JP2008003422A - Optical fiber light guiding method and device for wavelength conversion laser output - Google Patents

Optical fiber light guiding method and device for wavelength conversion laser output Download PDF

Info

Publication number
JP2008003422A
JP2008003422A JP2006174615A JP2006174615A JP2008003422A JP 2008003422 A JP2008003422 A JP 2008003422A JP 2006174615 A JP2006174615 A JP 2006174615A JP 2006174615 A JP2006174615 A JP 2006174615A JP 2008003422 A JP2008003422 A JP 2008003422A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
crystal
dfg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174615A
Other languages
Japanese (ja)
Inventor
Hisanao Hazama
久直 間
Toru Nagai
亨 永井
Mikio Muro
幹雄 室
Yoshiaki Takatani
芳明 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006174615A priority Critical patent/JP2008003422A/en
Publication of JP2008003422A publication Critical patent/JP2008003422A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber light guiding method which makes optical adjustments easy and simple even when the wavelength of output light is varied as a method of individually separating and guiding a difference frequency light output to a small light guide-in portion of an optical fiber, the method being applied to a wavelength conversion laser device which makes nonlinear optical crystal outputs the difference frequency light by making pump light and signal light incident thereupon. <P>SOLUTION: Angles of incidence of the pump light ω1 and signal light ω2 made incident on the nonlinear optical crystal 1 are given a slight angle difference θin, and the crystal axis of the nonlinear optical crystal 1 is adjusted according to a phase matching condition. At this time, a common passage point 2 that an optical path always passes even when the projected difference frequency generation (DFG) ω3 is different in wavelength is regarded as a virtual spot light source, and the DFG having passed the common passage point 2 is guided to a light guide-in port 31 of the optical fiber 3 by an optical system such as a dispersing element 4, an image relay lens system 6, and a rotary reflector 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、周波数の異なる2つのレーザ光を非線形光学結晶に入射させて入射レーザ光の差周波のレーザ光を出力させる波長変換レーザ装置において差周波光出力を光ファイバに導く導光方法と装置に関する。   The present invention relates to a light guide method and apparatus for guiding a difference frequency light output to an optical fiber in a wavelength conversion laser device that makes two laser beams having different frequencies incident on a nonlinear optical crystal and outputs a laser light having a difference frequency between the incident laser beams. About.

従来より、波長の異なる2つの励起光を非線形光学結晶中で混合すると励起光の周波数の差に対応する長い波長のコヒーレント光が発生するという差周波発生の原理を利用して、赤外領域のレーザ光を発生するようにした波長変換レーザ装置が知られている。
この波長変換レーザ装置は、波長の短い第1励起光(ポンプ光)が非線形光学結晶中で第2励起光(シグナル光)と相互作用し波長変換されて長波長の差周波光(DFG)を発生するので、DFGの波長は第2励起光の波長を変えることにより調整できるから、波長可変の長波長レーザ発生装置となる。
Conventionally, when two excitation lights having different wavelengths are mixed in a nonlinear optical crystal, a long wavelength coherent light corresponding to the difference in the frequency of the excitation light is generated. 2. Description of the Related Art A wavelength conversion laser device that generates laser light is known.
In this wavelength conversion laser device, the first pumping light (pump light) having a short wavelength interacts with the second pumping light (signal light) in the nonlinear optical crystal and is wavelength-converted to convert the long-wavelength difference frequency light (DFG). Since it is generated, the wavelength of the DFG can be adjusted by changing the wavelength of the second excitation light, so that the wavelength-tunable long-wavelength laser generator is obtained.

たとえば特許文献1には、短波長側のポンプ光としてネオジムYAG(Nd:YAG)レーザを用い、これより長波長側のシグナル光としてクロムフォルステライト(Cr:forsterite)レーザを用いることにより構成した、高出力かつコンパクトで波長チューニング可能な赤外光発生装置が開示されている。
この赤外光発生装置では、Nd:YAGレーザが波長1.064μmのパルスレーザをポンプ光として非線形光学結晶に入射し、これと同期したCr:forsteriteレーザを1.15〜1.35μmの範囲で波長を選択できる波長可変固体レーザのシグナル光として非線形光学結晶に入射し、ポンプ光とシグナル光の差周波数に係る5〜14μmの波長範囲の赤外光を選択的に発生する。
For example, in Patent Document 1, a neodymium YAG (Nd: YAG) laser is used as the pump light on the short wavelength side, and a chromium forsterite (Cr: forsterite) laser is used as the signal light on the longer wavelength side. A high-power, compact, and wavelength-tunable infrared light generator is disclosed.
In this infrared light generator, an Nd: YAG laser is incident on a nonlinear optical crystal using a pulse laser having a wavelength of 1.064 μm as pump light, and a Cr: forsterite laser synchronized therewith is in a range of 1.15 to 1.35 μm. The light is incident on the nonlinear optical crystal as signal light of a tunable solid-state laser whose wavelength can be selected, and infrared light in a wavelength range of 5 to 14 μm according to the difference frequency between the pump light and the signal light is selectively generated.

非線形光学結晶からは、差周波光(DFG)の他にポンプ光とシグナル光が射出してくるので、赤外線選別性の高いフィルタでDFGを選別して出力し、光ファイバに入射させて必要な場所に伝送する。
ゲルマニウム(Ge)は赤外線選択性が高いので、Geフィルタを用いれば、波長が1μm近辺にあるYAGレーザ光やCr:forsteriteレーザ光をよく遮断して、純度の高い赤外光を得ることが期待される。
ところが、本発明の発明者らが実際に構成した差周波光発生装置における赤外光出力は設計値の半分程度の強さで、当初の期待から外れた結果となった。
The nonlinear optical crystal emits pump light and signal light in addition to the difference frequency light (DFG). Therefore, the DFG is selected and output by a filter with high infrared selection characteristics, and is input to an optical fiber. Transmit to location.
Since germanium (Ge) has high infrared selectivity, it is expected that if a Ge filter is used, high-purity infrared light will be obtained by well blocking YAG laser light and Cr: forsterite laser light having a wavelength of around 1 μm. Is done.
However, the infrared light output in the difference frequency light generator actually constructed by the inventors of the present invention is about half the design value, which is a result that deviated from the initial expectation.

発明者らは、この問題について研究した結果、GeフィルターにNd:YAGレーザ光を照射するとDFGの透過率が低下する現象を捉えた。
分離したDFGをGeフィルターに照射し、DFGが透過する部分にNd:YAGレーザを照射し、Nd:YAGレーザの強度を変化させてGeフィルターに対するDFGの透過率を測定すると、YAGレーザの照射強度が強くなるに従ってDFGの透過率が低下することが確認できた。YAGレーザにより透過率が減少するメカニズムは明らかでないが、この現象がGeフィルターを用いた差周波光発生装置のDFG出力が期待通りにならない原因になっていることは確実である。
したがって、Geフィルターを使用するときは、DFGの照射位置にYAGレーザ光が重ならないようにすることが好ましい。
As a result of researches on this problem, the inventors have grasped a phenomenon in which the transmittance of DFG decreases when a Ge filter is irradiated with Nd: YAG laser light.
When the separated DFG is irradiated onto the Ge filter, the portion through which the DFG passes is irradiated with an Nd: YAG laser, and the intensity of the Nd: YAG laser is changed to measure the transmittance of the DFG with respect to the Ge filter. It has been confirmed that the transmittance of DFG decreases as the value of A increases. Although the mechanism by which the transmittance is reduced by the YAG laser is not clear, it is certain that this phenomenon causes the DFG output of the difference frequency light generator using the Ge filter not to be as expected.
Therefore, when a Ge filter is used, it is preferable that the YAG laser light does not overlap with the DFG irradiation position.

特許文献2には、DFGとYAGレーザが重なることを避けて純粋なDFGを取り出す方法が記載されている。波長可変テラヘルツ波発生装置を開示する特許文献2には、出力部分にGeフィルターを設ける代わりに、DFGの出射方向をポンプ光やシグナル光の出射方向と異なるようにして出力光の純化を行う構成が記載されている。   Patent Document 2 describes a method of taking out pure DFG while avoiding overlap of DFG and YAG laser. In Patent Document 2 that discloses a wavelength tunable terahertz wave generation device, a configuration in which the output light is purified by making the emission direction of the DFG different from the emission direction of the pump light or signal light instead of providing a Ge filter in the output portion. Is described.

