JP2008000637A - Flocculation reaction apparatus - Google Patents
Flocculation reaction apparatus Download PDFInfo
- Publication number
- JP2008000637A JP2008000637A JP2006169522A JP2006169522A JP2008000637A JP 2008000637 A JP2008000637 A JP 2008000637A JP 2006169522 A JP2006169522 A JP 2006169522A JP 2006169522 A JP2006169522 A JP 2006169522A JP 2008000637 A JP2008000637 A JP 2008000637A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- small
- diameter pipe
- diameter
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Treatment Of Sludge (AREA)
Abstract
Description
本発明は、下水等の有機排水の生物処理工程から排出される余剰汚泥等の懸濁水を凝集処理するための凝集反応装置に係り、特に、広い流量範囲で高い凝集反応効率を確保することができる凝集反応装置に関するものである。 The present invention relates to a coagulation reactor for coagulating suspended water such as excess sludge discharged from a biological treatment process of organic wastewater such as sewage, and in particular, ensuring high coagulation reaction efficiency over a wide flow rate range. The present invention relates to an agglomeration reactor that can be used.
下水等の有機排水の生物処理工程から排出される余剰汚泥を脱水処理する場合、一般的には、汚泥に凝集剤を添加して凝集処理することによってフロックを形成した後に脱水処理が行われる。 When the excess sludge discharged from the biological treatment process of organic wastewater such as sewage is dehydrated, the dehydration is generally performed after flocs are formed by adding a flocculant to the sludge and coagulating.
図10は汚泥(原泥)に無機凝集剤を添加して凝集処理する従来の凝集反応装置101を示す模式的な断面図であり、この凝集反応装置101においては、原泥は原泥ポンプ103によって凝集反応槽102に導入され、この凝集反応槽102で原泥に無機凝集剤が添加されて両者が撹拌機106により撹拌混合されることによって凝集汚泥が排出される。
FIG. 10 is a schematic cross-sectional view showing a conventional
ところで、汚泥と無機凝集剤とを効率的に反応させるためには強い撹拌が必要であるが、強い撹拌には多くの動力を消費し、又、下水の混合生汚泥のように汚泥中に夾雑物が含まれる原泥の場合には、撹拌羽根に夾雑物が絡み付いて円滑な撹拌が阻害される場合もある。 By the way, strong agitation is necessary to react sludge and inorganic flocculant efficiently. However, strong agitation consumes a lot of power and is contaminated in sludge like mixed raw sludge of sewage. In the case of raw mud containing things, impurities may get entangled with the stirring blades and smooth stirring may be hindered.
そこで、図11及び図12に示すような凝集反応装置201が提案されている(特許文献1参照)。
Therefore, an
図11は凝集反応装置の正面図、図12は図11のE−E線断面図であり、図示の凝集反応装置201は、凝集反応槽202に汚泥(原泥)を移送する原泥ポンプ203を有する移送配管204に、この移送配管204よりも小径の細径配管205を連結し、この細径配管205を凝集反応槽202の外周部に接線方向に接続して構成されている。ここで、記凝集反応槽202は、円筒容器状に成形され、その内部には撹拌機206が備えられている。
FIG. 11 is a front view of the agglomeration reaction apparatus, and FIG. 12 is a cross-sectional view taken along the line EE of FIG. 11. The illustrated
而して、汚泥は、原泥ポンプ203によって移送配管204及び細径配管205を経て凝集反応槽202に導入される間に、移送配管204と細径配管205との連結部近傍で無機凝集剤が注入される。注入された無機凝集剤は、小径の細径配管205内における汚泥の乱流によって汚泥中に均一に分散・混合され、この細径配管205を通過する高速の汚泥流が凝集反応槽202内に接線方向に流入するときの噴射流によって無機凝集剤の混合・拡散が効果的に行われる。
Thus, while the sludge is introduced into the
そして、細径配管205から凝集反応槽202内に接線方向に流入した汚泥流は、凝集反応槽202内で旋回流となり、この凝集反応槽202内の汚泥と混合されることによって無機凝集剤はより一層均一に混合・拡散されるとともに、凝集反応槽202内での撹拌機206による撹拌によってフロックが成長し、良好な凝集処理が行われる。
Then, the sludge flow that flows in the tangential direction from the
以上のようにして凝集反応槽202で得られた凝集汚泥は、排出配管209から凝集反応槽202外へと排出され、次いで有機高分子凝集剤を添加混合してフロックを生成させた後、次の脱水工程へ送給される(図示せず)。
ここで、図11及び図12に示す凝集反応装置201において、口径φ25mmの細径配管(吹き込み管)205を使用したときの凝集反応槽202内へ噴射される汚泥の流量Qと噴射速度vとの関係を図13に示す。
Here, in the
細径配管205の断面積をSとしたとき、速度vは次式:
v=Q/S … (1)
で表されるため、汚泥の噴射速度vは流量Qに正比例することが図13から明らかである。
When the cross-sectional area of the small-
v = Q / S (1)
Therefore, it is apparent from FIG. 13 that the sludge injection speed v is directly proportional to the flow rate Q.
