JP2007508702A - Surface emitting semiconductor laser with structured waveguide. - Google Patents

Surface emitting semiconductor laser with structured waveguide. Download PDF

Info

Publication number
JP2007508702A
JP2007508702A JP2006534688A JP2006534688A JP2007508702A JP 2007508702 A JP2007508702 A JP 2007508702A JP 2006534688 A JP2006534688 A JP 2006534688A JP 2006534688 A JP2006534688 A JP 2006534688A JP 2007508702 A JP2007508702 A JP 2007508702A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
structured
doped
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006534688A
Other languages
Japanese (ja)
Inventor
マルクス オルトズィーフェル
Original Assignee
フェルティラス ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フェルティラス ゲーエムベーハー filed Critical フェルティラス ゲーエムベーハー
Publication of JP2007508702A publication Critical patent/JP2007508702A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/933Germanium or silicon or Ge-Si on III-V

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The laser has an active zone with a pn junction enclosed by a first n-doped semiconducting layer and at least one p-doped semiconducting layer, a tunnel contact layer on the p-side of the active zone with an aperture with an aperture diameter and depth and covered by an n-doped current carrying layer (7) with an elevation in the aperture region. A structured layer (8) about the lateral area of the elevation has a thickness selected so its optical thickness is at least equal to that of the current carrying layer near the elevation depth.

Description

本発明は、構造化導波路を有する表面放射半導体レーザに関する。   The present invention relates to a surface emitting semiconductor laser having a structured waveguide.

垂直空洞型表面放射レーザ(VCSEL)は、光放射が半導体チップの表面に対して垂直に行われる半導体レーザである。垂直空洞型表面放射レーザ・ダイオードは、電力消費量が小さいこと、ウェハー上のレーザ・ダイオードを直接検査できること、光ファイバに長手方向の単一モード・スペクトルを単純に結合できること、2次元マトリクスに表面放射レーザ・ダイオードを接続できることのように、複数の長所を従来の表面放射レーザ・ダイオードと比べると備えている。   A vertical cavity surface emitting laser (VCSEL) is a semiconductor laser in which light emission occurs perpendicular to the surface of a semiconductor chip. Vertical cavity surface emitting laser diodes have low power consumption, can directly inspect laser diodes on the wafer, can simply couple a longitudinal single-mode spectrum to an optical fiber, surface in a two-dimensional matrix There are several advantages over conventional surface emitting laser diodes, such as the ability to connect emitting laser diodes.

光ファイバを用いる通信技術の分野では、波長依存性の分散と吸収とのために、約1.3μm〜2μmの波長範囲で特に1.31μm又は1.55μmの波長周辺でVCSELのニーズがある。このタイプの長波長レーザ・ダイオードは、今まで、InPベースの化合物半導体から製造されていた。GaAsベースのVCSELは、1.3μm未満の短い波長範囲に適している。   In the field of communication technology using optical fibers, there is a need for VCSELs in the wavelength range of about 1.3 μm to 2 μm, especially around wavelengths of 1.31 μm or 1.55 μm, due to wavelength dependent dispersion and absorption. This type of long wavelength laser diode has heretofore been manufactured from an InP-based compound semiconductor. GaAs-based VCSELs are suitable for short wavelength ranges below 1.3 μm.

今までの解決方法は、次のように要約される。   The previous solutions can be summarized as follows.

レーザ・ダイオードの横方向のビームの特性は、対応する導波路の形状にかなり影響される。約1.3μm未満の放射波長を有するGaAsベースVCSELの場合、導波路は、選択的に酸化されたAl(Ga)As層から製造される(“GaInNAs能動領域を有する電気ポンプ式10Gbit/s MOVPE成長型モノリシック1.3μmVCSEL”エレクトロニクスレター、第38巻、No.7(2002年3月28日)、322〜324頁を参照)。   The characteristics of the lateral beam of the laser diode are significantly affected by the shape of the corresponding waveguide. In the case of a GaAs-based VCSEL having an emission wavelength of less than about 1.3 μm, the waveguide is fabricated from a selectively oxidized Al (Ga) As layer (“electrically pumped 10 Gbit / s MOVPE with GaInNAs active region). Growing Monolithic 1.3 μm VCSEL ”Electronics Letter, Vol. 38, No. 7 (March 28, 2002), pages 322-324).

特に最良の結果が、パワーと作動温度と単一モードのパワーと変調帯域幅の点から見て、1.3μmを超える波長範囲の長い波長のVCSELに対して、InPベースBTJ(埋込トンネル接合)のVCSELにより得られる。   In particular, the best results are seen for InP-based BTJ (buried tunnel junctions) for long wavelength VCSELs in the wavelength range above 1.3 μm in terms of power, operating temperature, single mode power and modulation bandwidth. ) VCSEL.

埋込トンネル接触部の製造と構造について、図1を参照しながら事例を用いて説明する。低帯域ギャップを有する高度ドーピングp+/n+層のペア101、102を作るために、分子線エピタキシャル成長(MBE)が用いられる。トンネル接触部103自体は、これらの2層の間に形成されている。円形又は楕円形領域は、n+ドーピング層102とトンネル接触部103とp+ドーピングの層101の一部又は全部とから実質的に形成されていて、反応性イオン・エッチング(RIE)によって形作られている。第2のエピタキシャル・サイクルで、この領域はnドーピングInP(層104)で過剰成長するので、トンネル接触部が“埋め込まれる”。過剰成長層104とp+ドーピング層101との間の接触領域は、電圧印加時に障壁層として作用する。電流は一般的に3×10-6Ωcm2の抵抗でトンネル接触部を介して流れる。電流の流れは、したがって、能動ゾーン108の作動領域に制限される。生成熱量は、電流が高抵抗pドーピング層から低抵抗nドーピング層に流れるので小さい。 The manufacture and structure of the buried tunnel contact portion will be described using an example with reference to FIG. Molecular beam epitaxy (MBE) is used to create highly doped p + / n + layer pairs 101, 102 with a low band gap. The tunnel contact portion 103 itself is formed between these two layers. The circular or elliptical region is substantially formed from the n + doped layer 102, the tunnel contact 103, and part or all of the p + doped layer 101 and is formed by reactive ion etching (RIE). ing. In the second epitaxial cycle, this region is overgrown with n-doped InP (layer 104) so that the tunnel contact is “buried”. The contact region between the overgrown layer 104 and the p + doping layer 101 acts as a barrier layer when a voltage is applied. The current generally flows through the tunnel contact with a resistance of 3 × 10 −6 Ωcm 2 . Current flow is thus limited to the active region of the active zone 108. The amount of heat generated is small because current flows from the high resistance p-doped layer to the low resistance n-doped layer.

