JP2008001592A - Manufacturing process for silicon - Google Patents

Manufacturing process for silicon Download PDF

Info

Publication number
JP2008001592A
JP2008001592A JP2007138851A JP2007138851A JP2008001592A JP 2008001592 A JP2008001592 A JP 2008001592A JP 2007138851 A JP2007138851 A JP 2007138851A JP 2007138851 A JP2007138851 A JP 2007138851A JP 2008001592 A JP2008001592 A JP 2008001592A
Authority
JP
Japan
Prior art keywords
silicon
electrolysis
alloy
temperature
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007138851A
Other languages
Japanese (ja)
Other versions
JP5236897B2 (en
Inventor
Kunio Saegusa
邦夫 三枝
Tetsuo Oishi
哲雄 大石
Kazuya Koyama
和也 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007138851A priority Critical patent/JP5236897B2/en
Publication of JP2008001592A publication Critical patent/JP2008001592A/en
Application granted granted Critical
Publication of JP5236897B2 publication Critical patent/JP5236897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/33Silicon

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new and inexpensive manufacturing process for high purity silicon and high purity silicon prepared by the manufacturing process. <P>SOLUTION: In manufacturing silicon by molten salt electrolysis of silica in an electrolytic cell, the manufacturing process of this invention comprises a step (1) in which the cathode is a silicon-containing alloy being liquid at an electrolytic reaction temperature and the silicon content of the alloy increases as the electrolysis advances, a step (2) in which the silicon-containing alloy is taken out from the electrolytic cell before reaching the concentration at which silicon start depositing at the electrolytic reaction temperature, a step (3) in which the silicon is coagulated by cooling the silicon-containing alloy at a temperature higher than the eutectic point of the taken-out silicon-containing alloy and lower than the electrolytic temperature and a step (4) to recover the coagulated silicon. The steps are arranged in the order above. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコンの製造方法、特には太陽電池原料用シリコンに関する。   The present invention relates to a method for producing silicon, particularly to silicon for solar cell raw materials.

冶金グレードシリコンは、炭素、珪石を混合してアーク炉により還元製造されている。この冶金グレードシリコンとHClの反応によりトリクロルシランを合成し、これを精留精製後、水素を用いて高温で還元して半導体グレードシリコンが製造される。太陽電池用原料シリコンは、半導体グレードシリコンを製造する際に生じる規格外品を主な原料としている。
前記の半導体グレードシリコンの製法では極めて高純度のシリコンを製造できるが、シリコンへの転換率が低く、この平衡をシリコンに有利にするために多量の水素が必要なこと、それでも転換率が低いために多くの未反応ガスを再度循環して使用する必要があること、未反応ガス中に種々のハロゲン化シランが生成するため、再度蒸留によって分離が必要になること、最終的に水素で還元できない四塩化珪素が多量に生成してくること、などのために高コストである。
Metallurgical grade silicon is produced by reduction using an arc furnace by mixing carbon and silica. Trichlorosilane is synthesized by the reaction of the metallurgical grade silicon and HCl, and purified by rectification, and then reduced at a high temperature using hydrogen to produce semiconductor grade silicon. The raw material silicon for solar cells is mainly made of non-standard products generated when semiconductor grade silicon is manufactured.
The semiconductor-grade silicon manufacturing method can produce extremely high-purity silicon, but the conversion rate to silicon is low, and a large amount of hydrogen is required to make this equilibrium advantageous to silicon, and the conversion rate is still low. It is necessary to circulate a lot of unreacted gas again, and various halogenated silanes are generated in the unreacted gas. Therefore, separation by distillation is necessary, and it cannot be finally reduced with hydrogen. High cost due to the large amount of silicon tetrachloride produced.

一方、太陽電池は、近年の炭酸ガスなどの環境問題に対しての有力な解決手段として注目されていて、需要も著しい伸びを示している。しかしながら、現在の太陽電池は、まだ高価なため、これにより得られる電力の価格は商業電力の電気代に比較して数倍である。現在、環境問題、増加するエネルギー需要に対応して太陽電池の需要が伸張して、従来の半導体規格外シリコンだけでは原料に不足する事態になりつつあり、多量の低コスト太陽電池の供給が望まれている。   On the other hand, solar cells are attracting attention as an effective solution to environmental problems such as carbon dioxide gas in recent years, and the demand is also increasing significantly. However, current solar cells are still expensive, and the price of the electric power thus obtained is several times that of commercial electricity. Currently, the demand for solar cells is expanding in response to environmental problems and increasing energy demand, and it is becoming a situation where raw materials are insufficient with conventional non-semiconductor silicon alone. It is rare.

この需要を満たすべく、従来から高純度の炭素と高純度のシリカを合成し、高純度の炉材を用いた還元炉で還元して高純度シリコンを合成する方法が提案されたが、スケールアップが困難で、かつ収率があがらず低コスト化が難しかった等の問題があった。また、四塩化珪素をアルミニウムで還元する方法も提案された(非特許文献1、特許文献1、特許文献2)が、アルミニウム中のリンがシリコン中に残存して希望の純度にするのが困難であった。
この他四塩化珪素の亜鉛還元法(非特許文献2)、トリクロルシランの流動床還元(非特許文献3)など、種々の提案がなされているが、いずれもまだ実用化されていない。
また、シリカの電解によりシリコンを製造する方法も検討された。
To meet this demand, a method has been proposed in which high-purity carbon and high-purity silica are synthesized and reduced in a reduction furnace using high-purity furnace materials to synthesize high-purity silicon. However, it was difficult to reduce the cost because the yield was not increased. In addition, a method of reducing silicon tetrachloride with aluminum has been proposed (Non-patent Document 1, Patent Document 1, and Patent Document 2), but it is difficult for phosphorus in aluminum to remain in silicon and to achieve a desired purity. Met.
In addition, various proposals such as a zinc reduction method of silicon tetrachloride (Non-Patent Document 2) and a fluidized bed reduction of trichlorosilane (Non-Patent Document 3) have been made, but none has been put into practical use yet.
In addition, a method for producing silicon by electrolysis of silica has also been studied.

