JP2007527870A5 - - Google Patents

Download PDF

Info

Publication number
JP2007527870A5
JP2007527870A5 JP2006554250A JP2006554250A JP2007527870A5 JP 2007527870 A5 JP2007527870 A5 JP 2007527870A5 JP 2006554250 A JP2006554250 A JP 2006554250A JP 2006554250 A JP2006554250 A JP 2006554250A JP 2007527870 A5 JP2007527870 A5 JP 2007527870A5
Authority
JP
Japan
Prior art keywords
acid
peptide
amyloid
peg
mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006554250A
Other languages
Japanese (ja)
Other versions
JP4934433B2 (en
JP2007527870A (en
Filing date
Publication date
Priority claimed from US10/783,975 external-priority patent/US20040242845A1/en
Priority claimed from US10/958,211 external-priority patent/US8663650B2/en
Application filed filed Critical
Publication of JP2007527870A publication Critical patent/JP2007527870A/en
Publication of JP2007527870A5 publication Critical patent/JP2007527870A5/ja
Application granted granted Critical
Publication of JP4934433B2 publication Critical patent/JP4934433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ADの症状は緩やかに発現し、また初期の症状は、軽度の健忘症に留まる可能性がある。この段階では患者は、最近の出来事、行動、家族や物の名前を忘れる場合があり、また算数の簡単な問題を解けなくなることがある。疾患の進行に伴い、症状は容易に目に付くようになり、AD患者または患者の家族が医療の助けを求めるほど重度となる。ADの中期の症状には、身繕いなどの簡単な課題の方法を忘れることなどが含まれ、また発話、理解、読字、または書字に問題が生じる。後期のAD患者は、不安を覚えるようになったり攻撃的になったりする場合があり、家を出て徘徊する恐れがあり、最終的には全面看護が必要となる可能性がある。
AD symptoms develop slowly and early symptoms may remain mild forgetfulness. At this stage, patients may forget the names of recent events, behaviors, family and things, and may not be able to solve simple mathematical problems. As the disease progresses, symptoms become easily visible and become so severe that AD patients or their families seek medical help . Mid-term symptoms of AD include forgetting how to do simple tasks such as dressing up, and problems with speaking, understanding, reading, or writing. Late-stage AD patients may become anxious or aggressive, may be left out of their homes, and may eventually need full nursing.

ADの管理には、薬物を使用する治療、および薬物を使用しない治療がある。同疾患の基礎過程を変化させること(進行の逆転または遅延)を目的とした治療は、これまでほとんど成功していない。コリンエステラーゼ阻害剤(ChEI)などの神経細胞の化学メッセンジャー(神経伝達物質)の欠損(欠陥)、または機能不全を回復させる薬剤は症状を改善することがわかっている。薬物は、ADの精神症状に対処するためにも利用される。
Management of AD includes treatments that use drugs and treatments that do not use drugs. Treatments aimed at changing the underlying process of the disease (reversing or delaying progression) have so far been unsuccessful. Drugs that restore defects or defects in neuronal chemical messengers (neurotransmitters), such as cholinesterase inhibitors (ChEIs), have been shown to improve symptoms. Drugs are also used to address AD psychiatric symptoms.

新薬を開発する際に考慮すべき別の要素が、対象患者にとっての使用の容易さである。経口的な薬剤輸送(特に錠剤、カプセル剤、および軟ゲル)は患者の利便性に叶うことから、使用されている全投与形態の70%を占める。薬剤開発者の間では、患者が、注射や他の侵襲性の高い薬剤投与様式より経口輸送を好むということで意見が一致している。投与間隔の短い(すなわち1日1回、または持続的放出による投与を行う)製剤も好ましい。経口用剤型による抗生物質の投与が容易であることは、治療期間中における患者の服薬順守率を高めることになる。
Another factor to consider when developing new drugs is ease of use for the target patient. Oral drug delivery (especially tablets, capsules, and soft gels) accounts for 70% of all dosage forms used, as it provides patient convenience. There is consensus among drug developers that patients prefer oral transport over injection and other highly invasive modes of drug administration. Also preferred are formulations with short dosing intervals (ie, administration once a day or by sustained release). The ease of administration of antibiotics in oral dosage forms increases the patient's compliance rate during the treatment period.

求められるのは、特異性が高くて有効性が高い抗体を生じる有効な方法および組成物である。このような抗体は、アミロイドタンパク質、プリオンタンパク質、またはP170糖タンパク質などの、種々の抗原上に存在する特異的エピトープを認識することが好ましい。
What is needed is an effective method and composition that produces highly specific and highly effective antibodies. Such antibodies preferably recognize specific epitopes present on various antigens , such as amyloid protein, prion protein, or P170 glycoprotein.