トンネル接触部の過剰成長は、図2に示すように、その上方に位置する層の厚みにわずかの変動をもたらす。これは、横方向の導波作用に悪い影響を与える。より高い横モードの形成が、特に比較的大きな開口において促進される。したがって、小さい開口と、それに応じた低いレーザ・パワーが、特に光ファイバ通信技術で必要な単一モード動作に使用できる。   Overgrowth of the tunnel contact results in a slight variation in the thickness of the overlying layer, as shown in FIG. This adversely affects the lateral waveguiding. The formation of higher transverse modes is facilitated especially at relatively large openings. Thus, a small aperture and correspondingly low laser power can be used for single mode operation, particularly required in fiber optic communication technology.

InPベースVCSELの全体の構造について、図2を参照しながら事例を用いて、ここで説明する。   The overall structure of the InP-based VCSEL will now be described using an example with reference to FIG.

この構造で、埋込トンネル接合部(BTJ)は他の方式で周辺に設けられているので、能動ゾーン106は、p+ドーピング層101とn+ドーピング層102との間でトンネル接触部(直径DBTJ)上に位置している。レーザ放射は、矢印116が示す方向に向かう。能動ゾーン106は、pドーピング層105(例えば、InAlAs)とnドーピング層108(例えば、InAlAs)とで囲われている。能動ゾーン106上の先端側ミラー109は、約35InGa(Al)As/InAlAs層のペアを含有するエピタキシャルDBR(分布反射型レーザ)から成るので、約99.4%の反射率を生じさせる。後端側ミラー112は、DBRとして誘電層のスタックから成り、金の層で仕上げているので、ほぼ99.75%の反射率を生じさせる。絶縁層113は横方向の絶縁に用いる。環状に構造化した更なるp側接触層111が、層104と接触層114との間に設けられている。図2は、過剰成長トンネル接触部の構造が更なる層に伝搬(この場合、下向きに)する様子を示す。 In this structure, the buried tunnel junction (BTJ) is provided in the periphery in another manner, so that the active zone 106 has a tunnel contact (diameter) between the p + doping layer 101 and the n + doping layer 102. D BTJ ). Laser radiation is directed in the direction indicated by arrow 116. The active zone 106 is surrounded by a p-doped layer 105 (eg, InAlAs) and an n-doped layer 108 (eg, InAlAs). The tip side mirror 109 on the active zone 106 consists of an epitaxial DBR (distributed reflection laser) containing a pair of about 35 InGa (Al) As / InAlAs layers, resulting in a reflectivity of about 99.4%. The rear end side mirror 112 is composed of a stack of dielectric layers as DBR and is finished with a gold layer, so that a reflectivity of approximately 99.75% is generated. The insulating layer 113 is used for lateral insulation. A further p-side contact layer 111 structured in a ring is provided between the layer 104 and the contact layer 114. FIG. 2 shows how the structure of the overgrown tunnel contact propagates (in this case downwards) to further layers.

誘電ミラー112と統合接触層114とヒートシンク115との組み合わせにより、エピタキシャル多層構造と比べると、熱伝導性が非常に改善される結果になる。電流は、接触層114を経由して又は統合ヒートシンク115とn側接触点110とを経由して注入される。このようなVCSELタイプの製造と特徴についての更なる詳細について、下記の引用文献を参照する。   The combination of the dielectric mirror 112, the integrated contact layer 114, and the heat sink 115 results in greatly improved thermal conductivity compared to an epitaxial multilayer structure. The current is injected via the contact layer 114 or via the integrated heat sink 115 and the n-side contact point 110. Reference is made to the following cited references for further details on the manufacture and characteristics of such VCSEL types.

図2に示す構造を有するVCSELは、刊行物である“高効率の低スレッショルド・インデックス・ガイド1.5μm長波長垂直空洞型表面放射レーザ”、応用物理レター、第76巻、No.16(2000年4月17日)、2179〜2181頁の主題となっている。7mW(20℃、CW)までの出力パワーを有する同じタイプのVCSELが、“大出力パワーと高作動温度による1.55μmの垂直空洞型表面放射レーザ・ダイオード”、エレクトロニクスレター、第37巻、No.21(2001年10月11日)1295〜1296頁に発表されている。公開資料“1.83μm垂直空洞型表面放射レーザの90℃連続波作動”IEEEフォトニクス技術レター、第12巻、No.11(2000年11月)1435〜1437頁は、1.83μmのInGaAlAs−InPのVCSELに関するものである。“1.55μmの垂直空洞型表面放射レーザによる高速データ送信”、ポストデッドライン・ペーパー、光通信に関する第28回欧州会議(2002年9月8〜12日)は、10Gbit/sまでの変調周波数での無エラー・データ送信のためのBTJ−VCSELの利用について論じている。最後に、2.01μm(CW)の放射波長を有するVCSELは、“2μmの放射波長による電気ポンプ式室温CW−VCSEL”エレクトロニクスレター、第39巻、No.1(2003年1月9日)、57〜58頁から知られている。   The VCSEL having the structure shown in FIG. 2 is a publication “Highly Efficient Low Threshold Index Guide 1.5 μm Long Wavelength Vertical Cavity Surface Emitting Laser”, Applied Physics Letter, Vol. 16 (April 17, 2000), 2179-2181 pages. The same type of VCSEL with an output power up to 7 mW (20 ° C., CW) is described as “1.55 μm vertical cavity surface emitting laser diode with high output power and high operating temperature”, Electronics Letter, Vol. 37, No. . 21 (October 11, 2001) 1295-1296. Published material “90 ° C continuous wave operation of 1.83 μm vertical cavity surface emitting laser” IEEE Photonics Technical Letter, Vol. 11 (November 2000) pages 1435 to 1437 relate to a 1.83 μm InGaAlAs-InP VCSEL. “High-speed data transmission with 1.55 μm vertical cavity surface emitting laser”, Post Deadline Paper, 28th European Conference on Optical Communications (September 8-12, 2002), modulation frequencies up to 10 Gbit / s Discusses the use of BTJ-VCSEL for error-free data transmission in Finally, VCSELs having a radiation wavelength of 2.01 μm (CW) are described in “Electropumped room temperature CW-VCSEL with radiation wavelength of 2 μm” Electronics Letter, Vol. 1 (January 9, 2003), pages 57-58.