ところで、本発明者の知見によれば、無機凝集剤と汚泥との反応は汚泥の噴射速度vが2〜5m/secの範囲である場合に良好に行われる。従って、図13に示す流量Qと噴射速度vとの関係から、噴射速度v=2〜5m/secに対応する流量QはQ=4〜9m3 /hとなり、その範囲での処理量が望ましいことが分かる。処理量が4m3 /h未満では、撹拌強度が弱くなって無機凝集剤と汚泥との反応が不十分となり、逆に処理量が9m3 /hを超えると、形成されるフロックが破壊気味になるとともに、移送配管204及び細径配管205内の圧力が高くなり過ぎて装置の運転に支障を来すという問題がある。
By the way, according to the knowledge of the present inventor, the reaction between the inorganic flocculant and the sludge is favorably performed when the sludge injection speed v is in the range of 2 to 5 m / sec. Therefore, from the relationship between the flow rate Q and the injection speed v shown in FIG. 13, the flow rate Q corresponding to the injection speed v = 2 to 5 m / sec is Q = 4 to 9 m 3 / h, and the processing amount within that range is desirable. I understand that. If the treatment amount is less than 4 m 3 / h, the stirring strength becomes weak and the reaction between the inorganic flocculant and the sludge becomes insufficient. Conversely, if the treatment amount exceeds 9 m 3 / h, the flocs formed tend to break down. In addition, there is a problem in that the pressure in the
しかしながら、図11及び図12に示す従来の凝集反応装置201においては、細径配管205の口径は一定不変であって、断面積Sも一定不変であるため、無機凝集剤と汚泥との反応を良好に保つ噴射速度vを実現するための処理量(流量Q)の範囲が狭く、処理量に制限を受けるという問題があった。
However, in the conventional
本発明は上記問題に鑑みてなされたもので、その目的とする処は、広い流量範囲で高い凝集反応効率を確保することができ、処理量の範囲を拡大することができる凝集反応装置を提供することにある。 The present invention has been made in view of the above problems, and the intended treatment is to provide an agglomeration reaction apparatus capable of ensuring high agglomeration reaction efficiency in a wide flow rate range and expanding the range of throughput. There is to do.
上記目的を達成するため、請求項1記載の発明は、
懸濁水を圧送する移送配管と、
該移送配管に連なる該移送配管よりも小径の細径配管と、
該細径配管又はその上流側の前記移送配管に設けられた凝集剤供給手段と、
前記細径配管が直接開口する凝集反応槽と
を有する凝集反応装置において、
前記細径配管の断面積を、該細径配管を流れる懸濁水の圧力に比例して増減させる面積可変手段を設けたことを特徴とする。
In order to achieve the above object, the invention according to
A transfer pipe for pumping suspended water;
A smaller diameter pipe than the transfer pipe connected to the transfer pipe;
A flocculant supply means provided in the small-diameter pipe or the transfer pipe upstream thereof;
In an agglomeration reaction apparatus having an agglomeration reaction tank in which the small-diameter pipe opens directly,
An area variable means for increasing or decreasing the cross-sectional area of the small-diameter pipe in proportion to the pressure of the suspension water flowing through the small-diameter pipe is provided.
請求項2記載の発明は、請求項1記載の発明において、前記面積可変手段を、前記細径配管内に配されたバネ機能を有するフラップ板で構成したことを特徴とする。 A second aspect of the invention is characterized in that, in the first aspect of the invention, the area variable means is constituted by a flap plate having a spring function arranged in the small-diameter pipe.