非線形光学結晶に入射するポンプ光の角周波数をω1、シグナル光の角周波数をω2、DFGの角周波数をω3とすると、角周波数ω3は、ωを波数ベクトルとしてω3=ω1−ω2で表される関係を有する。
したがって、図9に示すように、ポンプ光とシグナル光の光軸に僅かに角度差θinを持たせると、波数ベクトルω1とω2の差であるDFGの波数ベクトルω3はポンプ光を挟んでシグナル光の反対側に変移し、さらに結晶表面で屈折して角度差θoutだけ逸れた方向に放出される。したがって、非線形光学結晶から十分離れた位置では、DFGをポンプ光やシグナル光から分離させることができる。
そこで、ポンプ光とシグナル光の入射角の間に僅か数分の差θinを与えることにより、非線形光学結晶からのDFGの出射角θoutを数10度にさせて、ポンプ光やシグナル光からDFGを分離するものである。
Assuming that the angular frequency of the pump light incident on the nonlinear optical crystal is ω1, the angular frequency of the signal light is ω2, and the angular frequency of the DFG is ω3, the angular frequency ω3 is represented by ω3 = ω1−ω2, where ω is a wave number vector. Have a relationship.
Therefore, as shown in FIG. 9, when the optical axis of the pump light and the signal light has a slight angle difference θin, the DFG wave vector ω3, which is the difference between the wave vectors ω1 and ω2, sandwiches the pump light. And is refracted on the crystal surface and emitted in a direction deviating by the angle difference θout. Therefore, DFG can be separated from pump light and signal light at a position sufficiently away from the nonlinear optical crystal.
Therefore, by giving a difference θin of only a few minutes between the incident angles of the pump light and the signal light, the exit angle θout of the DFG from the nonlinear optical crystal is made several tens of degrees, and the DFG is obtained from the pump light and the signal light. To separate.

しかし、特許文献2に記載された構成では、DFGの波長を変化させるたびにDFGの出射角が変化するため、出射光を光ファイバに入射させようとすると、導光光学系の光軸調整をする必要があり不便である。
たとえば、ポンプ光とシグナル光の入射角差θinが0.3度である場合、DFGの波長を5.5μmから10μmに変化させると、DFGの出射方向は約1.3度も変化するので、使用時の光学的調整が極めて煩雑になる。
However, in the configuration described in Patent Document 2, since the emission angle of the DFG changes every time the wavelength of the DFG is changed, if the outgoing light is made to enter the optical fiber, the optical axis of the light guide optical system is adjusted. It is inconvenient to do.
For example, if the incident angle difference θin between the pump light and the signal light is 0.3 degrees, changing the DFG wavelength from 5.5 μm to 10 μm changes the DFG emission direction by about 1.3 degrees. Optical adjustment during use becomes extremely complicated.

なお、引用文献3には、波長可変光源の波長変化に合わせて可変バンドパスフィルタの選択波長を追尾させる波長可変光源装置が開示されている。
開示された可変バンドパスフィルタシステムは、APC制御回路を用いて可変バンドパスフィルタへの入力光を所定値に制御した上、可変バンドパスフィルタの選択光の一部を無偏光ビームスプリッタによって分岐してモニタし、波長追尾回路によって可変バンドフィルタを駆動して、出力光が一定になるように選択波長を調整する。開示装置に適合する可変バンドパスフィルタは、特別な出力特性を有することが求められるが、誘導体多層膜によって形成することができるとされている。
Reference 3 discloses a wavelength tunable light source device that tracks the selected wavelength of the variable bandpass filter in accordance with the wavelength change of the wavelength tunable light source.
In the disclosed variable bandpass filter system, the input light to the variable bandpass filter is controlled to a predetermined value using an APC control circuit, and a part of the selection light of the variable bandpass filter is branched by a non-polarizing beam splitter. The variable wavelength filter is driven by the wavelength tracking circuit, and the selected wavelength is adjusted so that the output light becomes constant. A variable bandpass filter suitable for the disclosed apparatus is required to have a special output characteristic, but can be formed of a dielectric multilayer film.

引用文献3に開示された出力波長の選択方法は、出力光の光軸が一定するので光学的位置調整が不要であるが、透過波長の追尾ができる可変バンドパスフィルター、光源の安定化制御回路、フィルタの透過波長追尾回路などを備える必要があり、システムの複雑化が避けられない。
したがって、差周波発生用非線形光学結晶を用いた波長可変レーザ装置において、背景光を効果的に除去して、目的とする差周波のみを極めて小さいターゲットである光ファイバのコアに注入する簡便で安価な方法の提供が待たれている。
特開2005−331599号公報 特開2004−318028号公報 特開2004−039677号公報
The output wavelength selection method disclosed in the cited document 3 does not require optical position adjustment because the optical axis of the output light is constant, but a variable bandpass filter capable of tracking the transmission wavelength, and a light source stabilization control circuit In addition, it is necessary to provide a transmission wavelength tracking circuit for the filter, and the complexity of the system is inevitable.
Therefore, in a wavelength tunable laser device using a nonlinear optical crystal for generating a difference frequency, the background light is effectively removed and only the desired difference frequency is injected into the core of the optical fiber, which is an extremely small target, at a low cost. The provision of a new method is awaited.
JP 2005-331599 A JP 2004-318028 A JP 2004-039677 A

そこで、本発明が解決しようとする課題は、波長変換レーザ装置において差周波光出力をポンプ光やシグナル光と分離して光ファイバの小さな光導入部に導く、より簡便な光ファイバ導光方法を提供すること、特に、出力光の波長を変更したときにも光学的調整が容易な光ファイバ導光方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide a simpler optical fiber light guiding method that separates the difference frequency light output from the pump light and signal light and guides it to a small light introducing portion of the optical fiber in the wavelength conversion laser device. It is to provide an optical fiber light guiding method that is easy to optically adjust even when the wavelength of output light is changed.

上記課題を解決するため、本発明の波長変換レーザ出力の光ファイバ導光方法は、非線形光学結晶に入射するポンプ光とシグナル光の入射角に僅かな角度差を与え、非線形光学結晶の結晶軸を位相整合条件に合わせて調整したときに、出射する差周波光(DFG)が波長が異なる場合にも常に光路が通過する共通通過点を見いだして、この共通通過点を物点とし光ファイバの入射点を像点とするようにイメージリレーを配置して、非線形光学結晶で発生するDFGを光ファイバに導くことを特徴とする。   In order to solve the above problems, the optical fiber light guiding method of the wavelength conversion laser output of the present invention gives a slight angle difference between the incident angles of the pump light and the signal light incident on the nonlinear optical crystal, and the crystal axis of the nonlinear optical crystal. Is adjusted according to the phase matching condition, and even when the difference frequency light (DFG) to be emitted has a different wavelength, a common passing point through which the optical path always passes is found, and this common passing point is used as an object point. An image relay is arranged so that the incident point is an image point, and DFG generated in the nonlinear optical crystal is guided to an optical fiber.

非線形光学結晶にポンプ光とシグナル光を入射すると、ポンプ光とシグナル光の光軸と非線形光学結晶の光学軸が位相整合条件を満たすときに、ポンプ光とシグナル光の波数ベクトルのベクトル差となる波数ベクトルを有する差周波光を出力する。
波長調整可能な波長変換レーザ出力装置では、ポンプ光とシグナル光の入射角が変わらなくても、出力するDFGの波長を変化させれば、非線形光学結晶からの出力方向が変化する。波長が長くなるほどDFGの出力軸が傾き出射角が大きくなる。
When the pump light and the signal light are incident on the nonlinear optical crystal, the vector difference between the pump light and the signal light wave vector is obtained when the optical axis of the pump light and the signal light and the optical axis of the nonlinear optical crystal satisfy the phase matching condition. A difference frequency light having a wave vector is output.
In the wavelength conversion laser output device capable of adjusting the wavelength, even if the incident angles of the pump light and the signal light are not changed, the output direction from the nonlinear optical crystal is changed by changing the wavelength of the output DFG. As the wavelength increases, the output axis of the DFG tilts and the emission angle increases.

しかし、非線形光学結晶中のポンプ光の光軸と結晶光学軸との角度は、位相整合条件に基づいて、DFGの波長が長くなるほど大きくなる。
そこで、非線形光学結晶に入射する前のポンプ光とシグナル光の光路を固定して、位相整合条件に合わせて非線形光学結晶軸の方向を調整すると、DFGの波長が長いほどポンプ光などが非線形光学結晶を射出する位置がDFGの射出方向の後ろ側に後退する。
However, the angle between the optical axis of the pump light in the nonlinear optical crystal and the crystal optical axis becomes larger as the wavelength of the DFG becomes longer based on the phase matching condition.
Therefore, if the optical path of the pump light and the signal light before entering the nonlinear optical crystal is fixed and the direction of the nonlinear optical crystal axis is adjusted according to the phase matching condition, the longer the DFG wavelength, the more the pump light etc. The position where the crystal is ejected moves backward in the DFG ejection direction.

