JP2008001646A - Agent for treatment of cardiac disease - Google Patents

Agent for treatment of cardiac disease Download PDF

Info

Publication number
JP2008001646A
JP2008001646A JP2006173567A JP2006173567A JP2008001646A JP 2008001646 A JP2008001646 A JP 2008001646A JP 2006173567 A JP2006173567 A JP 2006173567A JP 2006173567 A JP2006173567 A JP 2006173567A JP 2008001646 A JP2008001646 A JP 2008001646A
Authority
JP
Japan
Prior art keywords
ccn1
protein
gene
heart
wild
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006173567A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
田中  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2006173567A priority Critical patent/JP2008001646A/en
Publication of JP2008001646A publication Critical patent/JP2008001646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medicine reducing the oxidation stress on the heart and suppressing the apoptosis of myocardial cell occurring subsequent to oxidation stress. <P>SOLUTION: The medicine for the prevention and/or treatment of cardiac diseases such as ischemic cardiopathy, heart failure and myocardial disease contains CCN1 protein or a gene encoding CCN1 protein as an active component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は心疾患の予防及び/又は治療のための医薬に関する。   The present invention relates to a medicament for the prevention and / or treatment of heart disease.

酸化ストレスは急性心筋梗塞における虚血再潅流障害や慢性心不全におけるリモデリングなど急性及び慢性の心臓病において心機能障害の重要な因子となっている。従って、心臓における酸化ストレスとそれに引き続いて生じる心筋細胞のアポトーシスを抑制することは心疾患の予防や治療手段として有望である。   Oxidative stress is an important factor in cardiac dysfunction in acute and chronic heart diseases such as ischemia reperfusion injury in acute myocardial infarction and remodeling in chronic heart failure. Therefore, suppressing oxidative stress in the heart and subsequent apoptosis of cardiomyocytes is promising as a means for preventing and treating heart disease.

一方、CCN1 (Cyr61: cysteine rich 61と呼ばれる場合もある)はCCNファミリーに属する6種類の蛋白質(Cyr61, CTGF (connective tissue growth factor), NOV (nephroblastoma overexpressed), WISP-1, WISP-2, 及びWISP-3)の一つであり、43kDの分泌蛋白である。このCCN1については、ガン関連の遺伝子としていくつかの報告がある(非特許文献1ないし3)。また、CCN1が細胞外基質に結合して血管新生作用を発揮することが知られている。より具体的には、CCN1が血管内皮細胞の増殖及び遊走を促進すること(非特許文献4)、CCN1がラット角膜において血管新生を生じること(非特許文献5)、及びCCN1のcDNAを下肢動脈閉塞ウサギに投与すると血行が改善すること(非特許文献6)が報告されている。また、最近、CCN1が虚血性心疾患の心臓で発現上昇することが報告されている(非特許文献7)。しかしながら、CCN1の心筋細胞に対する直接作用や心臓における血管新生作用については報告はなく、CCN1を虚血性心疾患などの心疾患の治療に利用する試みも全く報告されていない。
Oncogene, 21, 8178, 2002 J. Biol. Chem., 279, 53087, 2004 Clin. Cancer Res., 11, 7243, 1005 Mol. Cell. Biol., 16, 1326, 1996 Proc. Natl. Acad. Sci. USA, 95, 6355, 1998 Hum. Gene Ther., 13, 1461, 2002 Circulation, 109, 2227, 2004
On the other hand, CCN1 (sometimes called Cyr61: cysteine rich 61) is one of six proteins belonging to the CCN family (Cyr61, CTGF (connective tissue growth factor), NOV (nephroblastoma overexpressed), WISP-1, WISP-2, and It is one of WISP-3), a secreted protein of 43 kD. About this CCN1, there are some reports as a cancer-related gene (nonpatent literature 1 thru | or 3). It is also known that CCN1 binds to an extracellular matrix and exerts an angiogenic action. More specifically, CCN1 promotes the proliferation and migration of vascular endothelial cells (Non-Patent Document 4), CCN1 causes angiogenesis in the rat cornea (Non-Patent Document 5), and CCN1 cDNA is used as a lower limb artery. It has been reported that blood circulation improves when administered to an obstructed rabbit (Non-patent Document 6). Recently, it has been reported that the expression of CCN1 is increased in the heart of ischemic heart disease (Non-patent Document 7). However, there is no report on the direct action of CCN1 on cardiomyocytes and the angiogenesis action in the heart, and no attempt has been made to use CCN1 for the treatment of heart diseases such as ischemic heart disease.
Oncogene, 21, 8178, 2002 J. Biol. Chem., 279, 53087, 2004 Clin. Cancer Res., 11, 7243, 1005 Mol. Cell. Biol., 16, 1326, 1996 Proc. Natl. Acad. Sci. USA, 95, 6355, 1998 Hum. Gene Ther., 13, 1461, 2002 Circulation, 109, 2227, 2004

本発明の課題は心疾患の予防及び/又は治療のための医薬を提供することにある。より具体的には、心臓における酸化ストレスを軽減することができ、酸化ストレスに引き続いて生じる心筋細胞のアポトーシスを抑制することができる医薬を提供することが本発明の課題である。   An object of the present invention is to provide a medicament for the prevention and / or treatment of heart disease. More specifically, it is an object of the present invention to provide a medicament that can reduce oxidative stress in the heart and suppress cardiomyocyte apoptosis that occurs following oxidative stress.

本発明者らは、発生期の心臓に発現する分泌因子をコードする遺伝子をクローニングする過程でCCN1タンパク質が胎生期の心臓に特異的に発現していることを見いだした。この知見はCCN1タンパク質が胎生期において心臓や冠動脈の形成に関与している可能性を示している。本発明者らは心臓におけるCCN1タンパク質の役割をさらに研究したところ、CCN1タンパク質が心筋細胞を酸化ストレスから保護してアポトーシスを抑制しており、心臓においても血管新生作用を発揮し、心機能の改善作用を有することを見出した。本発明は上記の知見を基にして完成された。   The present inventors have found that CCN1 protein is specifically expressed in the embryonic heart in the process of cloning a gene encoding a secretory factor expressed in the developing heart. This finding suggests that CCN1 protein may be involved in the formation of heart and coronary arteries during embryonic period. The present inventors further studied the role of CCN1 protein in the heart, and CCN1 protein protects cardiomyocytes from oxidative stress and suppresses apoptosis, exerts angiogenic action in the heart, and improves cardiac function It was found to have an action. The present invention has been completed based on the above findings.

