JP2007335686A - Quantum well intersubband transition device - Google Patents

Quantum well intersubband transition device Download PDF

Info

Publication number
JP2007335686A
JP2007335686A JP2006166751A JP2006166751A JP2007335686A JP 2007335686 A JP2007335686 A JP 2007335686A JP 2006166751 A JP2006166751 A JP 2006166751A JP 2006166751 A JP2006166751 A JP 2006166751A JP 2007335686 A JP2007335686 A JP 2007335686A
Authority
JP
Japan
Prior art keywords
quantum well
light
quantum
pbte
intersubband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006166751A
Other languages
Japanese (ja)
Inventor
Akihiro Ishida
明広 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2006166751A priority Critical patent/JP2007335686A/en
Publication of JP2007335686A publication Critical patent/JP2007335686A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a mutual operation with TE mode light in addition to a mutual operation with light of a conventional TM mode; and to achieve high efficiency and high performance of devices since quantum well intersubband transition is applied to an infrared image sensor, a quantum cascade laser, and an ultra high-speed light modulation element. <P>SOLUTION: A method for generating intersubband electron transition by TE mode light (electromagnetic wave) is invented by using a semiconductor having anisotropy in effective mass of electrons and forming a quantum well structure in a direction inclined from a main axis in an equal energy face. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、赤外線検出及びイメージングを行なう赤外線センサー、赤外線発光素子及び変調素子に関するものである。 The present invention relates to an infrared sensor that performs infrared detection and imaging, an infrared light emitting element, and a modulation element.

AlGaAs/GaAs等の量子井戸にできるサブバンド間光遷移は今から20年ほど前から研究が行われ、サブバンド間遷移赤外線イメージセンサーに利用され、その後、サブバンド間光遷移を利用する超高速光変調素子やサブバンド間遷移発光を利用する量子カスケードレーザが開発されるようになった。量子井戸サブバンド間の光遷移はTMモードの光と相互作用して起こり、一般にはTEモードの光とはほとんど相互作用しない。したがって、サブバンド間遷移を利用する赤外線イメージセンサーには光を斜めに入射することが必要であり(図1を参照)、量子井戸面に垂直方向の電界成分を増大させ信号強度を増加させるには、デバイス表面の加工が必要になる。また、サブバンド間遷移の赤外線レーザは、1994年に米国ベル研究所で発明され(図2参照)、最近では量子カスケードレーザにより波長4μmから100μmを越えるものが作製されている。 Intersubband optical transitions that can be made in quantum wells such as AlGaAs / GaAs have been studied for about 20 years ago, and are used for intersubband transition infrared image sensors, and then ultrafast using intersubband optical transitions. Quantum cascade lasers using light modulation elements and intersubband transition emission have been developed. The optical transition between the quantum well subbands occurs by interacting with TM mode light, and generally hardly interacts with TE mode light. Therefore, infrared image sensors that use intersubband transitions require light to be incident obliquely (see FIG. 1), which increases the electric field component in the direction perpendicular to the quantum well surface and increases the signal intensity. This requires processing of the device surface. Infrared laser with intersubband transition was invented at Bell Laboratories in the United States in 1994 (see FIG. 2), and recently, a quantum cascade laser having a wavelength exceeding 4 μm to 100 μm has been produced.

また、波長4〜10μm辺りでは室温高出力動作するものも作製されるようになり、量子カスケードレーザはこの波長域のレーザとしては現在最も注目されている。この量子カスケードレーザにおいても、電子遷移はTMモード光のみと相互作用するためTMモード発振しか期待できなかった。したがって、電界が量子井戸面と平行になる面発光レーザの実現は期待できなかった。また、サブバンドの上位準位から基底状態への光遷移は、ナノ秒オーダーのバンド間遷移に比べ非常に速く、ピコ秒或いはそれ以下のオーダーである。 In addition, a device that operates at a high output power at room temperature is produced around a wavelength of 4 to 10 μm, and the quantum cascade laser is currently attracting the most attention as a laser in this wavelength region. Even in this quantum cascade laser, only the TM mode oscillation can be expected because the electron transition interacts only with the TM mode light. Therefore, realization of a surface emitting laser whose electric field is parallel to the quantum well surface could not be expected. In addition, the optical transition from the upper level of the subband to the ground state is much faster than the interband transition on the nanosecond order, and is on the order of picosecond or less.