吉沢四郎、端野朝康、阪口新、四塩化ケイ素のアルミニウム還元、工業化学雑誌64(8) 1347-50(1961)Shiro Yoshizawa, Tomoyasu Tanno, Arata Sakaguchi, Aluminum reduction of silicon tetrachloride, Industrial Chemical Journal 64 (8) 1347-50 (1961) 特開平2−64006号公報Japanese Patent Laid-Open No. 2-64006 特開昭59−182221号公報JP 59-182221 A Evaluation of selecdted chemical processes for production of low-cost silicon, J. M. Blocher, et. al. Jet propulsion laboratory final report (1981)Evaluation of selecdted chemical processes for production of low-cost silicon, J. M. Blocher, et.al.Jet propulsion laboratory final report (1981) 昭和55-62年度新エネルギー総合開発機構委託業務成果報告書「太陽光発電システム実用化技術開発 低コストシリコン実験精製検証」総括版 昭和63年、信越化学工業株式会社1985-62 New Energy Development Organization commissioned work result report “Development of practical technology for photovoltaic power generation system low-cost silicon experimental refining verification”, 1988, Shin-Etsu Chemical Co., Ltd.

しかしながら、シリカを溶融塩電解してシリコンを回収する方法において、シリコンの融点(1410℃)未満で電解すると、陰極に析出したシリコンが樹枝状に成長して極間の短絡を起こすために電解が継続できず、またシリコンの融点以上に電解温度を上げると、還元金属の逆反応が起きるなどの理由により電流効率が低く、また適当な炉材がないなどの困難が生じて工業化は困難であった。
本発明の目的は、前記の問題を解決し得る、高純度シリコンの新規で安価な製造方法、及び該製造方法で得られる高純度シリコンを提供することにあり、特に太陽電池用原料として好適に用いられる高純度シリコンの新規で安価な製造方法を提供することにある。
However, in the method for recovering silicon by molten salt electrolysis of silica, when electrolysis is performed at a temperature lower than the melting point of silicon (1410 ° C.), the silicon deposited on the cathode grows in a dendritic shape and causes a short circuit between the electrodes. If the electrolysis temperature is raised beyond the melting point of silicon, the current efficiency is low due to the reverse reaction of the reduced metal, and there are difficulties such as the lack of suitable furnace materials, making industrialization difficult. It was.
An object of the present invention is to provide a novel and inexpensive production method of high-purity silicon that can solve the above-mentioned problems, and high-purity silicon obtained by the production method, and particularly suitable as a raw material for solar cells. The object is to provide a new and inexpensive method for producing high-purity silicon used.

すなわち、本発明は、〔1〕シリカを電解槽で溶融塩電解してシリコンを製造する方法において、電解温度において液相となるシリコン含有合金を陰極とし、かつ電解を進行させて該合金中のシリコン含有率を高める工程(1)と、電解温度においてシリコンが析出する濃度に達する前に該陰極における該シリコン含有合金を電解槽外に取り出す工程(2)と、取り出した該シリコン含有合金の共融点より高く、電解温度よりも低い温度の範囲で該シリコン含有合金を冷却してシリコンを凝固させる工程(3)と、凝固させた該シリコンを回収する工程(4)とを、この順で有する、上記シリコンの製造方法である。
また、本発明は、〔2〕前記工程(4)でシリコンを回収することにより、シリコン濃度が低下した合金を電解槽の陰極に戻す工程(5)をさらに有する前記〔1〕記載のシリコンの製造方法、
〔3〕合金としてアルミニウム、銅、スズより選ばれた1種または2種以上を含む〔1〕又は〔2〕記載のシリコンの製造方法、
〔4〕溶融塩電解における電解浴が、氷晶石(3NaF・AlF3)を含む〔1〕〜〔3〕のいずれかに記載のシリコンの製造方法、
〔5〕液相となるシリコン含有合金の比重が電解浴よりも大きい〔1〕〜〔4〕のいずれかに記載のシリコンの製造方法、
〔6〕液相となるシリコン含有合金の比重が電解浴よりも小さい〔1〕〜〔4〕のいずれかに記載のシリコンの製造方法、
〔7〕シリカの純度が99.9%以上である〔1〕〜〔6〕のいずれかに記載のシリコンの製造方法、
〔8〕電解温度がシリコン含有合金の共融点を超え、シリコンの融点未満である〔1〕〜〔7〕のいずれかに記載のシリコンの製造方法、
〔9〕電解温度が700℃以上1300℃以下であることを特徴とする〔1〕〜〔8〕のいずれかに記載のシリコンの製造方法、
〔10〕アノード電流密度が0.01−3A/cm2である〔1〕〜〔9〕のいずれかに記載のシリコンの製造方法。
〔11〕カソード電流密度が0.01−3A/cm2である〔1〕〜〔10〕のいずれかに記載のシリコンの製造方法。
〔12〕前記の〔1〕〜〔11〕のいずれかに記載のシリコンの製造方法により得られるシリコン、
〔13〕前記の〔1〕〜〔11〕のいずれかに記載のシリコンの製造方法により得られるシシリコンを有する太陽電池に係るものである。
That is, the present invention provides [1] a method for producing silicon by subjecting silica to molten salt electrolysis in an electrolytic cell, wherein a silicon-containing alloy that is in a liquid phase at an electrolysis temperature is used as a cathode, and electrolysis is advanced to The step (1) of increasing the silicon content, the step (2) of taking out the silicon-containing alloy at the cathode outside the electrolytic cell before reaching the concentration at which silicon precipitates at the electrolysis temperature, and the silicon-containing alloy taken out are combined. A step (3) of solidifying the silicon-containing alloy by cooling the silicon-containing alloy in a temperature range higher than the melting point and lower than the electrolysis temperature, and a step (4) of recovering the solidified silicon in this order. This is a method for producing the silicon.
The present invention further includes [2] a step (5) of returning the alloy having a reduced silicon concentration to the cathode of the electrolytic cell by recovering silicon in the step (4). Production method,
[3] The method for producing silicon according to [1] or [2], including one or more selected from aluminum, copper, and tin as an alloy,
[4] The method for producing silicon according to any one of [1] to [3], wherein the electrolytic bath in molten salt electrolysis includes cryolite (3NaF · AlF 3 ),
[5] The method for producing silicon according to any one of [1] to [4], wherein the specific gravity of the silicon-containing alloy serving as a liquid phase is larger than that of the electrolytic bath,
[6] The method for producing silicon according to any one of [1] to [4], wherein the specific gravity of the silicon-containing alloy serving as a liquid phase is smaller than that of the electrolytic bath,
[7] The method for producing silicon according to any one of [1] to [6], wherein the silica has a purity of 99.9% or more,
[8] The method for producing silicon according to any one of [1] to [7], wherein the electrolysis temperature exceeds the eutectic point of the silicon-containing alloy and is lower than the melting point of silicon.
[9] The method for producing silicon according to any one of [1] to [8], wherein the electrolysis temperature is 700 ° C. or higher and 1300 ° C. or lower,
[10] The method for producing silicon according to any one of [1] to [9], wherein the anode current density is 0.01-3 A / cm 2 .
[11] The method for producing silicon according to any one of [1] to [10], wherein the cathode current density is 0.01-3 A / cm 2 .
[12] Silicon obtained by the silicon production method according to any one of [1] to [11],
[13] The present invention relates to a solar cell having a silicon obtained by the method for producing silicon according to any one of [1] to [11].