請求項3記載の発明は、請求項1記載の発明において、前記面積可変手段を、前記細径配管内に回動可能に配されたフラップ板と、前記細径配管に進退可能に螺合するとともに、その端部が前記フラップ板に連結されたボルトを含んで構成したことを特徴とする。 According to a third aspect of the present invention, in the first aspect of the present invention, the area variable means is screwed into a flap plate rotatably disposed in the small-diameter pipe so as to advance and retract. And the edge part was comprised including the volt | bolt connected with the said flap board.
請求項4記載の発明は、請求項1記載の発明において、前記面積可変手段を、懸濁水の流れ方向に沿って縮径する弾性変形可能なテーパ管で構成したことを特徴とする。
The invention according to
請求項5記載の発明は、請求項1記載の発明において、前記面積可変手段を、一部が弾性変形可能な弾性シートで構成された吹き込み管で構成したことを特徴とする。 According to a fifth aspect of the present invention, in the first aspect of the present invention, the area varying means is configured by a blow pipe partially configured by an elastic sheet that can be elastically deformed.
請求項6記載の発明は、請求項1〜5の何れかに記載の発明において、前記細径管の下流端に、前記移送管よりも大きな断面積を有する凝集反応用の一時滞留部を設け、該一時滞留部を、第2の移送管と該第2の移送配管よりも小径の第2の細径配管を介して前記凝集反応槽に接続するとともに、前記第2の細径配管に前記面積可変手段を設けたことを特徴とする。 A sixth aspect of the present invention is the invention according to any one of the first to fifth aspects, wherein a temporary retention part for agglomeration reaction having a larger cross-sectional area than the transfer pipe is provided at the downstream end of the small diameter pipe. The temporary retention portion is connected to the agglomeration reaction tank through a second transfer pipe and a second fine pipe having a smaller diameter than the second transfer pipe, and the second fine pipe is connected to the second fine pipe. An area variable means is provided.
請求項1記載の発明によれば、細径配管を流れる懸濁水の圧力に比例して細径配管の断面積を増減させることができるため、懸濁水の流量が増えて圧力が高くなると細径配管の断面積が増大して噴射速度の増加率が低く抑えられる。このため、流量の増加に対して噴射速度が正比例してリニアに増加することなく、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲が拡大し、広い流量範囲で高い凝集反応効率を確保することができる。 According to the first aspect of the present invention, since the cross-sectional area of the small-diameter pipe can be increased or decreased in proportion to the pressure of the suspended water flowing through the small-diameter pipe, the diameter of the small-diameter pipe increases as the flow rate of the suspended water increases. The cross-sectional area of the piping is increased, and the rate of increase of the injection speed is kept low. For this reason, the injection rate does not increase linearly in proportion to the increase in flow rate, and the rate of increase in the injection rate with respect to the increase in flow rate becomes slow, realizing an injection rate that keeps the reaction between the flocculant and sludge well. Therefore, the range of the processing amount (flow rate) to be expanded can be secured, and high agglomeration reaction efficiency can be ensured in a wide flow rate range.
請求項2載の発明によれば、懸濁水の流量が増えて圧力が高くなると、その圧力によってフラップ板が自動的に弾性変形して細径配管の断面積が増大するため、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲が拡大する。 According to the second aspect of the present invention, when the flow rate of the suspended water increases and the pressure increases, the flap plate automatically elastically deforms due to the pressure and the cross-sectional area of the small-diameter pipe increases. The increase rate of the injection speed becomes slow, and the range of the processing amount (flow rate) for realizing the injection speed that keeps the reaction between the flocculant and the sludge good is expanded.
請求項3記載の発明によれば、懸濁水の流量に応じてボルトを回してフラップ板を細径配管内で回動させて細径配管の断面積を手動で増減させることができるため、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲を拡大させることができる。 According to the third aspect of the present invention, the bolt can be turned in accordance with the flow rate of the suspended water to rotate the flap plate in the small diameter pipe to manually increase or decrease the cross sectional area of the small diameter pipe. The rate of increase of the injection speed with respect to the increase in the pressure becomes slow, and the range of the processing amount (flow rate) for realizing the injection speed that keeps the reaction between the flocculant and sludge good can be expanded.