すなわち、本発明により、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心疾患の予防及び/又は治療のための医薬が提供される。上記発明の好ましい態様によれば、心疾患が虚血性心疾患、好ましくは狭心症又は急性心筋梗塞である上記の医薬、及び心疾患が心不全又は心筋症である上記の医薬が提供される。
また、本発明により、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心機能改善剤、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心臓の血管新生促進剤、酸化ストレスからの心臓の保護剤であって、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む保護剤、酸化ストレスに起因する心臓のアポトーシスの抑制剤であって、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む抑制剤が提供される。
That is, the present invention provides a medicament for the prevention and / or treatment of heart disease comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient. According to a preferred aspect of the invention, there is provided the above medicament wherein the heart disease is ischemic heart disease, preferably angina pectoris or acute myocardial infarction, and the above medicament wherein the heart disease is heart failure or cardiomyopathy.
Further, according to the present invention, a cardiac function improving agent comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient, a cardiac angiogenesis promoting agent comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient, from oxidative stress A protective agent for the heart, comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient, an inhibitor of cardiac apoptosis caused by oxidative stress, and a gene encoding CCN1 protein or CCN1 protein Inhibitors are provided as active ingredients.

さらに、本発明により、心疾患の予防及び/又は治療方法であって、ヒトを含む哺乳類動物にCCN1タンパク質を投与する工程を含む方法、好ましくはCCN1タンパク質を心臓に局所投与する工程を含む方法が提供される。また、心疾患の予防及び/又は治療方法であって、ヒトを含む哺乳類動物にCCN1タンパク質をコードする遺伝子を含むベクターを投与する工程を含む方法も本発明により提供される。この発明の好ましい態様によれば、上記ベクターを心臓に局所投与する工程を含む方法が提供される。
さらに、上記の医薬の製造のためのCCN1タンパク質又はCCN1タンパク質をコードする遺伝子の使用も本発明により提供される。
Furthermore, according to the present invention, there is provided a method for the prevention and / or treatment of heart disease, comprising the step of administering CCN1 protein to mammals including humans, preferably comprising the step of locally administering CCN1 protein to the heart. Provided. Also provided by the present invention is a method for preventing and / or treating heart disease, which comprises the step of administering a vector containing a gene encoding CCN1 protein to mammals including humans. According to a preferred aspect of the present invention, there is provided a method comprising the step of locally administering the vector to the heart.
Furthermore, the use of CCN1 protein or a gene encoding CCN1 protein for the manufacture of the above medicament is also provided by the present invention.

本発明の医薬は、例えば虚血性心疾患のような心疾患の予防及び/又は治療のための医薬として有用である。特に、本発明の医薬は心筋細胞を酸化ストレスから保護してアポトーシスを抑制する作用を有しており、心臓においても血管新生作用を発揮して心機能を改善する作用を有するので、心筋梗塞などの虚血性心疾患を有効に治療することができる。   The medicament of the present invention is useful as a medicament for the prevention and / or treatment of heart diseases such as ischemic heart disease. In particular, the medicament of the present invention has an action of protecting myocardial cells from oxidative stress and suppressing apoptosis, and also exerts an angiogenic action in the heart to improve cardiac function. It is possible to effectively treat an ischemic heart disease.

本発明の医薬の有効成分であるCCN1タンパク質はCyr61(cystein-rich 61)タンパク質としても知られており、ヒトCCN1タンパク質のアミノ酸配列はGenPept NP_001545記載されている。また、CCN1タンパク質をコードする遺伝子(以下、CCN1遺伝子と呼ぶ場合がある)の存在も知られており、ヒトCCN1遺伝子の核酸配列はGenBank NM_001554に記載されている。従って、該タンパク質及び遺伝子の情報はいずれも当業者に利用可能である。   CCN1 protein which is an active ingredient of the medicament of the present invention is also known as Cyr61 (cystein-rich 61) protein, and the amino acid sequence of human CCN1 protein is described in GenPept NP_001545. In addition, the existence of a gene encoding CCN1 protein (hereinafter sometimes referred to as CCN1 gene) is also known, and the nucleic acid sequence of human CCN1 gene is described in GenBank NM_001554. Accordingly, both protein and gene information is available to those skilled in the art.

本発明の医薬の有効成分としては、哺乳類動物由来の野生型CCN1タンパク質のほか、上記野生型CCN1タンパク質のアミノ酸配列において1個又は数個のアミノ酸が置換、挿入、及び/又は欠失しており、哺乳類動物の生体内において野生型CCN1タンパク質と実質的に同様な作用を発揮できる改変CCN1タンパク質を用いてもよい。本発明の医薬をヒトに適用する場合には、ヒト由来の野生型CCN1タンパク質、又はヒト由来の野生型CCN1タンパク質のアミノ酸配列において1個又は数個のアミノ酸が置換、挿入、及び/又は欠失しており、ヒトの生体内においてヒト由来の野生型CCN1と実質的に同様な作用を発揮できる改変CCN1タンパク質を用いることが好ましい。本明細書において「CCN1タンパク質」と呼ぶ場合には、野生型CCN1タンパク質及び改変CCN1タンパク質の両者を包含する。   As an active ingredient of the medicament of the present invention, in addition to the wild-type CCN1 protein derived from a mammal, one or several amino acids are substituted, inserted, and / or deleted in the amino acid sequence of the wild-type CCN1 protein. Alternatively, a modified CCN1 protein that can exhibit substantially the same action as the wild-type CCN1 protein in a mammalian organism may be used. When the medicament of the present invention is applied to humans, one or several amino acids are substituted, inserted, and / or deleted in the human-derived wild-type CCN1 protein or the amino acid sequence of human-derived wild-type CCN1 protein. Therefore, it is preferable to use a modified CCN1 protein capable of exhibiting substantially the same action as human-derived wild-type CCN1 in the human body. When referred to herein as “CCN1 protein”, both wild-type CCN1 protein and modified CCN1 protein are included.

本明細書において1から数個のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列に言及する場合、「1から数個」の範囲は特には限定されないが、例えば、1から20個、好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1から5個、特に好ましくは1から3個程度である。上記の改変CCN1タンパク質のアミノ酸配列は野生型タンパク質のアミノ酸配列に対して例えば70%以上の相同性を有しており、好ましくは80%以上、さらに好ましくは85%以上、さらに好ましくは90%、特に好ましくは95%以上の相同性を有する。   In the present specification, when referring to an amino acid sequence having 1 to several amino acid deletions, substitutions and / or additions, the range of “1 to several” is not particularly limited, but for example, 1 to 20, The number is preferably 1 to 10, more preferably 1 to 7, further preferably 1 to 5, and particularly preferably about 1 to 3. The amino acid sequence of the modified CCN1 protein has, for example, 70% or more homology with the amino acid sequence of the wild-type protein, preferably 80% or more, more preferably 85% or more, more preferably 90%, Particularly preferably, it has a homology of 95% or more.