本発明の製造方法によれば、一旦合金融液中に溶解したシリコンを電解槽外に取り出し、当該合金の共融点以上の温度で冷却してシリコンのみを析出させることにより、合金融液中のシリコン濃度を低下させる。この低シリコン濃度の合金融液を再度電解槽に戻すことにより、電解温度における飽和シリコン濃度まで電解してシリコン濃度を上げることができる。この操作により、連続的に電解還元反応を進行させることができる。
したがって、固体シリコンの電析による短絡を防ぎ、かつ安定した電極界面が得られるので、本発明の製造方法によれば、シリコンの融点よりも低温で、安定して連続的にシリコンの電解ができる。このため、本発明の製造方法は工業的に極めて重要である。
According to the production method of the present invention, silicon once dissolved in the financial solution is taken out of the electrolytic cell, cooled at a temperature equal to or higher than the eutectic point of the alloy, and only silicon is precipitated, Reduce the silicon concentration. By returning the low-silicon concentration combined liquid to the electrolytic cell again, the silicon concentration can be increased by electrolysis up to the saturated silicon concentration at the electrolysis temperature. By this operation, the electrolytic reduction reaction can proceed continuously.
Therefore, a short circuit due to electrodeposition of solid silicon is prevented, and a stable electrode interface is obtained. Therefore, according to the manufacturing method of the present invention, silicon can be electrolyzed stably and continuously at a temperature lower than the melting point of silicon. . For this reason, the manufacturing method of this invention is very important industrially.

シリカを電解してシリコンを回収する際に、陰極を電解温度で液体のシリコン合金とすることにより、シリコンの樹枝状析出を防ぎ、かつシリコン単独よりも融点を下げることができる。このために、より低温での電解が可能になる。また、電解を継続することにより該液体シリコン合金のシリコン濃度を高めることができる。このようにシリコン濃度を高めた合金を電解槽外に取り出し、該合金の共融点以上の温度範囲で冷却することにより、シリコンを析出させて回収することができる。シリコンを析出させて回収することによりシリコン濃度を下げた合金を、再び電解層の陰極に戻して、電解用液体陰極として用いることにより、継続した電解を可能にするプロセスとすることができる。   When the silicon is recovered by electrolyzing silica, the cathode is made of a liquid silicon alloy at the electrolysis temperature, so that dendritic precipitation of silicon can be prevented and the melting point can be lowered as compared with silicon alone. For this reason, electrolysis at a lower temperature becomes possible. Moreover, the silicon concentration of the liquid silicon alloy can be increased by continuing the electrolysis. By taking out the alloy having such a high silicon concentration out of the electrolytic cell and cooling it in a temperature range equal to or higher than the eutectic point of the alloy, silicon can be deposited and recovered. An alloy in which the silicon concentration is lowered by depositing and recovering silicon is returned to the cathode of the electrolytic layer and used as a liquid cathode for electrolysis, thereby enabling a process that enables continuous electrolysis.

本発明のシリコンの製造方法は、シリカを電解槽で溶融塩電解してシリコンを製造する方法において、電解温度において液相となるシリコン含有合金を陰極とする(以下、「陰極合金」と称する)。
本発明における陰極として、電解条件で液体となる、シリコンと低温の共融点を形成する金属とシリコンとの合金を用い、該合金は、蒸気圧が低く、安定であることが好ましい。
そのような合金を形成する金属としては、アルミニウム、銅、スズ、ガリウム、インジウム、銀、水銀、鉛などが挙げられるが、コストおよび環境への影響を考慮すると、アルミニウム、銅、スズより選ばれる金属が好ましく、該合金は、前記金属を2種以上含んでもよい。
本発明に用いられる金属の純度としては、4N以上が好ましく、6N以上がさらに好ましく、7N以上が特に好ましい。また、特にP、Bの含有量は、それぞれ0.5ppm以下が好ましく、0.3ppm以下が更に好ましく、0.1ppm以下が特に好ましい。
The method for producing silicon according to the present invention is a method for producing silicon by subjecting silica to molten salt electrolysis in an electrolytic cell, and a silicon-containing alloy that is in a liquid phase at an electrolysis temperature is used as a cathode (hereinafter referred to as “cathode alloy”). .
As the cathode in the present invention, an alloy of silicon and a metal forming a low-temperature eutectic point that is liquid under electrolysis conditions is used, and the alloy preferably has a low vapor pressure and is stable.
Examples of the metal forming such an alloy include aluminum, copper, tin, gallium, indium, silver, mercury, lead, and the like. However, in consideration of cost and environmental impact, the metal is selected from aluminum, copper, and tin. Metal is preferred, and the alloy may contain two or more of the metals.
The purity of the metal used in the present invention is preferably 4N or more, more preferably 6N or more, and particularly preferably 7N or more. In particular, the P and B contents are each preferably 0.5 ppm or less, more preferably 0.3 ppm or less, and particularly preferably 0.1 ppm or less.

