JP2007511453A5 - - Google Patents

Download PDF

Info

Publication number
JP2007511453A5
JP2007511453A5 JP2006530542A JP2006530542A JP2007511453A5 JP 2007511453 A5 JP2007511453 A5 JP 2007511453A5 JP 2006530542 A JP2006530542 A JP 2006530542A JP 2006530542 A JP2006530542 A JP 2006530542A JP 2007511453 A5 JP2007511453 A5 JP 2007511453A5
Authority
JP
Japan
Prior art keywords
explosive
metal
substrate
agent
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006530542A
Other languages
Japanese (ja)
Other versions
JP2007511453A (en
Filing date
Publication date
Priority claimed from GBGB0312433.6A external-priority patent/GB0312433D0/en
Application filed filed Critical
Publication of JP2007511453A publication Critical patent/JP2007511453A/en
Publication of JP2007511453A5 publication Critical patent/JP2007511453A5/ja
Pending legal-status Critical Current

Links

Claims (46)

その上に1つまたは複数の爆発性の薬剤が被着されている基板を備え、爆発性の薬剤の少なくとも1つが、結合剤、少なくとも1つの金属および少なくとも1つの非金属を備え、非金属が、金属酸化物、またはグループIIIまたはグループIVからのいずれかの非金属から選択される爆発デバイスであって、金属および非金属粒子が直径10μm以下であることを特徴とする爆発デバイス。   There is provided a substrate on which one or more explosive agents are deposited, wherein at least one of the explosive agents comprises a binder, at least one metal and at least one nonmetal, An explosive device selected from metal oxides, or any non-metal from Group III or Group IV, wherein the metal and non-metallic particles have a diameter of 10 μm or less. 金属および/または非金属粒子が直径1μm以下である請求項1に記載の爆発デバイス。   The explosion device according to claim 1, wherein the metal and / or nonmetal particle has a diameter of 1 μm or less. 金属および/または非金属粒子が直径0.1μm以下である請求項2に記載の爆発デバイス。   The explosion device according to claim 2, wherein the metal and / or nonmetal particle has a diameter of 0.1 μm or less. 被着される薬剤が、60を超える鈍感性の値を有する鈍感性の爆発性の薬剤を含む請求項1から3のいずれか一項に記載の爆発デバイス。   4. The explosive device according to any one of claims 1 to 3, wherein the applied drug comprises an insensitive explosive drug having an insensitivity value greater than 60. 鈍感性の値が150を超える請求項4に記載の爆発デバイス。   The explosive device according to claim 4, wherein the insensitivity value exceeds 150. 金属が、アルミニウム、チタニウムまたは鉄から選択される請求項1から5のいずれか一項に記載の爆発デバイス。   6. Explosive device according to any one of claims 1 to 5, wherein the metal is selected from aluminum, titanium or iron. 非金属が、ケイ素、ボロンまたは炭素から選択される請求項1から6のいずれか一項に記載の爆発デバイス。   The explosive device according to any one of claims 1 to 6, wherein the nonmetal is selected from silicon, boron or carbon. 金属酸化物が、酸化銅、酸化モリブデンまたは酸化ニッケルから選択される請求項1から6のいずれか一項に記載の爆発デバイス。   The explosive device according to any one of claims 1 to 6, wherein the metal oxide is selected from copper oxide, molybdenum oxide or nickel oxide. 金属がケイ素であり、非金属がボロンまたは炭素である請求項1から5のいずれか一項に記載の爆発デバイス。   The explosion device according to any one of claims 1 to 5, wherein the metal is silicon and the non-metal is boron or carbon. 結合剤が、インク樹脂から選択される請求項1から9のいずれか一項に記載の爆発デバイス。 Binder, explosion device according to any one of claims 1 to 9 is selected ink resins or al. インク樹脂が、エポキシ樹脂またはウレタンから選択される請求項10に記載の爆発デバイス。The explosion device according to claim 10, wherein the ink resin is selected from an epoxy resin or urethane. 結合剤が、エネルギー結合剤である請求項1から9のいずれかに記載の爆発デバイス。   The explosive device according to any one of claims 1 to 9, wherein the binder is an energy binder. エネルギー結合剤が、Polyglyn(グリシジルニトレートポリマー)、GAP(グリシジルアジドポリマー)またはPolynimmo(3−ニトレートメチル−3−メチルオキシタンポリマー)から選択される請求項1に記載の爆発デバイス。 