JP2008004466A - Manufacturing method for lithium ion secondary battery - Google Patents

Manufacturing method for lithium ion secondary battery Download PDF

Info

Publication number
JP2008004466A
JP2008004466A JP2006174819A JP2006174819A JP2008004466A JP 2008004466 A JP2008004466 A JP 2008004466A JP 2006174819 A JP2006174819 A JP 2006174819A JP 2006174819 A JP2006174819 A JP 2006174819A JP 2008004466 A JP2008004466 A JP 2008004466A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
ion secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174819A
Other languages
Japanese (ja)
Inventor
Kazuya Iwamoto
和也 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006174819A priority Critical patent/JP2008004466A/en
Publication of JP2008004466A publication Critical patent/JP2008004466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a lithium ion secondary battery of supplying a lithium equivalent in amount to an irreversible amount of a negative electrode active material containing at least one substance selected out of a group of substances consisting of a silicon, a silicon oxide, a tin, and a tin oxide; and carrying out stable film formation. <P>SOLUTION: The manufacturing method is for the lithium ion secondary battery including a negative electrode containing a negative active material layer formed on a negative electrode current collector, a positive electrode containing a positive active material layer formed on a positive electrode current collector, and a nonaqueous electrolyte. The manufacturing method includes a step of setting the negative electrode opposite to a lithium supply source, inserting the lithium equivalent in amount to the irreversible amount into the negative electrode active material layer by carrying out at least one cycle of charge/discharge using a first nonaqueous electrolyte in which a film forming agent and a carbon dioxide are dissolved, and then separating the negative electrode from the lithium supply source; a step of inserting a battery group consisting of the negative electrode and the positive electrode opposite to and separated from each other via the separator into a battery case; and a step of injecting a second nonaqueous electrolyte made by dissolving a lithium salt in a nonaqueous solvent into the battery case, and then sealing the battery case. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の製造方法に関するものであり、特にケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質層を負極集電体上に形成した負極を用いるリチウムイオン二次電池の製造方法に関するものである。   The present invention relates to a method for producing a lithium ion secondary battery, and in particular, a negative electrode active material layer containing at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide. The present invention relates to a method for producing a lithium ion secondary battery using a negative electrode formed on a body.

近年、多機能かつ高性能なポータブル機器を駆動する電源として、高エネルギー密度および高出力の二次電池であるリチウムイオン二次電池が多く用いられている。このようなリチウムイオン二次電池に対して更なる高容量化を実現するために、14族元素である、ケイ素やその酸化物、あるいはスズやその酸化物を負極活物質として用いたリチウムイオン二次電池が検討されている。   In recent years, lithium-ion secondary batteries, which are secondary batteries with high energy density and high output, are frequently used as power sources for driving multifunctional and high-performance portable devices. In order to realize a higher capacity for such a lithium ion secondary battery, a lithium ion secondary battery using silicon or its oxide, or tin or its oxide, which is a group 14 element, as a negative electrode active material. Secondary batteries are being considered.

しかしながら、上記負極材料は、充放電に伴ってリチウムを吸蔵・放出する際、その体積が膨張・収縮するために、負極活物質が負極集電体から脱落したり、微粉化したりする。その結果、電極内部での集電性が低下し、繰り返し充放電特性(サイクル特性)が悪くなる。   However, the volume of the negative electrode material expands and contracts when lithium is occluded / released during charge / discharge, and the negative electrode active material falls off from the negative electrode current collector or is pulverized. As a result, the current collecting property inside the electrode is lowered, and the repeated charge / discharge characteristics (cycle characteristics) are deteriorated.

サイクル特性向上のためには、二酸化炭素により負極の表面に皮膜を生成することが有効であることが知られている。しかしながら、二酸化炭素は、高温下では電解質への溶解度が低下するために、ガス発生の原因となり得る。   In order to improve cycle characteristics, it is known that it is effective to form a film on the surface of the negative electrode with carbon dioxide. However, carbon dioxide can cause gas generation because its solubility in the electrolyte decreases at high temperatures.

特許文献1では、二酸化炭素を溶解させた第1の非水電解質に負極と正極を接触させて少なくとも1サイクルの充放電を行う工程と、充放電後に第1の非水電解質よりも二酸化炭素の溶解量が少ない第2の非水電解質を用いて電池を組み立てる工程を備えた製造方法により、サイクル特性を向上させている。   In Patent Document 1, a negative electrode and a positive electrode are brought into contact with a first nonaqueous electrolyte in which carbon dioxide is dissolved, and at least one cycle of charge / discharge is performed. Cycle characteristics are improved by a manufacturing method including a step of assembling a battery using a second nonaqueous electrolyte with a small amount of dissolution.

一方、ビニレンカーボネート(VC)などの皮膜形成剤を電解質中に添加することで、サイクル特性を改善することができることも知られている(例えば、特許文献2参照)。   On the other hand, it is also known that cycle characteristics can be improved by adding a film-forming agent such as vinylene carbonate (VC) to the electrolyte (see, for example, Patent Document 2).

また、上記負極材料は、充電によってリチウムを吸蔵しても、放電時には全てのリチウムが放出されず、いわゆる「不可逆容量」として負極中に残存する。このような不可逆容量が負極中に存在すると、正極が初期に有するリチウムを効率よく使用することができないため、過剰に正極を電池内に含有させて、電池ケース内に正極と負極とをバランスよく含有させる必要がある。しかしながら、電池ケースの体積が限られているため、トータルの電池容量を大きくすることはできない。   Further, even when lithium is occluded by charging, the above-mentioned negative electrode material does not release all the lithium during discharging, and remains in the negative electrode as a so-called “irreversible capacity”. If such an irreversible capacity is present in the negative electrode, it is not possible to efficiently use the lithium initially possessed by the positive electrode. Therefore, the positive electrode is excessively contained in the battery, and the positive electrode and the negative electrode are well balanced in the battery case. It is necessary to contain. However, since the volume of the battery case is limited, the total battery capacity cannot be increased.