したがって、サブバンド間光励起により、基底準位や励起準位のキャリヤ濃度を変調できれば、サブバンド間吸収を利用して超高速光変調が可能となる(図3)。この場合は変調を行なう光を量子井戸面に沿って通し、量子井戸に垂直方向に励起光を入れられれば、構造が単純になる。これらの問題はTEモード光と相互作用ができる量子井戸が開発されれば解決できる。 Therefore, if the carrier concentration of the ground level or the excited level can be modulated by intersubband optical excitation, ultrafast optical modulation can be performed using intersubband absorption (FIG. 3). In this case, the structure can be simplified if light to be modulated is passed along the quantum well surface and excitation light can be introduced perpendicularly to the quantum well. These problems can be solved if a quantum well capable of interacting with TE mode light is developed.

量子井戸の面に平行成分の電界と相互作用し光吸収や発光を生じさせることができれば、サブバンド間遷移イメージセンサーにおいては、赤外光を試料に垂直入射すればよく、斜め入射のための複雑な構造が不要になる。また、量子カスケードレーザにおいては、TEモード発光が可能になるとともに、面発光レーザの作製も可能になる。さらに、高速光変調素子においては、励起光を試料に垂直方向から入射させ、弱い励起光強度で光変調が可能になる。したがって、これらの問題を解決するためにTEモード光と強く相互作用できる量子井戸構造の開発を行なってきた。 In the intersubband transition image sensor, it is sufficient to make infrared light incident perpendicularly to the sample if it can interact with the electric field of parallel components on the surface of the quantum well and cause light absorption and emission. A complicated structure becomes unnecessary. In addition, in the quantum cascade laser, TE mode light emission is possible and a surface emitting laser can be manufactured. Further, in the high-speed light modulation element, excitation light is incident on the sample from the vertical direction, and light modulation can be performed with weak excitation light intensity. Therefore, in order to solve these problems, a quantum well structure capable of strongly interacting with TE mode light has been developed.

量子井戸中の波動関数は、一般の教科書や論文などでは量子井戸に垂直な成分と量子井戸に平行な波動関数成分が独立に取り扱われる。量子井戸面に平行な電界との相互作用による光の吸収や発光を生じさせるには、量子井戸の面に垂直方向の波動関数成分がお互いに直交しないことが必要である。同じ量子井戸内の波動関数はお互いに直交しているので、量子井戸に垂直な成分と量子井戸に平行な波動関数成分が独立に取り扱える場合には、光吸収は生じないことになる。現在主に研究開発されているサブバンド間量子井戸デバイスは3−5族半導体であり、これらの半導体では、一般の量子力学教科書などにあるように、量子井戸に垂直な成分と量子井戸に平行な波動関数成分が独立に取り扱える。したがって、本発明では量子井戸に垂直な成分と平行成分とを独立に取り扱えなくする手法を検討し、本発明に至った。GeやPbTeの伝導帯下端はブリルアンゾーンのL点に位置し、SiではX点の内側に位置する。Si、GeやPbTeは有効質量の異方性が大きい多谷半導体として知られている(図4)。Siにおいては、<100>方向に電子の有効質量が重く、GeやPbTeにおいては<111>方向に重い質量を示す。これらの主軸に対して量子井戸構造を傾斜させ作製すると、量子井戸面に垂直な方向と面に平行な方向の波動関数を独立して取り扱えなくなるため、この観点から研究開発を行い、本発明に至った。 In general textbooks and papers, the wave function in the quantum well is treated independently of the component perpendicular to the quantum well and the wave function component parallel to the quantum well. In order to cause light absorption and light emission by interaction with an electric field parallel to the quantum well surface, it is necessary that the wave function components in the direction perpendicular to the surface of the quantum well are not orthogonal to each other. Since the wave functions in the same quantum well are orthogonal to each other, light absorption does not occur when a component perpendicular to the quantum well and a wave function component parallel to the quantum well can be handled independently. Currently, the inter-subband quantum well devices that are mainly researched and developed are Group 3-5 semiconductors. In these semiconductors, as shown in general quantum mechanics textbooks, components perpendicular to the quantum well and parallel to the quantum well are used. Wave function components can be handled independently. Therefore, in the present invention, a method for making it impossible to independently handle the component perpendicular to the quantum well and the parallel component has been studied, and the present invention has been achieved. The lower end of the conduction band of Ge or PbTe is located at the L point of the Brillouin zone, and in Si, it is located inside the X point. Si, Ge, and PbTe are known as multi-tani semiconductors with large effective mass anisotropy (FIG. 4). In Si, the effective mass of electrons is heavy in the <100> direction, and in Ge and PbTe, the mass is heavy in the <111> direction. If the quantum well structure is tilted with respect to these principal axes, the wave function in the direction perpendicular to the quantum well plane and the direction parallel to the plane cannot be handled independently. It came.