Energy coupling agent, Polyglyn (glycidyl nitrate polymers), GAP explosion device according to claim 1 2, which is selected from (glycidyl azide polymer) or Polynimmo (3- nitrate-methyl-3-methyloxy tan polymer). 結合剤が、体積で爆発性の薬剤の10%から50%の範囲で存在している請求項1から1のいずれか一項に記載の爆発デバイス。 Binder, explosion device according to any one of claims 1 to 1 3 to 10% of the explosive agent is present in a range of 50% by volume. 結合剤が、体積で爆発性薬剤の30%から40%の範囲で存在している請求項1に記載の爆発デバイス。 Binder, explosion device according to claims 1 to 4 is present in the range of 30% explosive agent 40% by volume. 基板が不活性基板である請求項1から15に記載の爆発デバイス。The explosion device according to claim 1, wherein the substrate is an inert substrate. 不活性基板が、ポリエステル、ポリイミド、紙、PET、ポリスチレンまたはセラミックから選択された請求項1に記載の爆発デバイス。 Inert substrate, explosion device according polyesters, polyimides, paper, PET, to claim 1 6, selected from polystyrene or ceramic. 基板が、圧密された爆発性の材料の表面を備える請求項1から1のいずれか一項に記載の爆発デバイス。 Substrate, explosion device according to any one of claims 1 1 5 comprising a compacted surface of the explosive material. 被着された爆発性の薬剤が、使用中、加熱素子が爆発性の薬剤を点火するように、加熱素子と接続されている請求項1から1のいずれか一項に記載の、イニシエータの形態である爆発デバイス。 Deposited been explosive agent is in use, so that the heating element ignites the explosive agent, according to any one of claims 1, which is connected to the heating element 1 8, initiator Explosive device that is in form. 被着された爆発性の薬剤が、使用中、加熱素子を前記爆発性の材料と接続する爆薬列を形成するために、加熱素子および爆発性の材料と接続されている請求項1から1のいずれか一項に記載の爆発デバイス。 Deposited been explosive agent is in use, the heating element in order to form a explosive column connected to said explosive material, claim 1, which is connected to the heating element and the explosive material 1 9 Explosion device as described in any one of. 爆発性の薬剤が、爆発性の材料の点火の前に所望の遅延時間を使用中提供するように選択された長さを有する細長いパターンで基板上に被着される請求項20に記載の爆発デバイス。 21. The explosion of claim 20 , wherein the explosive agent is deposited on the substrate in an elongated pattern having a length selected to provide a desired delay time in use prior to ignition of the explosive material. device. 爆発性の薬剤が、らせん状またはジグザグ状のパターンで基板上に被着される請求項21に記載の爆発デバイス。 The explosive device of claim 21 , wherein the explosive agent is deposited on the substrate in a spiral or zigzag pattern. 被着される爆発性の薬剤が、加熱素子によって点火されたとき、爆発性の薬剤が、爆発性の薬剤が尽きるまで増加するエネルギー出力で燃焼するような形状で基板上に配置される請求項1から2のいずれか一項に記載の爆発デバイス。 An explosive agent to be deposited is disposed on a substrate in a shape such that when the explosive agent is ignited by a heating element, the explosive agent burns with an increasing energy output until the explosive agent is exhausted. explosion device according to any one of 1 9 2 2. 被着される爆発性の薬剤が、円形の形状で実質上形成され、加熱素子がその中央に配置されている請求項2に記載の爆発デバイス。 Explosive agent to be deposited is being substantially formed in a circular shape, an explosion device according to claim 2 3, heating element is arranged in the center. 被着される爆発性の薬剤が、加熱素子がその頂点に配置された実質上円のセグメントである形状で基板上に被着される請求項2に記載の爆発デバイス。 Explosive device according to claim 2 3 explosive agent to be deposited is, the heating element is deposited on a substrate in the form of a segment of substantially yen disposed at its apex. 基板が、1つまたは複数の空隙を有し、爆発性の薬剤が前記空隙を充填する請求項1から1のいずれか一項に記載の爆発デバイス。 The explosive device according to any one of claims 1 to 18 , wherein the substrate has one or more voids, and the explosive agent fills the voids. 