したがって、波長の異なるDFGの光路同士は出射後に交差する点を有する。実際に、色々な波長のDFGについて光路を描いてみると、ある波長範囲における全てのDFGは幅1〜2mm程度の比較的狭い領域を通過することが分かる。この全てのDFGが通過する領域が最も狭くなる空間上の位置を求める。この領域は十分小さいので擬似的に点とみなすことができ、どの波長のDFGもこの点に光源があるように扱うことができる。この点を共通通過点と呼ぶことにする。   Therefore, the optical paths of DFGs having different wavelengths have points that intersect after emission. Actually, when optical paths are drawn for DFGs of various wavelengths, it can be seen that all DFGs in a certain wavelength range pass through a relatively narrow region having a width of about 1 to 2 mm. The position in the space where the area through which all the DFG passes is the narrowest is obtained. Since this region is sufficiently small, it can be regarded as a pseudo point, and any wavelength DFG can be treated as if there is a light source at this point. This point is called a common passing point.

本発明の光ファイバ導光方法は、この共通通過点を物点とし光ファイバのコアに導く入射点を像点とするようにイメージリレーを配置するので、共通通過点におけるDFGは光ファイバの小さな芯位置に投影される。したがって、異なる波長のDFGであっても、全て共通通過点を通ることから、正確に光ファイバに導入することができる。   In the optical fiber light guiding method of the present invention, the image relay is arranged so that the common passing point is an object point and the incident point guided to the core of the optical fiber is the image point. Therefore, the DFG at the common passing point is smaller than that of the optical fiber. Projected to the core position. Therefore, even DFGs of different wavelengths pass through the common passing point, and can be accurately introduced into the optical fiber.

本発明第2の波長変換レーザ出力の光ファイバ導光方法は、共通通過点に分散素子を配置し、プリズムなどの分散素子により波長によらず出射光が同じ方向に回折するようにして、集光レンズでDFGを光ファイバに導くことを特徴とする。
共通通過点に集合するDFGは、波長にしたがって入射角が変化するので、プリズムなどの分散素子を適度に選択して入射角度差を相殺させ、分散素子を透過した波長の異なるDFGがほぼ同じ方向に向くようにする。
According to the second optical fiber light guiding method of the wavelength conversion laser output of the present invention, a dispersive element is arranged at a common passing point so that the emitted light is diffracted in the same direction regardless of the wavelength by a dispersive element such as a prism. The DFG is guided to an optical fiber by an optical lens.
Since the incident angles of the DFGs gathered at the common passing point change according to the wavelength, the dispersion elements such as prisms are appropriately selected to cancel the difference in the incident angle, and the DFGs having different wavelengths transmitted through the dispersing elements have almost the same direction. Try to face.

たとえば、光学結晶の屈折率は波長の長い光線に対するもの方が短い光線に対するものより大きいので、光学結晶のプリズムを分散素子として使用し、分散素子へのDFGの入射角を波長の長い方が短いものより大きくなるように配置すれば、入射角度差を相殺することができる。
そこで、光軸がDFGの光路と平行で焦点位置に光ファイバのコアが位置するように配置した集光レンズを光ファイバの前に配置すれば、波長の異なるDFGも全て光ファイバに導入することができるようになる。
For example, since the refractive index of an optical crystal is larger for a light beam having a longer wavelength than for a light beam having a shorter wavelength, the prism of the optical crystal is used as a dispersion element, and the incident angle of DFG to the dispersion element is shorter for a longer wavelength. If it arrange | positions so that it may become larger than a thing, an incident angle difference can be canceled.
Therefore, if a condensing lens is arranged in front of the optical fiber so that the optical axis is parallel to the optical path of the DFG and the core of the optical fiber is located at the focal position, all DFGs having different wavelengths can be introduced into the optical fiber. Will be able to.

本発明第3の波長変換レーザ出力の光ファイバ導光方法は、共通通過点に回転可能な反射鏡を配置し、反射方向を調整して反射光が波長によらず同じ方向に向くようにして、この方向に光軸を持つ集光レンズでDFGを光ファイバに導くことを特徴とする。
共通通過点を通過するDFGは、波長により共通通過点に入射する方向が異なるので、反射鏡の向きを調整して光ファイバのコアに光を集中する集光レンズの光軸と一致する光路、あるいは光軸と平行な光路を形成するようにすれば、波長が異なるDFGも確実に光ファイバに導入することができる。
In the third optical fiber light guiding method of the wavelength conversion laser output of the present invention, a rotatable reflecting mirror is arranged at the common passing point, and the reflection direction is adjusted so that the reflected light is directed in the same direction regardless of the wavelength. The DFG is guided to an optical fiber by a condensing lens having an optical axis in this direction.
Since the DFG that passes through the common passage point has a different direction of incidence on the common passage point depending on the wavelength, the optical path coincides with the optical axis of the condenser lens that adjusts the direction of the reflecting mirror and concentrates light on the core of the optical fiber, Alternatively, if an optical path parallel to the optical axis is formed, DFGs having different wavelengths can be reliably introduced into the optical fiber.

また、上記課題を解決するため、本発明の波長変換レーザ出力の光ファイバ導光装置は、ポンプ光を供給するポンプ光発生装置と、シグナル光を供給するシグナル光発生装置と、ポンプ光とシグナル光を入射すると差周波光を出力する非線形光学結晶と、非線形光学結晶の傾きを調整する制御装置と、物点の映像を像点に伝達するイメージリレーを備える。   In order to solve the above problems, an optical fiber light guiding device with a wavelength-converted laser output according to the present invention includes a pump light generator that supplies pump light, a signal light generator that supplies signal light, a pump light and a signal A nonlinear optical crystal that outputs difference frequency light when light is incident, a control device that adjusts the inclination of the nonlinear optical crystal, and an image relay that transmits an image of an object point to the image point are provided.

さらに、ポンプ光とシグナル光が僅かな角度差を持って非線形光学結晶に入射するような光路を有し、制御装置により非線形光学結晶の結晶軸を位相整合条件に合わせて調整し、非線形光学結晶から出力する差周波光(DFG)の波長が異なる場合にも常に光路が通過する共通通過点を物点とし光ファイバの入射点を像点とするようにイメージリレーを配置して、DFGを光ファイバに導くようにする。
なお、イメージリレーの代わりに、分散素子と集光レンズの組合せや反射鏡と集光レンズの組合せを光路上に設けても良い。
In addition, the optical path is such that the pump light and the signal light are incident on the nonlinear optical crystal with a slight angle difference, and the control unit adjusts the crystal axis of the nonlinear optical crystal in accordance with the phase matching condition. Even if the wavelength of the difference frequency light (DFG) output from the optical fiber is different, an image relay is arranged so that the common passing point through which the optical path always passes is the object point and the incident point of the optical fiber is the image point. Lead to fiber.
Instead of the image relay, a combination of a dispersion element and a condensing lens or a combination of a reflecting mirror and a condensing lens may be provided on the optical path.

本発明の方法および装置は、波長1.064μmのネオジムYAG(Nd:YAG)レーザをポンプ光とし、シグナル光を1.15〜1.35μmの範囲で波長可変のクロムフォルステライト(Cr:forsterite)レーザ光をシグナル光として、波長範囲5〜14μmの可変DFGを得る波長変換レーザ装置の出力部に適用することが好ましい。   In the method and apparatus of the present invention, a neodymium YAG (Nd: YAG) laser with a wavelength of 1.064 μm is used as pumping light, and signal light is tunable in the range of 1.15 to 1.35 μm. It is preferable to apply it to the output section of a wavelength conversion laser device that obtains a variable DFG with a wavelength range of 5 to 14 μm using laser light as signal light.

本発明は、非線形光学結晶にポンプ光とシグナル光を入射して差周波光(DFG)を出力する波長調整可能な波長変換レーザ出力装置において、非線形光学結晶を射出した波長の異なるDFGがいずれも通過する共通通過点が存在することを利用して、波長が変化しても狭い光ファイバの光導入口に確実にDFGを導くようにしたものである。   The present invention relates to a wavelength-tunable wavelength conversion laser output device that outputs a difference frequency light (DFG) by making pump light and signal light incident on a nonlinear optical crystal. By utilizing the existence of a common passing point that passes therethrough, the DFG is reliably guided to the light entrance of a narrow optical fiber even if the wavelength changes.

ポンプ光とシグナル光に対して位相整合条件に合わせて非線形光学結晶軸の方向を調整すると、DFGの波長が長いほどDFGの出力軸が傾き出射角が大きくなる一方、ポンプ光やDFGなどが非線形光学結晶を射出する位置がDFGの射出方向の後ろ側に後退する。このため、波長の異なるDFGの光路は狭い領域である共通通過点で互いに交差することになる。
そこで、異なる波長のDFGに対しても、あたかも共通通過点に点光源があるかのように光学系を設計すれば、波長変換レーザ出力装置において発生したDFGを確実に光ファイバに導入することができる。
When the direction of the nonlinear optical crystal axis is adjusted in accordance with the phase matching condition for the pump light and the signal light, the longer the DFG wavelength, the larger the output axis of the DFG and the larger the emission angle, while the pump light and DFG are nonlinear. The position at which the optical crystal is ejected moves backward in the DFG ejection direction. For this reason, the optical paths of DFGs having different wavelengths intersect with each other at a common passing point which is a narrow area.
Therefore, even for DFGs of different wavelengths, if the optical system is designed as if there is a point light source at the common passing point, the DFG generated in the wavelength conversion laser output device can be reliably introduced into the optical fiber. it can.