本発明のさらに別の目的は、筋肉内に、静脈内に、経皮的に、経口的に、または皮下に投与可能な免疫原性組成物を提供することである。
Yet another object of the present invention is to provide an immunogenic composition that can be administered intramuscularly, intravenously, transdermally , orally, or subcutaneously.

典型的には、ペプチドを構成するアミノ酸は順番に番号がつけられる(アミノ末端から始めて、ペプチドのカルボキシ末端方向へ向かって数値が増えてゆく)。したがって、1つのアミノ酸が、別のアミノ酸に「続く」と表現される場合、そのアミノ酸は、先行するアミノ酸よりも、対象ペプチドのカルボキシ末端に近い側に位置する。
Typically, amino acids constituting the peptide are numbered in order (starting from amino terminus, Yuku increasingly numerical toward carboxy-terminal direction of the peptide). Thus, when one amino acid is expressed as “following” another amino acid, the amino acid is located closer to the carboxy terminus of the subject peptide than the preceding amino acid.

または、本明細書に記載された免疫原性ペプチドは組換え核酸法で合成される。一般に、この方法は、対象ペプチドをコードする核酸配列を作製する段階、同核酸を発現カセット中で特定のプロモーターの制御下に配置する段階、ペプチドを宿主で発現させる段階、発現されたペプチドまたはポリペプチドを単離する段階を含み、また必要ならばペプチドを再生させる段階を含む。このような手順について、当業者を十分導くことができる手法は、文献に記載されている。
Alternatively, the immunogenic peptides described herein are synthesized by recombinant nucleic acid methods. In general, the method comprises the steps of generating a nucleic acid sequence encoding a peptide of interest, placing the nucleic acid in an expression cassette under the control of a particular promoter, expressing the peptide in a host, expressing the expressed peptide or polypeptide. Isolating the peptide and, if necessary, regenerating the peptide. For such a procedure, a method of the skilled artisan can be guided enough, are described in the literature.

「抗原」という表現は、哺乳類で免疫反応を引き起こすことが可能な分子の全体または断片を意味する。この表現は、免疫原、および抗原性に関与する領域または抗原決定基を含む。
The expression “antigen” means the whole or fragment of a molecule capable of causing an immune response in a mammal. This expression includes the immunogen and regions or antigenic determinants involved in antigenicity .

本発明はさらに、担体の疎水性の脂質二重層への挿入を容易にする、パルミチン酸などの疎水性部分修飾された抗原ペプチドを含む。本発明の疎水性部分は、脂肪酸の場合があるほか、脂肪酸の炭素骨格が少なくとも10個の炭素原子を含むトリグリセリドおよびリン脂質の場合がある。最も好ましいのは、少なくとも約14個、最大約24個、の炭素原子を含む炭素骨格を含む脂肪酸を有する親油性部分である。最も好ましい疎水性部分は、少なくとも14個の炭素原子の炭素骨格を有する。疎水性部分の例には、パルミチン酸、ステアリン酸、ミリスチン酸、ラウリル酸、オレイン酸、リノール酸、およびリノレン酸などがあるが、これらに限定されない。最も好ましい疎水性部分はパルミチン酸である。
The invention further includes antigenic peptides modified with a hydrophobic moiety , such as palmitic acid , that facilitates insertion of the carrier into the hydrophobic lipid bilayer. The hydrophobic moiety of the present invention can be a fatty acid or a triglyceride and phospholipid in which the carbon skeleton of the fatty acid contains at least 10 carbon atoms. Most preferred is a lipophilic moiety having a fatty acid comprising a carbon skeleton containing at least about 14, up to about 24 carbon atoms. The most preferred hydrophobic moiety has a carbon skeleton of at least 14 carbon atoms. Examples of hydrophobic moieties include, but are not limited to, palmitic acid, stearic acid, myristic acid, lauric acid, oleic acid, linoleic acid, and linolenic acid. The most preferred hydrophobic moiety is palmitic acid.

製剤
免疫原性を有するタンパク質もしくはペプチドの全体もしくは活性部分を含む、天然もしくは合成のタンパク質、ペプチド、またはタンパク質断片は、薬学的に許容可能な担体中などの生理学的に許容される製剤中に、既知の手法で調製できる。例えば、タンパク質、ペプチド、またはタンパク質断片薬学的に許容可能な賦形剤とを混合することで、治療用組成物が得られる。
Formulation
Including all or active portion of a protein or peptide having immunogenic, natural or synthetic protein, peptide, or protein fragment, formulated in a physiologically acceptable, such as pharmaceutically acceptable carrier In addition, it can be prepared by a known method. For example, a therapeutic composition can be obtained by mixing a protein, peptide, or protein fragment with a pharmaceutically acceptable excipient.