基板が、その中に爆発性の薬剤が被着される複数の空隙を有し、推力を供給するために爆発性の薬剤の前記被着物を選択的に点火するための手段をさらに備える請求項1から1のいずれか一項に記載の爆発デバイスを含むマイクロスラスタデバイス。 The substrate further comprises means for selectively igniting the deposit of explosive drug to provide thrust, wherein the substrate has a plurality of voids in which the explosive drug is deposited. micro thruster device including an explosive device as claimed in any one of 1 to 1 5. 空隙が、0.25mmから1.0mmの範囲の直径を有する請求項2に記載のマイクロスラスタデバイス。 Voids, micro thruster device according to claim 2 7 having a diameter in the range of 0.25mm to 1.0 mm. 被着された爆発性の薬剤が、使用中、デバイスが、前記素子をガスを発生させる爆発性の材料と接続する爆薬列を形成するように、加熱素子と、およびガスを発生させる爆発性の材料と接続されている請求項1から2のいずれかに記載の爆発デバイスを備えるガス発生器用のイニシエータ。 When the explosive agent deposited is in use, the device forms a series of explosives that connect the element to the explosive material that generates the gas, and the explosive that generates the gas. An initiator for a gas generator comprising the explosion device according to any one of claims 19 to 25 , which is connected to a material. 使用中、発生されたガスが、車両、船または航空機内に配置されたエアバッグを膨張させる請求項2に記載のガス発生器用のイニシエータ。 In use, the generated gas, vehicles, the gas generator of claim 2 9, to inflate the air bag disposed in a ship or aircraft initiator. 発生されたガスが、車両、船または航空機内の乗客を拘束するためにシートベルトプリテンショナを駆動する請求項30に記載のガス発生器用のイニシエータ。 31. An initiator for a gas generator according to claim 30 , wherein the generated gas drives a seat belt pretensioner to restrain passengers in a vehicle, ship or aircraft. 被着された爆発性の薬剤が、使用中、着色された光または音の放出を生じさせるための1つまたは複数のグループ1またはグループ2金属塩をさらに備える請求項1から1のいずれか一項に記載の爆発デバイスを備える火工デバイス。 Deposited been explosive agent is in use, any one of claims 1 to 1 6, further comprising one or more of Group 1 or Group 2 metal salt for producing a release of colored light or sound A pyrotechnic device comprising the explosion device according to one item. a)結合剤の一部分を10μm未満の直径を有する粒子の形態の少なくとも1つの金属と混合するステップと、
b)結合剤のさらなる部分を少なくとも1つの非金属と混合し、非金属が、10μm未満の直径を有する粒子の形態の金属酸化物、またはグループIIIまたはグループIVからのいずれかの非金属から選択されるステップと、
c)爆発性の薬剤を提供するために、a)およびb)の生産物を一緒に混合するステップと、
d)そのようにして作成された薬剤を基板上に被着させるステップと、
e)薬剤を前記基板上で乾燥させるステップとを含む
爆発デバイスを作成する方法。
a) mixing a portion of the binder with at least one metal in the form of particles having a diameter of less than 10 μm;
b) mixing a further part of the binder with at least one non-metal, the non-metal being selected from metal oxides in the form of particles having a diameter of less than 10 μm, or any non-metal from group III or group IV And steps
c) mixing the products of a) and b) together to provide an explosive drug;
d) depositing the drug thus created on the substrate;
e) making an explosive device comprising drying a drug on the substrate.
ステップ(d)での被着プロセスが、噴霧、ブラシング、浸漬またはプリントによる請求項3に記載の爆発性のデバイスを作成する方法。 Step (d) in the deposition process, spraying, brushing, how to create explosive device of claim 3 3 by dipping or printing. プリントが、湿式プリント法によって達成される請求項3に記載の方法。 Printing method according to claim 3 4, which is achieved by a wet printing method. 湿式プリント法が、インクジェット、バブルジェット(登録商標)、スクリーンプリントまたはグラビアから選択される請求項3に記載の方法。 Wet printing method, inkjet, bubble jet method of claim 35 which is selected from screen printing or gravure. 爆発性のインクのジェットを噴霧するためのノズルを有するプリント装置内に爆発性の薬剤を装填するステップを含む請求項3に記載の方法。 The method of claim 35 including the step of loading the explosive agent in the printing apparatus having a nozzle for spraying a jet of explosive ink. デバイスが宇宙空間装置または航空機で使用するためのマイクロスラスタデバイスであり、かつ基板が爆発性の薬剤の被着物で充填される複数の空隙を有する請求項3から3のいずれか一項に記載の爆発デバイスを作製する方法。 Device is a micro-thruster device for use in space device or aircraft, and in any one of claims 3 3 3 7 having a plurality of voids which the substrate is filled with deposits of explosive agent A method of making the described explosive device. デバイスが、車両、船または航空機内で使用するためのガス発生デバイスであり、請求項3のステップ(d)の基板が加熱素子であり、かつ前記方法が、