特許文献3では、負極活物質として炭素材料を使用した場合において、炭素材料の不可逆容量を補填するために、電池を組み立てる前に予め電気化学的に不可逆容量相当のリチウムを負極にドープする製造方法が提案されている。
特開2005−268016号公報 特開平10−106624号公報 特開平7−235330号公報
In Patent Document 3, when a carbon material is used as the negative electrode active material, in order to compensate for the irreversible capacity of the carbon material, a manufacturing method in which lithium corresponding to the irreversible capacity is doped into the negative electrode in advance before assembling the battery. Has been proposed.
JP 2005-268016 A Japanese Patent Laid-Open No. 10-106624 JP 7-235330 A

しかしながら、特許文献1に記載の製造方法は、二酸化炭素が多い電解質と少ない電解質との入れ替えのみを行う方法であるために、負極の表面に皮膜が生成されてサイクル特性は向上されるものの、不可逆容量に関する開示はない。また、この方法では、不可逆容量が補填されることはない。   However, since the manufacturing method described in Patent Document 1 is a method in which only an electrolyte containing a large amount of carbon dioxide is replaced with an electrolyte containing a small amount of carbon dioxide, a film is generated on the surface of the negative electrode and cycle characteristics are improved. There is no disclosure regarding capacity. In this method, the irreversible capacity is not compensated.

また、特許文献2に記載されているような、電解質中にビニレンカーボネートを添加する方法では、電解質中にビニレンカーボネートが過剰に残存した場合、高温時あるいは充電時に上記皮膜形成剤が酸化分解し、ガスを発生させる恐れがある。   Further, in the method of adding vinylene carbonate in the electrolyte as described in Patent Document 2, when the vinylene carbonate remains excessively in the electrolyte, the film forming agent is oxidatively decomposed at a high temperature or during charging, There is a risk of generating gas.

また、特許文献3に記載の製造方法は、予め負極の不可逆容量を別の電池を構成して求めておき、その不可逆容量分だけ予備充電を行うものである。この場合、負極活物質として体積変動が大きなケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を用いた場合には、不可逆容量分に対応する体積変化だけが起こり、実際の電池として作動する際には、更なる体積変化(膨張)により負極活物質上に形成された皮膜が破壊され、フレッシュな面が露出する。その結果、新たな皮膜形成のために余分な電気量が消費されるとともに、電解質の分解に起因するガス発生等が起こり得る。   In the manufacturing method described in Patent Document 3, the irreversible capacity of the negative electrode is obtained in advance by configuring another battery, and preliminary charging is performed for the irreversible capacity. In this case, when at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide having a large volume variation is used as the negative electrode active material, only the volume change corresponding to the irreversible capacity is obtained. When it occurs and operates as an actual battery, the film formed on the negative electrode active material is destroyed by further volume change (expansion), and a fresh surface is exposed. As a result, an extra amount of electricity is consumed to form a new film, and gas generation due to decomposition of the electrolyte can occur.

このように、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を用いる負極活物質は、充放電容量が大きいものの、不可逆容量も大きいために、不可逆容量相当分のリチウムを補填することが望まれる。また、上記負極活物質は、充放電に際して大きな体積変化を伴うため、負極の表面皮膜が破壊され、フレッシュな面が露出する。その結果、電解質の分解に起因するガス発生等、好ましくない副反応が起こりやすくなる。   Thus, the negative electrode active material using at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide has a large charge / discharge capacity, but also has a large irreversible capacity, and therefore corresponds to an irreversible capacity. It is desirable to compensate for the lithium content. Moreover, since the negative electrode active material is accompanied by a large volume change during charge and discharge, the surface film of the negative electrode is destroyed and a fresh surface is exposed. As a result, undesirable side reactions such as gas generation due to decomposition of the electrolyte are likely to occur.

本発明は、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を用いる負極活物質の不可逆容量相当のリチウムを補填するとともに、安定した皮膜形成を行い、さらには、繰り返し充放電時や高温保存時にガス発生等の問題がない、リチウムイオン二次電池の製造方法を提供するものである。   The present invention supplements lithium corresponding to the irreversible capacity of the negative electrode active material using at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide, and performs stable film formation. Provides a method for producing a lithium ion secondary battery that does not cause problems such as gas generation during repeated charge / discharge and high temperature storage.