本発明は、異方性半導体量子井戸を用いることにより、TEモード光によっても強いサブバンド間遷移を可能にするもので、TMモードの光との相互作用しかできない従来のサブバンド間遷移デバイスの欠点を解消するもので、上述の量子井戸層に垂直に光入射させる赤外線イメージセンサー、量子カスケードレーザのTEモード動作、面発光量子井戸レーザ及び垂直入射サブバンド間光励起超高速光変調素子等への広い応用が期待できる。 The present invention enables a strong intersubband transition even by TE mode light by using an anisotropic semiconductor quantum well, and is a conventional intersubband transition device that can only interact with TM mode light. In order to eliminate the shortcomings, the infrared image sensor that vertically enters the quantum well layer described above, the TE mode operation of the quantum cascade laser, the surface emitting quantum well laser, the vertically incident intersubband optically pumped ultrafast optical modulator, etc. Wide application can be expected.

PbTeやGe系量子井戸においては、[100]方向に量子井戸成長を行なえば、ブリルアンゾーンL点のどの極小点においても等価なサブバンド構造が形成され、且つ、等エネルギー楕円体主軸に対して量子井戸方向を傾斜させることができる。図5に(100)方向に作製したEuTe/PbTe超格子の垂直入射での赤外透過特性を示す。超格子試料は、図5(a)においては、2原子層EuTeと20原子層PbTeの300周期からなり、図5(b)においては、EuTe(1原子層)/PbTe(23原子層)/EuTe(1原子層)/PbTe(9原子層)の2重量子井戸200周期からなる。短周期の干渉縞は、超格子を厚いPbTe上へ作製したため、このPbTeと超格子のトータル膜厚によるものである。サブバンド間吸収は干渉縞と平均透過率の減少により確認できる。図5(b)の2重量子井戸超格子構造においては、サブバンド間吸収は波数1150cm−1付近にあり、吸収係数に直すと2000−3000cm−1に相当する。また、計算したエネルギー準位と波動関数の絶対値の2乗を図6に示す。吸収はy1からy1’への遷移で生じている。垂直入射において、このような大きな吸収が得られるので、この遷移を垂直入射赤外線イメージセンサーへ応用することができる(図7)。この吸収は本発明者が最近初めて発見した現象であり、電子の有効質量に異方性がある半導体の等エネルギー面の主軸から傾いた方向に量子井戸構造を形成し、量子井戸ポテンシャルを非対称化することにより得られる(Phys.Rev.Lett.へ投稿中)。したがって、EuTe/PbTe2重量子井戸を同様な異方性のあるGe系2重量子井戸やSi系に変えることもできる。また、(111)方向へSi/SiC等の量子井戸を作製すれば、単純な量子井戸構造においてもピエゾ電界により周期ポテンシャルを非対称化することが可能であり、同様に垂直入射サブバンド間遷移イメージセンサーへ応用することができる。 In PbTe or Ge-based quantum wells, if quantum well growth is performed in the [100] direction, an equivalent subband structure is formed at any local minimum point of the Brillouin zone L, and the principal axis of the isoenergy ellipsoid is The quantum well direction can be tilted. FIG. 5 shows infrared transmission characteristics at normal incidence of an EuTe / PbTe superlattice fabricated in the (100) direction. In FIG. 5A, the superlattice sample consists of 300 periods of two atomic layers EuTe and 20 atomic layers PbTe, and in FIG. 5B, EuTe (one atomic layer) / PbTe (23 atomic layers) / It consists of 200 periods of double quantum wells of EuTe (1 atomic layer) / PbTe (9 atomic layer). The short-period interference fringes are due to the total film thickness of the PbTe and the superlattice since the superlattice was fabricated on the thick PbTe. Intersubband absorption can be confirmed by interference fringes and a decrease in average transmittance. In double quantum well superlattice structure of FIG. 5 (b), intersubband absorption is in the vicinity of a wave number of 1150 cm -1, corresponding to 2000-3000Cm -1 when fix the absorption coefficient. FIG. 6 shows the calculated energy level and the square of the absolute value of the wave function. Absorption occurs at the transition from y 1 to y 1 '. Since such a large absorption is obtained at normal incidence, this transition can be applied to a normal incidence infrared image sensor (FIG. 7). This absorption is a phenomenon that the present inventor has recently discovered. A quantum well structure is formed in a direction inclined from the principal axis of the isoenergetic surface of a semiconductor having an anisotropic electron effective mass, and the quantum well potential is asymmetrical. (Submitted to Phys. Rev. Lett.) Therefore, the EuTe / PbTe double quantum well can be changed to a similar anisotropic Ge-based double quantum well or Si. If quantum wells such as Si / SiC are fabricated in the (111) direction, the periodic potential can be asymmetrical by a piezoelectric field even in a simple quantum well structure. It can be applied to sensors.