以下、実施例に基づき、図面を用いて本発明を詳細に説明する。
図1は非線形光学結晶内におけるポンプ光とシグナル光と差周波光のベクトル図、図2はシグナル光の波長に対する位相整合角の変化の1例を示す関係図、図3は非線形光学結晶において差周波光の波長を変えたときの光路を示す図面、図4は差周波光の光路と共通通過点の関係を表したグラフである。
Hereinafter, based on an Example, this invention is demonstrated in detail using drawing.
FIG. 1 is a vector diagram of pump light, signal light, and difference frequency light in a nonlinear optical crystal, FIG. 2 is a relationship diagram showing an example of a change in phase matching angle with respect to the wavelength of the signal light, and FIG. Drawing which shows the optical path when the wavelength of frequency light is changed, FIG. 4 is a graph showing the relationship between the optical path of difference frequency light, and a common passing point.

ポンプ光とシグナル光が非線形光学結晶に入力して差周波光(DFG)が得られるとき、ポンプ光とシグナル光とDFGのそれぞれの波数ベクトルk1,k2,k3の間には、
k1=k2+k3
の関係が成立する。また、それぞれの波長をλ1,λ2,λ3とすると、
1/λ1=1/λ2+1/λ3
の関係が成立する。
When the difference frequency light (DFG) is obtained by inputting the pump light and the signal light to the nonlinear optical crystal, between the wave number vectors k1, k2, and k3 of the pump light, the signal light, and the DFG,
k1 = k2 + k3
The relationship is established. Also, if each wavelength is λ1, λ2, λ3,
1 / λ1 = 1 / λ2 + 1 / λ3
The relationship is established.

図1のベクトル図に示すように、結晶内でポンプ光k1とシグナル光k2のなす角度αが一定の場合でも、シグナル光k2がk2’,K2”と変化してポンプ光とシグナル光のベクトル差(k1−k2)が小さくなると、差周波光のベクトルk3がk3’、k3”と小さくなるので波長λ3が長くなり、また、差周波光とポンプ光のなす角βはβ’,β”と大きくなる。角度βは、差周波光の波長λ3が長いほど大きい。   As shown in the vector diagram of FIG. 1, even when the angle α between the pump light k1 and the signal light k2 is constant in the crystal, the signal light k2 changes to k2 ′, K2 ″, and the vector of the pump light and the signal light When the difference (k1−k2) becomes smaller, the difference frequency light vector k3 becomes smaller as k3 ′, k3 ″, so that the wavelength λ3 becomes longer, and the angle β between the difference frequency light and the pump light becomes β ′, β ″. The angle β is larger as the wavelength λ3 of the difference frequency light is longer.

実際には、ポンプ光とシグナル光の角度αをたとえば0.1〜0.5°程度、わずかにずらすと、差周波光とポンプ光のなす角度βはαの4〜8倍となる。そたがって、非線形光学結晶から十分離れたところでは、差周波光がポンプ光やシグナル光から空間的に分離し、特別な分離機構を使用しなくても差周波光を単独に扱うことができる。   Actually, if the angle α between the pump light and the signal light is slightly shifted, for example, by about 0.1 to 0.5 °, the angle β formed by the difference frequency light and the pump light becomes 4 to 8 times α. Therefore, the difference frequency light is spatially separated from the pump light and signal light at a position sufficiently away from the nonlinear optical crystal, and the difference frequency light can be handled independently without using a special separation mechanism. .

ただし、差周波光が発生するためには、光路と結晶光学軸の角度に依存する位相整合条件を満たす必要がある。
位相整合条件は、結晶から射出するときに3つの光の位相が一致するための条件で、波数ベクトル保存則として、
1e(θ)/λ1=n2o/λ2cosα+n3e(θ−β)/λ3cosβ
2o/λ2sinα=n3e(θ−β)/λ3sinβ
で表される関係を満たさなければならない。
However, in order to generate the difference frequency light, it is necessary to satisfy a phase matching condition depending on the angle between the optical path and the crystal optical axis.
The phase matching condition is a condition for the phases of the three lights to coincide when they exit from the crystal.
n 1e (θ) / λ1 = n 2o / λ2cos α + n 3e (θ−β) / λ3 cos β
n 2o / λ2sinα = n 3e (θ−β) / λ3sinβ
The relationship expressed by must be satisfied.

なお、ポンプ光、シグナル光、差周波光の波数ベクトルは、
k1=2πn1e(θ)/λ1
k2=2πn2o/λ2
k3=2πn3e(θ−β)/λ3
と表される。
ここで、θはポンプ光の光路と結晶軸のなす角度、n1e (θ)は結晶軸とθの角を有するポンプ光異常波に対する非線形光学結晶の屈折率、n2oは結晶のシグナル光正常波に対する屈折率、n3e(θ−β)は結晶軸と(θ−β)の角を有する差周波光異常波に対する屈折率である。
The wave number vectors of pump light, signal light, and difference frequency light are
k1 = 2πn 1e (θ) / λ1
k2 = 2πn 2o / λ2
k3 = 2πn 3e (θ−β) / λ3
It is expressed.
Here, θ is the angle formed by the optical path of the pump light and the crystal axis, n 1e (θ) is the refractive index of the nonlinear optical crystal with respect to the pump light anomalous wave having the angle of the crystal axis and θ, and n 2o is the normal signal light of the crystal N 3e (θ−β) is a refractive index for a difference frequency optical anomalous wave having an angle of (θ−β) with respect to the crystal axis.

図2は、位相整合角の変化例を示すグラフである。グラフの横軸は、シグナル光として使ったクロム・フォルステライト(Cr:forsterite)レーザの波長を示し、縦軸に位相整合角θを示す。
図2のグラフに示したものは、ポンプ光としてNd:YAGレーザ光、シグナル光としてCr:forsteriteレーザを使い、長さ24mmの非線形光学結晶にポンプ光とシグナル光を同じ方向から入射する場合、すなわち角度αが0の場合について位相整合するポンプ光の光路と結晶軸のなす角度θを算出した結果である。
FIG. 2 is a graph showing an example of changes in the phase matching angle. The horizontal axis of the graph indicates the wavelength of a chromium forsterite (Cr: forsterite) laser used as signal light, and the vertical axis indicates the phase matching angle θ.
The graph shown in FIG. 2 shows that when Nd: YAG laser light is used as pump light, Cr: forsterite laser is used as signal light, and the pump light and signal light are incident on a non-linear optical crystal having a length of 24 mm from the same direction, That is, it is the result of calculating the angle θ formed by the optical path of the pump light that is phase-matched and the crystal axis when the angle α is zero.

図2で分かるように、位相整合角θは、Cr:forsteriteレーザの波長が1.17μmから1.35μmまで変わる間に、38°から50°まで単調に増加する。
波長1.06μmのNd:YAGレーザをポンプ光とするとき、この範囲で発生する差周波光の波長λ3は、11.3μmから4.9μmの範囲で変化することになる。
なお、角度αが0.1°から0.5°の範囲では、位相整合角と図2の値の差はわずかである。
As can be seen in FIG. 2, the phase matching angle θ increases monotonically from 38 ° to 50 ° while the wavelength of the Cr: forsterite laser changes from 1.17 μm to 1.35 μm.
When an Nd: YAG laser having a wavelength of 1.06 μm is used as pump light, the wavelength λ3 of the difference frequency light generated in this range varies in the range of 11.3 μm to 4.9 μm.
Note that when the angle α is in the range of 0.1 ° to 0.5 °, the difference between the phase matching angle and the value in FIG. 2 is slight.

図3は、非線形光学結晶において差周波光の波長を変えたときの光路を示して、共通通過点の説明をする図面である。
波長1.06μmのNd:YAGレーザをポンプ光ω1とし、波長可変のCr:forsteriteレーザをシグナル光ω2として、長さ24mmの非線形光学結晶1に入射する。レーザ光路調整の煩雑を避けるため、ポンプ光ω1とシグナル光ω2の入射方向と入射位置11は予め決めて固定し、差周波光ω3の波長λ3を変える場合にも変えないようにする。
FIG. 3 is a diagram illustrating an optical path when the wavelength of the difference frequency light is changed in the nonlinear optical crystal and explaining the common passing point.
A Nd: YAG laser with a wavelength of 1.06 μm is used as pump light ω1, and a tunable Cr: forsterite laser is used as signal light ω2 to enter the nonlinear optical crystal 1 having a length of 24 mm. In order to avoid complicated laser light path adjustment, the incident directions and the incident positions 11 of the pump light ω1 and the signal light ω2 are determined and fixed in advance, and are not changed even when the wavelength λ3 of the difference frequency light ω3 is changed.