本明細書で用いる徐放性基剤は、酵素もしくは/塩基による加水分解によって、または溶解によって分解する材料(通常はポリマー)から作られる基剤である。このような基剤は、身体内に挿入されると、酵素および体液の働きによって作用する。徐放性基剤は望ましくは、リポソーム、ポリラクチド(ポリ乳酸)、ポリグリコリド(グリコール酸のポリマー)、ポリラクチドコ-グリコリド(乳酸とグリコール酸の共重合体)、ポリ無水物、ポリ(オルト)エステル、ポリペプチド、ヒアルロン酸、コラーゲン、硫酸コンドロイチン、カルボン酸、脂肪酸、リン脂質、ポリサッカライド、核酸、ポリアミノ酸、アミノ酸(フェニルアラニン、チロシン、イソロイシンなど)、ポリヌクレオチド、ポリビニルプロピレン、ポリビニルピロリドン、およびシリコーンなどの、生体適合性を有する材料から選択される。好ましい生分解性基剤は、ポリラクチド、ポリグリコリド、またはポリラクチドコ-グリコリド(乳酸とグリコール酸の共重合体)のいずれか1種類の基剤である。
As used herein, a sustained release base is a base made from a material (usually a polymer) that degrades by hydrolysis with enzymes or acids / bases or by dissolution. When such a base is inserted into the body, it acts by the action of enzymes and body fluids. The sustained-release base is preferably a liposome, polylactide (polylactic acid), polyglycolide (glycolic acid polymer), polylactide co-glycolide (copolymer of lactic acid and glycolic acid), polyanhydride, poly (ortho) ester , Polypeptide, hyaluronic acid, collagen, chondroitin sulfate, carboxylic acid, fatty acid, phospholipid, polysaccharide, nucleic acid, polyamino acid, amino acid (phenylalanine, tyrosine, isoleucine, etc.), polynucleotide, polyvinylpropylene, polyvinylpyrrolidone, silicone, etc. Selected from biocompatible materials. A preferred biodegradable base is any one of polylactide, polyglycolide, or polylactide co-glycolide (a copolymer of lactic acid and glycolic acid).

組成物の用量は、治療される病気、使用する組成物の種類、および患者の体重や状態などの他の臨床的要素、ならびに投与経路によって決定される。
The dose of the composition is determined by the disease being treated, the type of composition used, and other clinical factors such as the patient's weight and condition, and the route of administration.

本発明の1つの態様では、アミロイドタンパク質のFRHDSGY(SEQ ID NO: 1)配列を使用するが、他の任意のアミロイドタンパク質の配列を代用することができる。ポリクローナル抗体に関する上記のインビトロ特性に加えて、上述のコンストラクトで免疫化されたマウスから得られたモノクローナル抗体は、ヒトのアルツハイマー病のモデルであるAPP[V717I] FVBトランスジェニックマウスにおいて生物学的活性を示す。これらのマウスには、有意なレベルの記憶回復および好奇心の喚起が観察される。このmAbは、免疫化されたトランスジェニックマウスで脳内出血を引き起こさない。
In one embodiment of the invention, the FRHDSGY (SEQ ID NO: 1) sequence of the amyloid protein is used, but the sequence of any other amyloid protein can be substituted. In addition to the above in vitro characteristics for polyclonal antibodies, monoclonal antibodies obtained from mice immunized with constructor bets described above, biology have you in APP [V717I] FVB transgenic mice, a model of human Alzheimer's disease It shows the activity. In these mice, a significant level of memory recovery and arousal of curiosity is observed. This mAb does not cause intracerebral hemorrhage in immunized transgenic mice.

以下の理論に拘泥するわけではないが、抗アミロイドmAb(本発明の方法で作製された1-16配列に対する抗体)の相互作用(主に繊維の可溶化およびCDスペクトル)を調べるインビトロ試験に基づいて、抗体は、αらせん構造中のβアミロイドに優先的に結合すると考えられる。このため、アミロイド繊維の可溶化作用を熱力学的用語で説明できると考えられる。抗体は、αらせんに優先的に結合することによって、αらせんアミロイドを以下の平衡式から解離させる:
Aβ(αらせん)←→Aβ(βシート)
この結果、より多くのβシート構造中にあるβアミロイドが、平衡を再び確立するために、可溶性のαらせん型構造転移する。化学量論的な観察の結果は、mAbが構造の平衡に直接影響を及ぼすという仮説を支持している。
Without being bound by the following theory, it is based on an in vitro test examining the interaction (mainly fiber solubilization and CD spectra) of anti-amyloid mAbs (antibodies to 1-16 sequences made by the method of the invention). Thus, the antibody is preferentially bound to β amyloid in the α helix structure. For this reason, it is thought that the solubilization effect | action of an amyloid fiber can be demonstrated in a thermodynamic term. The antibody dissociates the α helix amyloid from the following equilibrium equation by preferentially binding to the α helix:
Aβ (α helix) ← → Aβ (β sheet)
As a result, more β-sheet structure β-amyloid present in the, in order to establish equilibrium again, to structural transformations in α helical soluble. Stoichiometric results support the hypothesis that mAbs directly affect structural equilibrium.