この遷移は、逆に、基底準位から上位準位への電子注入により、レーザ動作に利用することも可能である。このような強い吸収は垂直入射による他の超格子での測定では得られていない。図8に示すPbTe/EuTe系量子井戸活性層(30原子層PbTe/1原子層EuTe/20原子層PbTe/1原子層EuTe/15原子層PbTe/1原子層EuTe/14原子層PbTe/2原子層EuTe/14原子層PbTe/1原子層EuTeを1周期として数十周期からなる)をPbEuTeクラッド層で挟むことにより、TMモードのみでなく、TEモードで動作するカスケードレーザが作製できる。この場合、導波路層にPbTeを用い、量子カスケード層をその両側に配置し、量子カスケード層に活性層とクラッド層の両方の役割を担わせることもできる。PbTe系量子カスケードレーザは有効質量の温度依存性が大きいため、温度による大きな波長チューナビリティが得られる(請求項2)。また、図9に活性層の上下をPbTe/PbS或いはPbTe/PbSe或いはPbTe/CdTe多層膜反射ミラーで挟むことにより面発光レーザも作製できる。
本実施例では、PbTeをベースにした量子カスケードレーザを例に挙げているが、n型GeやSi系の量子井戸を用いても同様な量子カスケードレーザが作製できる。
Conversely, this transition can also be used for laser operation by electron injection from the ground level to the upper level. Such strong absorption has not been obtained by measurement with other superlattices with normal incidence. PbTe / EuTe quantum well active layer (30 atomic layer PbTe / 1 atomic layer EuTe / 20 atomic layer PbTe / 1 atomic layer EuTe / 15 atomic layer PbTe / 1 atomic layer EuTe / 14 atomic layer PbTe / 2 atoms shown in FIG. A cascade laser that operates not only in the TM mode but also in the TE mode can be manufactured by sandwiching the layer EuTe / 14 atomic layer PbTe / 1 atomic layer EuTe (which consists of several tens of periods) with the PbEuTe cladding layer. In this case, PbTe can be used for the waveguide layer, the quantum cascade layer can be arranged on both sides thereof, and the quantum cascade layer can serve as both the active layer and the cladding layer. Since the PbTe-based quantum cascade laser has a large temperature dependence of the effective mass, a large wavelength tunability depending on the temperature can be obtained. In addition, a surface emitting laser can be manufactured by sandwiching the upper and lower sides of the active layer with PbTe / PbS, PbTe / PbSe, or PbTe / CdTe multilayer reflective mirrors in FIG.
In the present embodiment, a quantum cascade laser based on PbTe is taken as an example, but a similar quantum cascade laser can be fabricated using an n-type Ge or Si-based quantum well.