本発明における原料であるシリカは、高純度のものが好ましい。該シリカの純度としては、4N以上が好ましく、6N以上がさらに好ましく、7N以上が特に好ましい。また、特にP、Bの含有量は、それぞれ0.5ppm以下が好ましく、0.3ppm以下が更に好ましく、0.1ppm以下が特に好ましい。   The silica which is a raw material in the present invention is preferably highly pure. The purity of the silica is preferably 4N or higher, more preferably 6N or higher, and particularly preferably 7N or higher. In particular, the contents of P and B are each preferably 0.5 ppm or less, more preferably 0.3 ppm or less, and particularly preferably 0.1 ppm or less.

本発明において、用いられる電解浴としては、金属のハロゲン化物が好ましい。該金属のハロゲン化物として、アルカリ金属、アルカリ土類金属、アルミニウム、亜鉛、銅のフッ化物、塩化物、臭化物、より選ばれた1種または2種以上が挙げられる。具体例としては、工業的な入手のしやすさから、氷晶石(3NaF・AlF3)、塩化カルシウムなどが挙げられる。
本発明に用いられる電解浴構成材料の純度としては、4N以上が好ましく、6N以上がさらに好ましく、7N以上が特に好ましい。また、特にP、Bの含有量は、0.5ppm以下が好ましく、0.3ppm以下が更に好ましく、0.1ppm以下が特に好ましい。
なお、本発明において、アルカリ金属、アルカリ土類金属に関しては、電解条件でシリコンには殆ど混入しないため、不純物として考慮しなくてもよい。また陰極合金の構成材料元素も不純物として考慮する必要はない
In the present invention, the electrolytic bath used is preferably a metal halide. Examples of the metal halide include one or more selected from alkali metal, alkaline earth metal, aluminum, zinc, copper fluoride, chloride and bromide. Specific examples include cryolite (3NaF · AlF 3 ), calcium chloride and the like because of industrial availability.
The purity of the electrolytic bath constituent material used in the present invention is preferably 4N or more, more preferably 6N or more, and particularly preferably 7N or more. In particular, the content of P and B is preferably 0.5 ppm or less, more preferably 0.3 ppm or less, and particularly preferably 0.1 ppm or less.
In the present invention, alkali metals and alkaline earth metals do not need to be considered as impurities because they are hardly mixed into silicon under electrolysis conditions. Moreover, it is not necessary to consider the constituent elements of the cathode alloy as impurities

本発明において電解電流の密度は高いほど時間あたりのシリコン回収量が増加し、効率的である。しかしながら、電解電流の密度が高くなりすぎると、過電圧が上昇し、電解電圧が大きくなるので、エネルギーロスとなる。電流密度は、電解浴組成、温度、溶解しているシリカの濃度などに依存するが、概ねカソード電流密度として0.01−3A/cm2、更に好ましくは0.05−1A/cm2、最も好ましくは0.1−0.7A/cm2である。 In the present invention, the higher the electrolytic current density is, the more efficient the amount of silicon recovered per hour. However, if the density of the electrolysis current becomes too high, the overvoltage rises and the electrolysis voltage increases, resulting in energy loss. The current density depends on the electrolytic bath composition, temperature, dissolved silica concentration, etc., but is generally about 0.01-3 A / cm 2 , more preferably 0.05-1 A / cm 2 , most preferably as the cathode current density. Preferably it is 0.1-0.7 A / cm < 2 >.

本発明において、電解温度は、陰極合金の組成に応じて適宜選択される。即ち、電解温度は、陰極合金が液体となる温度(共融点)を超え、シリコンの融点未満の範囲で適宜選択される。電解温度がシリコンの融点未満であれば、電流効率がより向上し、電解槽材料の選定がより容易となる。また、共融点を超えれば、電解がより進行しやすい。電解温度が高いほど、陰極合金中のシリコンの溶解度は向上するので、より多くのシリコンを回収することが可能になる。例えば、陰極合金としてアルミニウム−シリコンを用いると、共融点は577℃であるので、電解温度は577℃を超え、1410℃未満に設定することが好ましい。この温度は、好ましくは700℃以上1300℃以下、更に好ましくは、800℃以上1200℃以下、最も好ましくは900℃以上1100℃以下である。この範囲で経済的な最適温度で運転することができる。   In the present invention, the electrolysis temperature is appropriately selected according to the composition of the cathode alloy. That is, the electrolysis temperature is appropriately selected in the range exceeding the temperature (eutectic point) at which the cathode alloy becomes liquid and less than the melting point of silicon. If the electrolysis temperature is lower than the melting point of silicon, the current efficiency is further improved, and the selection of the electrolytic cell material becomes easier. Further, if the eutectic point is exceeded, electrolysis is more likely to proceed. The higher the electrolysis temperature, the higher the solubility of silicon in the cathode alloy, so that more silicon can be recovered. For example, when aluminum-silicon is used as the cathode alloy, the eutectic point is 577 ° C., so the electrolysis temperature is preferably set to exceed 577 ° C. and less than 1410 ° C. This temperature is preferably 700 ° C. or higher and 1300 ° C. or lower, more preferably 800 ° C. or higher and 1200 ° C. or lower, and most preferably 900 ° C. or higher and 1100 ° C. or lower. It is possible to operate at an economical optimum temperature within this range.

本発明において、陰極合金の冷却温度は、当該陰極合金の共融点より高い温度である。共融点以下になると、合金が固化するためシリコンのみを回収することはできない。ただ、回収できるシリコン量は、電解温度と冷却温度の差に対応する当該合金の液相線の組成差に対応するため、電解温度との差が小さいと、回収できるシリコン量が少なく、経済的ではないので、一般的には共融点よりも少し高温程度が好ましい。
例えば、アルミニウム−シリコン合金の場合、電解温度として1100℃とするとシリコン濃度は最大55%まで融液状態を保つ。この合金を電解槽外に取り出して600℃に冷却するとシリコン濃度は15%まで低下しなければならないので、この差の40%に相当するシリコンが固体として回収できる。
In the present invention, the cooling temperature of the cathode alloy is higher than the eutectic point of the cathode alloy. If the eutectic point is not reached, only the silicon cannot be recovered because the alloy is solidified. However, the amount of silicon that can be recovered corresponds to the difference in composition of the liquidus line of the alloy corresponding to the difference between the electrolysis temperature and the cooling temperature. Therefore, if the difference from the electrolysis temperature is small, the amount of silicon that can be recovered is small and economical. Therefore, generally, a temperature slightly higher than the eutectic point is preferable.
For example, in the case of an aluminum-silicon alloy, when the electrolysis temperature is 1100 ° C., the silicon concentration is maintained in a molten state up to 55%. When this alloy is taken out of the electrolytic cell and cooled to 600 ° C., the silicon concentration must be reduced to 15%, so that silicon corresponding to 40% of this difference can be recovered as a solid.