1-42およびAβ1-40の疎水性配列は、疎水性配列の強いオリゴマー形成を誘導することがわかっているモチーフGXXXGXXXGGを含む(Eilers et al., 2002; Leeds et al., 2001; Lemmon et al., 1994; Russ and Engelmann, 1999; Russ and Engelmann, 2000; Smith and Bormann, 1995)。このモチーフは、治療法の第1の標的と見なされている。なぜなら、Aβ1-42およびAβ1-40の形成、オリゴマー形成、ならびに蓄積に至るあらゆる病原過程に重要な役割を担っているに違いないからである。APPの完全な配列に関しては、SREBPの切断(Ye et al., 2000)から明らかにされているように、同モチーフが、γ-セクレターゼによる処理を受けるために解きほぐされる必要がある下流配列を覆う可能性が高い。この配列がアミロイドのオリゴマー形成に重要な役割を果たすことは、これまで指摘されていない。本明細書に記載されたように、本発明の修飾型の超分子(好ましくはPEG化型)抗原の抗原性は高く、またこれによって誘導された抗体の親和性は高い。Aβ1-16に加えて、本発明の超分子コンストラクトは、ワクチンとして使用される際に、Aβ4-11(SEQ ID NO: 2)、Aβ22-35(SEQ ID NO: 3)、Aβ29-40(SEQ ID NO: 4)で表されるペプチドも含む。
The hydrophobic sequences of Aβ 1-42 and Aβ 1-40 contain the motif GXXXGXXXGG known to induce strong oligomerization of hydrophobic sequences (Eilers et al., 2002; Leeds et al., 2001; Lemmon et al., 1994; Russ and Engelmann, 1999; Russ and Engelmann, 2000; Smith and Bormann, 1995). This motif is considered the primary target of therapy. This is because it must play an important role in all pathogenic processes leading to the formation, oligomerization, and accumulation of Aβ 1-42 and Aβ 1-40 . As for the complete sequence of APP, as revealed from the cleavage of SREBP (Ye et al., 2000), the motif requires a downstream sequence that needs to be unraveled to be processed by γ-secretase. There is a high possibility of covering. It has not been pointed out so far that this sequence plays an important role in amyloid oligomerization. As described herein, the modified supramolecular (preferably PEGylated) antigen of the present invention has high antigenicity, and the antibody derived thereby has high affinity. In addition to Aβ 1-16 , the supramolecular constructs of the present invention, when used as vaccines, are Aβ 4-11 (SEQ ID NO: 2), Aβ 22-35 (SEQ ID NO: 3), Aβ 29 The peptide represented by -40 (SEQ ID NO: 4) is also included.

したがって要約すると、本発明は、種々のアミロイド配列を露出した超分子抗原に対する新しいモノクローナル抗体を提供する。特に、2つのポリエチレングリコール(n=70)鎖を選択されたアミロイド配列に共有結合で結合させるための、独自の合成経路を考案した。PEG鎖の自由端には、ホスファチジルエタノールアミンを共有結合で結合させた。以下の理論に拘泥するわけではないが、その機能は、PEG化されたアミロイド配列をリポソームの二重層中に係留することであると考えられる。PEG化は本発明で、パルミトイル化と比較して抗原の免疫原性を高めることが明らかにされている。これらのモノクローナル抗体による、親和性テスト、エピトープの決定、構造転移の誘導については、発明者らの研究室で実施中である。本発明の固有の修飾法は、種々のペプチドに応用可能であり、また究極的には、アルツハイマー病、癌、および感染症を含むが、これらに限定されない疾患や障害に対する治療用製剤およびワクチンに使用することができる。
Thus, in summary, the present invention provides new monoclonal antibodies against supramolecular antigens that expose various amyloid sequences. In particular , a unique synthetic route was devised to covalently link two polyethylene glycol (n = 70) chains to selected amyloid sequences. Phosphatidylethanolamine was covalently bonded to the free end of the PEG chain. Without being bound by the following theory, it is thought that its function is to anchor the PEGylated amyloid sequence in the liposome bilayer. PEGylation has been shown in the present invention to increase the immunogenicity of an antigen compared to palmitoylation. Affinity testing, epitope determination, and structural transition induction using these monoclonal antibodies are currently underway in the inventors' laboratory. The inherent modification methods of the present invention are applicable to a variety of peptides, and ultimately to therapeutic formulations and vaccines for diseases and disorders including but not limited to Alzheimer's disease, cancer, and infectious diseases. Can be used.