請求項4記載の発明によれば、懸濁水の流量が増えて圧力が高くなると、その圧力によってテーパ管が拡径してその断面積が大きくなるため、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲が拡大する。
According to the invention described in
請求項5記載の発明によれば、懸濁水の流量が増えて圧力が高くなると、その圧力によって吹き込み管の一部の弾性シートが膨張して該吹き込み管の断面積が大きくなるため、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲が拡大する。 According to the fifth aspect of the present invention, when the flow rate of the suspension water increases and the pressure increases, a part of the elastic sheet of the blowing pipe expands due to the pressure, and the cross-sectional area of the blowing pipe increases. The increase rate of the injection speed with respect to the increase becomes slow, and the range of the processing amount (flow rate) for realizing the injection speed that keeps the reaction between the flocculant and the sludge good is expanded.
請求項6載の発明によれば、細径管の下流端に、移送管よりも大きな断面積を有する凝集反応用の一時滞留部を設けたため、細径配管での乱流によって懸濁水に均一に分散された凝集剤による凝集反応が一時滞留部において促進される。そして、一時滞留部に連なる第2の移送配管よりも小径の第2の細径配管に設けられた面積可変手段によって第2の細径配管の断面積が懸濁水の圧力に比例して増減せしめられるため、流量の増加に対する噴射速度の増加率が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度を実現するための処理量(流量)の範囲が拡大する。 According to the sixth aspect of the present invention, since the temporary retention portion for the agglomeration reaction having a cross-sectional area larger than that of the transfer pipe is provided at the downstream end of the small diameter pipe, the suspension water is uniformly dispersed by the turbulent flow in the small diameter pipe. Aggregation reaction by the aggregating agent dispersed in is promoted in the temporary residence part. Then, the cross-sectional area of the second small-diameter pipe is increased or decreased in proportion to the pressure of the suspension water by the area variable means provided in the second small-diameter pipe having a smaller diameter than the second transfer pipe connected to the temporary retention section. Therefore, the rate of increase of the injection speed with respect to the increase of the flow rate becomes slow, and the range of the processing amount (flow rate) for realizing the injection speed that keeps the reaction between the flocculant and the sludge good is expanded.
以下に本発明の実施の形態を添付図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
<実施の形態1>
図1は本発明の実施の形態1に係る凝集反応装置の正面図、図2は図1のA−A線断面図、図3(a)は図1のB部拡大断面図、図3(b)は細径配管の断面積の変化を示す図3(a)の矢視C方向の図、図4は汚泥の流量と噴射速度との関係を示す図である。
<
1 is a front view of an agglomeration reaction apparatus according to
図1及び図2に示す凝集反応装置1は、凝集反応槽2に汚泥(原泥)を移送する原泥ポンプ3を有する移送配管4に、この移送配管4よりも小径の細径配管5を連結し、この細径配管5を凝集反応槽2の外周部に接線方向に接続して構成されている。ここで、上記凝集反応槽2は、円筒容器状に成形され、その内部には撹拌機6が備えられている。尚、図示しないが、凝集反応装置1には、移送配管4を流れる汚泥に無機凝集剤を添加するための凝集剤供給手段が設けられている。
The
ところで、本実施の形態では、図3に示すように、細径配管5は断面矩形に成形され、該細径配管5には、その開口面積を、該細径配管5を流れる汚泥(正確には汚泥と無機凝集剤との混合物)の圧力に比例して増減させる面積可変手段7が設けられている。本実施の形態では、面積可変手段7は、細径配管5内に配されたバネ機能を有するフラップ板8で構成されており、該フラップ板8は、起点8aを中心として上下に撓み変形する。
By the way, in the present embodiment, as shown in FIG. 3, the small-