本発明の医薬の有効成分としては、哺乳類動物由来の野生型CCN1遺伝子のほか、上記野生型CCN1タンパク質のアミノ酸配列において1から数個のアミノ酸が置換、挿入、及び/又は欠失しており、哺乳類動物の生体内において野生型CCN1タンパク質と実質的に同様な作用を発揮できる改変CCN1タンパク質をコードするDNAを用いてもよい。本発明の医薬をヒトに適用する場合には、ヒト由来の野生型CCN1遺伝子、又はヒト由来の野生型CCN1タンパク質のアミノ酸配列において1個又は数個のアミノ酸が置換、挿入、及び/又は欠失しており、ヒトの生体内においてヒト由来の野生型CCN1タンパク質と実質的に同様な作用を発揮できる改変CCN1タンパク質をコードするDNA(以下、改変CCN1遺伝子と呼ぶ場合がある)を用いることが好ましい。本明細書において「CCN1遺伝子」と呼ぶ場合には、野生型CCN1遺伝子及び改変CCN1遺伝子の両者を包含する。   As an active ingredient of the medicament of the present invention, in addition to the wild-type CCN1 gene derived from a mammal, 1 to several amino acids are substituted, inserted, and / or deleted in the amino acid sequence of the wild-type CCN1 protein. A DNA encoding a modified CCN1 protein capable of exhibiting substantially the same action as the wild-type CCN1 protein in a mammalian organism may be used. When the medicament of the present invention is applied to humans, one or several amino acids are substituted, inserted, and / or deleted in the amino acid sequence of human-derived wild-type CCN1 gene or human-derived wild-type CCN1 protein. It is preferable to use a DNA encoding a modified CCN1 protein (hereinafter sometimes referred to as a modified CCN1 gene) that can exhibit substantially the same action as a human-derived wild-type CCN1 protein in the human body. . In the present specification, the term “CCN1 gene” includes both a wild-type CCN1 gene and a modified CCN1 gene.

例えば、上記改変CCN1遺伝子として、野生型CCN1遺伝子に対してストリンジェントな条件下でハイブリダイズするDNAを用いることができる。そのようなDNAは野生型CCN1遺伝子の核酸配列において1から数個の塩基が置換、挿入、及び/又は欠失する塩基配列を有する場合がある。「1から数個」の範囲は特には限定されないが、例えば、1から40個、好ましくは1から30個、より好ましくは1から20個、より好ましくは1から10個、さらに好ましくは1から5個、特に好ましくは1から3個程度である。ストリンジェントな条件下でハイブリダイズするDNAとしては、野生型CCN1遺伝子の塩基配列と一定以上の相同性を有するDNAが挙げられ、例えば70%以上、好ましくは80%以上、より好ましくは90%以上、さらに好ましくは93%以上、特に好ましくは95%以上、最も好ましくは98%以上の相同性を有するDNAが挙げられる。   For example, a DNA that hybridizes under stringent conditions to the wild-type CCN1 gene can be used as the modified CCN1 gene. Such DNA may have a base sequence in which one to several bases are substituted, inserted, and / or deleted in the nucleic acid sequence of the wild-type CCN1 gene. Although the range of “1 to several” is not particularly limited, for example, 1 to 40, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, more preferably 1 to The number is 5, particularly preferably about 1 to 3. Examples of DNA that hybridizes under stringent conditions include DNA having a certain homology with the base sequence of the wild-type CCN1 gene, for example, 70% or more, preferably 80% or more, more preferably 90% or more. More preferred is DNA having a homology of 93% or more, particularly preferably 95% or more, and most preferably 98% or more.

本明細書において「ストリンジェントな条件下でハイブリダイズする塩基配列」とは、例えば、野生型CCN1遺伝子DNAをプローブとして使用し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、又はサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAの塩基配列を意味しており、例えば、コロニー又はプラーク由来のDNA又は該DNAの断片を固定化したフィルターを用いて、0.7〜1.0 MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1〜2×SSC溶液(1×SSC溶液は、150 mM塩化ナトリウム、15 mMクエン酸ナトリウム)を用い、65℃条件下でフィルターを洗浄することにより同定できるDNA等を挙げることができる。ハイブリダイゼーションはMolecular Cloning: A laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,1989(以下、「モレキュラークローニング第2版」と略す場合がある)等に記載されている方法に準じて行うことができる。   In the present specification, the “base sequence that hybridizes under stringent conditions” means, for example, colony hybridization method, plaque hybridization method, Southern blot hybridization method, etc. using wild-type CCN1 gene DNA as a probe. For example, using a filter on which colony or plaque-derived DNA or a fragment of the DNA is immobilized at 65 ° C. in the presence of 0.7 to 1.0 M NaCl. After hybridization, DNA etc. that can be identified by washing the filter under a condition of 65 ° C. using 0.1 to 2 × SSC solution (1 × SSC solution is 150 mM sodium chloride, 15 mM sodium citrate) Can be mentioned. Hybridization is a method described in Molecular Cloning: A laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989 (hereinafter sometimes abbreviated as "Molecular Cloning 2nd Edition"). It can be performed according to.

野生型CCN1タンパク質若しくは上記改変タンパク質、又は野生型CCN1遺伝子若しくは改変CCN1遺伝子の取得方法は特に限定されない。上記刊行物に記載された野生型CCN1タンパク質のアミノ酸配列情報又は野生型CCN1遺伝子の核酸配列情報を利用して適当なブローブやプライマーを調製し、それらを用いて真核生物のcDNAライブラリーをスクリーニングすることにより野生型CCN1遺伝子を単離することができる。例えば、PCR法により野生型CCN1遺伝子を取得することもできる。真核生物由来の染色体DNAライブラリー又はcDNAライブラリーを鋳型として使用し、野生型CCN1遺伝子を増幅できるように設計した1対のプライマーを用いてPCRを行うことができる。PCRの反応条件は適宜設定することができ、例えば、94℃で30秒間(変性)、55℃で30秒〜1分間(アニーリング)、72℃で2分間(伸長)からなる反応工程を1サイクルとして、例えば30サイクル行った後、72℃で7分間反応させる条件などを挙げることができる。次いで、増幅されたDNA断片を、大腸菌等の宿主で増幅可能な適切なベクター中にクローニングすることができる。   The method for obtaining the wild-type CCN1 protein or the above-mentioned modified protein, or the wild-type CCN1 gene or the modified CCN1 gene is not particularly limited. Prepare appropriate probes and primers using the wild-type CCN1 protein amino acid sequence information or wild-type CCN1 gene nucleic acid sequence information described in the above publications, and screen eukaryotic cDNA libraries using them. By doing so, the wild type CCN1 gene can be isolated. For example, the wild type CCN1 gene can be obtained by PCR. PCR can be performed using a pair of primers designed to amplify the wild type CCN1 gene using a chromosomal DNA library or cDNA library derived from a eukaryote as a template. PCR reaction conditions can be set as appropriate. For example, one cycle of a reaction step consisting of 94 ° C for 30 seconds (denaturation), 55 ° C for 30 seconds to 1 minute (annealing), and 72 ° C for 2 minutes (extension) As an example, there may be mentioned conditions for carrying out the reaction at 72 ° C. for 7 minutes after 30 cycles. The amplified DNA fragment can then be cloned into a suitable vector that can be amplified in a host such as E. coli.

上記のプローブ又はプライマーの調製、cDNAライブラリーの構築、cDNAライブラリーのスクリーニング、並びに目的遺伝子のクローニングなどの手法は当業者に周知かつ慣用であり、例えば、モレキュラークローニング第2版、Current Protocols in Molecular Biology, Supplement 1〜38, John Wiley & Sons (1987-1997)等に記載の方法に準じて行うことができる。   Techniques such as preparation of the probe or primer, construction of a cDNA library, screening of the cDNA library, and cloning of the target gene are well known and commonly used by those skilled in the art. For example, Molecular Cloning 2nd Edition, Current Protocols in Molecular Biology, Supplements 1-38, John Wiley & Sons (1987-1997) etc. can be followed.