1.3μm未満の放射波長を有するGaASベースのVCSELと対照的に、横方向酸化方法は論述のBTJ−VCSELに使用できない。なぜならば、用いる材料はアルミニウム成分が非常に微量であり、他に考えられるAlAsSbのような材料は、十分な品質の酸化層を今まで与えていない。前述のBTJ−VCSELでは、製造プロセスに起因する横方向の導波作用が、共振器の横方向の長さの変動として行われる。その代わりに、選択的にエッチングして離れた層(“AlGaAsSb−AlAsSb DBRを有する1.55μmのImP格子整合VCSEL”、量子電子の選択トピックに関するIEEEジャーナル、第7巻、No.2(2001年3月/4月)、224〜230頁を参照)、陽子注入(“変性DBRとトンネル接合注入: CW RTモノリシック長波長VCSEL”、量子電子の選択トピックに関するIEEEジャーナル、第5巻、No.3(1999年5月/6月)、520〜529頁を参照)、又は選択的に酸化された変性AlAs層(“メトロWDMアプリケーション用の1.5〜1.6μmVCSEL”リン化インジウムと関連材料に関する2001国際会議の議事録、第13IPRM(2001年5月14〜18日)、日本国奈良)は、例えば、他の長波長VCSELデザインに用いられている。   In contrast to GaAS-based VCSELs with emission wavelengths less than 1.3 μm, the lateral oxidation method cannot be used for the BTJ-VCSEL discussed. This is because the material used has a very small amount of aluminum component, and other conceivable materials such as AlAsSb have not provided a sufficient quality oxide layer so far. In the above-described BTJ-VCSEL, the lateral waveguide effect resulting from the manufacturing process is performed as a variation in the lateral length of the resonator. Instead, selectively etched away layers (“1.55 μm ImP lattice matched VCSEL with AlGaAsSb—AlAsSb DBR”, IEEE Journal on Quantum Electron Selection Topic, Vol. 7, No. 2 (2001 (March / April), see pages 224-230), proton injection ("modified DBR and tunnel junction injection: CW RT monolithic long wavelength VCSEL", IEEE Journal on Quantum Electron Selection Topic, Vol. 5, No. 3 (See May / June 1999, pages 520-529), or selectively oxidized modified AlAs layers ("1.5-1.6 μm VCSEL for metro WDM applications" relating to indium phosphide and related materials Minutes of 2001 International Conference, 13th IPRM (May 14-18, 2001), Japan Kuniara) is used, for example, in other long wavelength VCSEL designs.

本発明の目的は、したがって、BTJ−VCSELの場合に従来の強力で好ましい多重モード動作であるインデックス・ガイドを、より弱いインデックス・ガイド又はゲイン・ガイドに置き換え、さらに任意により高い横モードを弱めることにある。横モード特性の調整は、従来のBTJ−VCSELよりも、高い単一モード・パワーを有する大きな開口でも単一モードの動作を可能にする。   The object of the present invention is therefore to replace the index guide, which is a powerful and preferred multimode operation in the case of BTJ-VCSEL, with a weaker index guide or gain guide, and optionally weaken the higher transverse mode. It is in. The adjustment of the transverse mode characteristics allows single mode operation even with large apertures having higher single mode power than conventional BTJ-VCSEL.

この目的は、本発明に基づいて特許請求される表面放射半導体レーザによって実現される。更なる構成は、各々の従属請求項と次に述べる説明から明らかになる。   This object is achieved by a surface emitting semiconductor laser claimed according to the invention. Further configurations will become apparent from the respective dependent claims and the following description.

本発明は、p−n接合部を有するとともに第1のnドーピング半導体層と少なくとも1つのpドーピング半導体層とに囲まれた能動ゾーンと、前記能動ゾーンのp側にトンネル接触層とを具備する表面放射半導体レーザであって、前記トンネル接触層は、開口直径と開口深さとを有する開口を具備し、かつnドーピング電流搬送層でカバーされ、隣接する電流搬送層は、前記開口の領域に、隆起部直径と隆起部深さとを有する隆起部を具備するとともに、前記隆起部の側面領域の少なくとも周辺で前記電流搬送層上に構造化層が設けられ、その厚みが前記構造化層の光学的厚みが隆起部深さの領域において前記電流搬送層の光学的厚みと少なくとも等しくなるように選択されている。   The present invention comprises an active zone having a pn junction and surrounded by a first n-doped semiconductor layer and at least one p-doped semiconductor layer, and a tunnel contact layer on the p side of the active zone. A surface emitting semiconductor laser, wherein the tunnel contact layer comprises an opening having an opening diameter and an opening depth and is covered with an n-doping current carrying layer, and an adjacent current carrying layer is formed in the region of the opening, A ridge having a ridge diameter and a ridge depth; and a structured layer is provided on the current carrying layer at least around a side region of the ridge, the thickness of which is optical of the structured layer. The thickness is selected to be at least equal to the optical thickness of the current carrying layer in the region of the ridge depth.