非線形光学結晶面1の傾きδを調整して、非線形光学結晶1に入射したポンプ光ω1の結晶内光路と結晶光学軸12の角度が位相整合角θになるようにする。
なお、ポンプ光ω1とシグナル光ω2の非線形光学結晶1への入射方向相互間の角度θinが固定されていて、非線形光学結晶1への入射角が異なるため、非線形光学結晶表面の傾きδが変化すれば、結晶内における光路間の角度αはスネルの屈折の法則にしたがって変化する。このため、厳密には位相整合角θはわずかに変化する。
The inclination δ of the nonlinear optical crystal surface 1 is adjusted so that the angle between the optical path in the crystal of the pump light ω1 incident on the nonlinear optical crystal 1 and the crystal optical axis 12 becomes the phase matching angle θ.
Since the angle θin between the incident directions of the pump light ω1 and the signal light ω2 to the nonlinear optical crystal 1 is fixed and the incident angle to the nonlinear optical crystal 1 is different, the inclination δ of the nonlinear optical crystal surface changes. Then, the angle α between the optical paths in the crystal changes according to Snell's law of refraction. Therefore, strictly speaking, the phase matching angle θ slightly changes.

試験により、正しい位相整合角に対して0.04°の角度ずれがあると差周波光への変換効率が約50%低下するという結果が得られているので、正確な光路間角度αを求めてこれに対する位相整合角θを算出し、新しく算出された位相整合角に合わせて結晶面の傾きδを調整することが好ましい。
なお、シグナル光ω2の入射方向を正確に調整することができる場合は、入射方向の角度差θinを調整して結晶内の角度差αを一定に維持してもよい。
The test shows that if there is an angle shift of 0.04 ° with respect to the correct phase matching angle, the conversion efficiency to the difference frequency light is reduced by about 50%. Thus, it is preferable to calculate the phase matching angle θ with respect to this and adjust the inclination δ of the crystal plane in accordance with the newly calculated phase matching angle.
When the incident direction of the signal light ω2 can be accurately adjusted, the angle difference θin in the incident direction may be adjusted to keep the angle difference α in the crystal constant.

ポンプ光ω1とシグナル光ω2が光路相互間の角度αで非線形光学結晶1内を走行すると、ポンプ光ω1に対して角度βを持つ差周波光ω3が発生して、非線形光学結晶1の端面から出射する。差周波光ω3は出射面においてスネルの法則に従って屈折し、出射後の光路は出射後のポンプ光ω1に対して角度θoutをもつようになる。なお、非線形光学結晶1の入射端面と出射端面が平行である場合は、ポンプ光ω1が端面から出射する方向は入射方向と同じである。
差周波光の波長λ3が長いほど角度βが大きいので、出射後の光路のポンプ光に対する角度θoutも大きい。
When the pump light ω1 and the signal light ω2 travel in the nonlinear optical crystal 1 at an angle α between the optical paths, a difference frequency light ω3 having an angle β with respect to the pump light ω1 is generated, and from the end face of the nonlinear optical crystal 1 Exit. The difference frequency light ω3 is refracted on the exit surface in accordance with Snell's law, and the optical path after emission has an angle θout with respect to the pump light ω1 after emission. When the incident end face and the exit end face of the nonlinear optical crystal 1 are parallel, the direction in which the pump light ω1 is emitted from the end face is the same as the incident direction.
As the wavelength λ3 of the difference frequency light is longer, the angle β is larger, so the angle θout of the optical path after emission with respect to the pump light is also larger.

一方、ポンプ光などが非線形光学結晶1から出射する位置13は、非線形光学結晶1が傾くと出射面が傾いて元の出射位置がずれる方向に遷移する。波長λ3が長い差周波光を生成する場合は、小さい位相整合角θに合致するように非線形光学結晶1を図中右側に傾けるので、たとえば図中太線で表示した波長10μmの差周波光ω3を発生させる構成におけるように、ポンプ光ω1の出射点13が図中下方に遷移する。
一方、差周波光の波長λ3が短い場合は、位相整合角θが大きいので、たとえば波長が5.5μmの構成として表された場合のように、結晶光学軸を図中上方に持ち上げて調整するため、ポンプ光ω1の出射点13は図中上方に遷移する。
On the other hand, the position 13 where the pump light or the like exits from the nonlinear optical crystal 1 transitions in a direction in which the exit surface tilts and the original exit position shifts when the nonlinear optical crystal 1 tilts. When the difference frequency light having a long wavelength λ3 is generated, the nonlinear optical crystal 1 is tilted to the right side in the drawing so as to match the small phase matching angle θ. For example, the difference frequency light ω3 having a wavelength of 10 μm indicated by a thick line in the drawing is generated. As in the configuration to be generated, the emission point 13 of the pump light ω1 transitions downward in the figure.
On the other hand, when the wavelength λ3 of the difference frequency light is short, the phase matching angle θ is large, so that the crystal optical axis is lifted upward in the drawing and adjusted, for example, when the wavelength is expressed as 5.5 μm. Therefore, the emission point 13 of the pump light ω1 transitions upward in the drawing.

このように、差周波光の波長λ3が長い場合はポンプ光に対する角度θoutが大きく射出位置13が図中下方にずれ、波長λ3が短い場合は逆になるため、波長の長い差周波光と波長の短い差周波光の光路は、図に見られるように1点2で交差する。   As described above, when the wavelength λ3 of the difference frequency light is long, the angle θout with respect to the pump light is large and the emission position 13 is shifted downward in the figure, and when the wavelength λ3 is short, the opposite is obtained. The short difference frequency light paths intersect at one point 2 as seen in the figure.

図4は、発明者らが構成した装置において、差周波光の波長λ3が色々に変化した場合の光路を示した図面である。図4は、横軸に非線形光学結晶1から射出した後の距離、縦軸にポンプ光と平行な適宜の基準線からの距離を表し、この装置で発生することができる差周波光の下限となる5.5μmから上限の10μmまでの波長範囲において、非線形光学結晶1を出射したあとの差周波光の軌跡を描画したものである。   FIG. 4 is a view showing an optical path when the wavelength λ3 of the difference frequency light is variously changed in the apparatus constructed by the inventors. FIG. 4 shows the distance after emission from the nonlinear optical crystal 1 on the horizontal axis, the distance from an appropriate reference line parallel to the pump light on the vertical axis, and the lower limit of the difference frequency light that can be generated by this apparatus. In this wavelength range from 5.5 μm to the upper limit of 10 μm, the locus of the difference frequency light after exiting the nonlinear optical crystal 1 is drawn.

図4から、全ての軌跡を包絡した領域が幅約2mmの極小さい領域2を有することが分かる。この領域は点とみなすことができ、ここではこの点を共通通過点と呼ぶ。すなわち、この装置で生成される差周波光は波長が異なる場合にも、全て共通通過点2を通過する。
この共通通過点2を擬似的な点光源とみなして、点光源から放射される光を光ファイバのコアに導くような光学系を構成すれば、波長変換レーザから出射する波長の異なる差周波光を全て光ファイバに導入することができる。
It can be seen from FIG. 4 that the region enclosing all the trajectories has a very small region 2 having a width of about 2 mm. This region can be regarded as a point, and here this point is called a common passing point. That is, the difference frequency light generated by this apparatus passes through the common passing point 2 even when the wavelengths are different.
When the common passing point 2 is regarded as a pseudo point light source and an optical system is configured to guide light emitted from the point light source to the core of the optical fiber, the difference frequency light having different wavelengths emitted from the wavelength conversion laser is formed. Can be introduced into the optical fiber.

図5は、本発明の実施例1に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。
実施例1の光ファイバ導光方法は分散素子を利用するものである。
本方法を実施する本実施例の光ファイバ導光装置では、非線形光学結晶1の差周波光出射点13と光ファイバ3の光導入口31の間に分散素子4と収束光学系5を配設する。なお、図示しないが、本実施例の光ファイバ導光装置は、非線形光学結晶1の傾きδを精密に調整する制御装置を備えている。
FIG. 5 is a conceptual diagram illustrating an optical fiber light guiding method and apparatus for outputting a wavelength-converted laser according to Embodiment 1 of the present invention.
The optical fiber light guiding method of the first embodiment uses a dispersive element.
In the optical fiber light guide device of the present embodiment that implements this method, the dispersive element 4 and the converging optical system 5 are disposed between the difference frequency light emission point 13 of the nonlinear optical crystal 1 and the optical entrance 31 of the optical fiber 3. To do. Although not shown, the optical fiber light guide device of this embodiment includes a control device that precisely adjusts the inclination δ of the nonlinear optical crystal 1.