図10にEuTe(2原子層)/PbTe(20原子層)/EuTe(1原子層)/PbTe(10原子層)を1周期とする超格子を[111]方向に成長した場合のエネルギーバンド構造を示す。この場合、ブリルアンゾーンL点の[111]谷の超格子方向に向かう有効質量は重く、それに対し傾いた<111>谷の超格子方向の有効質量は軽くなり、2種類の電子状態が生じる。また、PbTe層はEuTeにより引張り歪を受けるので、[111]谷の伝導帯端はそれに対して傾いた<111>谷の伝導帯端より図10に示すように上昇する。こうした超格子に、超格子面に垂直方向からCOレーザのような波長10ミクロン前後の光を入射すると[111]谷から傾いた<111>谷の基底準位から励起準位へ電子が励起され、この電子は光学フォノン散乱により[111]谷へ移る。[111]谷の超格子方向の有効質量は重く、図に示すようにたくさんのサブバンドが形成されており、この準位間の電子遷移によりレーザ動作する(請求項3)。この電子励起は、量子カスケード構造を作製し、電流注入によっても可能であり、光励起レーザも電流注入レーザも作製できる。また、量子井戸材料もPbTeに限らず、GeやSi等の多谷半導体を用いることもできる。 FIG. 10 shows an energy band structure in the case where a superlattice having one cycle of EuTe (2 atomic layers) / PbTe (20 atomic layers) / EuTe (1 atomic layer) / PbTe (10 atomic layers) is grown in the [111] direction. Indicates. In this case, the effective mass in the superlattice direction of the [111] valley at the Brillouin zone L point is heavy, whereas the effective mass in the superlattice direction of the tilted <111> valley is light, and two types of electronic states are generated. Further, since the PbTe layer is subjected to tensile strain by EuTe, the conduction band edge of the [111] valley rises as shown in FIG. 10 from the conduction band edge of the <111> valley that is inclined with respect to it. When light having a wavelength of about 10 microns such as a CO 2 laser is incident on such a superlattice from a direction perpendicular to the superlattice surface, electrons are excited from the ground level of the <111> valley inclined from the [111] valley to the excitation level. This electron moves to the [111] valley by optical phonon scattering. The effective mass of the [111] valley in the superlattice direction is heavy, and a number of subbands are formed as shown in the figure, and laser operation is performed by electronic transitions between these levels (claim 3). This electron excitation is possible by producing a quantum cascade structure and current injection, and both an optically pumped laser and a current injection laser can be produced. The quantum well material is not limited to PbTe, and a multi-valley semiconductor such as Ge or Si can be used.

さらに、電子の有効質量に異方性がある半導体の等エネルギー面の主軸から傾いた方向に量子井戸構造を形成することにより、量子井戸に光を垂直入射させてサブバンド間電子遷移を生じさせることが可能であるので、図3に示す光変調素子において、励起光を垂直入射させて、光変調させることができる。この光変調素子構造として、図6に示すバンド構造を持つEuTe/PbTe2重井戸超格子を用いると、二酸化炭素10μmレーザ励起により基底準位のキャリヤ濃度を変調させ、サブバンド間光吸収係数変化により波長10μm付近の中赤外光を変調することができるし、E1’準位の電子濃度を変調し、E−E1’のエネルギーに相当するテラヘルツ光の変調を行なうこともできる。 Furthermore, by forming a quantum well structure in a direction inclined from the principal axis of the isoenergetic surface of the semiconductor having anisotropy in the effective mass of electrons, light is incident perpendicularly to the quantum well to cause intersubband electron transition. Therefore, in the light modulation element shown in FIG. 3, the light can be modulated by causing the excitation light to enter perpendicularly. As this light modulation element structure, if an EuTe / PbTe double well superlattice having the band structure shown in FIG. 6 is used, the carrier concentration of the ground level is modulated by the carbon dioxide 10 μm laser excitation, and the light absorption coefficient changes between subbands. It is possible to modulate mid-infrared light in the vicinity of a wavelength of 10 μm, modulate electron density at the E 1 ′ level, and modulate terahertz light corresponding to the energy of E 2 −E 1 ′.