而して、汚泥は、原泥ポンプ3によって移送配管4及び細径配管5を経て凝集反応槽2に導入される間に、移送配管4と細径配管5との連結部近傍で不図示の凝集剤供給手段によって無機凝集剤が注入される。そして、注入された無機凝集剤は、小径の細径配管5内における汚泥の乱流によって汚泥中に均一に分散・混合され、この細径配管5を通過する高速の汚泥流が凝集反応槽2内に接線方向に流入するときの噴射流によって無機凝集剤の混合・拡散が効果的に行われる。
Thus, while the sludge is introduced into the
以上のようにして凝集反応槽2で得られた凝集汚泥は、排出配管9から凝集反応槽2外へと排出され、次いで有機高分子凝集剤を添加混合してフロックを生成させた後、次の脱水工程へ送給される(図示せず)。
The agglomerated sludge obtained in the
ここで、本実施の形態では、前述のように細径配管5には、その開口面積を、該細径配管5を流れる汚泥(正確には汚泥と無機凝集剤との混合物)の圧力に比例して増減させる面積可変手段7としてバネ機能を有するフラップ板8を設けたため、細径配管5を流れる汚泥の圧力に比例してフラップ板8が起点8aを中心として上下に撓み変形することによって細径配管5の断面積Sが増減し、汚泥の流量Qが増えて細径配管5内の圧力Pが高くなると細径配管5の断面積Sが増大して汚泥の噴射速度vの増加率(dv/dQ)が小さく抑えられる。
Here, in the present embodiment, as described above, the opening area of the
具体的には、汚泥の流量Qが少なく、その圧力Pも低いときには、フラップ板8の先端は図3の実線位置a1にあって、細径配管5の断面がフラップ板8によって絞られた状態にあり、細径配管5の断面積SがS1(図3(b)参照)に絞られるため、汚泥の噴射速度vは、小さな断面積S1に基づく次式:
v=Q/S1 … (2)
によって求められる値を示す。
Specifically, when the sludge flow rate Q is low and the pressure P is low, the tip of the
v = Q / S1 (2)
Indicates the value obtained by.
次に、汚泥の流量Qが増えてその圧力Pが高くなると、その圧力Pによってフラップ板8が起点8aを中心として自動的に上方に撓み、その先端が図3の鎖線位置a2へと移動して該フラップ板8が開くため、細径配管5の断面積SがS1からS2(図3(b)参照)へと増大する。このように細径配管5の断面積SがS1からS2へと増大すると、汚泥の噴射速度vは次式:
v=Q/S2 … (3)
によって求められる値を示し、流量Qの増加に対する噴射速度vの増加率(dv/dQ)が緩慢となる。
Next, when the flow rate Q of sludge increases and the pressure P increases, the
v = Q / S2 (3)
The increase rate (dv / dQ) of the injection speed v with respect to the increase in the flow rate Q becomes slow.
以上はフラップ8が図示のa1,a2に示す位置にあるときの汚泥の流量Q(圧力P)と噴射速度v及び細径配管5の断面積Sとの関係について例示的に説明したが、フラップ板8は、その先端が汚泥の流量Q(つまり、圧力P)に応じて図示のa1,a2以外の任意の位置へと移動し、従って、細径配管5の断面積Sは、前記S1,S2以外の任意の値に連続的に変化することができる。
In the above, the relationship between the sludge flow rate Q (pressure P), the injection speed v, and the cross-sectional area S of the small-
つまり、本実施の形態では、細径配管5の断面積Sは、従来のように一定不変ではなく、圧力Pによって変化する変数S(P)となるため、次式:
v=Q/S(P) … (4)
で求められる噴射速度vは、従来のように(図13参照)流量Qに対して正比例してリニアに変化せず、流量Qの増加に対する増加率(dv/dQ)が緩慢となり、図4に示すように流量Qに対して2次曲線的に変化する。このため、無機凝集剤と汚泥との反応を良好に保つ噴射速度vを実現するための処理量(流量Q)の範囲が拡大し、広い流量範囲で高い凝集反応効率を確保することができることとなる。
In other words, in the present embodiment, the cross-sectional area S of the small-
v = Q / S (P) (4)
The injection speed v obtained in step (3) does not change linearly in direct proportion to the flow rate Q as in the prior art (see FIG. 13), and the rate of increase (dv / dQ) with respect to the increase in the flow rate Q becomes slow. As shown, it changes in a quadratic curve with respect to the flow rate Q. For this reason, the range of the processing amount (flow rate Q) for realizing the injection speed v that keeps the reaction between the inorganic flocculant and sludge good can be expanded, and high agglomeration reaction efficiency can be secured in a wide flow rate range. Become.
ところで、前述のように無機凝集剤と汚泥との反応は噴射速度vが2〜5m/secの範囲である場合に良好に行われることが分かっている。 By the way, as described above, it has been found that the reaction between the inorganic flocculant and the sludge is favorably performed when the injection speed v is in the range of 2 to 5 m / sec.