分散素子4を共通通過点2に配置することにより、波長変化に伴って異なる入射角に対応して、差周波光が分散素子4から出射するときに、どの波長の差周波光も走行方向が同じものになるようにする。たとえば、材料の屈折率、入射面の傾きと出射面の傾き、などを的確に選択したプリズムを使って、調整することができる。
分散素子4の後方に、平行光線を焦点に収束させる収束光学系5を差周波光ω3の走行方向と光軸が平行になるように配置し、その焦点位置に光ファイバ3の光導入口31を配置する。
By disposing the dispersive element 4 at the common passing point 2, when the difference frequency light is emitted from the dispersive element 4 corresponding to different incident angles as the wavelength changes, the difference frequency light of any wavelength has a traveling direction. Try to be the same. For example, the refractive index of the material, the inclination of the incident surface and the inclination of the exit surface, and the like can be adjusted using a prism that has been appropriately selected.
A converging optical system 5 for converging parallel rays to the focal point is arranged behind the dispersive element 4 so that the traveling direction of the difference frequency light ω3 and the optical axis are parallel, and the optical entrance 31 of the optical fiber 3 is located at the focal position. Place.

すると、差周波光ω3の波長λ3が変化した場合も、非線形光学結晶1の出射点13から出射した差周波光は共通通過点2を通過する。共通通過点2に置かれた分散素子4に入射する差周波光ω3は、波長によって入射角が異なるが、分散素子4から出射するときには、いずれの波長の差周波光も同じ方向に走行するようになる。すなわち、波長の異なる差周波光は互いに平行な光路を走行することになる。
収束光学系の光軸がこの平行光路に平行であるため、どの波長の差周波光も同じ焦点を通る。すなわち、差周波光は焦点に設けられた光導入口に確実に導入される。
Then, even when the wavelength λ3 of the difference frequency light ω3 changes, the difference frequency light emitted from the emission point 13 of the nonlinear optical crystal 1 passes through the common passing point 2. The difference frequency light ω3 incident on the dispersive element 4 placed at the common passing point 2 has a different incident angle depending on the wavelength, but when exiting from the dispersive element 4, the difference frequency light of any wavelength travels in the same direction. become. That is, the difference frequency lights having different wavelengths travel on optical paths parallel to each other.
Since the optical axis of the converging optical system is parallel to this parallel optical path, the difference frequency light of any wavelength passes through the same focal point. That is, the difference frequency light is reliably introduced into the light entrance provided at the focal point.

図6は、フッ化カルシウム(CaF)プリズムを用いてほぼ同一方向に走行方向を補正して集光レンズで光ファイバに収束させた場合の各波長の光路例を示す図面である。横軸は結晶出射面に対して垂直方向の距離、縦軸は出射面に平行な方向の距離を表す任意スケールである。縦軸は、横軸と比較して大きく拡大して表している。 FIG. 6 is a drawing showing an example of an optical path of each wavelength when the traveling direction is corrected in substantially the same direction using a calcium fluoride (CaF 2 ) prism and converged on an optical fiber by a condenser lens. The horizontal axis is a distance in the direction perpendicular to the crystal exit surface, and the vertical axis is an arbitrary scale representing the distance in the direction parallel to the exit surface. The vertical axis is greatly enlarged compared to the horizontal axis.

図面に表示された通り、波長がそれぞれ5.5μm、7.5μm、9.5μmの差周波光ビームは、いずれもほぼ共通通過点2に集まる。CaFの屈折率は、入射光の波長が長いほど大きく、波長が2μmのとき1.424、9μmのとき1.327となる。そこで、波長による光路差を勘案して、ウェッジ角8.5°の断面三角形のプリズム4を共通通過点2の位置に置いて、ポンプ光の光路に対して入射面が8.5°傾くように配置する。 As shown in the drawing, the difference frequency light beams having wavelengths of 5.5 μm, 7.5 μm, and 9.5 μm are all collected at the common passing point 2. The refractive index of CaF 2 increases as the wavelength of incident light increases, and is 1.424 when the wavelength is 2 μm and 1.327 when the wavelength is 9 μm. Therefore, in consideration of the optical path difference depending on the wavelength, the prism 4 having a triangular section with a wedge angle of 8.5 ° is placed at the common passing point 2 so that the incident surface is inclined by 8.5 ° with respect to the optical path of the pump light. To place.

すると、差周波光ビームは、共通通過点2に設けたプリズム4に入射するときと出射するときに、波長毎に多少異なる屈折を行って入射角度差を相殺し、結果として波長にかかわらずほぼ同一の方向に走行するようになる。
そこで、集光レンズ5の光軸が差周波光ビームの走行方向と平行になるように配設しておけば、どの波長のビームも、集光レンズ5によって焦点に収束し、焦点位置に置かれた光ファイバ入力部を介して光ファイバ中に導入される。
Then, when the difference frequency light beam enters and exits the prism 4 provided at the common passing point 2, the difference in the incident angle is canceled by performing refraction slightly different for each wavelength, and as a result, the difference frequency light beam is almost independent of the wavelength. Drive in the same direction.
Thus, if the optical axis of the condensing lens 5 is arranged so as to be parallel to the traveling direction of the difference frequency light beam, the beam of any wavelength is converged to the focal point by the condensing lens 5 and placed at the focal position. It is introduced into the optical fiber via the optical fiber input section.

図7は、本発明の実施例2に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。
実施例2の光ファイバ導光方法はイメージリレーを利用するものである。
本方法では、結晶の傾きを精密に調整する制御装置が付属した非線形光学結晶1の差周波光出射面13と光ファイバ3の光導入口31の間にイメージリレーレンズ系6を配設する。イメージリレーレンズ系6は2枚以上の集束レンズ61,62で構成されたもので、イメージリレーレンズ系6の物点側焦点を共通通過点に位置させ、像点側焦点の位置に光ファイバ3の光導入口31を配置する。
FIG. 7 is a conceptual diagram illustrating an optical fiber light guiding method and apparatus for outputting a wavelength-converted laser according to Embodiment 2 of the present invention.
The optical fiber light guiding method of the second embodiment uses an image relay.
In this method, the image relay lens system 6 is disposed between the difference frequency light exit surface 13 of the nonlinear optical crystal 1 and a light entrance 31 of the optical fiber 3 to which a control device for precisely adjusting the tilt of the crystal is attached. The image relay lens system 6 is composed of two or more focusing lenses 61 and 62, and the object point side focal point of the image relay lens system 6 is located at a common passing point, and the optical fiber 3 is located at the image point side focal point. The light inlet 31 is disposed.

なお、イメージリレー光学系6の初めのレンズ61には、目的とする波長範囲内の差周波光ω3の軌跡が全て入射して、それぞれイメージリレーが行えるようにする。
非線形光学結晶1から射出した差周波光ω3は、イメージリレーレンズ系6に入射して拡大収縮し、光ファイバの光導入口31に収束する。このとき、波長により差周波光ω3の軌跡がずれるが、共通通過点2における物体像を光導入口31の位置に、たとえば1/25の大きさの実像として結像させるような光学系を組んであるので、波長にかかわらず差周波光ω3を光ファイバの光導入口31に注入することができる。
Note that the first lens 61 of the image relay optical system 6 receives all the trajectories of the difference frequency light ω3 within the target wavelength range so that the image relay can be performed.
The difference frequency light ω 3 emitted from the nonlinear optical crystal 1 enters the image relay lens system 6, expands and contracts, and converges to the optical entrance 31 of the optical fiber. At this time, although the locus of the difference frequency light ω3 is shifted depending on the wavelength, an optical system that forms an object image at the common passing point 2 at the position of the light entrance 31 as a real image having a size of 1/25, for example, is assembled. Therefore, the difference frequency light ω3 can be injected into the optical entrance 31 of the optical fiber regardless of the wavelength.

なお、より正確に差周波光ω3を光ファイバ3に導光するために、イメージリレーレンズ系6の位置を細かく調整する微調整機構を備えて、波長毎に微調整できるようにしても良いことは言うまでもない。
本実施例の光ファイバ導光方法により、共通通過点2を通過する各波長の差周波光を光ファイバ3に導入することができる。
In order to more accurately guide the difference frequency light ω3 to the optical fiber 3, a fine adjustment mechanism for finely adjusting the position of the image relay lens system 6 may be provided so that the fine adjustment can be performed for each wavelength. Needless to say.
With the optical fiber guiding method of this embodiment, the difference frequency light of each wavelength passing through the common passing point 2 can be introduced into the optical fiber 3.

図8は、本発明の実施例3に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。
実施例3の光ファイバ導光方法は回転可能な反射鏡を利用するものである。
本方法では、結晶の傾きが調整できる非線形光学結晶1の差周波光出射面13と光ファイバ3の光導入口31の間に回転可能な反射鏡7を配設して、反射光が光ファイバ3の光導入口31に入射するようにする。
反射鏡7の回転軸71は反射鏡面72上にあるようにして、回転軸71の位置に共通通過点2が来るように配置する。
FIG. 8 is a conceptual diagram illustrating an optical fiber light guiding method and apparatus for outputting a wavelength-converted laser according to Example 3 of the present invention.
The optical fiber light guiding method of the third embodiment uses a rotatable reflecting mirror.
In this method, a rotatable reflecting mirror 7 is disposed between the difference frequency light emitting surface 13 of the nonlinear optical crystal 1 capable of adjusting the tilt of the crystal and the light entrance 31 of the optical fiber 3, and the reflected light is transmitted through the optical fiber. 3 is incident on the light entrance 31 of the light source.
The rotating shaft 71 of the reflecting mirror 7 is arranged on the reflecting mirror surface 72 so that the common passing point 2 comes to the position of the rotating shaft 71.