シリコンの冷却方法は、公知の方法を利用できる。即ち、冷却温度に保った容器中で保持する方法、冷却温度よりやや高温の容器中に合金融液を保持し、該融液中に冷却温度の冷却体を浸漬し、その冷却体上にシリコンを析出させる方法などが挙げられる。
このようにして、高温で電解還元されたシリコンが飽和に近く含有された金属融液中のシリコンは、冷却温度に相当する溶解度との差に相当する分量が回収される。
上記のように、一連の電解還元反応、電解槽外への陰極融液の取り出し、冷却析出反応、シリコン濃度の低下した融液の電解槽への戻しいれが連続的に起きるため、電解還元部でシリコンが飽和に達して反応が停滞することなく、合金融液の流動性が維持できる限り反応は進行する。
A known method can be used as a method for cooling silicon. That is, a method of holding in a container kept at a cooling temperature, holding the financial liquid in a container slightly higher than the cooling temperature, immersing a cooling body at the cooling temperature in the melt, and silicon on the cooling body And the like.
In this manner, the silicon in the metal melt containing the silicon that has been electrolytically reduced at high temperature near saturation is recovered in an amount corresponding to the difference from the solubility corresponding to the cooling temperature.
As described above, a series of electrolytic reduction reactions, extraction of the cathode melt outside the electrolytic cell, cooling precipitation reaction, and return of the melt with reduced silicon concentration to the electrolytic cell occur continuously. Thus, the reaction proceeds as long as the liquidity of the combined financial liquid can be maintained without the silicon reaching saturation and the reaction stagnating.

ここで、金属融液の低温冷却部の温度は、該金属とシリコンとの共融点(共晶点)まで下げることは可能であるが、以下に述べるように、実際には該金属の融点以上とすることが、操作が簡便であるので好ましい。
例えば、アルミニウムの場合、融点は660℃であるが、Al−Siの共晶点は580℃以上であるので、まず660℃以上の溶融状態で反応を開始し、反応の進行に伴い、シリコンが生成すると共晶点以上で融液となるので、液相温度は580℃まで低下させることが可能である。この温度より低いと、シリコンのみを回収することができない。低温冷却部の温度の上限は特にはなく、以下に述べる温度差および高温電解部の温度の要請を満たすものであれば良い。
金属融液の高温電解部と低温冷却部との温度差は、大きいほうが一般に好ましく、100℃以上、好ましくは200℃以上、更に好ましくは300℃以上である。
なお、反応の収率の観点からは、高温電解部の温度は高いほど好ましく、700℃以上、更に好ましくは900℃以上、特に好ましくは1100℃以上である。ただ、電解槽材料などの制約もあり、高温電解部の温度はこの1300℃以下が好ましい。
Here, the temperature of the low-temperature cooling part of the metal melt can be lowered to the eutectic point (eutectic point) of the metal and silicon, but as described below, it is actually higher than the melting point of the metal. Is preferable because the operation is simple.
For example, in the case of aluminum, the melting point is 660 ° C., but since the eutectic point of Al—Si is 580 ° C. or higher, the reaction is first started in a molten state of 660 ° C. or higher. When produced, it becomes a melt above the eutectic point, so the liquidus temperature can be lowered to 580 ° C. Below this temperature, only silicon cannot be recovered. There is no particular upper limit on the temperature of the low-temperature cooling section, as long as the temperature difference described below and the temperature requirement of the high-temperature electrolysis section are satisfied.
A larger temperature difference between the high-temperature electrolysis part and the low-temperature cooling part of the metal melt is generally preferable, and is 100 ° C. or higher, preferably 200 ° C. or higher, more preferably 300 ° C. or higher.
From the viewpoint of the yield of the reaction, the temperature of the high temperature electrolysis part is preferably as high as possible, 700 ° C. or higher, more preferably 900 ° C. or higher, particularly preferably 1100 ° C. or higher. However, the temperature of the high-temperature electrolysis part is preferably 1300 ° C. or lower due to restrictions such as electrolytic cell materials.

本発明によると、用いるアルミニウムの重量の40%より多量のシリコンを得ることができ、さらには45%より多量のシリコンを得るので、得られるシリコンの収率が高く、経済的に有利である。本発明の方法において、生産量は電流によって制御される。   According to the present invention, it is possible to obtain more silicon than 40% of the weight of the aluminum used, and even more than 45% silicon, so that the yield of silicon obtained is high, which is economically advantageous. In the method of the present invention, the production volume is controlled by current.

電解槽材質は、用いる金属と反応しないものが必要であり、例えば酸化物としてはシリカ、アルミナ、ジルコニア、チタニア、酸化亜鉛、マグネシア、酸化スズ等が挙げられ、窒化物としては、窒化珪素、窒化アルミニウムが挙げられ、これらの構成元素を他元素で部分置換したものも含まれる。例えば、シリコンとアルミニウムと酸素と窒素からなるサイアロン等の化合物も用いることができる。炭化物としては、SiC、グラファイト等が挙げられ、これらの構成元素を他元素で部分置換したものも用いることができる。さらにアルミニウム電解などと同様に固化した電解質(例えば氷晶石)で浴を保持する方法をとってもよい。   The electrolytic cell material must be one that does not react with the metal used. Examples of the oxide include silica, alumina, zirconia, titania, zinc oxide, magnesia, and tin oxide. Examples of the nitride include silicon nitride and nitride. Examples thereof include aluminum, and those in which these constituent elements are partially substituted with other elements are also included. For example, a compound such as sialon composed of silicon, aluminum, oxygen, and nitrogen can also be used. Examples of the carbide include SiC, graphite, and the like, and those obtained by partially replacing these constituent elements with other elements can also be used. Further, a method of holding the bath with a solidified electrolyte (for example, cryolite) may be used in the same manner as aluminum electrolysis.