前記従来の課題を解決するために、本願発明のリチウムイオン二次電池の製造方法は、
負極集電体と、負極集電体上に形成されたケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質層とを含む負極と、
正極集電体と、正極集電体上に形成されたリチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物を含む正極活物質層とを含む正極と、
有機溶媒にリチウム塩を溶解させた非水電解質とを備えるリチウムイオン二次電池の製造方法であって、
負極とリチウム付与源とを対向させ、皮膜形成剤と二酸化炭素とを溶解させた第1の非水電解質を用い、少なくとも1サイクルの充放電を行うことで負極活物質層に不可逆容量相当のリチウムを挿入した後、負極とリチウム付与源とを分離する工程と、
分離した負極と正極とをセパレータを介して対向させた電極群を、電池ケースに挿入する工程と、電池ケースに、非水溶媒にリチウム塩を溶解させた第2の非水電解質を注液後、電池ケースを密封する工程とを備えることを特徴とする。
In order to solve the above-described conventional problems, a method for producing a lithium ion secondary battery of the present invention includes:
A negative electrode comprising: a negative electrode current collector; and a negative electrode active material layer comprising at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide formed on the negative electrode current collector;
A positive electrode comprising a positive electrode current collector and a positive electrode active material layer comprising a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide formed on the positive electrode current collector;
A method for producing a lithium ion secondary battery comprising a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent,
Lithium corresponding to an irreversible capacity is formed in the negative electrode active material layer by charging and discharging at least one cycle using a first non-aqueous electrolyte in which a negative electrode and a lithium supply source are opposed to each other and a film forming agent and carbon dioxide are dissolved. After inserting the negative electrode and the lithium source,
After inserting the electrode group in which the separated negative electrode and the positive electrode are opposed to each other through the separator into the battery case, and after pouring the second nonaqueous electrolyte in which the lithium salt is dissolved in the nonaqueous solvent into the battery case And a step of sealing the battery case.

本製造方法によって、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質中に、不可逆容量相当のリチウムをドープすると同時に、安定した皮膜を形成することができる。   By this manufacturing method, a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide is doped with lithium corresponding to irreversible capacity, and at the same time, a stable film is formed. can do.

本発明のリチウムイオン二次電池の製造方法によれば、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質中に、不可逆容量相当のリチウムをドープすると同時に、安定した皮膜を形成することができ、高容量で優れたサイクル特性を有するリチウムイオン二次電池を提供できる。   According to the method for producing a lithium ion secondary battery of the present invention, in the negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide, lithium corresponding to irreversible capacity At the same time as doping, a stable film can be formed, and a lithium ion secondary battery having high capacity and excellent cycle characteristics can be provided.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施の形態1)
本発明の実施の形態1では、リチウム付与源として、リチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物を含む場合について説明する。
(Embodiment 1)
In Embodiment 1 of the present invention, a case where a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide is included as a lithium source will be described.

本発明の実施の形態1において、負極は、負極集電体としての金属箔と、金属箔上に形成されたケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質層とを含む。負極活物質層を金属箔上に作製する方法としては、蒸着法、スパッタ法、CVD法等の薄膜形成手法を適用する。薄膜形成手法により得られる負極活物質層は、低結晶性または非晶質であることが好ましい。   In Embodiment 1 of the present invention, the negative electrode is at least selected from the group consisting of a metal foil as a negative electrode current collector and silicon, an oxide of silicon, tin, and an oxide of tin formed on the metal foil. A negative electrode active material layer including one kind. As a method for producing the negative electrode active material layer on the metal foil, a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method is applied. The negative electrode active material layer obtained by the thin film formation method is preferably low crystalline or amorphous.

ここでいう低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。なお、結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また、非晶質とは、X線回折分析で得られる回折像において、2θ=15〜40°の範囲にブロードなピークを有することを言う。   The term “low crystallinity” as used herein refers to a region where the crystal grain size is 50 nm or less. The crystal grain size is calculated by the Scherrer equation from the half-value width of the peak with the highest intensity in the diffraction image obtained by X-ray diffraction analysis. The term “amorphous” means that the diffraction image obtained by X-ray diffraction analysis has a broad peak in the range of 2θ = 15 to 40 °.

負極集電体に用いる金属箔としては、銅、ニッケル、ステンレス、白金、あるいはこれらを主体としてなる合金等、リチウムと合金化しない金属を用いることができる。   As the metal foil used for the negative electrode current collector, a metal that is not alloyed with lithium, such as copper, nickel, stainless steel, platinum, or an alloy mainly composed of these, can be used.

正極は、正極集電体としての金属箔と、金属箔上に形成されたリチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物を含む正極活物質層とを含む。正極活物質層を金属箔上に作製する方法としては、蒸着法、スパッタ法、CVD法等の薄膜形成手法や、リチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物の粉末と導電剤、バインダーを溶媒中に分散、混練してペースト化し、上記ペーストを金属箔上に、塗布、乾燥、圧延の工程を経て作製する方法を用いることができる。   The positive electrode includes a metal foil as a positive electrode current collector and a positive electrode active material layer including a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide formed on the metal foil. As a method for producing the positive electrode active material layer on the metal foil, a thin film forming method such as a vapor deposition method, a sputtering method, a CVD method, a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide powder, a conductive agent, and a binder Can be dispersed in a solvent and kneaded to form a paste, and the paste can be prepared on a metal foil through steps of coating, drying, and rolling.

リチウム含有遷移金属酸化物としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、あるいはこれら化合物の遷移金属を別の金属で一部置換したものを用いることができる。リチウム含有遷移金属硫化物については、前記リチウム含有遷移金属酸化物の酸素をイオウに置換したものに加えて、二硫化チタン酸リチウムを用いることができる。なお、高エネルギー密度化には、リチウム含有遷移金属酸化物の方が作動電位領域が高いために、好ましく用いられる。また、正極集電体に用いる金属箔としては、アルミニウム、ニッケル、白金などを用いることができる。   As the lithium-containing transition metal oxide, lithium cobaltate, lithium nickelate, lithium manganate, or those obtained by partially replacing the transition metal of these compounds with another metal can be used. As for the lithium-containing transition metal sulfide, lithium disulfide titanate can be used in addition to the lithium-containing transition metal oxide in which oxygen is substituted with sulfur. In order to increase the energy density, the lithium-containing transition metal oxide is preferably used because the working potential region is higher. As the metal foil used for the positive electrode current collector, aluminum, nickel, platinum, or the like can be used.