非線形光学結晶1から射出した差周波光ω3は、反射鏡7の反射面72で反射して集束レンズ5で光ファイバ3の光導入口31に集光させられる。差周波光3の波長λ3が変化すると反射鏡7に対する入射角が変化するので、反射面72の向きを調整して、常に光ファイバ3の光導入口31に集光するようにする。   The difference frequency light ω <b> 3 emitted from the nonlinear optical crystal 1 is reflected by the reflecting surface 72 of the reflecting mirror 7 and is condensed by the focusing lens 5 on the light entrance 31 of the optical fiber 3. When the wavelength λ3 of the difference frequency light 3 changes, the incident angle with respect to the reflecting mirror 7 changes. Therefore, the direction of the reflecting surface 72 is adjusted so that the light is always focused on the light entrance 31 of the optical fiber 3.

なお、差周波光ω3は波長λ3が変化しても常に共通通過点2を通り、入射方向のみが変化するので、反射鏡7の回転軸71が反射面72上にあってしかも共通通過点2が回転軸71の上にあれば、差周波光ω3の波長が変化して入射方向が変化しても、他の光学的配置を固定したまま反射面72を回転させて向きを調整するだけで、反射面72で反射する差周波光ω3を光ファイバ3の光導入口31に集光させることができる。
本実施例では、差周波光の波長が変化したときに反射鏡面の角度を調整するだけで、差周波光を途切れなく光ファイバに導光し続けることができる。
The difference frequency light ω3 always passes through the common passing point 2 even if the wavelength λ3 changes, and only the incident direction changes. Therefore, the rotation axis 71 of the reflecting mirror 7 is on the reflecting surface 72 and the common passing point 2 is changed. Is on the rotation axis 71, even if the wavelength of the difference frequency light ω3 changes and the incident direction changes, it is only necessary to adjust the direction by rotating the reflecting surface 72 while fixing the other optical arrangement. The difference frequency light ω <b> 3 reflected by the reflecting surface 72 can be condensed on the optical entrance 31 of the optical fiber 3.
In this embodiment, when the wavelength of the difference frequency light is changed, the difference frequency light can be continuously guided to the optical fiber without any interruption simply by adjusting the angle of the reflecting mirror surface.

本発明によって、非線形光学結晶を用いて差周波光を発生する波長可変な波長変換レーザ装置において、差周波光を光ファイバに導く、より簡便な方法と装置を提供することができた。   According to the present invention, it is possible to provide a simpler method and apparatus for guiding a difference frequency light to an optical fiber in a wavelength tunable wavelength conversion laser device that generates a difference frequency light using a nonlinear optical crystal.

本発明の波長変換レーザ出力の光ファイバ導光方法における非線形光学結晶内のポンプ光とシグナル光と差周波光のベクトル図である。It is a vector diagram of pump light, signal light, and difference frequency light in a nonlinear optical crystal in the optical fiber light guiding method of wavelength conversion laser output of the present invention. 本発明の光ファイバ導光方法におけるシグナル光の波長に対する位相整合角の変化の1例を示す関係図である。It is a related figure which shows one example of the change of the phase matching angle with respect to the wavelength of the signal light in the optical fiber light guide method of this invention. 本発明の光ファイバ導光方法における非線形光学結晶において差周波光の波長を変えたときの光路を示す図面である。It is drawing which shows the optical path when the wavelength of difference frequency light is changed in the nonlinear optical crystal in the optical fiber light guide method of this invention. 本発明の光ファイバ導光方法における差周波光の光路と共通通過点の関係を表したグラフである。It is a graph showing the relationship between the optical path of the difference frequency light and the common passing point in the optical fiber light guiding method of the present invention. 本発明の実施例1に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。It is a conceptual diagram explaining the optical fiber light guide method and apparatus of the wavelength conversion laser output concerning Example 1 of this invention. 実施例1における各波長の光路例を示す概念図である。2 is a conceptual diagram illustrating an example of an optical path of each wavelength in Example 1. FIG. 本発明の実施例2に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。It is a conceptual diagram explaining the optical fiber light guide method and apparatus of the wavelength conversion laser output which concern on Example 2 of this invention. 本発明の実施例3に係る波長変換レーザ出力の光ファイバ導光方法及び装置を説明する概念図である。It is a conceptual diagram explaining the optical fiber light guide method and apparatus of the wavelength conversion laser output which concerns on Example 3 of this invention. 非線形光学結晶によって差周波光を発生する機構を説明する図面である。It is drawing explaining the mechanism which generate | occur | produces difference frequency light with a nonlinear optical crystal.

符号の説明Explanation of symbols

1 非線形光学結晶
11 入射位置
12 結晶光学軸
13 出射位置
2 共通通過点
3 光ファイバ
31 光導入口
4 分散素子、プリズム
5 収束光学系、集光レンズ
6 イメージリレーレンズ系
61,62 集束レンズ
7 反射鏡
71 回転軸
72 反射面
DESCRIPTION OF SYMBOLS 1 Nonlinear optical crystal 11 Incident position 12 Crystal optical axis 13 Output position 2 Common passing point 3 Optical fiber 31 Optical entrance 4 Dispersive element, prism 5 Converging optical system, Condensing lens 6 Image relay lens system 61, 62 Converging lens 7 Reflection Mirror 71 Rotating shaft 72 Reflecting surface

Claims (8)