また、改変CCN1遺伝子は、例えば、アミノ酸配列の情報に基づいて、化学合成、遺伝子工学的手法、又は突然変異誘発などの当業者に既知の任意の方法で作製することができる。例えば、野生型CCN1遺伝子に対して変異原となる薬剤と接触作用させる方法、紫外線を照射する方法、又は遺伝子工学的手法等を用いて上記DNAを入手することができる。遺伝子工学的手法の一つである部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であることから有用であり、例えば、モレキュラークローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー等に記載の方法に準じて行うことができる。   The modified CCN1 gene can be prepared by any method known to those skilled in the art, such as chemical synthesis, genetic engineering techniques, or mutagenesis, based on the amino acid sequence information. For example, the DNA can be obtained using a method of contacting a wild-type CCN1 gene with a drug that is a mutagen, a method of irradiating with ultraviolet rays, a genetic engineering method, or the like. Site-directed mutagenesis, which is one of genetic engineering techniques, is useful because it can introduce a specific mutation at a specific position. For example, Molecular Cloning 2nd Edition, Current Protocols in. It can be performed according to the method described in Molecular Biology and the like.

野生型CCN1タンパク質又は改変CCN1タンパク質の取得方法は特に制限されないが、典型的には、上記の方法により野生型CCN1遺伝子又は改変CCN1遺伝子を取得して、このDNAを適当な発現系に導入して発現させることにより取得することができる。野生型CCN1遺伝子又は改変CCN1遺伝子は、適当なベクター中に挿入して使用することができる。ベクターの種類は特に限定されず、例えば、自立的に複製するベクター(例えばプラスミド等)、あるいは宿主細胞に導入された際に宿主細胞のゲノムに組み込まれ、組み込まれた染色体と共に複製されるベクターなどを利用できる。好ましくは発現ベクターを用いることができ、発現ベクターにおいて野生型CCN1遺伝子又は改変CCN1遺伝子は転写に必要な要素(例えばプロモーター等)が機能的に連結されていることが望ましい。プロモータは宿主細胞において転写活性を示すDNA配列であり、宿主の種類に応じて適宜選択することができる。   The method for obtaining the wild-type CCN1 protein or modified CCN1 protein is not particularly limited, but typically, the wild-type CCN1 gene or modified CCN1 gene is obtained by the above-described method, and this DNA is introduced into an appropriate expression system. It can be obtained by expressing. The wild type CCN1 gene or the modified CCN1 gene can be used by inserting it into an appropriate vector. The type of vector is not particularly limited. For example, a vector that replicates autonomously (eg, a plasmid), a vector that is integrated into the host cell genome when introduced into the host cell, and replicated with the integrated chromosome, etc. Can be used. Preferably, an expression vector can be used, and in the expression vector, it is desirable that the wild-type CCN1 gene or the modified CCN1 gene is functionally linked to elements necessary for transcription (for example, a promoter or the like). A promoter is a DNA sequence that exhibits transcriptional activity in a host cell, and can be appropriately selected depending on the type of host.

細菌細胞で作動可能なプロモータとしては、バチルス・ステアロテルモフィルス・マルトジェニック・アミラーゼ遺伝子(Bacillus stearothermophilus maltogenic amylase gene)、バチルス・リケニホルミスαアミラーゼ遺伝子(Bacillus licheniformis alpha-amylase gene)、バチルス・アミロリケファチエンス・BANアミラーゼ遺伝子(Bacillus amyloliquefaciens BAN amylase gene)、バチルス・サブチリス・アルカリプロテアーゼ遺伝子(Bacillus Subtilis alkaline protease gene)若しくはバチルス・プミルス・キシロシダーゼ遺伝子(Bacillus pumilus xylosldase gene)のプロモータ、又はファージ・ラムダのPR若しくはPLプロモータ、大腸菌の lac、trp、若しくはtacプロモータなどが挙げられる。 Promoters operable in bacterial cells include the Bacillus stearothermophilus maltogenic amylase gene, the Bacillus licheniformis alpha-amylase gene, and the Bacillus amyloliquefati. Enns-BAN amylase gene (Bacillus amyloliquefaciens BAN amylase gene), Bacillus subtilis alkaline protease gene (Bacillus subtilis alkaline protease gene) or promoters of Bacillus pumilus-xylosidase gene (Bacillus pumilus xylosldase gene), or the phage lambda P R or P L promoters, lac of E.coli, trp, or the like tac promoter and the like.

哺乳動物細胞で作動可能なプロモータの例としては、SV40プロモータ、MT-1(メタロチオネイン遺伝子)プロモータ、またはアデノウイルス2主後期プロモータなどがある。昆虫細胞で作動可能なプロモータの例としては、ポリヘドリンプロモータ、P10プロモータ、オートグラファ・カリホルニカ・ポリヘドロシス塩基性タンパクプロモータ、バキュウロウイルス即時型初期遺伝子1プロモータ、又はバキュウロウイルス39K遅延型初期遺伝子プロモータ等がある。酵母宿主細胞で作動可能なプロモータの例としては、酵母解糖系遺伝子由来のプロモータ、アルコールデヒドロゲナーゼ遺伝子プロモータ、TPI1プロモータ、ADH2-4cプロモータなどが挙げられる。糸状菌細胞で作動可能なプロモータの例としては、ADH3プロモータまたはtpiAプロモータなどがある。   Examples of promoters that can operate in mammalian cells include the SV40 promoter, the MT-1 (metallothionein gene) promoter, or the adenovirus 2 major late promoter. Examples of promoters that can operate in insect cells include polyhedrin promoter, P10 promoter, autographa calicornica polyhedrosis basic protein promoter, baculovirus immediate early gene 1 promoter, or baculovirus 39K delayed early gene There are promoters. Examples of promoters that can operate in yeast host cells include promoters derived from yeast glycolytic genes, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters, and the like. Examples of promoters that can operate in filamentous fungal cells include the ADH3 promoter or the tpiA promoter.

また、上記発現ベクターにおいて野生型CCN1遺伝子又は改変CCN1遺伝子は必要に応じて適切なターミネータに機能的に結合されてもよい。発現ベクターは転写エンハンサ配列(例えばSV40エンハンサ)などの要素を有していてもよい。上記発現ベクターは、該ベクターが宿主細胞内で複製することを可能にするDNA配列を有していてもよい。その一例としては、宿主細胞が哺乳類細胞の場合におけるSV40複製起点が挙げられる。   In the above expression vector, the wild-type CCN1 gene or the modified CCN1 gene may be operably linked to an appropriate terminator as necessary. The expression vector may have elements such as a transcription enhancer sequence (eg, SV40 enhancer). The expression vector may have a DNA sequence that allows the vector to replicate in the host cell. An example is the SV40 origin of replication when the host cell is a mammalian cell.