図4は細径配管5の断面を□30mmとしたときに得られる噴射速度vと流量Qとの関係を示すが、同図より明らかなように、本実施の形態に係る凝集反応装置1によれば、噴射速度v=2m/secに対応する流量QはQ=2m3 /h、噴射速度v=5m/secに対応する流量QはQ=16m3 /hとなり、噴射速度v=2〜5m/secを実現するための処理量(流量Q)の範囲を従来のQ=4〜9m3 /h(図13参照)に対して、Q=2〜16m3 /hに拡大することができ、広い流量範囲で高い凝集反応効率を確保することができる。
FIG. 4 shows the relationship between the injection speed v and the flow rate Q obtained when the cross section of the small-
又、本実施の形態に係る凝集反応装置1によれば、細径配管5の先端部に夾雑物が詰まった場合であっても、細径配管5内の圧力Pが上昇してフラップ板8が開く方向に変形するため、詰まった夾雑物が汚泥流と共に吹き流されるという効果も得られる。
Further, according to the
ところで、細径配管5の内部にはスケール(水垢)が付着する傾向があり、スケールが付着すると細径配管5の断面積Sが絞られるために汚泥の噴射速度vが高くなる(図4及び図13に示す特性カーブが小流量側(図中、左側)に移動する)。
By the way, there is a tendency for scale (scale) to adhere to the inside of the small-
そこで、従来は或る頻度で清掃によってスケールを取り除く必要があったが、本発明に係る凝集反応装置1では、汚泥の流量Qの増加に対する噴射速度vの増加率(dv/dQ)、つまり図4に示す特性カーブの傾斜が緩慢となるため、清掃の頻度を低く抑えることができる。
Therefore, conventionally, it was necessary to remove the scale by cleaning at a certain frequency. However, in the
<実施の形態2>
次に、本発明の実施の形態2を図5及び図6に基づいて説明する。
<
Next, a second embodiment of the present invention will be described with reference to FIGS.
図5は本実施の形態に係る凝集反応装置の正面図、図6は図5のD−D線断面図であり、これらの図においては図1及び図2において示したものと同一要素には同一符号を付しており、以下、それらについての説明は省略する。 FIG. 5 is a front view of the coagulation reaction apparatus according to the present embodiment, and FIG. 6 is a cross-sectional view taken along the line DD of FIG. 5. In these figures, the same elements as those shown in FIGS. The same reference numerals are given, and description thereof will be omitted below.
本実施の形態に係る凝集反応装置1は、細径管5の下流端に、移送管4よりも大きな断面積を有する凝集反応用の一時滞留部10を設け、該一時滞留部10を、移送管4と同径の第2の移送管11と該第2の移送配管11よりも小径(細径配管5と同径)の第2の細径配管12を介して凝集反応槽2に接続するとともに、第2の細径配管12に前記実施の形態1と同様の面積可変手段7(図3参照)を設けたことを特徴としており、他の構成は前記実施の形態1のそれと同じである。
The
而して、本実施の形態に係る凝集反応装置1においては、細径管5の下流端に、移送管4よりも大きな断面積を有する凝集反応用の一時滞留部10を設けたため、細径配管5での乱流によって汚泥に均一に分散された無機凝集剤による凝集反応が一時滞留部10において促進される。そして、一時滞留部10に連なる第2の移送配管11よりも小径の第2の細径配管12に設けられた面積可変手段7(図3参照)によって第2の細径配管12の断面積Sが汚泥の圧力に比例して増減せしめられるため、前記実施の形態1と同様に、汚泥の流量Qの増加に対する噴射速度vの増加率(dv/dQ)が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度(v=2〜5m/sec)を実現するための処理量(流量Q)の範囲が拡大する。
Thus, in the
その他、本実施の形態においても、夾雑物の詰まり防止や清掃頻度の低減等、前記実施の形態1と同様の効果が得られる。 In addition, in the present embodiment, the same effects as those of the first embodiment such as prevention of clogging of foreign substances and reduction of the cleaning frequency can be obtained.