本発明により、量子井戸層に垂直に光入射させる赤外線イメージセンサー、量子カスケードレーザのTEモード動作、面発光量子井戸レーザ及び励起光を垂直入射するサブバンド間光励起超高速光変調素子への応用が可能である。 INDUSTRIAL APPLICABILITY The present invention can be applied to an infrared image sensor that makes light incident on a quantum well layer perpendicularly, a TE mode operation of a quantum cascade laser, a surface emitting quantum well laser, and an intersubband optically pumped ultrafast optical modulator that vertically makes an incident pumping light. Is possible.

従来のサブバンド間遷移赤外線センサーConventional intersubband transition infrared sensor 量子カスケードレーザバンド構造Quantum cascade laser band structure 超高速光変調素子の構造Structure of ultrafast light modulator PbTe,Ge及びSiの伝導帯下端等エネルギー面PbTe, Ge and Si conduction band bottom energy surface equivalent EuTe/PbTe超格子の赤外透過特性Infrared transmission characteristics of EuTe / PbTe superlattices EuTe/PbTe超格子の伝導帯サブバンド構造Conduction band subband structure of EuTe / PbTe superlattice 垂直入射赤外線イメージセンサーNormal incidence infrared image sensor EuTe/PbTe波長可変量子カスケードレーザEuTe / PbTe tunable quantum cascade laser EuTe/PbTe量子カスケード面発光レーザEuTe / PbTe quantum cascade surface emitting laser (111)面成長EuTe/PbTe光励起サブバンド間遷移レーザの電子遷移過程Electronic transition process of (111) plane grown EuTe / PbTe photoexcited intersubband transition laser

Claims (3)

電子の有効質量に異方性がある半導体を用い、かつ、等エネルギー面の主軸から傾いた方向に量子井戸構造を形成することにより、TEモード光(電磁波)によりサブバンド間電子遷移を生じさせる赤外線センサー、量子カスケードレーザ、面発光量子カスケードレーザ及び光変調素子としての量子井戸サブバンド間遷移デバイス By using a semiconductor with an anisotropic effective electron mass and forming a quantum well structure in a direction inclined from the principal axis of the isoenergetic surface, inter-subband electron transition is caused by TE mode light (electromagnetic wave). Infrared sensor, quantum cascade laser, surface emitting quantum cascade laser, and quantum well intersubband transition device as light modulator PbTe、PbSe或いはPbSを量子井戸層に用いた波長可変量子カスケードレーザとしての量子井戸サブバンド間遷移デバイス Quantum well intersubband transition device as wavelength tunable quantum cascade laser using PbTe, PbSe or PbS in quantum well layer 電子の有効質量に異方性がある半導体の2種類の有効質量により量子化された状態間の電子遷移を利用するサブバンド間遷移量子井戸サブバンド間遷移デバイス
Intersubband transition quantum well intersubband transition device utilizing electronic transitions between states quantized by two effective masses in semiconductors with anisotropic electron effective mass
JP2006166751A 2006-06-15 2006-06-15 Quantum well intersubband transition device Pending JP2007335686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166751A JP2007335686A (en) 2006-06-15 2006-06-15 Quantum well intersubband transition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166751A JP2007335686A (en) 2006-06-15 2006-06-15 Quantum well intersubband transition device

Publications (1)

Publication Number Publication Date
JP2007335686A true JP2007335686A (en) 2007-12-27

Family

ID=38934853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166751A Pending JP2007335686A (en) 2006-06-15 2006-06-15 Quantum well intersubband transition device