本発明の方法において、反応の雰囲気は、空気又は不活性ガスであるが、反応の進行のためには、水、酸素などが存在しないことが好ましい。   In the method of the present invention, the reaction atmosphere is air or an inert gas, but it is preferable that water, oxygen and the like do not exist for the progress of the reaction.

上記のようにして得られた多結晶シリコンは、高純度であり、太陽電池用シリコンの原料として好適に用いられる。
必要に応じて、得られた多結晶シリコンは、付着した金属成分の残渣や未反応金属成分を取り除くために酸やアルカリによる処理、さらに方向凝固等の偏析、高真空化での溶解等を行うことによりシリコン中に含まれる不純物元素をさらに低減することができ、特に得られた多結晶シリコンを方向凝固することにより高純度化することが好ましい。
The polycrystalline silicon obtained as described above has high purity and is suitably used as a raw material for solar cell silicon.
If necessary, the obtained polycrystalline silicon is subjected to treatment with acid or alkali, segregation such as directional solidification, dissolution at high vacuum, etc. in order to remove the residue of unattached metal components and unreacted metal components. Thus, the impurity element contained in the silicon can be further reduced. In particular, it is preferable to highly purify the obtained polycrystalline silicon by directional solidification.

本発明で得られる多結晶シリコンを用いた太陽電池について説明する。
本方法で得られるシリコンを用いて、キャスト法または電磁鋳造法によって、インゴットを作製する。太陽電池の基板の導電型は、一般にはp型であって、ドーパントの導入としては、例えばホウ素を添加することや、アルミニウムを残存させることによって達成できる。インゴットは、内周刃切断やマルチワイヤーソー等によりスライシングされる。スライシング後は必要に応じて遊離砥粒を用いて両面がラッピングされ、さらに、ダメージ層を除去するために弗酸等のエッチング液に浸漬する等して多結晶基板が得られる。表面での光反射損失を低減するためには、ダイシングマシンを用いて機械的にV溝を形成したり、反応性イオンエッチングや、酸、アルカリなどを用いたエッチングによりテクスチャー構造を形成したりする。続いて、受光面にリンや砒素等のn型ドーパントの拡散層を形成することによりp−n接合部を得る。さらに、TiO2等の酸化膜層を表面に形成した後に各面に電極を付け、反射による光エネルギーの損失を減らすためのMgF2等の反射防止膜を付けることにより太陽電池を作製することができる。
A solar cell using polycrystalline silicon obtained by the present invention will be described.
Using the silicon obtained by this method, an ingot is produced by a casting method or an electromagnetic casting method. The conductivity type of the substrate of the solar cell is generally p-type, and the introduction of the dopant can be achieved, for example, by adding boron or leaving aluminum. The ingot is sliced by an inner peripheral cutting or a multi-wire saw. After slicing, both sides are lapped with free abrasive grains as necessary, and a polycrystalline substrate is obtained by immersing in an etching solution such as hydrofluoric acid to remove the damaged layer. In order to reduce the light reflection loss on the surface, a V-groove is mechanically formed by using a dicing machine, or a texture structure is formed by reactive ion etching, etching using acid, alkali, or the like. . Subsequently, a pn junction is obtained by forming a diffusion layer of n-type dopant such as phosphorus or arsenic on the light receiving surface. Furthermore, after forming an oxide film layer such as TiO 2 on the surface, an electrode is attached to each surface, and an antireflection film such as MgF 2 is attached to reduce the loss of light energy due to reflection. it can.

上記において、本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれらの実施の形態に限定されない。本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。   While the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these embodiments. The scope of the present invention is defined by the terms of the claims, and further includes meanings equivalent to the description of the claims and all modifications within the scope.

本発明をさらに詳細に説明するために実施例を示すが、本発明はこれに限定されるものではない。
実施例1
黒鉛坩堝に、アルミニウム、氷晶石、シリカを仕込み、これを、ムライト炉心管をもつ電気炉中にセットする。次に1100℃で、これらの融液を電解する。
Examples are provided to describe the present invention in more detail, but the present invention is not limited thereto.
Example 1
A graphite crucible is charged with aluminum, cryolite, and silica and set in an electric furnace having a mullite core tube. Next, these melts are electrolyzed at 1100 ° C.

電解後、冷却して合金を回収する。得られる合金を塩酸で溶解して、シリコンを得ることができる。この合金を一旦1100℃で溶融し、700℃で3時間保持後、溶湯を固液分離して、融液中のシリコン濃度より高いシリコン濃度を有する固形物と該固形物中のシリコン濃度より低いシリコン濃度を有する融液とを得ることができる。
該固形物中のシリコン濃度より低いシリコン濃度を有する融液を再度電解炉に戻してシリカの電解を行う。
After electrolysis, the alloy is recovered by cooling. The resulting alloy can be dissolved with hydrochloric acid to obtain silicon. This alloy is once melted at 1100 ° C. and held at 700 ° C. for 3 hours, and then the molten metal is subjected to solid-liquid separation to obtain a solid having a silicon concentration higher than the silicon concentration in the melt and lower than the silicon concentration in the solid. A melt having a silicon concentration can be obtained.
The melt having a silicon concentration lower than the silicon concentration in the solid is returned to the electrolytic furnace again to perform electrolysis of silica.