<面積可変手段の他の形態>
ところで、以上の実施の形態1,2では、面積可変手段7としてバネ特性を有するフラップ板8を用いる構成を採用したが、面積可変手段7としては例えば図7〜図9に示すような構成が考えられる。
<Other forms of area variable means>
In the above-described first and second embodiments, the configuration using the
即ち、図7は移送配管4と細径配管5の断面図であり、細径配管5内には面積可変手段7が設けられている。この面積可変手段7は、細径配管5内に回動可能に配されたフラップ板13と、細径配管5の上部に結着されたナット14と、該ナット14に螺合して細径配管5に上下動可能に挿通されたボルト15と、該ボルト15の頭部に取り付けられたハンドル16を含んで構成されており、ボルト15の細径配管5内に臨む下端部は前記フラップ板13の先端部に連結されている。
That is, FIG. 7 is a sectional view of the
上記構成において、汚泥の流量Qに応じてハンドル16を回転操作してボルト15を回し、該ボルト15を細径配管5に対して上下動させることによって、先端部がボルト15に連結されたフラップ板13を細径配管5内で上下に回動させることができる。このように細径配管5内でフラップ板13を上下に回動させることによって、細径配管5の断面積Sを手動で増減させることができ、前記実施の形態1,2と同様に、汚泥の流量Qの増加に対する噴射速度vの増加率(dv/dQ)が緩慢となる。このため、凝集剤と汚泥との反応を良好に保つ噴射速度(v=2〜5m/sec)を実現するための処理量(流量Q)の範囲を拡大させることができ、広い流量範囲で高い凝集反応効率を確保することができる。
In the above configuration, the
又、図8は面積可変手段7としてのテーパ管17の斜視図であり、このテーパ管17は、汚泥の流れ方向(図示矢印方向)に沿って縮径する弾性変形可能な管であって、例えばゴム等の弾性体で構成されている。
FIG. 8 is a perspective view of a
而して、上記テーパ管17を凝集汚泥装置の細径配管として使用する場合、汚泥の流量Qが増えてテーパ管17内の圧力Pが高まると、その圧力Pによってテーパ管17が図8に鎖線にて示すように拡径してその断面積(開口面積)Sが大きくなるため、前記実施の形態1,2と同様に、汚泥の流量Qの増加に対する噴射速度vの増加率(dv/dQ)が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度(v=2〜5m/sec)を実現するための処理量(流量Q)の範囲を拡大させることができ、広い流量範囲で高い凝集反応効率を確保することができる。
Thus, when the
更に、図9は面積可変手段7としての吹き込み管18の横断面図であり、吹き込み管18は、その上下壁が弾性変形可能な弾性シート19で構成され、左右の側壁は金属等の剛体で構成されている。尚、弾性シート19としてはゴムシート等が使用される。
Further, FIG. 9 is a cross-sectional view of the blowing
而して、上記吹き込み管18を凝集汚泥装置の細径配管として使用する場合、汚泥の流量Qが増えて吹き込み管18内の圧力が高まると、その圧力によって弾性シート19が図9に鎖線にて示すように外側に膨張して吹き込み管18の断面積(開口面積)Sが大きくなるため、前記実施の形態1,2と同様に、汚泥の流量Qの増加に対する噴射速度vの増加率(dv/dQ)が緩慢となり、凝集剤と汚泥との反応を良好に保つ噴射速度(v=2〜5m/sec)を実現するための処理量(流量Q)の範囲を拡大させることができ、広い流量範囲で高い凝集反応効率を確保することができる。
Thus, when the blowing
尚、以上は汚泥の凝集処理を行う凝集反応装置について説明したが、本発明は、生物処理工程から排出される余剰汚泥のような懸濁固形物濃度の高い懸濁水の凝集処理に供される凝集反応装置の他、工場排水や下水等の比較的固形物濃度の低い汚濁水の凝集処理に供される凝集汚泥装置等に対しても同様に適用可能である。 In addition, although the above demonstrated the coagulation reaction apparatus which performs the coagulation process of sludge, this invention is used for the coagulation process of suspension water with high suspended solids density | concentration like the excess sludge discharged | emitted from a biological treatment process. In addition to the agglomeration reaction apparatus, the present invention can be similarly applied to an agglomeration sludge apparatus used for agglomeration treatment of polluted water having a relatively low solid matter concentration such as factory waste water and sewage.