本発明を理解しやすくするために、一般的な表面放射半導体レーザの周知の構造における条件について、説明の導入部で詳細に記したように最初に説明する。そこで、図3を参照して説明するが、ここでは、一般的な表面放射半導体レーザの周知の構造における条件を、拡大縮小せずに、概略的に図示している。図は、電流搬送層(7)とnドーピング接触層8との間の境界領域を示しており、そこを経由して電流が全体的に供給され、厚みd3を有して高度にnドーピングしたInGaAsから層7に好都合に成長する。トンネル接触部の過剰成長によって形成され、かつ厚みd2(=隆起部の深さ)の層7を有する隆起部が15として図示されている。接触層8は、従来からエピタキシャル・ステップで設けられ、隆起部15の領域で選択的にエッチングして除去される。構造化接触層8は、50〜100nmの厚みd3を全体的に備えて、小さい接触抵抗にし、その内部エッジで、トンネル接触隆起部15から数マイクロメーター(典型的に4〜5μm)の距離にある。図示する構造で、共振器の長さは、隆起部15の外部の領域よりも中心ではd2だけ太い。有効屈折率は、外部領域よりも中心では(典型的に1%だけ)高いので、強いインデックス・ガイドになる。これは、特に大きい開口で、より高いモードの形成に寄与する。   In order to facilitate understanding of the present invention, the conditions in the known structure of a typical surface emitting semiconductor laser will first be described as detailed in the introduction of the description. Therefore, although described with reference to FIG. 3, here, conditions in a known structure of a general surface emitting semiconductor laser are schematically illustrated without being enlarged or reduced. The figure shows the boundary region between the current carrying layer (7) and the n-doped contact layer 8, through which the current is supplied entirely and is highly n-doped with a thickness d3. Conveniently grows from InGaAs to layer 7. A ridge formed by overgrowth of the tunnel contact and having a layer 7 of thickness d2 (= depth of the ridge) is shown as 15. The contact layer 8 is conventionally provided in an epitaxial step and is selectively etched away in the region of the ridges 15. The structured contact layer 8 is generally provided with a thickness d3 of 50 to 100 nm, resulting in a low contact resistance, with a distance of a few micrometers (typically 4 to 5 μm) from the tunnel contact ridge 15 at its inner edge. is there. In the structure shown in the drawing, the length of the resonator is thicker by d2 at the center than the region outside the raised portion 15. The effective refractive index is higher in the center (typically by 1%) than in the outer region, making it a strong index guide. This contributes to the formation of higher modes, especially with large openings.

インデックス・ガイドを弱めるために、本発明は、そこで、隆起部15の横方向の領域の少なくとも周辺に、構造化層を加えることを提案する。その光学的な厚みは、隆起部15の領域の電流搬送層7の光学的厚み、すなわち、厚みd2を有する隆起部15の光学的厚みと少なくとも等しい。本発明に基づく構造化層は、したがって、隆起部15の中心と外部の領域における屈折率の違いを補正するので、インデックス・ガイドが著しく弱まる結果になる。   In order to weaken the index guide, the present invention therefore proposes to add a structured layer at least around the lateral region of the ridge 15. The optical thickness is at least equal to the optical thickness of the current carrying layer 7 in the region of the raised portion 15, that is, the optical thickness of the raised portion 15 having the thickness d2. The structured layer according to the invention therefore corrects for the difference in refractive index between the center of the ridge 15 and the outer region, resulting in a significantly weakened index guide.

したがって、本発明に基づく構造化層は、隆起部15に隣接するか又は隆起部から指定の最大距離内にあることが必要になる。この最大距離は、2μm以下、好ましくは、1μm以下にすべきことが分かった。この最大距離は、したがって、隆起部15の外部エッジから(オプションの)接触層8のこれまでの典型的な距離の40〜50%、好ましくは20〜25%に対応している(図3を参照)。   Therefore, the structured layer according to the present invention needs to be adjacent to the ridge 15 or within a specified maximum distance from the ridge. It has been found that this maximum distance should be 2 μm or less, preferably 1 μm or less. This maximum distance therefore corresponds to 40-50%, preferably 20-25% of the typical distance of the (optional) contact layer 8 from the outer edge of the ridge 15 to date (see FIG. 3). reference).

本発明に基づく構造化層がnドーピング接触層であると、効果的であることが立証された。   It has proved effective if the structured layer according to the invention is an n-doped contact layer.

このタイプの接触層は、従来技術から自明のことである(図3を参照)。本実施例では、接触層の厚みは、したがって、その光学的厚みが、例えば、隆起部15の深さd2の領域における電流搬送層の光学的厚みと等しくなるようにされ(図3を参照)、そこでは、光学的フィールドの十分な影響を受けるために、接触層は隆起部から1〜2μmより大きくすべきでない。   This type of contact layer is self-evident from the prior art (see FIG. 3). In this example, the thickness of the contact layer is thus made such that its optical thickness is equal to, for example, the optical thickness of the current carrying layer in the region of depth d2 of the raised portion 15 (see FIG. 3). There, the contact layer should not be larger than 1-2 μm from the ridge in order to be fully affected by the optical field.

別の実施例では、本発明に基づく構造化層が、オプションの接触層から独立して設けられている。前述の構造化層が製造される材料が自由に選択され、層は電流搬送層の隆起部に好都合に直接隣接しており、そこでは、同じ原理が、隆起部から任意の距離と、構造化層としての接触層に関する本構造化層の厚みとに適用される。自由な材料選択は、特に、外部領域における強いフィールドの及ぶ範囲のために、より高いモードを開口のエッジで更に集中的に抑制するために使用できるので、これらのモードが発振することを回避できる。各波長に著しい吸収作用を有する材料は、本趣旨に全体的に適している。1.3μmと1.55μmの間の波長に、アモルファス・シリコンが特に適している。チタンは、例えば、全体的な従来の波長範囲に適している。   In another embodiment, a structured layer according to the present invention is provided independently of the optional contact layer. The material from which the aforementioned structured layer is made is freely chosen, and the layer is conveniently directly adjacent to the ridge of the current carrying layer, where the same principle is structured at any distance from the ridge Applied to the thickness of the structured layer with respect to the contact layer as a layer. Free material selection can be used to more intensely suppress higher modes at the edge of the aperture, especially because of the strong field coverage in the outer region, thus avoiding oscillation of these modes. . Materials having a significant absorption action at each wavelength are generally suitable for this purpose. Amorphous silicon is particularly suitable for wavelengths between 1.3 μm and 1.55 μm. Titanium is suitable, for example, for the entire conventional wavelength range.

前述の実施例では、本発明に基づく構造化層を囲む接触層をも設けることができる。該接触層の幾何学的形状は、導波作用が本発明に基づく構造化層によって既に補償されているので、実質的に自由に選択できる。   In the embodiments described above, a contact layer surrounding the structured layer according to the invention can also be provided. The geometry of the contact layer can be chosen virtually freely since the waveguiding is already compensated by the structured layer according to the invention.