上記で作製された正極は、電池構成の際の正極として用いるが、もう一つ同じものをリチウム付与源としても使用する。   The positive electrode produced as described above is used as a positive electrode in battery construction, but the same positive electrode is also used as a lithium source.

以下、本発明の実施の形態1におけるリチウムイオン二次電池の製造方法について記載する。   Hereinafter, the manufacturing method of the lithium ion secondary battery in Embodiment 1 of this invention is described.

まず初めに、上述したように作製された負極と、リチウム付与源としての正極とを対向させる。対向させる方法としては、セパレータに使用されるのと同じ多孔性フィルムを介して対峙させ、電極群を作製する方法が例示できる。   First, the negative electrode produced as described above is opposed to the positive electrode as the lithium application source. As a method of making it oppose, the method of making it face through the same porous film used for a separator and producing an electrode group can be illustrated.

次に、得られた電極群を、有機溶媒にリチウム塩(支持塩)と皮膜形成剤と二酸化炭素とを溶解させた第1の非水電解質に浸漬する。   Next, the obtained electrode group is immersed in a first non-aqueous electrolyte in which a lithium salt (supporting salt), a film forming agent, and carbon dioxide are dissolved in an organic solvent.

ここで用いる有機溶媒は、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ―ブチロラクトンから選ばれる少なくとも一種類以上からなる。   The organic solvent used here comprises at least one selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and γ-butyrolactone.

支持塩としては、過塩素酸リチウム、テトラフルオロほう酸リチウム、ヘキサフルオロリン酸リチウムに代表される無機酸アニオンリチウム塩や、トリフルオロメタンスルホン酸リチウム、ビストリフルオロメタンスルホン酸イミドリチウム等の有機酸アニオンリチウム塩が適用できる。   Examples of supporting salts include inorganic acid anion lithium salts typified by lithium perchlorate, lithium tetrafluoroborate and lithium hexafluorophosphate, and organic acid anion lithiums such as lithium trifluoromethanesulfonate and lithium bistrifluoromethanesulfonate imide. Salt can be applied.

皮膜形成剤としては、ビニレンカーボネート(VC)、エチレンサルファイト(ES)、プロパンサルトン(PS)、ビニルエチレンカーボネート(VEC)、およびフッ素化エチレンカーボネート(FEC)から選ばれる少なくとも一つが適用できる。   As the film forming agent, at least one selected from vinylene carbonate (VC), ethylene sulfite (ES), propane sultone (PS), vinyl ethylene carbonate (VEC), and fluorinated ethylene carbonate (FEC) can be applied.

有機溶媒中に二酸化炭素を溶解させる方法としては、有機溶媒中に二酸化炭素を通気して、意図的に有機溶媒中の二酸化炭素濃度を高める方法が適用できる。二酸化炭素量が第1の非水電解質中に多量に存在する場合、皮膜形成剤との相互作用で、強固で安定した皮膜を形成することができる。   As a method for dissolving carbon dioxide in the organic solvent, a method in which carbon dioxide is aerated in the organic solvent and the concentration of carbon dioxide in the organic solvent is intentionally increased can be applied. When a large amount of carbon dioxide is present in the first nonaqueous electrolyte, a strong and stable film can be formed by interaction with the film forming agent.

不可逆容量をキャンセルするために、負極活物質中にリチウムをドープする方法としては、以下の3つの方法が挙げられる。   In order to cancel the irreversible capacity, the following three methods can be cited as a method of doping lithium into the negative electrode active material.

(1)負極集電体上の負極活物質がない部分に金属リチウムを貼り付け、注液することでローカルセルを形成し、負極活物質中にリチウムをドープする方法
(2)負極活物質上に蒸着やスパッタにより金属リチウムを成膜し、固相反応で負極活物質中にリチウムをドープする方法
(3)電池構成前の負極に、電解質中で電気化学的にリチウムをドープする方法
なお、上記(3)のように、電気化学的にリチウムをドープする場合には、
(A)不可逆容量相当分の電気量の充電を行う方法
(B)充電の後、放電も実施して不可逆容量相当分のリチウムを負極中に残す方法
の2通りが考えられる。
(1) A method of forming a local cell by attaching metallic lithium to a portion of the negative electrode current collector where no negative electrode active material is present and injecting it, and then doping lithium into the negative electrode active material. (2) On the negative electrode active material (3) Method of electrochemically doping lithium in the electrolyte in the negative electrode before battery construction, in which metal lithium is formed into a film by vapor deposition or sputtering and solid-phase reaction is performed to dope lithium into the negative electrode active material. When lithium is electrochemically doped as in (3) above,
(A) Method of charging the amount of electricity corresponding to the irreversible capacity (B) After charging, the discharge may also be performed to leave lithium corresponding to the irreversible capacity in the negative electrode.

上記(1)では、局部的に金属リチウムが存在するため、負極全域に「均一に」リチウムイオンが拡散することが難しい。上記(2)では、予め不可逆容量を求めておく必要がある。上記(3)の(A)では、予め負極活物質の不可逆容量を別途求めておく必要がある上、ケイ素(Si)やケイ素酸化物(SiO)のように、体積膨張が著しい活物質を用いた場合には、十分な膨張領域まで達していないために皮膜形成が不十分になりやすい。 In the above (1), since lithium metal is locally present, it is difficult for lithium ions to diffuse “uniformly” throughout the negative electrode. In (2) above, it is necessary to obtain the irreversible capacity in advance. In (A) of (3) above, it is necessary to separately determine the irreversible capacity of the negative electrode active material in advance, and an active material with a significant volume expansion such as silicon (Si) or silicon oxide (SiO x ) is used. When it is used, the film formation tends to be insufficient because it does not reach a sufficient expansion region.