非線形光学結晶に入射するポンプ光とシグナル光の入射角に僅かな角度差を与え、非線形光学結晶の結晶軸を位相整合条件に合わせて調整したときに、出射する差周波光(DFG)が波長が異なる場合にも常に光路が通過する共通通過点の位置を求めて、この共通通過点を物点とし光ファイバの光導入口を像点とするようにイメージリレーレンズ系を配置して、非線形光学結晶で発生するDFGを光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光方法。   When a slight angle difference is given to the incident angles of the pump light and signal light incident on the nonlinear optical crystal, and the crystal axis of the nonlinear optical crystal is adjusted according to the phase matching condition, the difference frequency light (DFG) emitted is the wavelength. Even if the optical path is different, the position of the common passing point through which the optical path always passes is obtained, and the image relay lens system is arranged so that the common passing point is an object point and the optical fiber entrance is an image point. An optical fiber light guide method for outputting a wavelength-converted laser, characterized in that DFG generated in an optical crystal is guided to an optical fiber. 非線形光学結晶に入射するポンプ光とシグナル光の入射角に僅かな角度差を与え、非線形光学結晶の結晶軸を位相整合条件に合わせて調整したときに、出射する差周波光(DFG)が波長が異なる場合にも常に光路が通過する共通通過点の位置を求めて、前記共通通過点に分散素子を配置し、分散素子により波長によらず出射光が同じ方向に屈折するようにして、集光レンズでDFGを光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光方法。   When a slight angle difference is given to the incident angles of the pump light and the signal light incident on the nonlinear optical crystal, and the crystal axis of the nonlinear optical crystal is adjusted according to the phase matching condition, the difference frequency light (DFG) emitted is the wavelength. Even when the optical path is different, the position of the common passing point through which the optical path always passes is obtained, a dispersive element is arranged at the common pass point, and the dispersive element refracts the emitted light in the same direction regardless of the wavelength. A method for guiding an optical fiber having a wavelength-converted laser output, wherein the DFG is guided to the optical fiber by an optical lens. 非線形光学結晶に入射するポンプ光とシグナル光の入射角に僅かな角度差を与え、非線形光学結晶の結晶軸を位相整合条件に合わせて調整したときに、出射する差周波光(DFG)が波長が異なる場合にも常に光路が通過する共通通過点の位置を求めて、前記共通通過点に回転可能な反射鏡を配置し、反射方向を調整して反射光が波長によらず同じ方向に向くようにして、集光レンズでDFGを光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光方法。   When a slight angle difference is given to the incident angles of the pump light and signal light incident on the nonlinear optical crystal, and the crystal axis of the nonlinear optical crystal is adjusted according to the phase matching condition, the difference frequency light (DFG) emitted is the wavelength. Even when the optical path is different, the position of the common passing point through which the optical path always passes is obtained, a rotatable reflecting mirror is arranged at the common passing point, the reflection direction is adjusted, and the reflected light is directed in the same direction regardless of the wavelength. Thus, a method for guiding an optical fiber with a wavelength-converted laser output, wherein the DFG is guided to the optical fiber by a condenser lens. 前記ポンプ光は波長1.064μmのネオジムYAG(Nd:YAG)レーザであり、前記DFGが波長範囲5〜14μmの可変範囲を有することを特徴とする請求項1から3のいずれかに記載の波長変換レーザ出力の光ファイバ導光方法。   4. The wavelength according to claim 1, wherein the pump light is a neodymium YAG (Nd: YAG) laser having a wavelength of 1.064 μm, and the DFG has a variable range of a wavelength range of 5 to 14 μm. Optical fiber light guide method for conversion laser output. ポンプ光を供給するポンプ光発生装置と、シグナル光を供給するシグナル光発生装置と、ポンプ光とシグナル光を入射すると差周波光を出力する非線形光学結晶と、該非線形光学結晶の傾きを調整する制御装置と、物点の映像を像点に伝達するイメージリレーレンズ系を備え、前記ポンプ光とシグナル光の光路を調整して前記ポンプ光とシグナル光が僅かな角度差を持って前記非線形光学結晶に入射するようにし、前記制御装置が前記非線形光学結晶の結晶軸を位相整合条件に合わせて調整し、前記イメージリレーが前記非線形光学結晶から出力する差周波光(DFG)の波長が異なる場合にも常に光路が通過する共通通過点を物点とし光ファイバの光導入口を像点とするように配置され、DFGを光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光装置。   A pump light generating device that supplies pump light, a signal light generating device that supplies signal light, a nonlinear optical crystal that outputs difference frequency light when pump light and signal light are incident, and a tilt of the nonlinear optical crystal is adjusted A control device and an image relay lens system for transmitting an image of an object point to the image point, and adjusting the optical path of the pump light and the signal light so that the pump light and the signal light have a slight angle difference and the nonlinear optical When the control device adjusts the crystal axis of the nonlinear optical crystal in accordance with a phase matching condition so that the wavelength of the difference frequency light (DFG) output from the nonlinear optical crystal is different. In addition, the wavelength change is characterized by being arranged such that a common passing point through which the optical path always passes is an object point and an optical entrance of the optical fiber is an image point, and DFG is guided to the optical fiber. Optical fiber light guide device of the laser output. ポンプ光を供給するポンプ光発生装置と、シグナル光を供給するシグナル光発生装置と、ポンプ光とシグナル光を入射すると差周波光を出力する非線形光学結晶と、該非線形光学結晶の傾きを調整する制御装置と、波長により屈折角が異なる分散素子を備え、前記ポンプ光とシグナル光の光路を調整して前記ポンプ光とシグナル光が僅かな角度差を持って前記非線形光学結晶に入射するようにし、前記制御装置が前記非線形光学結晶の結晶軸を位相整合条件に合わせて調整し、前記分散素子が前記非線形光学結晶から出力する差周波光(DFG)が波長の異なる場合にも常に光路が通過する共通通過点に配置され、該分散素子を透過した前記DFGの光路が波長が異なってもほぼ同じ方向になるようにされ、集光レンズで前記分散素子を透過してきたDFGを光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光装置。   A pump light generating device that supplies pump light, a signal light generating device that supplies signal light, a nonlinear optical crystal that outputs difference frequency light when pump light and signal light are incident, and a tilt of the nonlinear optical crystal is adjusted A control device and a dispersive element having a refraction angle different depending on the wavelength are provided, and the optical path of the pump light and the signal light is adjusted so that the pump light and the signal light are incident on the nonlinear optical crystal with a slight angle difference. The control device adjusts the crystal axis of the nonlinear optical crystal according to the phase matching condition, and the optical path always passes even when the difference frequency light (DFG) output from the nonlinear optical crystal by the dispersion element has a different wavelength. The optical path of the DFG transmitted through the dispersive element is arranged in the same direction even if the wavelength is different, and is transmitted through the dispersive element by a condenser lens. Directing the by've DFG the optical fiber an optical fiber light guide device of the wavelength conversion laser output, wherein. ポンプ光を供給するポンプ光発生装置と、シグナル光を供給するシグナル光発生装置と、ポンプ光とシグナル光を入射すると差周波光(DFG)を出力する非線形光学結晶と、該非線形光学結晶の傾きを調整する制御装置と、鏡軸の周りに回転制御可能な反射鏡を備え、前記ポンプ光とシグナル光の光路を調整して前記ポンプ光とシグナル光が僅かな角度差を持って前記非線形光学結晶に入射するようにし、前記制御装置が前記非線形光学結晶の結晶軸を位相整合条件に合わせて調整し、前記反射鏡が前記非線形光学結晶から出力するDFGが波長の異なる場合にも常に光路が通過する共通通過点に配置され、前記反射鏡で反射してきたDFGを集光レンズで光ファイバに導くことを特徴とする波長変換レーザ出力の光ファイバ導光装置。   A pump light generator for supplying pump light, a signal light generator for supplying signal light, a non-linear optical crystal that outputs difference frequency light (DFG) when pump light and signal light are incident, and a tilt of the non-linear optical crystal And a non-linear optical device having a slight angle difference between the pump light and the signal light by adjusting the optical path of the pump light and the signal light. The optical path is always present even when the control device adjusts the crystal axis of the nonlinear optical crystal in accordance with the phase matching condition and the DFG output from the nonlinear optical crystal has a different wavelength. An optical fiber light guide device for outputting a wavelength-converted laser, wherein the DFG arranged at a common passing point and passing through the reflecting mirror is guided to an optical fiber by a condenser lens. 前記ポンプ光は波長1.064μmのネオジムYAG(Nd:YAG)レーザであり、前記DFGが波長範囲5〜14μmの可変範囲を有することを特徴とする請求項5から7のいずれかに記載の波長変換レーザ出力の光ファイバ導光装置。
8. The wavelength according to claim 5, wherein the pump light is a neodymium YAG (Nd: YAG) laser having a wavelength of 1.064 μm, and the DFG has a variable range of a wavelength range of 5 to 14 μm. Optical fiber light guide device with converted laser output.
JP2006174615A 2006-06-23 2006-06-23 Optical fiber light guiding method and device for wavelength conversion laser output Pending JP2008003422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174615A JP2008003422A (en) 2006-06-23 2006-06-23 Optical fiber light guiding method and device for wavelength conversion laser output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174615A JP2008003422A (en) 2006-06-23 2006-06-23 Optical fiber light guiding method and device for wavelength conversion laser output

Publications (1)

Publication Number Publication Date
JP2008003422A true JP2008003422A (en) 2008-01-10

Family

ID=39007838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174615A Pending JP2008003422A (en) 2006-06-23 2006-06-23 Optical fiber light guiding method and device for wavelength conversion laser output

Country Status (1)

Country Link
JP (1) JP2008003422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956750B1 (en) 2008-03-28 2010-05-12 한국과학기술연구원 Optical device using resonant waveguide and method for operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956750B1 (en) 2008-03-28 2010-05-12 한국과학기술연구원 Optical device using resonant waveguide and method for operating the same

Similar Documents

Publication Publication Date Title
JP6782834B2 (en) Systems and methods for generating multi-channel adjustable lighting based on a broadband light source
JP6199923B2 (en) Frequency adjustable laser device
US8159663B2 (en) Laser microscope apparatus having a frequency dispersion adjuster
KR20150018843A (en) System and method for separating a main pulse and a pre­pulse beam from a laser source
JPWO2018012379A1 (en) Laser processing head and laser processing apparatus
JP2013545107A (en) Broadband light source acousto-optic tunable filter (AOTF) for fluorescence measurement system
JP6383166B2 (en) Light irradiation apparatus and drawing apparatus
TWI788814B (en) Extreme ultraviolet (euv) optical source, apparatus for an euv light source and optical isolation method
JP6038301B2 (en) EUV excitation light source comprising a laser beam light source and a beam guiding device for operating the laser beam
TWI757446B (en) Systems and methods for an euv light source
JP2017138461A (en) Terahertz light generator
US8553734B2 (en) Frequency conversion of laser radiation
JP4685489B2 (en) Multiphoton excitation observation device
WO2020050043A1 (en) Laser processing device
TW201833626A (en) Reducing an optical power of a reflected light beam
TW201728967A (en) Polariser arrangement, EUV radiation generating apparatus and method for the linear polarisation of a laser beam
JP6632531B2 (en) Microscope having member for changing shape of focal point of illumination light
JP2008003422A (en) Optical fiber light guiding method and device for wavelength conversion laser output
US7375868B2 (en) Image scanning apparatus
JP6838155B2 (en) Laser system, extreme ultraviolet light generator, and extreme ultraviolet light generation method
JP2006047270A (en) Wavelength-variable monochromatic light source
US11662562B2 (en) Broadband illumination tuning
JP2006275917A (en) Multiphoton excitation type observation device and light source device for multiphoton excitation type observation
JPH04121718A (en) Optical harmonic generator
JP4642525B2 (en) Multiphoton excitation observation device