癌細胞におけるMultidrug resistance 1(MDR 1
癌細胞における多剤耐性1は、癌細胞から、種々の互いに無関係の化学療法剤を排出する膜ポンプであるP糖タンパク質(P170)の過剰発現によって生じる。
Multidrug resistance 1 (MDR 1 ) in cancer cells
Multidrug resistance in cancer cells. 1, from a cancer cell, arising by overexpression of P-glycoprotein is a membrane pump for discharging the various mutually unrelated chemotherapeutic agents (P 170).

以上の観察、また発明者らが開発した手法を元に、神経毒性PrP 106-126に対する強い液性および細胞性の免疫反応をマウスで引き起こすことで、疾患に対する「ワクチン」を開発し、続いて、免疫化したマウスをスクレイピーマウスの脳抽出物でチャレンジした。
Based on the above observations and the method developed by the inventors, we developed a “vaccine” for disease by inducing a strong humoral and cellular immune response to neurotoxic PrP 106-126 in mice. Immunized mice were challenged with scrapie mouse brain extracts.

実施例1
発明者らは、ラット海馬一次培養物、ヒトのPrPc cDNAから推定されるアミノ酸配列の残基106〜126位に対応するマイクロモル濃度のペプチドに長期曝露することで、ニューロン死が濃度依存的に生じることを明らかにした。得られたデータを表1に示す。
Example 1
We refer to rat hippocampal primary cultures, by exposing the long term to the peptides of the micromolar concentration corresponding to residues 106-126 of the amino acid sequence deduced from human PrP c cDNA, concentration neuronal death It was clarified that it occurs dependently. The obtained data is shown in Table 1.

(表1)海馬ニューロンの9日間の長期間処置

Figure 2007527870
(Table 1) Long-term treatment of hippocampal neurons for 9 days
Figure 2007527870

PrP 106-126によって誘導されるニューロン死が、アポトーシスによって用量依存的に生じることが示された。スクレイピーなどの亜急性脳症の末期では、PrPScはPrPcと比べ10〜20倍高い全脳濃度に達し、これは、PrP 106-126の2つの濃度に関する表1のデータと極めて似ている。
It was shown that neuronal death induced by PrP 106-126 occurs in a dose-dependent manner through apoptosis. At the end of subacute encephalopathy such as scrapie, PrP Sc reaches a total brain concentration 10-20 times higher than PrP c , which is very similar to the data in Table 1 for the two concentrations of PrP 106-126.

内部にLys残基またはHis残基を含む、ペプチド配列(4-11、1-16、22-35)については、直交的に保護されたLys(ivDde)を各末端に追加した。合成を促進するために、追加のGlyをC末端に加えた。Fmoc基DMF中の20%ピペリジンで除去し、無水酢酸でN-アセチル化した。ivDde基の選択的な切断は、DMF中の3%ヒドラジン水和物を使用して1時間かけて行った。2-クロロトリチル樹脂は、ヒドラジン分解に対する耐性がより強いことが証明されているため、より広く使用されているWang樹脂より好ましい。さらに2-クロロトリチル樹脂は極めて酸感受性が高いので、Wang樹脂とは異なり、保護ペプチドの単離を可能とする。実際には、樹脂に結合したペプチドの、活性化済みのPEG化脂質試薬DSPE-PEG-SPAへのカップリングでは、いかなるカップリング産物も生じなかったため、カップリング反応は液相中で行う必要があった。したがって、穏和な条件(酢酸/トリフルオロエタノール/ジクロロメタン、1:1:8、1時間、室温)における、樹脂からの選択的な切断によって、内部が保護されたペプチドが得られた(図5)。
Inside including Lys residue or His residues, for peptide sequence (4-11,1-16,22-35), orthogonally protected Lys a (ivDde) was added to each end. Additional Gly was added at the C-terminus to facilitate synthesis. The Fmoc group was removed with 20% piperidine in DMF and N-acetylated with acetic anhydride. Selective cleavage of the ivDde group was performed over 1 hour using 3% hydrazine hydrate in DMF. 2-Chlorotrityl resin is preferred over the more widely used Wang resin because it has proven to be more resistant to hydrazine degradation . Furthermore, since 2-chlorotrityl resin electrode Umate acid sensitive, unlike the Wang resin, enables the isolation of protected peptides. In fact, the peptides bound to trees fat, the coupling to the activated pre PEG lipid reagent DSPE-PEG-SPA, because it did not cause any coupling product, the coupling reaction is carried out in the liquid phase There was a need . Thus, selective cleavage from the resin under mild conditions (acetic acid / trifluoroethanol / dichloromethane, 1: 1: 8, 1 hour, room temperature) resulted in an internally protected peptide (Figure 5). .