しかしながら、上記(3)の(B)では、予め負極活物質の不可逆容量を求める必要がなく、ケイ素(Si)やケイ素酸化物(SiOx)のように、体積膨張が著しい活物質を用いた場合には、隅々まで皮膜形成を行うことができる。   However, in (B) of (3) above, there is no need to obtain the irreversible capacity of the negative electrode active material in advance, and an active material with a significant volume expansion such as silicon (Si) or silicon oxide (SiOx) is used. The film can be formed to every corner.

このような観点から、本実施の形態1では、電極群を第1の非水電解質中で、負極の電位が0V(vs.Li)になるまで充電を行った後、1.0V(vs.Li)を超えるまで放電させる。なお、本明細書において、負極活物質中にリチウムが挿入(吸蔵)される反応を充電とし、負極活物質からリチウムが脱離する反応を放電という。   From this point of view, in Embodiment 1, after charging the electrode group in the first non-aqueous electrolyte until the potential of the negative electrode becomes 0 V (vs. Li), 1.0 V (vs. Discharge until Li) is exceeded. Note that in this specification, a reaction in which lithium is inserted (occluded) into the negative electrode active material is referred to as charge, and a reaction in which lithium is desorbed from the negative electrode active material is referred to as discharge.

つまり、上記充電の過程では、負極活物質が活物質付与源からリチウムを吸蔵するに伴って、負極活物質の体積が膨張していく。この体積膨張により、負極活物質と電解質とが接触する面積が漸次増大するが、0Vまで充電することにより、その増大分まで、皮膜形成が進行し、負極活物質−非水電解質の全界面に皮膜を形成することができる。また、上記放電の過程では、不可逆容量相当分のリチウムを負極活物質内に残存させることができる。   In other words, in the charging process, the volume of the negative electrode active material expands as the negative electrode active material occludes lithium from the active material application source. This volume expansion gradually increases the contact area between the negative electrode active material and the electrolyte, but by charging to 0 V, film formation proceeds until the increase, and at the entire interface of the negative electrode active material and the non-aqueous electrolyte. A film can be formed. Further, in the discharge process, lithium corresponding to the irreversible capacity can be left in the negative electrode active material.

なお、活物質付与源として用いるリチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物に含まれるリチウムの量は、負極の電位が0Vになるまで充電可能な量が含まれている必要がある。   Note that the amount of lithium contained in the lithium-containing transition metal oxide or lithium-containing transition metal sulfide used as the active material application source needs to include an amount that can be charged until the potential of the negative electrode becomes 0V.

上記充放電は、少なくとも1サイクルが必要であり、体積変動に伴う活物質表面皮膜の破損があった場合に自己修復させるため、あるいは皮膜をさらに強固にするためには、さらに1サイクル以上の充放電を実施してもよいが、終了時は放電状態とすることが好ましい。   The charging / discharging requires at least one cycle. In order to cause self-healing when the active material surface film is damaged due to volume fluctuations, or to further strengthen the film, the charging / discharging of one cycle or more is required. Although discharge may be carried out, it is preferable that the discharge state be set at the end.

なお、この「終了時の放電状態」とは、不可逆容量相当分のリチウムのみが残存している状態であることが好ましいがそれに限定されない。負極の電位が0V(vs.Li)になるまで充電を行った場合を充電率100%とし、不可逆容量相当分のリチウムのみが残存している状態を充電率0%とした場合、「終了時の放電状態」での充電率が低い程、後の電池作製時に正極活物質中のリチウムを有効活用できる。正極活物質中のリチウムを有効活用する観点から、「終了時の放電状態」での充電率は、10%以下が好ましく、0%が最も好ましい。   The “discharge state at the end” is preferably a state in which only lithium corresponding to the irreversible capacity remains, but is not limited thereto. When charging is performed until the potential of the negative electrode reaches 0 V (vs. Li), the charging rate is 100%, and the state in which only lithium corresponding to the irreversible capacity remains is 0%. The lower the charging rate in the “discharged state”, the more effectively lithium in the positive electrode active material can be used in the subsequent battery fabrication. From the viewpoint of effectively utilizing lithium in the positive electrode active material, the charging rate in the “discharged state at the end” is preferably 10% or less, and most preferably 0%.

その後、電極群を負極と活物質付与源とに分離する。分離した負極と充放電を行っていない新たな正極とを多孔性フィルムなどからなるセパレータを介して対峙させ、再度、電極群を構成し、電池ケースに挿入する。   Then, an electrode group is isolate | separated into a negative electrode and an active material provision source. The separated negative electrode and a new positive electrode that has not been charged / discharged are opposed to each other through a separator made of a porous film or the like, and an electrode group is formed again and inserted into the battery case.

次いで、電池ケース内に第2の非水電解質を注液し、密封することで、本実施の形態1の電池を作製する。上記第2の非水電解質は、非水溶媒にリチウム塩を溶解させたものを用いる。   Next, the second non-aqueous electrolyte is injected into the battery case and sealed to produce the battery of the first embodiment. As the second nonaqueous electrolyte, a lithium salt dissolved in a nonaqueous solvent is used.