本発明は、インデックス・ガイドが弱められるだけでなく変換されることを可能にするので、反ガイド効果も呈して、高いモードを除去することが分かった。本発明に基づく構造化層の(オプションの)厚みは、したがって、トンネル接触部に起因する隆起部の深さより、かなり太くなるように選択される。したがって隆起部が外部領域に生成され、そこでは、構造化層が吸収作用を有する場合に、高いモードの除去が更に有効になる。反ガイド作用を有する本実施例では、用いられる構造化層は、再びnドーピング接触層又は層の組み合わせになり、その材料は、構造化層とオプションの追加接触層として自由に選択できる。   It has been found that the present invention also exhibits an anti-guiding effect and eliminates high modes since the index guide can be converted as well as weakened. The (optional) thickness of the structured layer according to the invention is therefore selected to be considerably thicker than the depth of the ridge due to the tunnel contact. Thus, ridges are created in the outer region, where high mode removal is even more effective when the structured layer has an absorbing action. In this embodiment with anti-guiding action, the structured layer used is again an n-doped contact layer or combination of layers, the material of which can be freely selected as a structured layer and an optional additional contact layer.

本発明について、図面で図示する種々の実施例を参照して詳細に次に説明する。   The invention will now be described in detail with reference to various embodiments illustrated in the drawings.

図1〜3に関して、参照番号は、説明の前述の部分に付記されている。   1-3, reference numerals are appended to the foregoing portion of the description.

図4は、これから説明する、表面放射半導体レーザの製造中に形成された構造の事例を示す。InP基板1から始まって、nドーピング・エピタキシャル・ブラッグ・ミラー2とnドーピング閉込め層3と能動ゾーン4とpドーピング閉込め層5とが、第1のエピタキシャル成長プロセスで連続して加えられる。この構造は、例えば、高度のp+とn+ドーピングInGaAs層のケースごとに、トンネル接触層6の成長によって完成する。開口は、その寸法が自由に選択できて、層5まで伸長するか又は層6のpドーピング部の内部で終えており、後のリソグラフィック及びエッチング・プロセスで形成される。一般的なエッチングの深さは、このケースで20nmである。 FIG. 4 shows an example of a structure formed during the manufacture of a surface emitting semiconductor laser as will be described. Starting from the InP substrate 1, an n-doping epitaxial Bragg mirror 2, an n-doping confinement layer 3, an active zone 4 and a p-doping confinement layer 5 are successively added in a first epitaxial growth process. This structure is completed by the growth of the tunnel contact layer 6 for each case of highly p + and n + doped InGaAs layers, for example. The opening can be freely chosen in its dimensions and extends to layer 5 or ends within the p-doping portion of layer 6 and is formed in a later lithographic and etching process. A typical etching depth is 20 nm in this case.

第2のエピタキシャル・ステップでは、好都合にInPから成る上部nドーピング電流供給層7と、好都合に高度のnドーピングInGaAsから成るオプションのn−接触層8とが、厚みd3に成長する。この第2のエピタキシャル・ステップで、横方向のセミ軸比は、プロセス・パラメータ又はエピタキシャル方法(例えば、MBE(分子線エピタキシャル成長)、CBE(化学ビーム成長)又はMOVPE(有機金属気相成長)に基づいて、修正又は維持される。修正により、例えば、以前は円形のトンネル接触部の楕円開口になる。   In the second epitaxial step, an upper n-doping current supply layer 7 advantageously made of InP and an optional n-contact layer 8 conveniently made of highly n-doped InGaAs are grown to a thickness d3. In this second epitaxial step, the lateral semi-axis ratio is based on process parameters or epitaxial methods (eg MBE (molecular beam epitaxy), CBE (chemical beam epitaxy) or MOVPE (metal organic vapor phase epitaxy). The modification, for example, results in an elliptical opening in the previously circular tunnel contact.

その結果が図4に示してあるが、例えば、直径がw1の丸い開口は、エッチングの深さがd1のリソグラフィック形成開口として形作られ、過剰成長後に、高さがd2の直径w2になる。値w2とd2は、開始時のデータw1とd1とに全体的に対応している。   The result is shown in FIG. 4, for example, a round opening having a diameter w1 is shaped as a lithographic forming opening having an etching depth of d1, and after overgrowth, becomes a diameter w2 having a height of d2. The values w2 and d2 generally correspond to the starting data w1 and d1.

本発明は、円形以外の開口にも適用できるので、説明で用いる“直径”又は“半径”という用語は、円形開口の形状に制限することを意味しない。角張った、楕円状、又は任意の他の形状も可能であり、本発明はこのような形状に容易に変更できる。   The term “diameter” or “radius” used in the description is not meant to be limited to the shape of the circular opening, as the invention is applicable to openings other than circular. Angular, elliptical, or any other shape is possible and the present invention can be easily modified to such a shape.

図4に示す構造から始まり、接触層8の選択エッチングの後に得た構造を、図5の第1の実施例として、ここで示す。このケースで、接触層8は本発明に基づく構造化層として作用する。接触層の厚みd3は、例えば、その光学的厚みが層7のエッチング深さd2の領域の光学的厚みに対応するように、導波作用を完全に補正するように選択される。面とほぼ平行する配置が、そこで得られる。具体的な領域では、エッチング直径w3は、ほぼ任意に希望する状態で調整できる。しかし、十分に光学的フィールドを影響させるには、半径は、典型的にトンネル接触部の半径から1μmを超えるべきでない。更に好ましい最大距離は、0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9μmである。   A structure starting from the structure shown in FIG. 4 and obtained after selective etching of the contact layer 8 is shown here as a first embodiment in FIG. In this case, the contact layer 8 acts as a structured layer according to the invention. The thickness d3 of the contact layer is selected, for example, so as to completely correct the waveguiding effect so that its optical thickness corresponds to the optical thickness of the region of the etching depth d2 of the layer 7. An arrangement approximately parallel to the plane is obtained there. In a specific region, the etching diameter w3 can be adjusted almost arbitrarily as desired. However, to sufficiently affect the optical field, the radius typically should not exceed 1 μm from the radius of the tunnel contact. Further preferable maximum distances are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 μm.