実施例2
石英管を底面積22cm2の黒鉛坩堝の内壁に差し込んでライニングとした状態で、氷晶石132g(95%;セントラル硝子製)、シリカ粉末7g(99.5%;Alfa製)、アルミニウム粒子43g(和光純薬製)を混合し、190℃で2日間乾燥後、アルゴンガスを吹き流しながら電気炉中で1100℃3時間保持後、約1000℃に保持して、アノードとしてφ12mmの炭素棒をセットし、一定温度確認後電解を開始した。電解電流2.2Aで1時間電解後、電流は流さずに2時間保持した。その後メルトを流しだし、金属部分を回収したところ、36.2gが回収できた。これを濃塩酸溶解後ICP分析したところ、Al−Si合金が生成していて、Si含有量は22wt%、7.96gであった。
この合金30gを再度黒鉛坩堝に仕込んで1000℃に保持、溶融後、徐々に冷却し、590℃保持した。この融液に内部を窒素で550℃に冷却した黒鉛棒を浸漬し、10分後に引き上げたところ、2.7gのシリコンが黒鉛棒に付着した。
リファレンスのために、全く同じセットアップで、同じ試料を仕込み、電流は全く流さずに3時間保持した。回収された合金は37.2gであり、Si含有量は19wt%、7.07gであった。ここでシリコンが得られる理由は、アルミニウムが直接シリカを還元するからである。この値をリファレンス値として、通電による実質的なSiの増加量を計算すると、7.96g−7.07g=0.89gである。通電量からは0.57gのSiが析出すると計算されるので、やや誤差はあるものの、およそ通電量に応じたSiの析出が認められた。
Example 2
With a quartz tube inserted into the inner wall of a graphite crucible having a bottom area of 22 cm 2 and lined, 132 g of cryolite (95%; manufactured by Central Glass), 7 g of silica powder (99.5%; manufactured by Alfa), 43 g of aluminum particles (Made by Wako Pure Chemical Industries) was mixed, dried at 190 ° C for 2 days, kept at 1100 ° C for 3 hours in an electric furnace while blowing argon gas, then held at about 1000 ° C, and a carbon rod of φ12 mm was set as the anode Then, electrolysis was started after confirming a certain temperature. After electrolysis at an electrolysis current of 2.2 A for 1 hour, the current was kept for 2 hours without flowing. Thereafter, the melt was poured out and the metal part was recovered. As a result, 36.2 g could be recovered. When this was dissolved by concentrated hydrochloric acid and analyzed by ICP, an Al—Si alloy was produced, and the Si content was 22 wt% and 7.96 g.
30 g of this alloy was again charged into a graphite crucible and held at 1000 ° C., melted, gradually cooled, and held at 590 ° C. A graphite rod cooled to 550 ° C. with nitrogen was immersed in the melt and pulled up after 10 minutes. As a result, 2.7 g of silicon adhered to the graphite rod.
For reference, the same sample was charged with exactly the same setup and held for 3 hours without any current flowing. The recovered alloy was 37.2 g, and the Si content was 19 wt%, 7.07 g. The reason why silicon is obtained here is that aluminum directly reduces silica. Using this value as a reference value, the substantial increase in Si due to energization is calculated to be 7.96 g−7.07 g = 0.89 g. From the amount of energization, it was calculated that 0.57 g of Si was deposited, so although there was some error, deposition of Si corresponding to the amount of energization was recognized.

実施例3
実施例2と全く同様に氷晶石、シリカ、アルミニウムを仕込んで電解電流のみ1.1Aとして2時間15分電解後、電流は流さずに1時間保持した。回収された合金は37.1gであり、Si含有量は21wt%、7.79gであった。
この合金30gを再度黒鉛坩堝に仕込んで1000℃に保持、溶融後、徐々に冷却し、590℃保持した。この融液に内部を窒素で550℃に冷却した黒鉛棒を浸漬し、10分後に引き上げたところ、2.7gのシリコンが黒鉛棒に付着した。
リファレンス実験で回収された合金は37.2gであり、Si含有量は19wt%、7.07gであったので、通電による実質的なSiの増加量を計算すると、7.79g−7.07g=0.72gである。通電量からは0.65gのSiが析出すると計算されるので、やや誤差はあるものの、およそ通電量に応じたSiの析出が認められた。
Example 3
In the same manner as in Example 2, cryolite, silica, and aluminum were charged, and only electrolysis current was set to 1.1 A. After electrolysis for 2 hours and 15 minutes, the current was maintained for 1 hour without flowing. The recovered alloy was 37.1 g, and the Si content was 21 wt%, 7.79 g.
30 g of this alloy was again charged into a graphite crucible and held at 1000 ° C., melted, gradually cooled, and held at 590 ° C. A graphite rod cooled to 550 ° C. with nitrogen was immersed in the melt and pulled up after 10 minutes. As a result, 2.7 g of silicon adhered to the graphite rod.
The alloy recovered in the reference experiment was 37.2 g, and the Si content was 19 wt% and 7.07 g. Therefore, when a substantial increase in Si due to energization was calculated, 7.79 g−7.07 g = 0.72 g. From the amount of energization, it was calculated that 0.65 g of Si was deposited, so although there was some error, deposition of Si corresponding to the amount of energization was recognized.

Claims (13)