実施例3
PEG化抗原とパルミトイル化抗原の免疫原性の比較、ELISAおよび脱凝集アッセイ法
リポソーム抗原は上述の手順で作製した。配列PEG-Aβ1-16、PEG-Aβ4-11、およびPEG-Aβ22-35を、モノホスホリル脂質A(40 mg/mMリン脂質)を含む、ジミリストイルホスファチジルコリン(DMPC)、ジミリストイルホスファチジルエタノールアミン(DMPEA)、ジミリストイルホスファチジルグリセロール(DMPG)、およびコレステロール(モル比0.9:0.1:0.1:0.7)から作製されたリポソームを含むコンストラクト中に再構成した。
Example 3
Comparison of immunogenicity of PEGylated and palmitoylated antigens, ELISA and disaggregation assay Liposome antigens were generated as described above. Dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylethanol containing the sequences PEG-Aβ 1-16 , PEG-Aβ 4-11 , and PEG-Aβ 22-35 , monophosphoryl lipid A (40 mg / mM phospholipid) amine (DMPEA), dimyristoyl phosphatidyl glycerol (DMPG), and cholesterol (molar ratio 0.9: 0.1: 0.1: 0.7) was reconstituted constructs containing liposomes made from.

脱凝集アッセイ法
リポソーム-PEG-Aβ4-11で免疫化された動物から採取した9種類の血清(希釈率1:100)を、事前に形成されたAβ1-42繊維抗血清をインキュベートしたアッセイ法に使用した。このアッセイ法は、文献記載の手順で実施した(Nicolau et al., 2002)。
Disaggregation assay Nine types of serum (dilution ratio 1: 100) from animals immunized with liposome-PEG-Aβ 4-11 were incubated with preformed1-42 fibers and antisera Used in the assay. This assay was performed according to literature procedures (Nicolau et al., 2002).

実施例4
可溶化アッセイ法
ルミトイル化Aβ1-16/リポソーム/脂質Aで免疫化された2匹の動物から、Aβ1-42特異的抗体に特異性を示すことがわかっている、最近作製されたハイブリドーマクローンについて25個の上清を得た。これらを可溶化アッセイ法で、PNAS 2002, 99, 2332-2337に記載された方法および手順に従って検討した。得られた結果を図9にまとめる。
Example 4
Solubilization assay
From the immunized two animals in Pas Rumitoiru of A [beta] 1-16 / liposome / lipid A, it has been found to exhibit specificity for A [beta] 1-42 specific antibodies, recent fabricated hybridoma clones 25 Supernatant was obtained. These were examined in solubilization assays according to the methods and procedures described in PNAS 2002, 99, 2332-2337. The results obtained are summarized in FIG.

実施例5
固体NMR分光法によるAβ1-42-ペプチドのβシートからαらせんへの転移の調査
13C-標識アミノ酸の喪失を避けるために、Fmocペプチド合成によるAβ1-42の合成の検証を、試験合成によって、標識アミノ酸を使用せずに行った。Aβ1-42ペプチドが得られたか否かは、MALDI質量分析で検証可能であり、また逆相カラムおよびアンモニア緩衝アセトニトリル水勾配を用いるHPLCを用い精製手順を確立することができた
Example 5
Investigation of Aβ 1-42 -peptide transition from β-sheet to α-helix by solid-state NMR spectroscopy
In order to avoid the loss of 13 C-labeled amino acids, the synthesis of Aβ 1-42 by Fmoc peptide synthesis was verified by test synthesis without the use of labeled amino acids. Whether or not Aβ 1-42 peptide was obtained could be verified by MALDI mass spectrometry, and a purification procedure using HPLC using a reverse phase column and an ammonia buffered acetonitrile water gradient could be established .

アミロイドβペプチドの合成および精製に関する手順の成功裡の設定に続いて、12位(12val)に13C標識バリンを、かつ10位(10tyr)に13C標識チロシンを含む標識ペプチド合成された
Following the setting step successful regarding the synthesis and purification of amyloid β peptide, 12 a (12 val) in 13 C-labeled valine, and the labeled peptide comprising the 13 C-labeled tyrosine at position 10 (10 tyr) is synthesized It was .