発現ベクターは選択マーカーを含有してもよい。選択マーカーとしては、例えば、ジヒドロ葉酸レダクターゼ(DHFR)若しくはシゾサッカロマイセス・ポンベTPI遺伝子等のようなその補体が宿主細胞に欠けている遺伝子、又は例えばアンピシリン、カナマイシン、テトラサイクリン、クロラムフェニコール、ネオマイシン、若しくはヒグロマイシンのような薬剤耐性遺伝子を挙げることができる。野生型CCN1遺伝子又は改変CCN1遺伝子、プロモータ、並びに所望によりターミネータ及び/又は分泌シグナル配列などをそれぞれ連結し、これらを適切なベクターに挿入する方法は当業者に周知である。   The expression vector may contain a selectable marker. As a selectable marker, for example, a gene whose complement is lacking in the host cell such as dihydrofolate reductase (DHFR) or Schizosaccharomyces pombe TPI gene, or ampicillin, kanamycin, tetracycline, chloramphenicol, Mention may be made of drug resistance genes such as neomycin or hygromycin. A method for linking a wild-type CCN1 gene or a modified CCN1 gene, a promoter, and a terminator and / or a secretion signal sequence, if necessary, and inserting them into an appropriate vector is well known to those skilled in the art.

上記発現ベクターを適当な宿主に導入することによって形質転換体を作製することができ、該形質転換体を培養して野生型CCN1タンパク質又は改変CCN1タンパク質を調製することができる。宿主細胞は上記遺伝子を発現できる限り特にその種類は限定されない。例えば、細菌(例えば、Escherichia属、Bacillus属等)、酵母(Saccharomyces属、Pichia属、Candida属等)、動物細胞(CHO細胞、COS細胞等)、昆虫細胞(Sf-9細胞、Hi-five細胞等)等を用いることができる。培養時の培地としては液体培地が適当であり、当該培地中には培養する形質転換細胞の生育に必要な炭素源、窒素源等が含まれることが特に好ましい。所望によりビタミン類、成長促進因子、血清などを添加することができる。宿主細胞への発現ベクターの導入方法としては、例えば、エレクトロポーレーション法、リン酸カルシウム法、又はリポフェクション法等の適宜の方法を用いることができる。   A transformant can be prepared by introducing the expression vector into a suitable host, and the transformant can be cultured to prepare a wild-type CCN1 protein or a modified CCN1 protein. The type of host cell is not particularly limited as long as it can express the gene. For example, bacteria (eg, Escherichia, Bacillus, etc.), yeast (Saccharomyces, Pichia, Candida, etc.), animal cells (CHO cells, COS cells, etc.), insect cells (Sf-9 cells, Hi-five cells) Etc.) can be used. A liquid medium is suitable as a medium for culturing, and it is particularly preferable that the medium contains a carbon source, a nitrogen source and the like necessary for the growth of the transformed cells to be cultured. If desired, vitamins, growth promoting factors, serum and the like can be added. As a method for introducing an expression vector into a host cell, for example, an appropriate method such as an electroporation method, a calcium phosphate method, or a lipofection method can be used.

得られた野生型CCN1タンパク質又は改変CCN1タンパク質は常法に従って精製して、本発明の医薬の有効成分として用いることができる。精製手段としては、例えば、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィ一法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用いることができるが、これらに限定されることはない。   The obtained wild-type CCN1 protein or modified CCN1 protein can be purified according to a conventional method and used as an active ingredient of the medicament of the present invention. Examples of purification means include solvent extraction, salting out using ammonium sulfate, desalting, precipitation using organic solvents, anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) sepharose, S-Sepharose Cation exchange chromatography using a resin such as FF (Pharmacia), hydrophobic chromatography using a resin such as butyl sepharose and phenyl sepharose, gel filtration using a molecular sieve, one affinity chromatography, chromatography Techniques such as focusing methods and electrophoresis methods such as isoelectric focusing can be used alone or in combination, but are not limited thereto.

上記の野生型CCN1タンパク質又は改変CCN1タンパク質を有効成分として含む本発明の医薬は、通常の蛋白質製剤の調製方法に従って製剤化することができる。野生型CCN1遺伝子若しくは改変CCN1遺伝子又はそれらを組み込んだ発現ベクターを有効成分として含む本発明の医薬も、当業界で利用可能な手段で製剤化して用いることができる。野生型CCN1遺伝子若しくは改変CCN1遺伝子を含む本発明の医薬としては、上記の発現ベクターのうち、ヒトを含む哺乳類動物の生体内において野生型CCN1タンパク質又は改変CCN1タンパク質を効率的に発現することができるベクターを用いることができる。このベクターには、遺伝子発現のために必要な配列や遺伝子発現を促進する各種の配列を適宜の順番で組み込むことが好ましい。目的の遺伝子を生体内、好ましくは特定の臓器や組織内において発現させる遺伝子治療は当業界で種々行われており、それらの遺伝子治療方法に準じて上記発現ベクターを含む本発明の医薬を用いることにより、CCN1タンパク質又は改変CCN1タンパク質を生体内、好ましくは心臓内で発現させ、効率的な遺伝子治療を行うことができる。 The medicament of the present invention containing the wild-type CCN1 protein or the modified CCN1 protein as an active ingredient can be formulated according to a general method for preparing a protein preparation. The medicament of the present invention containing a wild-type CCN1 gene or a modified CCN1 gene or an expression vector incorporating them as an active ingredient can also be used after being formulated by means available in the art. Among the above-described expression vectors, the medicament of the present invention containing a wild-type CCN1 gene or a modified CCN1 gene can efficiently express a wild-type CCN1 protein or a modified CCN1 protein in vivo in mammals including humans. Vectors can be used. It is preferable to incorporate into this vector sequences necessary for gene expression and various sequences that promote gene expression in an appropriate order. Various gene therapies for expressing a target gene in a living body, preferably a specific organ or tissue, are performed in the art, and the pharmaceutical of the present invention containing the above expression vector is used according to the gene therapy method. Thus, CCN1 protein or modified CCN1 protein can be expressed in vivo, preferably in the heart, and efficient gene therapy can be performed.