シリカを電解槽で溶融塩電解してシリコンを製造する方法において、電解温度において液相となるシリコン含有合金を陰極とし、かつ電解を進行させて該合金中のシリコン含有率を高める工程(1)と、電解温度においてシリコンが析出する濃度に達する前に該陰極における該シリコン含有合金を電解槽外に取り出す工程(2)と、取り出した該シリコン含有合金の共融点より高く、電解温度よりも低い温度の範囲で該シリコン含有合金を冷却してシリコンを凝固させる工程(3)と、凝固させた該シリコンを回収する工程(4)とを、この順で有する、上記シリコンの製造方法。   In the method for producing silicon by subjecting silica to molten salt electrolysis in an electrolytic bath, a step (1) in which a silicon-containing alloy that is in a liquid phase at an electrolysis temperature is used as a cathode and electrolysis proceeds to increase the silicon content in the alloy And step (2) of taking out the silicon-containing alloy from the cathode outside the electrolytic cell before reaching the concentration at which silicon is deposited at the electrolysis temperature, and higher than the eutectic point of the taken-out silicon-containing alloy and lower than the electrolysis temperature. The method for producing silicon, comprising: a step (3) for solidifying the silicon by cooling the silicon-containing alloy within a temperature range; and a step (4) for recovering the solidified silicon in this order. 前記工程(4)でシリコンを回収することにより、シリコン濃度が低下した合金を電解槽の陰極に戻す工程(5)をさらに有する請求項1記載のシリコンの製造方法。   The method for producing silicon according to claim 1, further comprising a step (5) of recovering the silicon in the step (4) to return the alloy having a lowered silicon concentration to the cathode of the electrolytic cell. 合金としてアルミニウム、銅、スズより選ばれた1種または2種以上を含む請求項1又は2記載のシリコンの製造方法。   The manufacturing method of the silicon | silicone of Claim 1 or 2 containing 1 type, or 2 or more types chosen from aluminum, copper, and tin as an alloy. 溶融塩電解における電解浴が、氷晶石(3NaF・AlF3)を含む請求項1〜3のいずれかに記載のシリコンの製造方法。 The method of producing silicon according to claim 1 electrolytic bath, containing cryolite (3NaF · AlF 3) in the molten salt electrolysis. 液相となるシリコン含有合金の比重が電解浴よりも大きい請求項1〜4のいずれかに記載のシリコンの製造方法。   The method for producing silicon according to any one of claims 1 to 4, wherein the specific gravity of the silicon-containing alloy serving as a liquid phase is larger than that of the electrolytic bath. 液相となるシリコン含有合金の比重が電解浴よりも小さい請求項1〜4のいずれかに記載のシリコンの製造方法。   The method for producing silicon according to any one of claims 1 to 4, wherein the specific gravity of the silicon-containing alloy serving as a liquid phase is smaller than that of the electrolytic bath. シリカの純度が99.9%以上である請求項1〜6のいずれかに記載のシリコンの製造方法。   The method for producing silicon according to claim 1, wherein the silica has a purity of 99.9% or more. 電解温度がシリコン含有合金の共融点を超え、シリコンの融点未満である請求項1〜7のいずれかに記載のシリコンの製造方法。   The method for producing silicon according to claim 1, wherein the electrolysis temperature exceeds the eutectic point of the silicon-containing alloy and is lower than the melting point of silicon. 電解温度が700℃以上1300℃以下である請求項1〜8のいずれかに記載のシリコンの製造方法。   Electrolysis temperature is 700 degreeC or more and 1300 degrees C or less, The manufacturing method of the silicon | silicone in any one of Claims 1-8. アノード電流密度が0.01−3A/cm2である請求項1〜9のいずれかに記載のシリコンの製造方法。 The method for producing silicon according to claim 1, wherein the anode current density is 0.01-3 A / cm 2 . カソード電流密度が0.01−3A/cm2である請求項1〜10のいずれかに記載のシリコンの製造方法。 The method for producing silicon according to claim 1, wherein the cathode current density is 0.01-3 A / cm 2 . 請求項1〜11のいずれかに記載のシリコンの製造方法により得られるシリコン。   Silicon obtained by the method for producing silicon according to any one of claims 1 to 11. 請求項1〜11のいずれかに記載のシリコンの製造方法により得られるシリコンを有する太陽電池。   The solar cell which has a silicon | silicone obtained by the manufacturing method of the silicon | silicone in any one of Claims 1-11.
JP2007138851A 2006-05-26 2007-05-25 Method for producing silicon Expired - Fee Related JP5236897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138851A JP5236897B2 (en) 2006-05-26 2007-05-25 Method for producing silicon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006146386 2006-05-26
JP2006146386 2006-05-26
JP2007138851A JP5236897B2 (en) 2006-05-26 2007-05-25 Method for producing silicon

Publications (2)

Publication Number Publication Date
JP2008001592A true JP2008001592A (en) 2008-01-10
JP5236897B2 JP5236897B2 (en) 2013-07-17

Family

ID=39006281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138851A Expired - Fee Related JP5236897B2 (en) 2006-05-26 2007-05-25 Method for producing silicon

Country Status (1)

Country Link
JP (1) JP5236897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356107B1 (en) 2012-10-17 2014-02-03 금오공과대학교 산학협력단 Method for preparing silicon thin film using electrolysis in non-aqueous electrolyte

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277722A (en) * 1994-02-16 1995-10-24 Sumitomo Chem Co Ltd Method for purifying silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277722A (en) * 1994-02-16 1995-10-24 Sumitomo Chem Co Ltd Method for purifying silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356107B1 (en) 2012-10-17 2014-02-03 금오공과대학교 산학협력단 Method for preparing silicon thin film using electrolysis in non-aqueous electrolyte

Also Published As

Publication number Publication date
JP5236897B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
US8303796B2 (en) Method for producing silicon
Gribov et al. Preparation of high-purity silicon for solar cells
WO2010137555A1 (en) Process for producing refined metal or metalloid
CN101070598B (en) Method for preparing solar-grade silicon material by melt-salt electrolysis method
CN103173780B (en) Method and device for preparing solar polycrystalline silicon material by semi-continuous molten salt electrolysis
JP5445725B1 (en) Method for producing Al-Sc alloy
CA2645161C (en) Method for electrolytic production and refining of metals
EP3368477A1 (en) Method for the enrichment and separation of silicon crystals from a molten metal for the purification of silicon
CN103243385B (en) Electrorefining-liquid cathode in-situ directional solidification prepares the method for high purity single crystal silicon
RU2145646C1 (en) Method of production of metallic silicon, silumin and aluminium and technological plant for realization of this method
CN101698481B (en) Solar-grade polysilicon purifying device and solar-grade polysilicon purifying method
JP2007016293A (en) Method for producing metal by suspension electrolysis
KR101878652B1 (en) Refining Method of Metal Using Integrated Electroreduction and Electrorefining process
CN102851679A (en) Method for removing boron and phosphorus impurities in silicon through molten salt electrolysis
Padamata et al. Silicon electrowinning by molten salts electrolysis
CN101775650B (en) Preparation method of solar polycrystalline silicon cast ingot and device thereof
Jing et al. Purification of metallurgical grade silicon by electrorefining in molten salts
JP5236897B2 (en) Method for producing silicon
JP2007055891A (en) Method for manufacturing polycrystalline silicon
Nohira et al. A new electrolytic production process of silicon using liquid Zn alloy cathode in molten salt
CN115305568A (en) Smelting method of polycrystalline silicon
Tian et al. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission
Oishi et al. Electrorefining of silicon using molten salt and liquid alloy electrodes
Delannoy et al. 3 Conventional and Advanced Purification Processes of MG Silicon
JP4946774B2 (en) Method for producing silicon

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080305

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees