JP2008003051A5 - - Google Patents

Download PDF

Info

Publication number
JP2008003051A5
JP2008003051A5 JP2006175494A JP2006175494A JP2008003051A5 JP 2008003051 A5 JP2008003051 A5 JP 2008003051A5 JP 2006175494 A JP2006175494 A JP 2006175494A JP 2006175494 A JP2006175494 A JP 2006175494A JP 2008003051 A5 JP2008003051 A5 JP 2008003051A5
Authority
JP
Japan
Prior art keywords
fluorescence
observation
microscope
intensity
photometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006175494A
Other languages
Japanese (ja)
Other versions
JP2008003051A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006175494A priority Critical patent/JP2008003051A/en
Priority claimed from JP2006175494A external-priority patent/JP2008003051A/en
Priority to US11/588,646 priority patent/US7696491B2/en
Publication of JP2008003051A publication Critical patent/JP2008003051A/en
Publication of JP2008003051A5 publication Critical patent/JP2008003051A5/ja
Abandoned legal-status Critical Current

Links

Claims (16)

低蛍光なイマージョン物質を用いてなる蛍光観察又は蛍光測光システムであって、
前記低蛍光なイマージョン物質が次の条件式(1-1)を満足し、且つ、
前記低蛍光なイマージョン物質におけるd線(587.56nm)における屈折率ndが1.70以上であることを特徴とする蛍光観察又は蛍光計測システム。
IM'/BIM≦0.7 …(1-1)
ただし、BIM'は前記低蛍光なイマージョン物質の自家蛍光の強度の平均値、BIMは従来一般的に使用されているイマージョン物質の自家蛍光の強度の平均値である。
A fluorescence observation or fluorescence photometry system using a low-fluorescence immersion material,
The low-fluorescence immersion material satisfies the following conditional expression (1-1), and
A fluorescence observation or fluorescence measurement system, wherein a refractive index nd at d-line (587.56 nm) in the low-fluorescence immersion material is 1.70 or more.
B IM '/ B IM ≦ 0.7 (1-1)
However, B IM 'is an average intensity value of auto-fluorescence from the low immersion substance, B IM is an average value of the intensity of the autofluorescence of immersion substance generally used conventionally.
前記低蛍光なイマージョン物質が、ジヨードメタンに硫黄を溶解させてなることを特徴とする請求項1に記載の蛍光観察又は蛍光計測システム。The fluorescence observation or fluorescence measurement system according to claim 1, wherein the low-fluorescence immersion material is obtained by dissolving sulfur in diiodomethane. 蛍光観察又は蛍光測光方法において、次の工程A,B,Cからなることを特徴とする蛍光観察又は蛍光測光方法。In the fluorescence observation or fluorescence photometry method, the fluorescence observation or fluorescence photometry method characterized by comprising the following steps A, B, and C.
A.生細胞を用いた蛍光を発する試料を選択する工程。  A. A step of selecting a sample that emits fluorescence using living cells.
B.前記工程Aで選択した試料を観察又は測光するためのアプリケーション、及び次の条件式(1-1)を満足し、且つ、d線(587.56nm)における屈折率ndが1.70以上である低蛍光なイマージョン物質を用いてなる蛍光観察又は蛍光測光システムを選択する工程。  B. An application for observing or measuring the sample selected in the step A and the following conditional expression (1-1) are satisfied, and the refractive index nd at the d-line (587.56 nm) is 1.70 or more. A step of selecting a fluorescence observation or fluorescence photometry system using a low fluorescence immersion material.
C.前記工程Bで選択したアプリケーション及びシステムを用いて、前記工程Aで選択した試料を蛍光観察又は蛍光測光する工程。  C. A step of fluorescence observation or fluorescence photometry of the sample selected in the step A using the application and system selected in the step B.
      B IMIM '/B'/ B IMIM ≦0.7 …(1-1)≦ 0.7… (1-1)
ただし、B  However, B IMIM 'は前記低蛍光なイマージョン物質の自家蛍光の強度の平均値、B'Is the average value of the autofluorescence intensity of the low-fluorescence immersion material, B IMIM は従来一般的に使用されているイマージョン物質の自家蛍光の強度の平均値である。Is an average value of the intensity of autofluorescence of an immersion material generally used conventionally.
前記工程Aで選択する生細胞を用いた蛍光を発する試料が、次の条件式(2-1),(3-1)の少なくとも一方を満足することを特徴とする請求項3に記載の蛍光観察又は蛍光測光方法。The fluorescence according to claim 3, wherein the sample that emits fluorescence using the living cells selected in step A satisfies at least one of the following conditional expressions (2-1) and (3-1). Observation or fluorescence photometry.
(S−s)/(B+b)≦5 …(2-1)      (S−s) / (B + b) ≦ 5 (2-1)
3B      3B IMIM /B≧0.2 …(3-1)/B≧0.2 (3-1)
ただし、Sは前記試料が発する蛍光の強度の平均値、sは該蛍光の強度の揺らぎ幅、Bは試料が存在しない背景ノイズの強度の平均値、bは該背景ノイズの強度の揺らぎ幅、B  However, S is the average value of the intensity of the fluorescence emitted from the sample, s is the fluctuation width of the intensity of the fluorescence, B is the average value of the intensity of the background noise in the absence of the sample, b is the fluctuation width of the intensity of the background noise, B IMIM は従来一般的に使用されているイマージョン物質の自家蛍光の強度の平均値である。Is an average value of the intensity of autofluorescence of an immersion material generally used conventionally.
前記工程Bで選択したアプリケーションがFRET(Fluorescence Resonance Energy Transfer:蛍光共鳴エネルギー移動)であることを特徴とする請求項4に記載の蛍光観察又は蛍光測光方法。The fluorescence observation or fluorescence photometry method according to claim 4, wherein the application selected in the step B is FRET (Fluorescence Resonance Energy Transfer). 前記工程Bで選択したシステムが蛍光顕微鏡システムであることを特徴とする請求項5に記載の蛍光観察又は蛍光測光方法。6. The fluorescence observation or fluorescence photometry method according to claim 5, wherein the system selected in step B is a fluorescence microscope system. 前記工程Bで選択したシステムが全反射顕微鏡システムであることを特徴とする請求項5に記載の蛍光観察又は蛍光測光方法。6. The fluorescence observation or fluorescence photometry method according to claim 5, wherein the system selected in step B is a total reflection microscope system. 前記工程Bで選択したシステムが蛍光顕微鏡と全反射顕微鏡のいずれか一方を2つ又は両方を1つずつ有し、前記試料を挟んで対物光学系が対向配置された顕微鏡システムとして構成されていることを特徴とする請求項5に記載の蛍光観察又は蛍光測光方法。The system selected in the step B is configured as a microscope system having either one or both of a fluorescence microscope and a total reflection microscope and an objective optical system facing each other with the sample interposed therebetween. The fluorescence observation or fluorescence photometric method according to claim 5. 前記工程Bで選択したアプリケーションがカルシウムイメージングであることを特徴とする請求項4に記載の蛍光観察又は蛍光測光方法。The fluorescence observation or fluorescence photometric method according to claim 4, wherein the application selected in step B is calcium imaging. 前記工程Bで選択したシステムが蛍光顕微鏡システムであることを特徴とする請求項9に記載の蛍光観察又は蛍光測光方法。The fluorescence observation or fluorescence photometric method according to claim 9, wherein the system selected in the step B is a fluorescence microscope system. 前記工程Bで選択したシステムが全反射顕微鏡システムであることを特徴とする請求項9に記載の蛍光観察又は蛍光測光方法。The fluorescence observation or fluorescence photometric method according to claim 9, wherein the system selected in step B is a total reflection microscope system. 前記工程Bで選択したシステムが蛍光顕微鏡と全反射顕微鏡のいずれか一方を2つ又は両方を1つずつ有し、前記試料を挟んで対物光学系が対向配置された顕微鏡システムとして構成されていることを特徴とする請求項9に記載の蛍光観察又は蛍光測光方法。The system selected in the step B is configured as a microscope system having either one or both of a fluorescence microscope and a total reflection microscope and an objective optical system facing each other with the sample interposed therebetween. The fluorescence observation or fluorescence photometric method according to claim 9. 前記工程Bで選択したアプリケーションが動画観察又はタイムラプス観察であることを特徴とする請求項4に記載の蛍光観察又は蛍光測光方法。5. The fluorescence observation or fluorescence photometry method according to claim 4, wherein the application selected in the step B is moving image observation or time lapse observation. 前記工程Bで選択したシステムが蛍光顕微鏡システムであることを特徴とする請求項13に記載の蛍光観察又は蛍光測光方法。The fluorescence observation or fluorescence photometry method according to claim 13, wherein the system selected in the step B is a fluorescence microscope system. 前記工程Bで選択したシステムが全反射顕微鏡システムであることを特徴とする請求項13に記載の蛍光観察又は蛍光測光方法。14. The fluorescence observation or fluorescence photometry method according to claim 13, wherein the system selected in step B is a total reflection microscope system. 前記工程Bで選択したシステムが蛍光顕微鏡と全反射顕微鏡のいずれか一方を2つ又は両方を1つずつ有し、前記試料を挟んで対物光学系が対向配置された顕微鏡システムとして構成されていることを特徴とする請求項13に記載の蛍光観察又は蛍光測光方法。The system selected in the step B is configured as a microscope system having either one or both of a fluorescence microscope and a total reflection microscope and an objective optical system facing each other with the sample interposed therebetween. The fluorescence observation or fluorescence photometry method according to claim 13.
JP2006175494A 2006-06-26 2006-06-26 Fluorescence observation or fluorescence photometry system, and method thereof Abandoned JP2008003051A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006175494A JP2008003051A (en) 2006-06-26 2006-06-26 Fluorescence observation or fluorescence photometry system, and method thereof
US11/588,646 US7696491B2 (en) 2006-06-26 2006-10-27 Fluorescence observation or fluorescence measuring system, and fluorescence observation or fluorescence measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175494A JP2008003051A (en) 2006-06-26 2006-06-26 Fluorescence observation or fluorescence photometry system, and method thereof

Publications (2)

Publication Number Publication Date
JP2008003051A JP2008003051A (en) 2008-01-10
JP2008003051A5 true JP2008003051A5 (en) 2009-08-13

Family

ID=39007550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175494A Abandoned JP2008003051A (en) 2006-06-26 2006-06-26 Fluorescence observation or fluorescence photometry system, and method thereof

Country Status (1)

Country Link
JP (1) JP2008003051A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365736B1 (en) * 2012-07-24 2013-12-11 富山県 Microwell array chip and cell recovery method

Similar Documents

Publication Publication Date Title
Marcelino et al. Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching
Venn et al. Imaging intracellular pH in a reef coral and symbiotic anemone
JP2021164484A5 (en)
US9915819B2 (en) Fiber-optic methods and devices enabling multiphoton imaging with improved signal to-noise ratio
Yan et al. A pilot study of using multiphoton microscopy to diagnose gastric cancer
Bruneel et al. Imaging the zebrafish dentition: from traditional approaches to emerging technologies
Wang et al. Super-resolution endoscopy for real-time wide-field imaging
US20180348104A1 (en) Non-hazardous optical clearing of biological samples
Hirsch et al. FLIRT: fast local infrared thermogenetics for subcellular control of protein function
Nudell et al. HYBRiD: hydrogel-reinforced DISCO for clearing mammalian bodies
Kennedy et al. A fluorescence lifetime imaging scanning confocal endomicroscope
Zhong Applying superresolution localization‐based microscopy to neurons
Choudhary et al. High fidelity fibre-based physiological sensing deep in tissue
Verstraeten et al. Whole mount immunohistochemistry and in situ hybridization of larval and adult zebrafish dental tissues
CN104486984A (en) Dual mode microendoscope apparatus, method and applications
JP4608253B2 (en) Immersion objective optical system
Roy et al. Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast
JP2008003051A5 (en)
CN108196359B (en) Objective lens group for two-photon fluorescence endoscope
Li et al. Digital scanned laser light‐sheet fluorescence lifetime microscopy with wide‐field time‐gated imaging
JP2009075281A (en) Microscope objective lens
Grill et al. Burrowing by small polychaetes–mechanics, behavior and muscle structure of Capitella sp.
Liu et al. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation
Endo et al. Chlorophyll fluorescence imaging of individual algal cells: effects of herbicide on Spirogyra distenta at different growth stages
JP2003172879A (en) Liquid immersion microscope objective lens