of Ga 2 O 3 is formed thereon (FIG. 3B). Then, the (Ga, Mn) N thin film 11 is formed on the tunnel barrier thin film 13 by using the molecular beam epitaxy method in the same manner as the conventional (Ga, Mn) N thin film manufacturing method (FIG. 3 (c)). . Thereby, the magnetoresistive element 10 is obtained (FIG. 3D).
Although the sapphire substrate 22 is not necessary as a component of the magnetoresistive element 10, it can be left as it is. When the sapphire substrate 22 is left, since sapphire is an insulator, the tunnel barrier thin film 13 is not formed on a part of the surface of the (Ga, Mn) 2 O 3 thin film 12 as shown in FIG. One of the electrodes 151 and 152 for detection may be provided in that portion.

図3(c)に示した(Ga, Mn)N薄膜11の作製方法は、従来より知られている、Ga2O3薄膜を基板としてGaN薄膜を作製する方法をそのまま適用したものである。この方法によれば、(Ga, Mn)N薄膜11とGa2O3薄膜(トンネル障壁薄膜13)を整合性よく接合することができる。 The method for producing the (Ga, Mn) N thin film 11 shown in FIG. 3 (c) is a conventional application of a method for producing a GaN thin film using a Ga 2 O 3 thin film as a substrate. According to this method, the (Ga, Mn) N thin film 11 and the Ga 2 O 3 thin film (tunnel barrier thin film 13) can be joined with good consistency.

(Ga, Mn)N薄膜11は、特許文献1に記載のように、室温で強磁性及びp型半導体の電気特性を示すことが知られている。ここでは、(Ga, Mn)2O3薄膜12の特性を確認するために、図3(a)に示した前述の方法を用いて(Ga, Mn)2O3薄膜12のみを作製し、その電気伝導性及び磁化を測定した。その結果、電気伝導性については導通が確認された。また、磁化については、図5に示すように室温における磁化曲線がヒステリシスを持つことから、(Ga, Mn)2O3薄膜12が強磁性体であることが示された。 As described in Patent Document 1, the (Ga, Mn) N thin film 11 is known to exhibit ferromagnetic and p-type semiconductor electrical characteristics at room temperature. Here, to prepare only (Ga, Mn) 2 O 3 in order to confirm the characteristics of the thin film 12, using the aforementioned method shown in FIG. 3 (a) (Ga, Mn ) 2 O 3 thin film 12, Its electrical conductivity and magnetization were measured. As a result, electrical conductivity was confirmed to be conductive. As for the magnetization, the magnetization curve at room temperature has hysteresis as shown in FIG. 5, indicating that the (Ga, Mn) 2 O 3 thin film 12 is a ferromagnetic material.

(Ga, Mn)2O3薄膜12の保磁力は約100エルステッド(Oe)であり、(Ga, Mn)N薄膜11の保磁力(50〜60エルステッド)よりも大きい。そのため、(Ga, Mn)2O3薄膜12の保磁力よりも小さく、且つ(Ga, Mn)N薄膜11の保磁力よりも大きい所定の大きさの磁界を磁気抵抗素子10に印加することにより、(Ga, Mn)2O3薄膜12の磁化に影響を与えることなく、(Ga, Mn)N薄膜11の磁化の方向のみを変化させることができる。従って、予め(Ga, Mn)2O3薄膜12にその保磁力よりも大きい磁界を印加してその薄膜の磁化を一方向に揃えておいたうえで、その磁化に平行/反平行な方向に前記所定の大きさの磁界を印加することにより、"1"又は"0"の情報を記憶させることができる。 The coercive force of the (Ga, Mn) 2 O 3 thin film 12 is about 100 Oersted (Oe), which is larger than the coercive force (50 to 60 Oersted) of the (Ga, Mn) N thin film 11. Therefore, by applying a magnetic field having a predetermined magnitude smaller than the coercive force of the (Ga, Mn) 2 O 3 thin film 12 and larger than the coercive force of the (Ga, Mn) N thin film 11 to the magnetoresistive element 10. Only the magnetization direction of the (Ga, Mn) N thin film 11 can be changed without affecting the magnetization of the (Ga, Mn) 2 O 3 thin film 12. Accordingly, a magnetic field larger than the coercive force is applied to the (Ga, Mn) 2 O 3 thin film 12 in advance to align the magnetization of the thin film in one direction, and in a direction parallel / antiparallel to the magnetization. Information of “1” or “0” can be stored by applying the magnetic field having the predetermined magnitude.

次に、本発明に係る磁気抵抗素子を用いたメモリアレイの一実施形態を説明する。図6は、本実施形態のメモリアレイ30の斜視図である。このメモリアレイ30には、上記実施形態の磁気抵抗素子10が多数、マトリクス状に配置されている。このマトリクスの各行に対応してビット線31が1本ずつ配置され、各列に対応して記録用ワード線32及び再生用ワード線33が各1本ずつ配置されている。各磁気抵抗素子10の(Ga, Mn)2O3薄膜12はその素子が属するマトリクスの行に対応したビット線31の直下に配置され且つそのビット線31へ電気的に接続されており、(Ga, Mn)N薄膜11はその素子が属するマトリクスの列に対応した記録用ワード線32の直上に配置されている。また、各磁気抵抗素子10に対応して、p型半導体から成るチャネルを有するFET(電界効果トランジスタ)34を1個ずつ設け、FET34のソース電極をその磁気抵抗素子10の(Ga, Mn)N薄膜11に、ドレイン電極を接地に、ゲート電極をその磁気抵抗素子10に対応した再生用ワード線33に、それぞれ接続する。ここで、FET34のチャネルの材料をp-GaNとすることにより、磁気抵抗素子10とFET34を一体に作製することができる。 Next, an embodiment of a memory array using the magnetoresistive element according to the present invention will be described. FIG. 6 is a perspective view of the memory array 30 of the present embodiment. In this memory array 30, a large number of magnetoresistive elements 10 of the above embodiment are arranged in a matrix. One bit line 31 is arranged corresponding to each row of the matrix, and one recording word line 32 and one reproduction word line 33 are arranged corresponding to each column. The (Ga, Mn) 2 O 3 thin film 12 of each magnetoresistive element 10 is arranged directly below the bit line 31 corresponding to the row of the matrix to which the element belongs and is electrically connected to the bit line 31 ( The Ga, Mn) N thin film 11 is disposed immediately above the recording word line 32 corresponding to the column of the matrix to which the element belongs. One FET (field effect transistor) 34 having a channel made of a p-type semiconductor is provided for each magnetoresistive element 10, and the source electrode of the FET 34 is used as the (Ga, Mn) N of the magnetoresistive element 10. The drain electrode is connected to the thin film 11 and the gate electrode is connected to the reproducing word line 33 corresponding to the magnetoresistive element 10. Here, when the channel material of the FET 34 is p-GaN, the magnetoresistive element 10 and the FET 34 can be manufactured integrally.

メモリアレイ30の動作を、図7及び図8を用いて説明する。予め、メモリアレイ30に(Ga, Mn)N薄膜11の保磁力よりも大きい磁界を、図7の右下から左上に向かってビット線及び記録用ワード線32に対して45°方向に印加することにより、(Ga, Mn)N薄膜11の磁化をその磁界の方向に揃えておく。
メモリアレイ30中の1個の磁気抵抗素子10Aに情報を記録する際には、図8(a)に示すように、磁気抵抗素子10Aの直上を通過するビット線31Aには図7の右方向に、磁気抵抗素子10Aの直下を通過する記録用ワード線32Aには図7の下方向に、それぞれ後述の大きさの電流を供給する。これにより、ビット線31Aの直下にある複数の磁気抵抗素子10には図7の上方向への磁界が印加され、記録用ワード線32Aの直上にある複数の磁気抵抗素子10には図7の左方向への磁界が印加される。なお、その他の磁気抵抗素子10においては、ビット線31A及び記録用ワード線32Aとの距離が十分に大きいため、これらの磁界は無視することができる。磁界が印加された磁気抵抗素子10のうち磁気抵抗素子10Aのみに、他の磁気抵抗素子10に印加される磁界H2よりも大きい磁界H1が、ビット線及び記録用ワード線32に対して45°の方向に印加される。従って、磁界H1が(Ga, Mn)N薄膜11の保磁力よりも大きく且つ(Ga, Mn)2O3薄膜12の保磁力よりも小さくなり、磁界H2が(Ga, Mn)N薄膜11及び(Ga, Mn)2O3薄膜12の保磁力よりも小さくなるように、ビット線31A及び記録用ワード線32Aに流れる電流の大きさを設定することにより、(Ga, Mn)2O3薄膜12の磁化の方向はそのままで(Ga, Mn)N薄膜11の磁化の方向のみを、図7の右下から左上に向かう方向に変化させることができる。これにより、(Ga, Mn)N薄膜11の磁化と(Ga, Mn)2O3薄膜12の磁化は平行になる。また、ビット線31A及び記録用ワード線32Aに上述と同じ大きさの電流を上述とは反対の方向に流すことにより、(Ga, Mn)N薄膜11の磁化と(Ga, Mn)2O3薄膜12の磁化を反平行にすることができる。
The operation of the memory array 30 will be described with reference to FIGS. In advance, a magnetic field larger than the coercive force of the (Ga, Mn) N thin film 11 is applied to the memory array 30 in the direction of 45 ° with respect to the bit line and the recording word line 32 from the lower right to the upper left in FIG. As a result, the magnetization of the (Ga, Mn) N thin film 11 is aligned with the direction of the magnetic field.
When information is recorded in one magnetoresistive element 10A in the memory array 30, as shown in FIG. 8A, the bit line 31A passing immediately above the magnetoresistive element 10A has a right direction in FIG. In addition, a current having a magnitude described later is supplied to the recording word line 32A passing immediately below the magnetoresistive element 10A in the downward direction of FIG. As a result, a magnetic field in the upward direction in FIG. 7 is applied to the plurality of magnetoresistive elements 10 immediately below the bit line 31A, and the plurality of magnetoresistive elements 10 immediately above the recording word line 32A are applied to the plurality of magnetoresistive elements 10 in FIG. A magnetic field in the left direction is applied. In the other magnetoresistive elements 10, since the distance between the bit line 31A and the recording word line 32A is sufficiently large, these magnetic fields can be ignored. Of the magnetoresistive element 10 to which a magnetic field is applied, only the magnetoresistive element 10 </ b > A has a magnetic field H 1 larger than the magnetic field H 2 applied to the other magnetoresistive elements 10 with respect to the bit line and the recording word line 32. Applied in the 45 ° direction. Accordingly, the magnetic field H 1 is larger than the coercive force of the (Ga, Mn) N thin film 11 and smaller than the coercive force of the (Ga, Mn) 2 O 3 thin film 12, and the magnetic field H 2 is reduced to the (Ga, Mn) N thin film. 11 and (Ga, Mn) 2 O 3 By setting the magnitude of the current flowing in the bit line 31A and the recording word line 32A so as to be smaller than the coercive force of the thin film 12, (Ga, Mn) 2 O (3) The magnetization direction of the (Ga, Mn) N thin film 11 can be changed from the lower right to the upper left in FIG. Thereby, the magnetization of the (Ga, Mn) N thin film 11 and the magnetization of the (Ga, Mn) 2 O 3 thin film 12 become parallel. Further, by passing a current of the same magnitude as described above through the bit line 31A and the recording word line 32A in the opposite direction, the magnetization of the (Ga, Mn) N thin film 11 and the (Ga, Mn) 2 O 3 The magnetization of the thin film 12 can be made antiparallel.

磁気抵抗素子10Aに記録された情報を再生する際には、図8(b)に示すように、磁気抵抗素子10Aのゲート電極に接続された再生用ワード線33Aと接地の間に再生用ワード線33A側を負とするゲート電圧を印加すると共に、ビット線31Aと接地の間にビット線31A側を正とする電圧を印加する。ゲート電圧が印加されることにより、FET34はソース電極とドレイン電極の間に電流を流すことができるようになるため、(Ga, Mn)N薄膜11の磁化と(Ga, Mn)2O3薄膜12の磁化が平行であればビット線31Aからソース電極及びドレイン電極を通って接地に向かう電流が流れるのに対して、これらの磁化が反平行であればそのような電流は流れない。この電流の有無を検知することにより、磁気抵抗素子10Aに記録された情報を再生することができる。 When reproducing the information recorded in the magnetoresistive element 10A, as shown in FIG. 8B, the reproducing word line 33A is connected between the reproducing word line 33A connected to the gate electrode of the magnetoresistive element 10A and the ground. A gate voltage that makes the line 33A side negative is applied, and a voltage that makes the bit line 31A side positive is applied between the bit line 31A and the ground. When the gate voltage is applied, the FET 34 can pass a current between the source electrode and the drain electrode. Therefore, the magnetization of the (Ga, Mn) N thin film 11 and the (Ga, Mn) 2 O 3 thin film If the magnetizations of 12 are parallel, current flows from the bit line 31A through the source electrode and drain electrode to the ground, whereas if these magnetizations are antiparallel, such current does not flow. By detecting the presence or absence of this current, information recorded in the magnetoresistive element 10A can be reproduced.

なお、ここではp型半導体から成るチャネルを有するFET34を用いた場合を例として説明したが、n型半導体のチャネルを有するFETを用いた場合にも(電圧や電極の極性を除いて)上記の例と同様の構成を採ることができる。また、(Ga, Mn)N薄膜11を記録用ワード線32側に、(Ga, Mn)2O3薄膜12をビット線31側に配置し、(Ga, Mn)N薄膜11とビット線31を電気的に接続した構成を採ることもできる。 Here, the case where the FET 34 having a channel made of a p-type semiconductor is used has been described as an example. However, even when the FET having an n-type semiconductor channel is used (except for voltage and electrode polarity), A configuration similar to the example can be adopted. Further, the (Ga, Mn) N thin film 11 is disposed on the recording word line 32 side, and the (Ga, Mn) 2 O 3 thin film 12 is disposed on the bit line 31 side, and the (Ga, Mn) N thin film 11 and the bit line 31 are disposed. It is also possible to adopt a configuration in which these are electrically connected.

本発明に係る磁気抵抗素子の一実施形態を示す縦断面図。The longitudinal cross-sectional view which shows one Embodiment of the magnetoresistive element based on this invention. 本実施形態の磁気抵抗素子に用いるGa2O3系希薄強磁性p型半導体薄膜の製造装置を示す縦断面図。Longitudinal sectional view showing a manufacturing apparatus of Ga 2 O 3 system dilute ferromagnetic p-type semiconductor thin film used in the magnetoresistive element of this embodiment. 本実施形態の磁気抵抗素子の製造方法を示す縦断面図。The longitudinal cross-sectional view which shows the manufacturing method of the magnetoresistive element of this embodiment. 本実施形態の磁気抵抗素子に電極を取り付ける例を示す縦断面図。The longitudinal cross-sectional view which shows the example which attaches an electrode to the magnetoresistive element of this embodiment. 本実施形態の磁気抵抗素子に用いる(Ga, Mn)2O3薄膜(Mn濃度8%)の磁化曲線を示すグラフ。Graph showing the magnetization curves of used magnetoresistive element of this embodiment (Ga, Mn) 2 O 3 thin film (Mn concentration of 8%). 本発明に係る磁気抵抗素子を用いたメモリアレイの一実施形態を示す斜視図。The perspective view which shows one Embodiment of the memory array using the magnetoresistive element based on this invention. 本実施形態のメモリアレイにおける情報の記憶を説明するための上面図。The top view for demonstrating storage of the information in the memory array of this embodiment. 本実施形態のメモリアレイにおける情報の記憶(a)及び再生(b)を説明するための斜視図。The perspective view for demonstrating storage (a) and reproduction | regeneration (b) of the information in the memory array of this embodiment.

符号の説明Explanation of symbols

10、10A…磁気抵抗素子
11…(Ga, Mn)N薄膜
12…(Ga, Mn)2O3薄膜
13…トンネル障壁薄膜
151、152…電極
21A、21B…原料のターゲット
22…サファイア基板
23…容器
24…KrFパルスレーザ光
30…メモリアレイ
31、31A…ビット線
32、32A…記録用ワード線
33、33A…再生用ワード線
33A…再生用ワード線
34…FET
10, 10A ... magnetoresistive element 11 ... (Ga, Mn) N thin film 12 ... (Ga, Mn) 2 O 3 thin film 13 ... tunnel barrier films 151, 152 ... electrode 21A, 21B ... raw materials of the target 22 ... sapphire substrate 23 ... Container 24 ... KrF pulse laser beam 30 ... Memory array 31, 31A ... Bit lines 32, 32A ... Recording word lines 33, 33A ... Reproduction word lines 33A ... Reproduction word lines 34 ... FET

Claims (5)

2枚の強磁性半導体薄膜の間に絶縁体から成るトンネル障壁薄膜を挟み各強磁性半導体薄膜とトンネル障壁薄膜を接合して成る磁気抵抗素子において、
前記強磁性半導体薄膜のいずれか一方又は両方が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る強磁性p型半導体から成り、
前記トンネル障壁薄膜がGa2O3から成る、
ことを特徴とする磁気抵抗素子。
In a magnetoresistive element formed by sandwiching a tunnel barrier thin film made of an insulator between two ferromagnetic semiconductor thin films and joining each ferromagnetic semiconductor thin film and the tunnel barrier thin film,
Either one or both of the ferromagnetic semiconductor thin films have Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is V, Cr, Mn, Fe, Co, Ni. It consists of a ferromagnetic p-type semiconductor substituted by any one or more kinds of atoms,
The tunnel barrier thin film is made of Ga 2 O 3 ;
The magnetoresistive element characterized by the above-mentioned.
2枚の強磁性半導体薄膜の間に絶縁体から成るトンネル障壁薄膜を挟み各強磁性半導体薄膜とトンネル障壁薄膜を接合して成る磁気抵抗素子において、
前記強磁性半導体薄膜のいずれか一方又は両方が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る強磁性p型半導体から成り、
前記トンネル障壁薄膜が、Ga2O3を母相とし、該母相のGaのうちの0.5%〜15%がV, Cr, Mn, Fe, Co, Niのうちのいずれか1種又は複数種の原子に置換されて成る常磁性絶縁体から成る、
ことを特徴とする磁気抵抗素子。
In a magnetoresistive element formed by sandwiching a tunnel barrier thin film made of an insulator between two ferromagnetic semiconductor thin films and joining each ferromagnetic semiconductor thin film and the tunnel barrier thin film,
Either one or both of the ferromagnetic semiconductor thin films have Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is V, Cr, Mn, Fe, Co, Ni. It consists of a ferromagnetic p-type semiconductor substituted by any one or more kinds of atoms,
The tunnel barrier thin film has Ga 2 O 3 as a parent phase, and 0.5% to 15% of Ga in the parent phase is one or more of V, Cr, Mn, Fe, Co, and Ni Consisting of a paramagnetic insulator substituted with atoms of
The magnetoresistive element characterized by the above-mentioned.
前記常磁性絶縁体中の母相のOの一部が欠損していることを特徴とする請求項2に記載の磁気抵抗素子。   3. The magnetoresistive element according to claim 2, wherein a part of O of the parent phase in the paramagnetic insulator is missing. 前記強磁性p型半導体中の前記置換原子がMnであることを特徴とする請求項1〜3のいずれかに記載の磁気抵抗素子。   The magnetoresistive element according to claim 1, wherein the substitution atom in the ferromagnetic p-type semiconductor is Mn. 前記強磁性半導体薄膜の一方が前記強磁性p型半導体であり、他方がGaNのGaのうちの0.5%〜15%がMnに置換されて成る強磁性半導体であることを特徴とする請求項1〜4のいずれかに記載の磁気抵抗素子。   2. One of the ferromagnetic semiconductor thin films is the ferromagnetic p-type semiconductor, and the other is a ferromagnetic semiconductor in which 0.5% to 15% of Ga of GaN is replaced with Mn. The magnetoresistive element in any one of -4.
JP2006170858A 2006-06-21 2006-06-21 Magnetoresistive element Pending JP2008004654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006170858A JP2008004654A (en) 2006-06-21 2006-06-21 Magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170858A JP2008004654A (en) 2006-06-21 2006-06-21 Magnetoresistive element