実施例6
超分子抗原性コンストラクトによって誘導される抗体
mAbの作製
リポソーム抗原を文献記載の手順で作製した(Nicolau et al., 2002, PNAS, 99, 2332-37)。配列PEG-Aβ1-15、PEG-Aβ1-16、PEG-Aβ4-11、PEG-Aβ22-35、およびPEG-Aβ29-40を、モノホスホリル脂質A(40 mg/mMリン脂質)を含む、ジミリストイルホスファチジルコリン(DMPC)、ジミリストイルホスファチジルエタノールアミン(DMPEA)、ジミリストイルホスファチジルグリセロール(DMPG)、およびコレステロール(モル比0.9:0.1:0.1:0.7)から作製したリポソームを含むコンストラクトにおいて再構成した。これらの抗原、およびパルミトイル化Aβ1-16をC57BL/6マウスの免疫化に2週間間隔で使用した。10〜12匹の動物を各抗原で免疫化した。3〜6回のブースティング後に、治療的力価(1:5,000の希釈率の血清がELISAで陽性であった)を示したマウスを融合用に選択した。このマウスの脾臓由来のBリンパ球と骨髄腫細胞系列SP2-0の融合を実施した。IgG産生ハイブリドーマクローンを選択し、Aβ1-42ペプチドに対する特異的な結合に関してELISAによる検討を行った。
Example 6
Antibodies induced by supramolecular antigenic constructs
Production of mAbs Liposome antigens were produced by literature procedures (Nicolau et al., 2002, PNAS, 99, 2332-37). The sequences , PEG-Aβ 1-15 , PEG-Aβ 1-16 , PEG-Aβ 4-11 , PEG-Aβ 22-35 , and PEG-Aβ 29-40 , monophosphoryl lipid A (40 mg / mM phospholipid) ) containing, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidyl ethanolamine (DMPEA), dimyristoyl phosphatidyl glycerol (DMPG), and cholesterol (molar ratio 0.9: 0.1: 0.1: containing liposome prepared from 0.7) Reconstructed in the construct. These antigens, and palmitoylated Aβ 1-16 were used for immunization of C57BL / 6 mice at 2-week intervals. Ten to twelve animals were immunized with each antigen. After 3-6 boosts, mice that showed a therapeutic titer (1: 5000 dilution of sera were positive by ELISA) were selected for fusion. Fusion of B lymphocytes derived from the spleen of this mouse and the myeloma cell line SP2-0 was performed. IgG producing hybridoma clones were selected and examined by ELISA for specific binding to Aβ 1-42 peptide.

実施例8
抗体の有効性を評価する行動テスト
本明細書に記載された方法で誘導された抗体、すなわち修飾型アミロイドペプチド(PEG化アミロイドペプチドなど)を含む超分子抗原性コンストラクトによって誘導された抗体の有効性を評価するために、マウスを処理し、以下に概説する行動テストで評価する
Example 8
Behavioral tests to assess antibody efficacy. Efficacy of antibodies induced by the methods described herein, ie, antibodies induced by supramolecular antigenic constructs containing modified amyloid peptides (eg, PEGylated amyloid peptides). In order to evaluate, mice are treated and evaluated with the behavioral test outlined below.

モリス水迷路(Morris Water Maze)
プール(白色、円形容器、直径1 m)に20℃の水を張り、併せて二酸化チタンを無臭の非毒性の添加物として、退避プラットフォーム(escape platform)(水面の1 cm下)を見えなくするために使用する。個々のマウスの泳ぐ様子を、ビデオカメラで撮影して解析する(Ethovision, Noldus information Technology, Wageningen, the Netherlands)。トレーニングに先立ち、各マウスをプラットフォーム上に15秒間置。プレースナビゲーション(place navigation)テストのために、3日間連続で、3回の試行の5つのブロックにおいて、隠れたプラットフォームの位置を見つけるようにマウスをトレーニングする。各試行は、最大120秒間の強制的な水泳試験とそれに続く60秒間の休憩で構成される。個々のマウスがプラットフォームの位置に到達するまでに要した時間を測定する。連続5回の試行の結果から学習曲線を得る。
Morris Water Maze
Add 20 ° C water to the pool (white, circular container, 1 m in diameter), and use titanium dioxide as an odorless non-toxic additive to hide the escape platform (1 cm below the surface of the water) Use for. Each mouse swimming is analyzed with a video camera (Ethovision, Noldus information Technology, Wageningen, the Netherlands). Prior to training, rather 15 seconds location of each mouse on the platform. For the place navigation test, the mice are trained to find the location of the hidden platform in 5 blocks of 3 trials for 3 consecutive days. Each trial consists of a forced swim test and break 60 seconds subsequent up to 120 seconds. The time taken for each mouse to reach the platform position is measured. A learning curve is obtained from the results of five consecutive trials.

最終トレーニングの24時間後に、各動物を対象に、プラットフォームを除いた状態で、プローブ試行を行マウスに60秒間探索させ、当初のプラットフォーム位置の四分円(quadrant)探索時間、および交差(crossing)を測定する。
24 hours after the last training, targeting each animal, in a state excluding the platform, we intend rows probe trial. The mouse is allowed to search for 60 seconds and the quadrant search time and crossing of the initial platform position is measured.