図5は、図3に示した従来技術の条件と比較した、本発明によって実現した異なる条件を明確に示す。本発明に基づく構造化により、図3に存在する強いインデックス・ガイドが弱いインデックス・ガイドに変わった結果として、中心から開口の外部領域にむけて有効屈折率が平均化されることになる。   FIG. 5 clearly shows the different conditions realized by the present invention compared to the prior art conditions shown in FIG. As a result of the structuring according to the present invention, the strong index guide present in FIG. 3 is changed to a weak index guide, the effective refractive index is averaged from the center to the outer region of the aperture.

図6は、本発明に基づく導波路構造の別の実施例を示す。この構成で、接触層8は、オプションとしてだけ設けられ、このケースでは、開口部直径をw3として、前述と類似の状態で選択的に構造化できる。導波特性は、このケースでは、自由に選択できる材料から製作できる追加層9を介して影響を受ける。追加層9は内径がw4、外径がw5であり、例えば、エッチング処理又はリフトオフ方法を用いて構造化される。同じ原理が、図5の構造化層として接触層のケースのように、最終的な厚みd4と内径w4の形状に適用される。本実施例の長所は、構造化層9の材料を自由に選択できることにある。これは、開口のエッジに普通は最大値を有するより極端な高モードを弱めるために特に使用できるので、これらのモードが発振することを防止できる。アモルファス・シリコンは、層9に適した材料である。   FIG. 6 shows another embodiment of a waveguide structure according to the present invention. In this configuration, the contact layer 8 is provided only as an option, and in this case, the opening diameter can be selectively structured in the same manner as described above with w3. The waveguiding properties are influenced in this case via an additional layer 9 which can be made from a freely selectable material. The additional layer 9 has an inner diameter w4 and an outer diameter w5, and is structured using, for example, an etching process or a lift-off method. The same principle is applied to the shape of the final thickness d4 and the inner diameter w4 as in the case of the contact layer as the structured layer in FIG. The advantage of this embodiment is that the material of the structured layer 9 can be freely selected. This can be used in particular to weaken the more extreme high modes that normally have a maximum at the edge of the aperture, thus preventing these modes from oscillating. Amorphous silicon is a suitable material for layer 9.

最後に、図7は、反ガイド作用を持つ、本発明に基づく導波路構造の第3の実施例を示す。本実施例は、このケースでは、接触層8の厚みd3は、トンネル接触部の隆起部の深さd2又はエッチングの深さd1より十分に太くなるように、構造化層として選択される。これは、外部領域を増やす結果になり、反ガイド作用を導くので、高モードを除去することになる。層8が吸収作用を有する場合に、モードの除去は更に効果的になる。図7に示す本実施例は、図6に示す構造と組み合わせることもできる。このケースでは、少なくとも層9は、図示する隆起部を含んでいる。   Finally, FIG. 7 shows a third embodiment of a waveguide structure according to the invention with anti-guide action. In this case, the present embodiment is selected as the structured layer so that the thickness d3 of the contact layer 8 is sufficiently thicker than the depth d2 of the raised portion of the tunnel contact portion or the etching depth d1. This results in an increase in the external area and leads to an anti-guiding action, thus eliminating the high mode. When the layer 8 has an absorbing action, the mode removal is more effective. This embodiment shown in FIG. 7 can be combined with the structure shown in FIG. In this case, at least layer 9 includes the ridges shown.

図8は、本発明に基づく仕上げられたBTJ−VCSELを示す。なお半導体レーザを仕上げるための本発明に基づく構造の更なるプロセスは、説明の導入部で図2に関連して詳細に既に、説明済みである。同じ参照番号は、図4の構造と同じ層を意味する。InP1基板は、このケースでは、全体的に除去される。代わりに、例えば、Ti/Pt/Auから成るn側接触部14が、電流供給手段に取り付けられている。図8に示す半導体レーザの導波路構造は、隆起部15に隣接する接触層8により図5のものと対応している。10は絶縁受動層を示し、11はp側接触部(例えば、Ti/Pt/Au)を示し、12は誘電ミラーを示し、13は統合化ヒートシンクを示す。   FIG. 8 shows a finished BTJ-VCSEL according to the present invention. A further process of the structure according to the invention for finishing a semiconductor laser has already been described in detail in connection with FIG. 2 in the introduction of the description. The same reference numbers refer to the same layers as the structure of FIG. In this case, the InP1 substrate is totally removed. Instead, for example, an n-side contact portion 14 made of Ti / Pt / Au is attached to the current supply means. The waveguide structure of the semiconductor laser shown in FIG. 8 corresponds to that of FIG. 5 by the contact layer 8 adjacent to the raised portion 15. 10 indicates an insulating passive layer, 11 indicates a p-side contact (for example, Ti / Pt / Au), 12 indicates a dielectric mirror, and 13 indicates an integrated heat sink.

本発明は、高い単一モード・パワーを有するBTJ−VCSELの製造を可能にする。開口の直径は、高いモードを誘発せずにパワーを増加するように拡大できる。   The present invention enables the manufacture of BTJ-VCSELs with high single mode power. The diameter of the aperture can be expanded to increase power without inducing high modes.

周知の表面放射半導体レーザにおける埋込トンネル接触部の構造の略図である。1 is a schematic diagram of the structure of a buried tunnel contact in a known surface emitting semiconductor laser. 事例から周知の、表面放射半導体レーザが完成した構造の略図である。1 is a schematic diagram of a completed structure of a surface emitting semiconductor laser, known from examples. 接触層と電流搬送層とに関連する表面放射半導体レーザの周知の構造における条件の略図である。1 is a schematic diagram of conditions in a well-known structure of a surface emitting semiconductor laser associated with a contact layer and a current carrying layer. 本発明に基づく表面放射半導体レーザの製造中に形成された構造を示す。1 shows a structure formed during the manufacture of a surface emitting semiconductor laser according to the invention. 本発明に基づく構造化層としての接触層の構造の略図である。1 is a schematic illustration of the structure of a contact layer as a structured layer according to the present invention. 追加層が、本発明に基づく構造化層として、接触層の次に設けられている、更なる実施例を示す。Figure 3 shows a further embodiment in which an additional layer is provided next to the contact layer as a structured layer according to the invention. 反ガイド作用を有する更なる実施例を示す。Figure 6 shows a further embodiment with anti-guide action. 最後に、本発明に基づいて製造された表面放射半導体レーザの実施例を示す。Finally, an example of a surface emitting semiconductor laser manufactured according to the present invention is shown.