Publications (1)

Publication Number Publication Date
JP2008004654A true JP2008004654A (en) 2008-01-10

Family

ID=39008818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170858A Pending JP2008004654A (en) 2006-06-21 2006-06-21 Magnetoresistive element

Country Status (1)

Country Link
JP (1) JP2008004654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050297A (en) * 2008-08-22 2010-03-04 Japan Science & Technology Agency Tunnel element and method for manufacturing the same
JP2012175097A (en) * 2011-02-17 2012-09-10 Tdk Corp Magnetoresistance effect element, magnetic head, magnetic head slider, head gimbal assembly and hard disk drive device
JP2012175098A (en) * 2011-02-22 2012-09-10 Tdk Corp Magnetoresistance effect element, manufacturing method therefor, magnetic head, magnetic head slider, head gimbal assembly and hard disk drive device
JP2012195560A (en) * 2011-03-16 2012-10-11 Tdk Corp Magnetoresistance effect element, magnetic head, magnetic head slider, head gimbal assembly, and hard disc drive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050297A (en) * 2008-08-22 2010-03-04 Japan Science & Technology Agency Tunnel element and method for manufacturing the same
JP2012175097A (en) * 2011-02-17 2012-09-10 Tdk Corp Magnetoresistance effect element, magnetic head, magnetic head slider, head gimbal assembly and hard disk drive device
JP2012175098A (en) * 2011-02-22 2012-09-10 Tdk Corp Magnetoresistance effect element, manufacturing method therefor, magnetic head, magnetic head slider, head gimbal assembly and hard disk drive device
JP2012195560A (en) * 2011-03-16 2012-10-11 Tdk Corp Magnetoresistance effect element, magnetic head, magnetic head slider, head gimbal assembly, and hard disc drive

Similar Documents

Publication Publication Date Title
US7679155B2 (en) Multiple magneto-resistance devices based on doped magnesium oxide
RU2595588C2 (en) Magnetic recording element
RU2585578C2 (en) Magnetic memory element
US6878979B2 (en) Spin switch and magnetic storage element using it
JP4533837B2 (en) Voltage controlled magnetization reversal recording type MRAM element and information recording and reading method using the same
KR102582983B1 (en) magnetic memory element
CN101359475B (en) Magnetic reading head and magnetic recording apparatus
US20070064351A1 (en) Spin filter junction and method of fabricating the same
JP2008166689A (en) Spin transistor using leak magnetic field
JP7102448B2 (en) Magnetic tunnel junction storage element with magnetic exchange coupling free layer
JP2009054960A (en) Spin transistor and magnetic memory
KR20100131967A (en) Ferromagnetic tunnel junction element and driving method of ferromagnetic tunnel junction element
US20090039345A1 (en) Tunnel Junction Barrier Layer Comprising a Diluted Semiconductor with Spin Sensitivity
JP2008004654A (en) Magnetoresistive element
JP2004014806A (en) Magnetoresistive element and magnetic memory
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
JP2009059820A (en) Spin transistor, and semiconductor memory
JP7335167B2 (en) magnetic tunnel junction memory element
CN108352446A (en) Magnetic channel diode and magnetic channel transistor
JP2009238918A (en) Spin filter effect element and spin transistor
KR100574729B1 (en) Spin-tunnel transistor and magnetic reproducing head
JP5705683B2 (en) Tunnel magnetoresistive element, non-local spin injection element, and magnetic head using the same
JP2018190966A (en) Vertical magnetization ferromagnetic semiconductor hetero-junction element, magnetic memory device arranged by use thereof, and spin logic element
JPH11289115A (en) Spin polarization element