Country Status (1)

Country Link
JP (1) JP2007335686A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093022A (en) * 2016-12-01 2018-06-14 株式会社東芝 Photonic crystal built-in substrate and manufacturing method thereof, and plane emission quantum cascade laser
CN108417661A (en) * 2018-04-18 2018-08-17 中国科学院上海技术物理研究所 A kind of long wave superlattices infrared detector based on interband cascade structure
US10490979B2 (en) 2017-12-27 2019-11-26 Kabushiki Kaisha Toshiba Substrate including photonic crystal and method for manufacturing the same, and surface emitting quantum cascade laser
JP7220837B1 (en) * 2022-06-01 2023-02-10 三菱電機株式会社 semiconductor optical modulator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115356A (en) * 1984-11-09 1986-06-02 Hamamatsu Photonics Kk Photodetecting element
JP2002353569A (en) * 2001-05-23 2002-12-06 Akihiro Ishida Semiconductor laser element and semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115356A (en) * 1984-11-09 1986-06-02 Hamamatsu Photonics Kk Photodetecting element
JP2002353569A (en) * 2001-05-23 2002-12-06 Akihiro Ishida Semiconductor laser element and semiconductor laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093022A (en) * 2016-12-01 2018-06-14 株式会社東芝 Photonic crystal built-in substrate and manufacturing method thereof, and plane emission quantum cascade laser
US10490979B2 (en) 2017-12-27 2019-11-26 Kabushiki Kaisha Toshiba Substrate including photonic crystal and method for manufacturing the same, and surface emitting quantum cascade laser
CN108417661A (en) * 2018-04-18 2018-08-17 中国科学院上海技术物理研究所 A kind of long wave superlattices infrared detector based on interband cascade structure
CN108417661B (en) * 2018-04-18 2023-09-12 中国科学院上海技术物理研究所 Long wave superlattice infrared detector based on interband cascade structure
JP7220837B1 (en) * 2022-06-01 2023-02-10 三菱電機株式会社 semiconductor optical modulator
JP7391254B1 (en) 2022-06-01 2023-12-04 三菱電機株式会社 semiconductor optical modulator
WO2023233584A1 (en) * 2022-06-01 2023-12-07 三菱電機株式会社 Semiconductor optical modulator

Similar Documents

Publication Publication Date Title
Zhang et al. Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities
Demir et al. Applied nanophotonics
Brar et al. Emerging photonic architectures in two-dimensional opto-electronics
Lu et al. GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕ GaN distributed Bragg reflector
Gibbs et al. Exciton–polariton light–semiconductor coupling effects
CA2331194C (en) Distributed feedback surface plasmon laser
De Leon et al. Quantum plasmonic circuits
JPH03265827A (en) Quantum well optical device and its manufacture
Chaldyshev et al. Resonant optical reflection by a periodic system of the quantum well excitons at the second quantum state
Bürger et al. Lasing properties of non-polar GaN quantum dots in cubic aluminum nitride microdisk cavities
JP2008010733A (en) Quantum cascade laser
Ahn et al. Colloidal semiconductor nanocrystal lasers and laser diodes
Shahzadeh et al. The effects of wetting layer on electronic and optical properties of intersubband P-to-S transitions in strained dome-shaped InAs/GaAs quantum dots
Ho et al. Room-temperature lasing action in GaN quantum wells in the infrared 1.5 μm region
JP2007335686A (en) Quantum well intersubband transition device
Chen et al. Resonant optical properties of AlGaAs/GaAs multiple-quantum-well based Bragg structure at the second quantum state
Nomura et al. Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation
Shafraniuk Unconventional electromagnetic properties of the graphene quantum dots
Kim et al. Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes
Tian et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems
Hoogland Optical gain and lasing in colloidal quantum dots
Ha et al. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities
Sadeghi et al. Coherent control of time delay and localized electromagnetic modes in active and passive one-dimensional photonic band gaps
RU2611087C1 (en) Polariton laser
Darabi et al. Optical modulation by surface states

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628