ここで用いる第2の非水電解質は、有機溶媒として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ―ブチロラクトンから選ばれる少なくとも一種類以上を用い、支持塩として、過塩素酸リチウム、テトラフルオロほう酸リチウム、ヘキサフルオロリン酸リチウムに代表される無機酸アニオンリチウム塩や、トリフルオロメタンスルホン酸リチウム、ビストリフルオロメタンスルホン酸イミドリチウム等の有機酸アニオンリチウム塩を、上記有機溶媒に溶解したものを用いる。   The second non-aqueous electrolyte used here is at least one selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and γ-butyrolactone as the organic solvent, and perchloric acid as the supporting salt. Inorganic acid anion lithium salts such as lithium acid, lithium tetrafluoroborate and lithium hexafluorophosphate, and organic acid anion lithium salts such as lithium trifluoromethanesulfonate and lithium bistrifluoromethanesulfonate imide are used as the organic solvent. Use the dissolved one.

皮膜形成剤は、酸化分解電位が、正極の充放電反応電位よりも卑であるので、電池内に残存した場合には、酸化分解によるガス発生を起こし、サイクル特性等の電池の特性を劣化させてしまう。また、皮膜形成に用いられる添加剤は、高温保存時あるいは充放電サイクル時にガスを発生させ、特性劣化をきたす要因となりやすい。そこで、従来の電池構成では、皮膜形成剤の添加を最小限としていたが、電解質中に過剰な添加剤が残らないように厳密に制御する必要があった。   Since the film-forming agent has a lower oxidative decomposition potential than the charge / discharge reaction potential of the positive electrode, if it remains in the battery, it causes gas generation due to oxidative decomposition and deteriorates battery characteristics such as cycle characteristics. End up. Moreover, the additive used for film formation tends to cause deterioration of characteristics by generating gas during high temperature storage or charge / discharge cycles. Therefore, in the conventional battery configuration, the addition of the film forming agent is minimized, but it is necessary to strictly control so that an excessive additive does not remain in the electrolyte.

しかしながら、本実施の形態1におけるリチウムイオン二次電池の製造方法によれば、電解質の組み換えを行うことで安定した皮膜が十分形成され、さらに、リチウムイオン二次電池内の電解質(第2の非水電解質)中には、皮膜が破損された際に修復に必要な少量の皮膜形成剤を含有させることも出来るが、初期からの皮膜形成に必要とされるほどの多量には添加されないために過剰の添加剤が存在することがないという好ましい作用を有する。なお、第2の非水電解質には、皮膜形成剤を全く含まないことが、室温より高い温度での充電の際に皮膜形成剤が酸化分解することがないために、特性劣化抑止の観点から好ましい。   However, according to the method of manufacturing a lithium ion secondary battery in the first embodiment, a stable film is sufficiently formed by recombining the electrolyte, and the electrolyte (second non-ionic) in the lithium ion secondary battery is further formed. The water electrolyte) can contain a small amount of film-forming agent necessary for restoration when the film is damaged, but it is not added as much as necessary for film formation from the beginning. It has a favorable effect that no excess additive is present. The second non-aqueous electrolyte does not contain any film-forming agent, and since the film-forming agent does not undergo oxidative decomposition during charging at a temperature higher than room temperature, from the viewpoint of suppressing characteristic deterioration. preferable.

また、電解質中の二酸化炭素の存在が、安定した被膜形成をもたらすことは公知であるが、電解質中に多量に存在すると、高温に置かれた場合に電解質に対する溶解度が低下するために、電解質中からガスとして放出され、それが原因で電池が膨れたりしてしまう。   In addition, it is known that the presence of carbon dioxide in the electrolyte leads to stable film formation. It is released as gas from the battery, which causes the battery to swell.


したがって、本実施の形態で作製されたリチウムイオン二次電池が室温以上の雰囲気に曝される可能性がある場合には、第2の非水電解質に溶存する二酸化炭素量が少ないほうが好ましい。

Therefore, when there is a possibility that the lithium ion secondary battery manufactured in this embodiment is exposed to an atmosphere at room temperature or higher, it is preferable that the amount of carbon dioxide dissolved in the second nonaqueous electrolyte is small.

そこで、本実施の形態1におけるリチウムイオン二次電池を構成する際に用いる第2の電解質には、アルゴンガスを通気することで十分に二酸化炭素を脱気したものを用いることがより好ましい。アルゴンガスを通気する場合には、二酸化炭素の電解質への溶解度や、電池の保証温度などを考慮して、25℃以上60℃以下で行うのが好ましい。電池の保証温度の上限温度としては60℃が推奨される。60℃よりも温度が高い条件下でアルゴンガスを通気した場合、第2の非水電解質の注液前に溶媒が揮発し、組成変化が著しくなる恐れがある。   Therefore, it is more preferable to use a second electrolyte that is sufficiently degassed by aeration of argon gas as the second electrolyte used in configuring the lithium ion secondary battery in the first embodiment. When the argon gas is vented, it is preferably performed at 25 ° C. or more and 60 ° C. or less in consideration of the solubility of carbon dioxide in the electrolyte and the guaranteed temperature of the battery. 60 ° C. is recommended as the upper limit temperature of the guaranteed battery temperature. When argon gas is passed under a condition where the temperature is higher than 60 ° C., the solvent volatilizes before the second nonaqueous electrolyte is injected, and the composition change may become remarkable.

(実施の形態2)
本発明の実施の形態2では、リチウム付与源として、金属リチウムを用いる。その他の条件は、実施の形態1と同じである。本実施の形態2も、負極と金属リチウムとで電極群を構成し、負極の電位が0V(vs.Li)になるまで充電を行った後、1.0V(vs.Li)を超えるまで放電させればよい。また、金属リチウムの量は、負極の電位が0Vになるまで充電可能な量が含まれている必要がある。
(Embodiment 2)
In Embodiment 2 of the present invention, metallic lithium is used as the lithium application source. Other conditions are the same as those in the first embodiment. In the second embodiment as well, a negative electrode and metallic lithium constitute an electrode group, and charging is performed until the potential of the negative electrode becomes 0 V (vs. Li), and then discharging is performed until it exceeds 1.0 V (vs. Li). You can do it. Further, the amount of metallic lithium needs to include an amount that can be charged until the potential of the negative electrode becomes 0V.

本実施の形態2においても、その作用・効果は実施の形態1と同様のものが得られる。   Also in the second embodiment, the same actions and effects as those of the first embodiment can be obtained.

(実施の形態3)
本発明の実施の形態3では、実施の形態1での、負極活物質層を薄膜形成手法により金属箔上に堆積させて負極を作製する方法に代えて、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質の粉末と導電剤およびバインダーを溶媒中に分散、混練してペースト化し、上記ペーストを金属箔上に塗布、乾燥、圧延させることで負極を作製している。その他の条件は、実施の形態1と同じである。
(Embodiment 3)
In Embodiment 3 of the present invention, instead of the method of depositing the negative electrode active material layer on the metal foil by the thin film formation method in Embodiment 1 to produce a negative electrode, silicon, silicon oxide, tin, And a negative electrode active material powder containing at least one selected from the group consisting of tin oxides, a conductive agent, and a binder are dispersed in a solvent, kneaded to form a paste, and the paste is applied onto a metal foil, dried, and rolled. Thus, a negative electrode is produced. Other conditions are the same as those in the first embodiment.

本実施の形態3においても、その作用・効果は実施の形態1と同様のものが得られる。   Also in the third embodiment, the same actions and effects as those of the first embodiment are obtained.

本発明にかかるリチウムイオン二次電池の製造方法は、ケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質の不可逆容量相当のリチウムを補填するとともに、安定した皮膜形成を行うことができる。これにより、製造後のリチウムイオン二次電池におけるガス発生等の問題が減少し、信頼性を高めることができる点で有用である。また、本発明にかかるリチウムイオン二次電池の製造方法は、従来の炭素系負極材料やその他の負極材料を用いたリチウムイオン二次電池の製造方法にも応用できる。   The method of manufacturing a lithium ion secondary battery according to the present invention compensates for lithium corresponding to the irreversible capacity of a negative electrode active material containing at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide. At the same time, stable film formation can be performed. Thereby, problems such as gas generation in the lithium ion secondary battery after manufacture are reduced, which is useful in that the reliability can be improved. Moreover, the manufacturing method of the lithium ion secondary battery concerning this invention is applicable also to the manufacturing method of the lithium ion secondary battery using the conventional carbon-type negative electrode material and other negative electrode materials.

Claims (7)