f)ガスを発生する爆発性の材料をステップ(d)の生産物と密接に接触させて配置するステップと、
g)ステップ(f)の生産物を適切な密閉手段内に配置するステップとを含む
請求項3から3のいずれか一項に記載の爆発デバイスを作製する方法。
Device, a vehicle, a gas generating device for use in a ship or aircraft, is a substrate of step of claim 3 3 (d) is a heating element, and the method,
f) placing the explosive material generating gas in intimate contact with the product of step (d);
g) steps (a method of making an explosive device according to any one of claims 3 3 3 7 product of and placing in an appropriate sealing means f).
a)少なくとも1つの金属および/または少なくとも1つの非金属混合物が装置内で別々に保持されるように、プリント装置に、10μm未満の直径を有する粒子の形態の少なくとも1つの金属との結合剤の混合物を、および10μm未満の直径を有する粒子の形態の金属酸化物、またはグループIIIまたはグループIVからのいずれかの非金属から選択される少なくとも1つの非金属との結合剤の混合物を装填するステップと、
b)少なくとも1つの金属および少なくとも1つの非金属混合物の選択されたアリコートを吸い上げ、それを爆発性の薬剤を基板上に被着させる装置の動作の直前にその場で混合するステップとを含む
爆発性の薬剤を被着させる方法。
a) of the binder with at least one metal in the form of particles having a diameter of less than 10 μm, so that at least one metal and / or at least one non-metallic mixture are kept separately in the device Loading the mixture and a mixture of a metal oxide in the form of particles having a diameter of less than 10 μm, or a binder with at least one non-metal selected from any non-metal from group III or group IV When,
b) sucking up selected aliquots of at least one metal and at least one non-metal mixture and mixing it in situ just prior to operation of the device to deposit the explosive agent on the substrate. A method of depositing sex drugs.
金属および非金属粒子が直径1μm以下である請求項40に記載の爆発性の薬剤を被着させる方法。 The method for depositing an explosive drug according to claim 40 , wherein the metal and non-metal particles have a diameter of 1 µm or less. 金属および非金属粒子が直径0.1μm以下である請求項41に記載の爆発性の薬剤を被着させる方法。 The method for depositing an explosive drug according to claim 41 , wherein the metal and non-metal particles have a diameter of 0.1 µm or less. 揮発性の有機溶媒を伴う、請求項1から1のいずれか一項に記載の爆発性の薬剤を備える爆発性のインク。 An explosive ink comprising the explosive agent according to any one of claims 1 to 16 , accompanied by a volatile organic solvent. 揮発性の有機溶媒が、低アルキルアルコール、ケトンまたはエーテルからまたはC5からC10の範囲の石油エーテルから選択される請求項4に記載の爆発性のインク。 Volatile organic solvents, explosive ink according to claim 4 3 is selected from lower alkyl alcohols, petroleum ether ranging from ketones or ethers or C5 C10. 金属および/または非金属粒子が直径1μm以下である請求項4または4のいずれかに記載の爆発性のインク。 Explosive ink according to any one of claims 4 3 or 4 4 metal and / or non-metallic particles is less than the diameter 1 [mu] m. 金属および/または非金属粒子が直径0.1μm以下である請求項4に記載の爆発性のインク。 Explosive ink according to claim 4 5 metal and / or non-metallic particles is less than the diameter 0.1 [mu] m.
JP2006530542A 2003-05-30 2004-05-27 Explosion device Pending JP2007511453A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0312433.6A GB0312433D0 (en) 2003-05-30 2003-05-30 Devices
PCT/GB2004/002305 WO2004106268A2 (en) 2003-05-30 2004-05-27 Explosive devices

Publications (2)

Publication Number Publication Date
JP2007511453A JP2007511453A (en) 2007-05-10
JP2007511453A5 true JP2007511453A5 (en) 2007-06-21

Family

ID=9959040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006530542A Pending JP2007511453A (en) 2003-05-30 2004-05-27 Explosion device

Country Status (7)

Country Link
US (1) US20060243151A1 (en)
EP (1) EP1628936A2 (en)
JP (1) JP2007511453A (en)
AU (1) AU2004242753B2 (en)
GB (2) GB0312433D0 (en)
WO (1) WO2004106268A2 (en)
ZA (1) ZA200509451B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040234916A1 (en) 2003-05-21 2004-11-25 Alexza Molecular Delivery Corporation Optically ignited or electrically ignited self-contained heating unit and drug-supply unit employing same
EP1748971A1 (en) * 2004-05-20 2007-02-07 Alexza Pharmaceuticals, Inc. Stable initiativecompositions and igniters
GB0421167D0 (en) * 2004-09-23 2004-10-27 Sec Dep For Defence Awe The Novel energetic polyphosphazenes
RU2397154C2 (en) 2005-02-08 2010-08-20 Дайно Нобель Инк. Delay devices and method of making said devices
CN100412037C (en) * 2006-08-07 2008-08-20 北京京煤化工有限公司 Water-mixed preparation method of deferment medicine
US8048242B1 (en) * 2007-04-05 2011-11-01 Sandia Corporation Nanocomposite thermite ink
US7930976B2 (en) * 2007-08-02 2011-04-26 Ensign-Bickford Aerospace & Defense Company Slow burning, gasless heating elements
DE102008064331A1 (en) 2007-12-21 2009-06-25 Weiß, Uwe, Dr.-Ing. Activatable substance mixture for generating thermally activatable impulses in medical or medicine-technical applications, comprises layer having nanoparticles and pore-like or sponge-like structure, pigments, and radioactive substance
US7834295B2 (en) 2008-09-16 2010-11-16 Alexza Pharmaceuticals, Inc. Printable igniters
US20110167795A1 (en) * 2009-06-05 2011-07-14 Curators Of The University Of Missouri Nanothermite thrusters with a nanothermite propellant
US9296241B1 (en) * 2009-12-18 2016-03-29 The United States Of America As Represented By The Secretary Of The Army Ink jet printing and patterning of explosive materials
US8794152B2 (en) 2010-03-09 2014-08-05 Dyno Nobel Inc. Sealer elements, detonators containing the same, and methods of making
US8573123B1 (en) * 2010-05-18 2013-11-05 The United States Of America As Represented By The Secretary Of The Army Flexible detonator integrated with directly written energetics
US20120048963A1 (en) 2010-08-26 2012-03-01 Alexza Pharmaceuticals, Inc. Heat Units Using a Solid Fuel Capable of Undergoing an Exothermic Metal Oxidation-Reduction Reaction Propagated without an Igniter
US8608878B2 (en) 2010-09-08 2013-12-17 Ensign-Bickford Aerospace & Defense Company Slow burning heat generating structure
CN102139558B (en) * 2010-11-01 2012-11-14 福建海峡科化股份有限公司 Logo printing device of paper tube for industrial explosive cartridge packaging
LT3268072T (en) 2015-03-11 2024-02-12 Alexza Pharmaceuticals, Inc. Use of antistatic materials in the airway for thermal aerosol condensation process

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755878A (en) * 1954-09-21 1956-07-24 California Research Corp Method of creating seismic disturbances
US3753348A (en) * 1959-11-02 1973-08-21 Phillips Petroleum Co Propellant burning rate catalyst and method of propulsion
JPS515442B2 (en) * 1971-12-18 1976-02-20
FR2626875B1 (en) * 1975-12-17 1991-11-08 Onera (Off Nat Aerospatiale) IMPROVEMENTS IN IGNITION MEANS FOR FUEL GAS GENERATORS WITH SOLID REACTIVE MASS
GB2049651B (en) * 1979-04-30 1982-12-01 Brock Fireworks Coating surfaces with explosive or pyrotechniccompositions
DE3841690A1 (en) * 1988-12-10 1990-06-13 Diehl Gmbh & Co Igniter mixture
US4989515A (en) * 1989-08-08 1991-02-05 The United States Of America As Represented By The United States Department Of Energy Ignitor with stable low-energy thermite igniting system
SE467495B (en) * 1990-11-23 1992-07-27 Swedish Explosives Ab WANT TO INCREASE THE EFFECTS OF ENERGY-EFFICIENT EXPLOSIVE MIXTURES, AND ACCORDINGLY TO PRODUCING EXPLOSIVE MIXTURES MIXTURES
US5650590A (en) * 1995-09-25 1997-07-22 Morton International, Inc. Consolidated thermite compositions
US5885321A (en) * 1996-07-22 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Preparation of fine aluminum powders by solution methods
US6217682B1 (en) * 1997-10-27 2001-04-17 Cordant Technologies Inc. Energetic oxetane propellants
WO2000000453A2 (en) * 1998-06-29 2000-01-06 Sm Schweizerische Munitionsunternehmung Ag Pyrotechnic layer for targeted data destruction on data carriers
JP4013540B2 (en) * 2000-12-27 2007-11-28 日本油脂株式会社 Gas generant composition
US6679960B2 (en) * 2001-04-25 2004-01-20 Lockheed Martin Corporation Energy dense explosives
JP4244365B2 (en) * 2001-05-10 2009-03-25 日本化薬株式会社 Ignition composition and igniter using the ignition composition
EP1282170A1 (en) * 2001-07-30 2003-02-05 Abb Research Ltd. Short-circuit resistant power semiconductor device
US6627013B2 (en) * 2002-02-05 2003-09-30 Greg Carter, Jr. Pyrotechnic thermite composition
WO2004011396A2 (en) * 2002-07-29 2004-02-05 The Regents Of The University Of California Lead-free electric match compositions

Similar Documents

Publication Publication Date Title
JP2007511453A5 (en)
ZA200509451B (en) Explosive devices
Kim et al. Micro-and nanoscale energetic materials as effective heat energy sources for enhanced gas generators
US7834295B2 (en) Printable igniters
US11326556B2 (en) Hybrid rocket motor with integral oxidizer tank
US10286599B2 (en) Additive manufactured thermoplastic-nanocomposite aluminum hybrid rocket fuel grain and method of manufacturing same
US6666476B2 (en) Expandable fluid inflator device with pyrotechnic coating
JP4130496B2 (en) Method for making the airbag gradually inflatable
US10654762B2 (en) Additive manufactured combustible element with fuel and oxidizer
US3827715A (en) Pyrotechnic gas generator with homogenous separator phase
Ainsley et al. Freeform fabrication by controlled droplet deposition of powder filled melts
JP3027180U (en) Airbag igniter and gas generator
Chen et al. Additive manufacturing of energetic materials: Tailoring energetic performance via printing
JPS604012B2 (en) Fluid supply device for vehicle safety equipment
US9296241B1 (en) Ink jet printing and patterning of explosive materials
Wang et al. Carbon fibers enhance the propagation of high loading nanothermites: in situ observation of microscopic combustion
Li et al. Fabrication and characterization of mussel-inspired layer-by-layer assembled CL-20-based energetic films via micro-jet printing
JP2007521187A (en) Gunpowder type linear inflator
Shen et al. Pressure loss and compensation in the combustion process of Al–CuO nanoenergetics on a microheater chip
Jiba et al. Coating processes towards selective laser sintering of energetic material composites
Zaky et al. Review of nano-thermites: A pathway to enhanced energetic materials
Li et al. Design and fabrication of CL-20-based composites with an ordered close-packing structure by inkjet printing
US8573123B1 (en) Flexible detonator integrated with directly written energetics
JP2007511395A (en) Charged dispersion inflator system
Zarko The prospects of using nanoenergetic materials in solid rocket propulsion