1 凝集反応装置
2 凝集反応槽
3 原泥ポンプ
4 移送配管
5 細径配管
6 撹拌機
7 面積可変手段
8 フラップ板
8a フラップ板の起点
9 排出配管
10 一時滞留部
11 第2の移送配管
12 第2の細径配管
13 フラップ板
14 ナット
15 ボルト
16 ハンドル
17 テーパ管
18 吹き込み管
19 弾性シート
DESCRIPTION OF
Claims (6)
該移送配管に連なる該移送配管よりも小径の細径配管と、
該細径配管又はその上流側の前記移送配管に設けられた凝集剤供給手段と、
前記細径配管が直接開口する凝集反応槽と、
を有する凝集反応装置において、
前記細径配管の断面積を、該細径配管を流れる懸濁水の圧力に比例して増減させる面積可変手段を設けたことを特徴とする凝集反応装置。 A transfer pipe for pumping suspended water;
A smaller diameter pipe than the transfer pipe connected to the transfer pipe;
A flocculant supply means provided in the small-diameter pipe or the transfer pipe upstream thereof;
An agglomeration reaction tank in which the small-diameter pipe opens directly;
In an agglutination reactor having
An agglomeration reaction apparatus comprising an area variable means for increasing or decreasing the cross-sectional area of the small-diameter pipe in proportion to the pressure of the suspended water flowing through the small-diameter pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169522A JP2008000637A (en) | 2006-06-20 | 2006-06-20 | Flocculation reaction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006169522A JP2008000637A (en) | 2006-06-20 | 2006-06-20 | Flocculation reaction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008000637A true JP2008000637A (en) | 2008-01-10 |
Family
ID=39005444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006169522A Pending JP2008000637A (en) | 2006-06-20 | 2006-06-20 | Flocculation reaction apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008000637A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008178781A (en) * | 2007-01-24 | 2008-08-07 | Kurita Water Ind Ltd | Aggregation reactor |
WO2012111369A1 (en) * | 2011-02-17 | 2012-08-23 | 栗田工業株式会社 | Flocculation treatment apparatus and flocculation treatment method |
CN107720911A (en) * | 2017-11-15 | 2018-02-23 | 中冶沈勘秦皇岛工程设计研究总院有限公司 | Natural mixing stirring device and potassium permanganate composites |
-
2006
- 2006-06-20 JP JP2006169522A patent/JP2008000637A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008178781A (en) * | 2007-01-24 | 2008-08-07 | Kurita Water Ind Ltd | Aggregation reactor |
WO2012111369A1 (en) * | 2011-02-17 | 2012-08-23 | 栗田工業株式会社 | Flocculation treatment apparatus and flocculation treatment method |
CN107720911A (en) * | 2017-11-15 | 2018-02-23 | 中冶沈勘秦皇岛工程设计研究总院有限公司 | Natural mixing stirring device and potassium permanganate composites |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4323531B2 (en) | Coagulated pressure floating separation water treatment method and water treatment apparatus | |
KR101800290B1 (en) | Alkaline waste water neutralizing equipment and method for neutralizing alkaline waste water using the same | |
KR100810334B1 (en) | Coagulating and separating apparatus | |
JP4869393B2 (en) | Solid matter separation system | |
JP3539428B2 (en) | Coagulation reaction device | |
JP2010162518A (en) | Water treatment apparatus and water treatment method | |
KR20070064246A (en) | A making clean water process with dissolved air flotation pump | |
JP2008000637A (en) | Flocculation reaction apparatus | |
JP4711075B2 (en) | Aggregation reactor | |
JP4861349B2 (en) | Reclaimed water production method | |
JP2007260614A (en) | Coagulation reaction apparatus | |
JP5013070B2 (en) | Stirring mixer and agglomeration reaction apparatus provided with the same | |
JP2006095493A5 (en) | ||
JPH07256071A (en) | Solid-liquid mixing apparatus | |
JP3862888B2 (en) | Continuous sludge aggregation method | |
JP5121802B2 (en) | Solid-liquid separation system | |
JP2000126570A (en) | Instantaneous chemical mixing device utilizing hydraulic vortex flow and its method | |
JP2001017982A (en) | Method and device for treating waste water | |
JP2008080258A (en) | Wastewater treatment method and apparatus | |
KR101435151B1 (en) | Unified apparatus for cohesion and precipitation | |
WO2016158673A1 (en) | Water treatment apparatus and water treatment method | |
JP2017159199A (en) | Solid-liquid separator and control device | |
JP2008178781A (en) | Aggregation reactor | |
JP4953099B2 (en) | Screw press with agglomeration device | |
JPS6227016A (en) | Floc blanket type flocculation sedimentating device |