本発明の医薬は、心筋細胞を酸化ストレスから保護してアポトーシスを抑制する作用を有している。また、本発明の医薬は、心臓において血管新生作用を発揮し、心機能を改善する作用を有する。従って、本発明の医薬は、各種の心疾患の予防及び/又は治療のための医薬として用いることができる。特に好ましい適用対象は心筋細胞に強い酸化ストレスを負荷する心疾患であり、より具体的には虚血性心疾患、例えば狭心症や急性心筋梗塞などが挙げられる。また、急性心筋梗塞に対して行われる経皮的冠動脈形成術(PTCA)や経皮的冠動脈インターベンション(PCI)などのバルーンカテーテル又はステントなどを用いた治療における血流再開通時の酸化ストレスの軽減、PTCAやPCIの施術後に高い頻度で発生する再狭窄の予防、冠動脈大動脈バイパス手術(CABG又はOPCAB)における血流再開通時の酸化ストレス軽減のために本発明の医薬を好適に使用することができる。さらに、本発明の医薬は心臓における血管新生作用及び心機能改善作用を有していることから、心筋症(肥大型心筋症、2次性心筋肥大、拡張型心筋症、拘束型心筋症など)、心筋炎、心不全、心内膜炎(細菌性心内膜炎など)、心臓弁膜症(僧帽弁閉鎖不全など)、心膜炎(急性心膜炎、慢性収縮性心膜炎など)、先天性心疾患(心房中隔欠損、心室中隔欠損など)、心臓性喘息、肺性心などの心疾患の予防及び/又は治療に本発明の医薬を用いることができる。もっとも、本発明の医薬の適用対象は上記の疾患に限定されることはない。   The medicament of the present invention has an action of protecting cardiomyocytes from oxidative stress and suppressing apoptosis. In addition, the medicament of the present invention exhibits an angiogenic action in the heart and has an action of improving cardiac function. Therefore, the medicament of the present invention can be used as a medicament for the prevention and / or treatment of various heart diseases. A particularly preferable application target is a heart disease in which a strong oxidative stress is applied to cardiomyocytes, and more specifically, an ischemic heart disease such as angina pectoris and acute myocardial infarction. In addition, oxidative stress during the resumption of blood flow during treatment using balloon catheters or stents such as percutaneous coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) performed for acute myocardial infarction The drug of the present invention is preferably used for alleviation, prevention of restenosis that frequently occurs after PTCA or PCI treatment, and reduction of oxidative stress during reperfusion during coronary aortic bypass surgery (CABG or OPCAB) Can do. Furthermore, since the medicament of the present invention has an angiogenic action and a cardiac function improving action in the heart, cardiomyopathy (hypertrophic cardiomyopathy, secondary myocardial hypertrophy, dilated cardiomyopathy, restricted cardiomyopathy, etc.) , Myocarditis, heart failure, endocarditis (such as bacterial endocarditis), valvular disease (such as mitral regurgitation), pericarditis (such as acute pericarditis, chronic constrictive pericarditis), The medicament of the present invention can be used for prevention and / or treatment of heart diseases such as congenital heart diseases (eg, atrial septal defect, ventricular septal defect), cardiac asthma, and pulmonary heart. But the application object of the medicine of this invention is not limited to said disease.

本発明の医薬の適用方法は特に限定されないが、一般的には静脈内投与、皮下投与、筋肉内投与、吸入などの非経口的な全身投与や心臓への注射による局所投与などを採用することができる。もっとも、投与経路は有効成分の種類、心疾患の種類や症状などのに応じて適宜選択可能であることは言うまでもない。本発明の医薬は一般的には1又は2種以上の製剤用添加物を用いて非経口投与形態の医薬組成物として調製することができる。製剤用添加物の種類は特に限定されず、一般的にタンパク質製剤又は核酸製剤の調製に用いられる製剤用添加物を選択して、必要に応じて適宜組み合わせて用いることができる。   The method of applying the medicament of the present invention is not particularly limited, but generally, parenteral systemic administration such as intravenous administration, subcutaneous administration, intramuscular administration, inhalation, or local administration by injection into the heart, etc. should be adopted. Can do. Needless to say, the route of administration can be appropriately selected according to the type of active ingredient, the type and symptoms of heart disease, and the like. In general, the medicament of the present invention can be prepared as a pharmaceutical composition in a parenteral dosage form using one or more pharmaceutical additives. The kind of additive for formulation is not specifically limited, Generally, the additive for formulation used for preparation of a protein formulation or a nucleic acid formulation can be selected, and it can use combining suitably as needed.

好ましい製剤形態として凍結乾燥状態の用時調製可能な注射剤又は点滴剤、あるいは静脈内投与形態の溶液状の注射剤又は点滴剤などを挙げることができるが、これらに限定されることはない。注射剤の製造のための製剤用添加物としては、例えばpH調節剤、緩衝剤、等張化剤、溶解補助剤、無痛化剤、安定化剤、防腐剤、又は抗酸化剤などを挙げることができ、凍結乾燥形態の医薬の製造のためには上記の製剤用添加物のほかさらに賦形剤などを用いることができるが、これらに限定されることはない。本発明の医薬の有効成分を含むコーティングをバルーンカテーテルや留置ステントに施して上記有効成分が冠動脈内で徐々に放出されるようにしてもよく、あるいは開胸手術中に本発明の医薬を心臓に直接塗布することもできる。また、心臓内に本発明の医薬が特異的に集積するように任意のドラッグデリバリーシステムを利用することもできる。
なお、本発明の医薬の投与量は特に限定されず、心疾患の種類、予防又は治療の目的、患者の年齢、症状、体重、性別などにより適宜選択できるが、一般的には一日あたり1mg〜20mg程度である。
Preferable pharmaceutical forms include, but are not limited to, injections or infusions that can be prepared at the time of use in a lyophilized state, or intravenous injection solutions or infusions. Examples of pharmaceutical additives for manufacturing injections include pH adjusters, buffers, isotonic agents, solubilizers, soothing agents, stabilizers, preservatives, or antioxidants. In addition to the above-mentioned additives for preparation, excipients and the like can be used for the production of a lyophilized form of the medicament, but it is not limited thereto. A coating containing the active ingredient of the medicament of the present invention may be applied to a balloon catheter or an indwelling stent so that the active ingredient is gradually released in the coronary artery, or the medicament of the present invention is applied to the heart during thoracotomy. It can also be applied directly. Also, any drug delivery system can be used so that the medicament of the present invention is specifically accumulated in the heart.
The dosage of the medicament of the present invention is not particularly limited and can be appropriately selected depending on the type of heart disease, the purpose of prevention or treatment, the age, symptoms, body weight, sex, etc. of the patient, but generally 1 mg per day About 20mg.

以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1:ラット培養心筋細胞におけるCCN1の心筋細胞保護効果
活性酸素の産生による酸化ストレスは、急性心筋梗塞における再潅流障害や慢性心不全におけるリモデリングの過程で心筋障害を引き起こす重要な因子となっていることが示されており、心筋細胞を酸化ストレスから保護することは心機能の維持、改善という観点から重要である。そこで、CCN1の酸化ストレスからの心筋細胞保護効果について検討した。なお、以下の実験に用いたCCN1リコンビナントタンパク質は改訂第3版タンパク質実験ノート(羊土社、2004)等に記載された方法で調製した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the following examples.
Example 1: Cardiomyocyte protective effect of CCN1 in cultured rat cardiomyocytes Oxidative stress due to the production of active oxygen is an important factor causing myocardial damage during reperfusion injury in acute myocardial infarction and remodeling in chronic heart failure Therefore, protecting cardiomyocytes from oxidative stress is important from the viewpoint of maintaining and improving cardiac function. Therefore, the effect of CCN1 on cardiomyocyte protection from oxidative stress was examined. The CCN1 recombinant protein used in the following experiment was prepared by the method described in the revised 3rd edition protein experiment note (Yodosha, 2004) and the like.

生後2〜3日のラット新生児の心臓にコラゲナーゼ及びトリンプシン処理を行って初代培養心筋細胞を作製した。血清を含む培地で24時間、さらに血清を含まない培地で24時間培養した後、2 μg/mlのCCN1又はPBSを加えて24時間培養した。これらに200 mMのH2O2を添加して酸化ストレスを加え、24時間後にcalceinとPIを用いて生細胞と死細胞を染め分けて生細胞の比率を数えた。結果を図1に示す。心筋細胞の生存率はコントロール(PBS)では21%であったが、2μg/mlのCCN1を加えた心筋細胞では69%であり、CCN1は酸化ストレス下において心筋細胞の生存率を有意に上昇させることが示された。また、H2O2を加えて24時間後にTUNEL染色を行ってアポトーシスを起こしている細胞数を数えた。結果を図2に示す。TUNEL陽性細胞はコントロールで42%、CCN1添加で23%でありCCN1は酸化ストレスによる心筋細胞のアポトーシスを有意に抑制することが示された。 Primary cultured cardiomyocytes were prepared by treating collagenase and trypsin on the heart of newborn rats 2 to 3 days after birth. After culturing in a medium containing serum for 24 hours and further in a medium not containing serum, 2 μg / ml CCN1 or PBS was added and cultured for 24 hours. To these, 200 mM H 2 O 2 was added for oxidative stress, and 24 hours later, live cells and dead cells were dyed using calcein and PI to count the ratio of live cells. The results are shown in FIG. The survival rate of cardiomyocytes was 21% in the control (PBS) but 69% in the cardiomyocytes added with 2 μg / ml CCN1, and CCN1 significantly increased the survival rate of cardiomyocytes under oxidative stress It was shown that. In addition, 24 hours after adding H 2 O 2 , TUNEL staining was performed to count the number of cells undergoing apoptosis. The results are shown in FIG. TUNEL-positive cells were 42% in the control and 23% with the addition of CCN1, indicating that CCN1 significantly suppressed cardiomyocyte apoptosis due to oxidative stress.

さらに、CCN1によって誘導される心筋細胞内シグナルをウェスタンブロット法で解析した。心筋細胞を分離後、血清を含む培地で24時間、さらに血清を含まない培地で24時間培養した後、2μg/mlのCCN1又はPBSを加えて30分及び60分後に細胞を溶かして蛋白を分離し、ウエスタンブロットにてAkt、ERK、リン酸化Akt、及びリン酸化ERKの量を比較した。結果を図3に示す。CCN1により心筋細胞でAktとERKのリン酸化が促進されることが判明した。   Furthermore, cardiomyocyte signals induced by CCN1 were analyzed by Western blotting. After isolation of cardiomyocytes, culture for 24 hours in serum-containing medium and 24 hours in serum-free medium, then add 2 μg / ml CCN1 or PBS and dissolve cells to separate proteins 30 and 60 minutes later The amounts of Akt, ERK, phosphorylated Akt, and phosphorylated ERK were compared by Western blot. The results are shown in FIG. CCN1 was found to promote phosphorylation of Akt and ERK in cardiomyocytes.

そこで、CCN1による酸化ストレス下での心筋細胞生存作用がこれらのシグナルを介して伝達されるかどうか調べるために、CCN1とともにPI3K-Aktの阻害薬であるwortmannin、MEK-ERKの阻害薬であるPD098059を加えて、CCN1の生存作用に対する効果を検討した。心筋細胞を分離後、血清を含む培地で24時間、さらに血清を含まない培地で24時間培養した後、2μg/mlのCCN1、CCN1+100μM wortmanin (PI3K-Aktの阻害薬)、CCN1+30μM PD98059(MEK-ERKの阻害薬)、又はPBSを加えて24時間培養した後、200 mMのH2O2を添加して酸化ストレスを加え、24時間後にcalceinとPIを用いて生細胞と死細胞を染め分けて生細胞の比率を数えた。その結果、CCN1による心筋細胞生存効果はAktとERKの両者、特にAktを介して発揮されていることが明らかとなった(図4)。
これらの実験結果より、CCN1は血管新生作用に加えて酸化ストレス下における心筋細胞生存効果をあわせもつタンパク質であることが示された。
Therefore, in order to investigate whether the survival of cardiomyocytes under oxidative stress by CCN1 is transmitted through these signals, together with CCN1, PI3K-Akt inhibitor wortmannin, MEK-ERK inhibitor PD098059 In addition, the effect of CCN1 on the survival effect was examined. After isolation of cardiomyocytes, culture for 24 hours in medium containing serum, and further for 24 hours in medium without serum, followed by 2 μg / ml CCN1, CCN1 + 100 μM wortmanin (inhibitor of PI3K-Akt), CCN1 + 30 μM PD98059 (MEK-ERK Inhibitors) or PBS, culture for 24 hours, add 200 mM H 2 O 2 to apply oxidative stress, and after 24 hours, live and dead cells are dyed separately using calcein and PI. The cell ratio was counted. As a result, it was revealed that the cardiomyocyte survival effect of CCN1 is exerted through both Akt and ERK, particularly Akt (FIG. 4).
From these experimental results, it was shown that CCN1 is a protein that has both angiogenic activity and cardiomyocyte survival effect under oxidative stress.

例2:CCN1の心筋梗塞モデルにおける心機能改善効果
CCN1の虚血性心疾患における効果を検討するためにラット心筋梗塞モデルを用いた実験を行った。ラットの前下行枝を結紮し4週間後に心エコー検査を実施して期待したサイズの心筋梗塞ができたラット(50匹中の20匹)を選別し、それらをランダムに2群(CCN1群及びPBS群)に分けて、全身麻酔下に再開胸し、CCN1群(10匹)には100μgのCCN1を含んだゼラチンシートを心臓表面に広げ、PBS群(10匹)にはPBSのみを含ませたゼラチンシートを心臓表面に広げて手術を終了した。手術4週間後、全身麻酔下で心臓エコー検査、ミラーカテーテル検査を実施した。これらの検査後、安楽死させて心臓を取り出し組織検査を行った。
Example 2: Cardiac function improvement effect of myocardial infarction model of CCN1
In order to examine the effect of CCN1 in ischemic heart disease, an experiment using a rat myocardial infarction model was performed. After ligating the anterior descending branch of the rat and performing echocardiography 4 weeks later, we selected rats (20 of 50) that had myocardial infarction of the expected size and randomly selected them in 2 groups (CCN1 group and In the PBS group, the chest was restarted under general anesthesia, and a gelatin sheet containing 100 μg CCN1 was spread on the heart surface in the CCN1 group (10 mice), and the PBS group (10 mice) contained only PBS. Spread the gelatin sheet on the surface of the heart and complete the surgery. Four weeks after surgery, echocardiography and mirror catheter examination were performed under general anesthesia. After these tests, the animals were euthanized and the heart was removed for histological examination.

心臓エコー検査は胸壁から左室拡張期径、左室収縮期径、駆出率、左室中隔厚、左室自由壁厚を測定した。ミラーカテーテル検査は、ラット頸動脈から左心室までカテーテルを挿入し、心臓の収縮能、拡張能の指標であるdP/dt、-dP/dtをはじめ各種パラメーターを測定した。組織検査ではH&E染色で形態を調べるとともに、抗von Willebrand 因子抗体で血管内皮細胞を染色し、梗塞部に近接する部位での毛細血管密度(capillary density)を測定した。血管密度はCCN1投与群で有意に高くなっていることが示され(図5)、CCN1の投与により心臓における血管新生が促進されることが明らかとなった。さらに、ミラーカテーテル検査では収縮機能、拡張機能の指標であるdP/dt及び-dP/dtはCCN1投与群で有意に高く(図6)、CCN1投与によりコントロール群に比べ有意に心機能が改善していることが示された。
以上の結果から、CCN1が虚血性心疾患において心臓血管新生を促進し、さらに心機能を改善することが示された。
Echocardiography measured left ventricular diastolic diameter, left ventricular systolic diameter, ejection fraction, left ventricular septal thickness, and left ventricular free wall thickness from the chest wall. In the mirror catheter examination, a catheter was inserted from the rat carotid artery to the left ventricle, and various parameters were measured including dP / dt and -dP / dt, which are indices of cardiac contractility and dilatability. In the histological examination, the morphology was examined by H & E staining, and vascular endothelial cells were stained with an anti-von Willebrand factor antibody, and the capillary density at the site close to the infarct was measured. It was shown that the blood vessel density was significantly increased in the CCN1 administration group (FIG. 5), and it became clear that the administration of CCN1 promotes angiogenesis in the heart. Furthermore, in mirror catheter examinations, dP / dt and -dP / dt, which are indices of contraction function and dilation function, are significantly higher in the CCN1 administration group (Fig. 6), and the cardiac function is significantly improved by CCN1 administration compared to the control group. It was shown that.
These results indicate that CCN1 promotes cardiovascularization and further improves cardiac function in ischemic heart disease.

CCN1存在下における心筋細胞の生存率を示した図である。It is the figure which showed the survival rate of the cardiomyocyte in CCN1 presence. CCN1により心筋細胞のアポトーシスが抑制されていることを示した図である。It is the figure which showed that the apoptosis of the cardiac muscle cell was suppressed by CCN1. CCN1によって誘導される心筋細胞内シグナルをウェスタンブロット法で解析した結果を示した図である。It is the figure which showed the result of having analyzed the signal in a cardiac muscle cell induced | guided | derived by CCN1 by Western blotting. CCN1の心筋細胞保護効果はおもにAktの活性化を介していることを示した図である。It is the figure which showed that the cardiomyocyte protective effect of CCN1 is mainly via the activation of Akt. CCN1により虚血心臓において血管新生が促進されることを示した図である。It is the figure which showed that angiogenesis is accelerated | stimulated in an ischemic heart by CCN1. CCN1の心機能改善作用を示した図である。It is the figure which showed the cardiac function improvement effect of CCN1.

Claims (7)

CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心疾患の予防及び/又は治療のための医薬。 A medicament for the prevention and / or treatment of heart disease comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient. 心疾患が虚血性心疾患、心不全、又は心筋症である上記の医薬。 The above medicament, wherein the heart disease is ischemic heart disease, heart failure or cardiomyopathy. 虚血性心疾患が急性心筋梗塞又は狭心症である上記の医薬。 The above medicament, wherein the ischemic heart disease is acute myocardial infarction or angina. CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心機能改善剤。 A cardiac function improving agent comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient. CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む心臓の血管新生促進剤。 An angiogenesis promoter for heart comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient. 酸化ストレスからの心臓の保護剤であって、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む保護剤。 An agent for protecting a heart from oxidative stress, comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient. 酸化ストレスに起因する心臓のアポトーシスの抑制剤であって、CCN1タンパク質又はCCN1タンパク質をコードする遺伝子を有効成分として含む抑制剤。 An inhibitor of apoptosis of heart caused by oxidative stress, comprising CCN1 protein or a gene encoding CCN1 protein as an active ingredient.
JP2006173567A 2006-06-23 2006-06-23 Agent for treatment of cardiac disease Pending JP2008001646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173567A JP2008001646A (en) 2006-06-23 2006-06-23 Agent for treatment of cardiac disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173567A JP2008001646A (en) 2006-06-23 2006-06-23 Agent for treatment of cardiac disease

Publications (1)

Publication Number Publication Date
JP2008001646A true JP2008001646A (en) 2008-01-10

Family

ID=39006330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173567A Pending JP2008001646A (en) 2006-06-23 2006-06-23 Agent for treatment of cardiac disease

Country Status (1)

Country Link
JP (1) JP2008001646A (en)

Similar Documents

Publication Publication Date Title
JP5563991B2 (en) Treatment and prevention of heart disease using two or more variants of hepatocyte growth factor
JP5221959B2 (en) Use of IL-22 to treat metabolic disorders
JP2001524828A (en) Truncated VEGF-related protein
US20090036369A1 (en) Anti-tumor agents comprising r-spondins
JP2004313198A (en) Adenovirus-mediated gene transfer to cardiac or vascular smooth muscle
JP2000507456A (en) Variant of vascular endothelial cell growth factor with antagonistic properties
JP5807937B2 (en) Therapeutic agent, therapeutic method and test method for diseases caused by neutrophil activation
Liu et al. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo
JP2009019032A (en) Promotion or inhibition of angiogenesis and cardiovascularization
CN106063928B (en) Application of polypeptide or derivative thereof in treating hypertensive myocardial hypertrophy
JP2016510596A (en) PTD-Smad7 drug therapy
Maehara et al. Epithelial cell–derived prostaglandin D2 inhibits chronic allergic lung inflammation in mice
US8506965B2 (en) R-RAS activity in vascular regulation
US7105481B2 (en) Method for stimulating connective tissue growth or wound healing
EP1255829B1 (en) Inhibitor of hepatocyte growth factor activator for use in modulation of angiogenesis and cardiovascularization
CN115417921A (en) Epicardial-derived paracrine factors for repairing cardiac tissue
CN106552260A (en) Interleukin-13 7 generates the application in disease in modulating vascular
JP2012502934A (en) Composition for inhibiting pathological angiogenesis
JP2008001646A (en) Agent for treatment of cardiac disease
Pelisek et al. Vascular endothelial growth factor response in porcine coronary and peripheral arteries using nonsurgical occlusion model, local delivery, and liposome-mediated gene transfer
US20030165467A1 (en) Angiogenic factor and use thereof in treating cardiovascular disease
Zhang et al. Magnetic nanosphere-guided site-specific delivery of vascular endothelial growth factor gene attenuates restenosis in rabbit balloon-injured artery
CN112190709A (en) Stromal cell protein CCN5 composition and application thereof
KR20210147337A (en) Fusion protein for cell culture including cell growth factor motif and use thereof
KR102638021B1 (en) Recombinant fusion protein for preventing or treating fibrosis disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515