Claims (10)

p−n接合部を有するとともに第1のnドーピング半導体層(3)と少なくとも1つのpドーピング半導体層(5)とに囲まれた能動ゾーン(4)と、前記能動ゾーン(4)のp側にトンネル接触層(6)とを具備する表面放射半導体レーザであって、前記トンネル接触層(6)は、開口直径(w1)と開口深さ(d1)とを有する開口を具備し、かつnドーピング電流搬送層(7)でカバーされ、隣接する電流搬送層(7)は、前記開口の領域に、隆起部直径(w2)と隆起部深さ(d2)とを有する隆起部(15)を具備するとともに、前記隆起部(15)の側面領域の少なくとも周辺で前記電流搬送層(7)上に構造化層(8; 9)が設けられ、その厚み(d3; d4)が前記構造化層の光学的厚みが隆起部深さ(d2)の領域において前記電流搬送層(7)の光学的厚みと少なくとも等しくなるように選択されている表面放射半導体レーザ。   an active zone (4) having a pn junction and surrounded by a first n-doped semiconductor layer (3) and at least one p-doped semiconductor layer (5); and the p-side of the active zone (4) And a tunnel contact layer (6), the tunnel contact layer (6) having an opening having an opening diameter (w1) and an opening depth (d1), and n The adjacent current carrying layer (7) covered with the doping current carrying layer (7) has a raised portion (15) having a raised portion diameter (w2) and a raised portion depth (d2) in the region of the opening. And a structured layer (8; 9) is provided on the current carrying layer (7) at least around the side region of the raised portion (15), and the thickness (d3; d4) is the structured layer. In the region where the ridge depth (d2) is And a surface emitting semiconductor laser selected to be at least equal to the optical thickness of the current carrying layer (7). 前記構造化層(8; 9)の内径(w3; w4)が前記隆起部(15)の直径(w2)より大きいか又は等しいことを特徴とする、請求項1に記載の半導体レーザ。   2. The semiconductor laser according to claim 1, wherein an inner diameter (w3; w4) of the structured layer (8; 9) is greater than or equal to a diameter (w2) of the raised portion (15). 前記内径(w3; w4)の半分が、前記隆起部(15)の直径(w2)の半分より、多くても2μmだけ、好ましくは、多くても1μmだけ大きいことを特徴とする、請求項1又は2に記載の半導体レーザ。   The half of the inner diameter (w3; w4) is at most 2 μm, preferably at most 1 μm, larger than the half of the diameter (w2) of the ridge (15). Or the semiconductor laser of 2. 前記構造化層(8)がnドーピング接触層(8)であることを特徴とする、請求項1から3のいずれか1つに記載の半導体レーザ。   4. The semiconductor laser according to claim 1, wherein the structured layer (8) is an n-doped contact layer (8). 前記構造化層(8)がnドーピングInGaAsから成ることを特徴とする、請求項4に記載の半導体レーザ。   The semiconductor laser according to claim 4, wherein the structured layer is made of n-doped InGaAs. 前記構造化層(9)が、前記半導体レーザの波長ごとに、かなりの吸収作用を有する材料から成ることを特徴とする、請求項1から3のいずれか1つに記載の半導体レーザ。   4. The semiconductor laser according to claim 1, wherein the structured layer (9) is made of a material having a considerable absorption action for each wavelength of the semiconductor laser. アモルファス・シリコンが、特に1.3〜1.55μmの波長範囲において前記材料として用いられることを特徴とする、請求項6に記載の半導体レーザ。   7. A semiconductor laser according to claim 6, characterized in that amorphous silicon is used as the material, particularly in the wavelength range of 1.3 to 1.55 [mu] m. チタンが前記材料として用いられることを特徴とする、請求項6に記載の半導体レーザ。   The semiconductor laser according to claim 6, wherein titanium is used as the material. 前記構造化層(9)を側面から囲むnドーピング接触層(8)が、前記構造化層(9)の次に設けられていることを特徴とする、請求項1から3又は6から8のいずれか1つに記載の半導体レーザ。   9. An n-doping contact layer (8) surrounding the structured layer (9) from the side is provided next to the structured layer (9). The semiconductor laser as described in any one of them. 前記構造化層(8; 9)及び/又は前記接触層(8)の厚みが、前記隆起部(15)の深さ(d2)の倍数であることを特徴とする、請求項1又は9に記載の半導体レーザ。
10. The thickness of the structured layer (8; 9) and / or the contact layer (8) is a multiple of the depth (d2) of the raised portion (15). The semiconductor laser described.
JP2006534688A 2003-10-16 2004-10-14 Surface emitting semiconductor laser with structured waveguide. Withdrawn JP2007508702A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10348211 2003-10-16
DE10353960A DE10353960B4 (en) 2003-10-16 2003-11-19 Surface-emitting semiconducting laser with structured waveguide has structured layer about lateral area of elevation with thickness selected so its optical thickness is at least equal to that of current carrying layer near elevation depth
PCT/EP2004/011569 WO2005039003A1 (en) 2003-10-16 2004-10-14 Surface-emitting semiconductor laser comprising a structured waveguide

Publications (1)

Publication Number Publication Date
JP2007508702A true JP2007508702A (en) 2007-04-05

Family

ID=34466021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006534688A Withdrawn JP2007508702A (en) 2003-10-16 2004-10-14 Surface emitting semiconductor laser with structured waveguide.

Country Status (10)

Country Link
US (1) US7700941B2 (en)
EP (1) EP1676346B1 (en)
JP (1) JP2007508702A (en)
KR (1) KR20060089740A (en)
CN (1) CN1868099A (en)
AT (1) ATE357760T1 (en)
CA (1) CA2541776A1 (en)
DE (2) DE10353960B4 (en)
IL (1) IL174806A0 (en)
WO (1) WO2005039003A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158688A (en) * 2007-12-26 2009-07-16 Sony Corp Light-emitting element assembly and method for manufacturing the same
JP2009283703A (en) * 2008-05-22 2009-12-03 Sumitomo Electric Ind Ltd Face emission type laser element and its manufacturing method
WO2023162488A1 (en) * 2022-02-25 2023-08-31 ソニーグループ株式会社 Surface emitting laser, light source device, and ranging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800287B2 (en) 1998-09-25 2004-10-05 Yeda Research And Development Co., Ltd. Copolymer 1 related polypeptides for use as molecular weight markers and for therapeutic use
PT2361924E (en) 2004-09-09 2014-03-13 Teva Pharma Process for the preparation of mixtures of trifluoroacetyl glatiramer acetate using purified hydrobromic acid
US10892601B2 (en) * 2018-05-24 2021-01-12 Stanley Electric Co., Ltd. Vertical cavity light-emitting element
US20240162685A1 (en) * 2022-11-07 2024-05-16 Ii-Vi Delaware, Inc. Vertical cavity surface emitting laser (vcsel) emitter with guided-antiguided waveguide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761822B1 (en) * 1997-04-03 1999-05-07 Alsthom Cge Alcatel SEMICONDUCTOR LASER WITH SURFACE EMISSION
US6141365A (en) * 1997-12-31 2000-10-31 Lasertron Semiconductor laser with kink suppression layer
DE10004398A1 (en) * 2000-02-02 2001-08-16 Infineon Technologies Ag VCSEL with monolithically integrated photodetector
JP4543488B2 (en) * 2000-03-24 2010-09-15 ソニー株式会社 Semiconductor laser light emitting device
US6931042B2 (en) * 2000-05-31 2005-08-16 Sandia Corporation Long wavelength vertical cavity surface emitting laser
DE10038235A1 (en) * 2000-08-04 2002-02-21 Osram Opto Semiconductors Gmbh Surface emitting laser with side current injection
DE10107349A1 (en) * 2001-02-15 2002-08-29 Markus-Christian Amann Surface emitting semiconductor laser
DE10135958B4 (en) * 2001-07-24 2008-05-08 Finisar Corp., Sunnyvale Electroabsorption modulator, modulator laser device, and method of making an electroabsorption modulator
US6839370B2 (en) * 2001-12-31 2005-01-04 Agilent Technologies, Inc. Optoelectronic device using a disabled tunnel junction for current confinement
US7103080B2 (en) * 2002-03-04 2006-09-05 Quintessence Photonics Corp. Laser diode with a low absorption diode junction
US6977424B1 (en) * 2002-03-18 2005-12-20 Finisar Corporation Electrically pumped semiconductor active region with a backward diode, for enhancing optical signals
CA2503782A1 (en) * 2002-11-27 2004-06-10 Vertilas Gmbh Method for producing a buried tunnel junction in a surface-emitting semiconductor laser
DE10317970B4 (en) * 2003-02-04 2005-12-22 Vertilas Gmbh A method of fabricating a waveguide structure in a surface emitting semiconductor laser and surface emitting semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158688A (en) * 2007-12-26 2009-07-16 Sony Corp Light-emitting element assembly and method for manufacturing the same
US7787512B2 (en) 2007-12-26 2010-08-31 Sony Corporation Light-emitting element assembly and method for manufacturing the same
US8372670B2 (en) 2007-12-26 2013-02-12 Sony Corporation Light-emitting element assembly and method for manufacturing the same
JP2009283703A (en) * 2008-05-22 2009-12-03 Sumitomo Electric Ind Ltd Face emission type laser element and its manufacturing method
WO2023162488A1 (en) * 2022-02-25 2023-08-31 ソニーグループ株式会社 Surface emitting laser, light source device, and ranging device

Also Published As

Publication number Publication date
IL174806A0 (en) 2006-08-20
KR20060089740A (en) 2006-08-09
CA2541776A1 (en) 2005-04-28
EP1676346A1 (en) 2006-07-05
US7700941B2 (en) 2010-04-20
ATE357760T1 (en) 2007-04-15
DE10353960A1 (en) 2005-05-25
US20060249738A1 (en) 2006-11-09
EP1676346B1 (en) 2007-03-21
WO2005039003A1 (en) 2005-04-28
DE10353960B4 (en) 2006-03-23
CN1868099A (en) 2006-11-22
DE502004003310D1 (en) 2007-05-03

Similar Documents

Publication Publication Date Title
US6931042B2 (en) Long wavelength vertical cavity surface emitting laser
US7638792B2 (en) Tunnel junction light emitting device
US6653158B2 (en) Double intracavity contacted long-wavelength VCSELs and method of fabricating same
US6577658B1 (en) Method and apparatus for planar index guided vertical cavity surface emitting lasers
US20050265415A1 (en) Laser diode and method of manufacture
JP2002299742A (en) Vertical cavity surface-emitting laser, manufacturing method therefor, and communication system
JP5029254B2 (en) Surface emitting laser
US20120236890A1 (en) P-type isolation regions adjacent to semiconductor laser facets
JP2022076016A (en) Etched flattening vcsel and method of manufacturing the same
US7700941B2 (en) Surface-emitting semiconductor laser comprising a structured waveguide
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
WO2001093387A2 (en) Long wavelength vertical cavity surface emitting laser
JPWO2007135772A1 (en) Light emitting element
US20130028283A1 (en) High speed vertical-cavity surface-emitting laser
JP4599700B2 (en) Distributed feedback laser diode
Unold et al. Large-area single-mode selectively oxidized VCSELs: Approaches and experimental
TW202308247A (en) Reflector for vcsel
US6980577B1 (en) Vertical laser cavity with a non-planar top mirror
US7376163B2 (en) Method for producing a waveguide structure in a surface-emitting semiconductor laser and surface-emitting semiconductor laser
US20060126687A1 (en) Method for producing a buried tunnel junction in a surface-emitting semiconductor laser
Bisping et al. GaInNAs-based high-power and tapered laser diodes for pumping applications
Miller et al. Large-area high-power VCSEL
KR100358111B1 (en) Ion Implanted Long Wavelength Vertical Cavity Surface Emitting Lasers With A Thick Intracavity Contact Layer And Its Fabrication Method
Lin et al. Long-wavelength VCSELs with InP/air-gap DBRs
Amann Long wavelength VCSELs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061213

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108