オープンフィールド
黒色の垂直壁と半透明の床を擁するPlexiglasのオープンフィールドボックス(52×52×40 cm)をテストに使用し、ボックスの下からランプによって弱い光をあてる。コンピューターシステム(Ethovision, Noldus information Technology, Wageningen, the Netherlands)に、以下の異なる区画を割り当てる:コーナー(9×9 cm)、ボックスの4側部(壁から9 cm)、およびオープンフィールドボックスの中央部(43×43 cm)。各マウスをビデオカメラで撮影し、移動した距離(cm)、マウスの移動速度(cm/秒)、境界部(コーナー+側部)と比較した時の、中央部で要した期間/時間(秒)、および両区画をまたぐ回数(N)を測定することで活動を解析する(Ethovision)。各マウスをボックスの中央に配置、自由に探索させる(10分間)。テスト間にオープンフィールドボックスを清掃し、乾燥させてから、新しいマウスをボックスに入れる。
Open field A Plexiglas open field box (52 x 52 x 40 cm) with a black vertical wall and a translucent floor is used for the test, and the lamp is struck by a lamp from the bottom of the box. The computer system (Ethovision, Noldus information Technology, Wageningen, the Netherlands) is assigned the following different compartments: corner (9 x 9 cm), four sides of the box (9 cm from the wall), and the center of the open field box (43 x 43 cm). Shooting each mouse with a video camera, distance traveled (cm), moving speed of the mouse (cm / sec), period / time (seconds) required in the center when compared with the boundary (corner + side ) ) And analyze the activity by measuring the number of crossings (N) (Ethovision). Each mouse was placed in the center of the box, to search freely (10 min). Clean the open field box between tests and let it dry before placing a new mouse in the box.

JP2006554250A 2004-02-20 2005-02-22 Methods and compositions comprising supramolecular constructs Active JP4934433B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/783,975 US20040242845A1 (en) 2003-02-21 2004-02-20 Methods and compositions comprising supramolecular antigenic constructs and antibodies elicited against them
US10/783,975 2004-02-20
US10/958,211 US8663650B2 (en) 2003-02-21 2004-10-04 Methods and compositions comprising supramolecular constructs
US10/958,211 2004-10-04
PCT/US2005/005285 WO2005081872A2 (en) 2004-02-20 2005-02-22 Methods and compositions comprising supramolecular constructs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011131772A Division JP2011251964A (en) 2004-02-20 2011-06-14 Method and composition comprising supramolecular construct

Publications (3)

Publication Number Publication Date
JP2007527870A JP2007527870A (en) 2007-10-04
JP2007527870A5 true JP2007527870A5 (en) 2011-08-04
JP4934433B2 JP4934433B2 (en) 2012-05-16

Family

ID=46395388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006554250A Active JP4934433B2 (en) 2004-02-20 2005-02-22 Methods and compositions comprising supramolecular constructs

Country Status (11)

Country Link
JP (1) JP4934433B2 (en)
KR (1) KR101277004B1 (en)
CY (1) CY1116316T1 (en)
DK (1) DK2465533T3 (en)
ES (2) ES2385226T3 (en)
HK (2) HK1130698A1 (en)
HR (1) HRP20150612T1 (en)
HU (1) HUE025186T2 (en)
PT (1) PT2465533E (en)
RS (1) RS54074B1 (en)
SI (1) SI2465533T1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010224824B2 (en) * 2009-03-18 2014-02-20 Ac Immune S.A. Method for therapeutic use
CN103189050B (en) * 2010-10-26 2017-09-29 Ac免疫有限公司 The construct based on liposome comprising the peptide modified by hydrophobic part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187335B1 (en) * 1997-12-31 2001-02-13 Orasomal Technologies, Inc. Polymerizable fatty acids, phospholipids and polymerized liposomes therefrom
WO1999041279A2 (en) * 1998-02-13 1999-08-19 Arch Development Corporation Methods and compositions comprising the use of blocked b-amyloid peptide
EP1259563B2 (en) * 1999-12-22 2016-08-10 Nektar Therapeutics Method for the preparation of 1-benzotriazolyl carbonate esters of water soluble polymers.

Similar Documents

Publication Publication Date Title
US9975946B2 (en) Antibodies obtainable using supramolecular constructs
JP5249043B2 (en) Therapeutic vaccine
ES2714692T3 (en) Tauopathies treatment
US8748386B2 (en) Immunological targeting of pathological Tau proteins
US9289488B2 (en) Vaccine engineering
JP5722770B2 (en) Vaccine against amyloid folding intermediate
JP2003534351A (en) Synthetic, immunogenic but non-amyloidogenic peptide homologous to amyloid β for inducing an immune response to amyloid β and amyloid deposits
JP5559789B2 (en) Immunotherapeutic composition for the treatment of Alzheimer's disease
ES2934129T3 (en) Conjugate Vaccine Targeting a Disease-Causing Biological Protein
DK2758071T3 (en) VACCINE THERAPY
JP2007527870A5 (en)
DK2465533T3 (en) Methods and compositions comprising supramolecular constructs
MX2008007149A (en) Therapeutic vaccine