負極集電体と、前記負極集電体上に形成されたケイ素、ケイ素の酸化物、スズ、およびスズの酸化物からなる群より選ばれる少なくとも一種を含む負極活物質層とを含む負極と、
正極集電体と、前記正極集電体上に形成されたリチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物を含む正極活物質層とを含む正極と、
有機溶媒にリチウム塩を溶解させた非水電解質とを備えるリチウムイオン二次電池の製造方法であって、
前記負極とリチウム付与源とを対向させ、皮膜形成剤と二酸化炭素とを溶解させた第1の非水電解質を用い、少なくとも1サイクルの充放電を行うことで前記負極活物質層に不可逆容量相当のリチウムを挿入した後、前記負極と前記リチウム付与源とを分離する工程と、
分離した前記負極と前記正極とをセパレータを介して対向させた電極群を、電池ケースに挿入する工程と、
前記電池ケースに、非水溶媒にリチウム塩を溶解させた第2の非水電解質を注液後、前記電池ケースを密封する工程とを備えることを特徴とするリチウムイオン二次電池の製造方法。
A negative electrode comprising: a negative electrode current collector; and a negative electrode active material layer comprising at least one selected from the group consisting of silicon, silicon oxide, tin, and tin oxide formed on the negative electrode current collector;
A positive electrode comprising a positive electrode current collector and a positive electrode active material layer comprising a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide formed on the positive electrode current collector;
A method for producing a lithium ion secondary battery comprising a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent,
The negative electrode active material layer is equivalent to an irreversible capacity by charging and discharging at least one cycle using the first nonaqueous electrolyte in which the negative electrode and the lithium supply source are opposed to each other and the film forming agent and carbon dioxide are dissolved. Separating the negative electrode and the lithium source after inserting the lithium,
Inserting an electrode group in which the separated negative electrode and the positive electrode are opposed to each other through a separator, into a battery case;
A method of manufacturing a lithium ion secondary battery, comprising: injecting a second nonaqueous electrolyte in which a lithium salt is dissolved in a nonaqueous solvent into the battery case, and then sealing the battery case.
前記リチウム付与源は、リチウム含有遷移金属酸化物またはリチウム含有遷移金属硫化物を含むことを特徴とする、
請求項1に記載のリチウムイオン二次電池の製造方法。
The lithium application source includes a lithium-containing transition metal oxide or a lithium-containing transition metal sulfide,
The manufacturing method of the lithium ion secondary battery of Claim 1.
前記リチウム付与源は、金属リチウム箔を含むことを特徴とする、
請求項1に記載のリチウムイオン二次電池の製造方法。
The lithium application source includes a metal lithium foil,
The manufacturing method of the lithium ion secondary battery of Claim 1.
前記皮膜形成剤が、ビニレンカーボネート(VC)、エチレンサルファイト(ES)、プロパンサルトン(PS)、ビニルエチレンカーボネート(VEC)、およびフッ素化エチレンカーボネート(FEC)からなる群より選ばれる少なくとも一つであることを特徴とする、
請求項1〜3のいずれかに記載のリチウムイオン二次電池の製造方法。
The film forming agent is at least one selected from the group consisting of vinylene carbonate (VC), ethylene sulfite (ES), propane sultone (PS), vinyl ethylene carbonate (VEC), and fluorinated ethylene carbonate (FEC). It is characterized by
The manufacturing method of the lithium ion secondary battery in any one of Claims 1-3.
前記第2の非水電解質に前記皮膜形成剤が第1の非水電解質よりも少ない量を含むか、または前記皮膜形成剤を含まないことを特徴とする、
請求項1〜4のいずれかに記載のリチウムイオン二次電池の製造方法。
In the second non-aqueous electrolyte, the film-forming agent contains a smaller amount than the first non-aqueous electrolyte, or does not contain the film-forming agent.
The manufacturing method of the lithium ion secondary battery in any one of Claims 1-4.
前記第2の非水電解質から二酸化炭素を脱気する工程を含むこと特徴とする、
請求項1〜5のいずれかに記載のリチウムイオン二次電池の製造方法。
Including degassing carbon dioxide from the second non-aqueous electrolyte,
The manufacturing method of the lithium ion secondary battery in any one of Claims 1-5.
前記第2の非水電解質の二酸化炭素脱気は、25℃以上、60℃以下での不活性ガス通気により行われることを特徴とする、
請求項6に記載のリチウムイオン二次電池の製造方法。
The carbon dioxide degassing of the second non-aqueous electrolyte is performed by venting an inert gas at 25 ° C. or more and 60 ° C. or less,
The manufacturing method of the lithium ion secondary battery of Claim 6.
JP2006174819A 2006-06-26 2006-06-26 Manufacturing method for lithium ion secondary battery Pending JP2008004466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174819A JP2008004466A (en) 2006-06-26 2006-06-26 Manufacturing method for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174819A JP2008004466A (en) 2006-06-26 2006-06-26 Manufacturing method for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008004466A true JP2008004466A (en) 2008-01-10

Family

ID=39008676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174819A Pending JP2008004466A (en) 2006-06-26 2006-06-26 Manufacturing method for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008004466A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076847A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2014127317A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP2014135239A (en) * 2013-01-11 2014-07-24 Waseda Univ Method for producing lithium secondary battery active material, and lithium secondary battery
CN107834107A (en) * 2017-11-14 2018-03-23 山东科技大学 A kind of rechargeable aluminium-sulfur battery and preparation method thereof
WO2021060811A1 (en) * 2019-09-23 2021-04-01 주식회사 엘지화학 Method for manufacturing secondary battery
CN114600271A (en) * 2019-08-19 2022-06-07 大洲电子材料株式会社 Secondary battery and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076847A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JPWO2013076847A1 (en) * 2011-11-24 2015-04-27 トヨタ自動車株式会社 Method for producing non-aqueous electrolyte secondary battery
JP2014127317A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP2014135239A (en) * 2013-01-11 2014-07-24 Waseda Univ Method for producing lithium secondary battery active material, and lithium secondary battery
CN107834107A (en) * 2017-11-14 2018-03-23 山东科技大学 A kind of rechargeable aluminium-sulfur battery and preparation method thereof
CN114600271A (en) * 2019-08-19 2022-06-07 大洲电子材料株式会社 Secondary battery and method for manufacturing same
JP2022546284A (en) * 2019-08-19 2022-11-04 デジュ・エレクトロニック・マテリアルズ・カンパニー・リミテッド Secondary battery and manufacturing method therefor
WO2021060811A1 (en) * 2019-09-23 2021-04-01 주식회사 엘지화학 Method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP5219401B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP5084802B2 (en) Lithium ion secondary battery
JP4527605B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
JP4012174B2 (en) Lithium battery with efficient performance
US9742035B2 (en) Electrochemical energy storage device
TWI431832B (en) Lactam-based additive for electrolyte and secondary battery comprising the same
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP5541502B2 (en) Lithium secondary battery and manufacturing method thereof
JP2009245828A (en) Nonaqueous electrolyte secondary battery
JP2004342585A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing it
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
KR101732652B1 (en) A method for manufacturing a Lithium ion Secondary Battery
JP2021510904A (en) Rechargeable metal halide battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
JP4345641B2 (en) Secondary battery
JP4018560B2 (en) Negative electrode active material composition for lithium secondary battery, method for producing negative electrode for lithium secondary battery using the same, and lithium secondary battery including the same
JP2008027782A (en) Lithium secondary battery
JP2003308875A (en) Nonaqueous secondary battery
JP4319025B2 (en) Non-aqueous electrolyte secondary battery
JP2001223024A (en) Electrolyte for lithium secondary battery
JP2007323958A (en) Nonaqueous electrolyte battery and its manufacturing method
JP4544408B2 (en) Secondary battery electrolyte and secondary battery using the same
JP2008004466A (en) Manufacturing method for lithium ion secondary battery
JP4153170B2 (en) Electrolyte for lithium secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it