JP2007335548A - Mos field effect transistor - Google Patents

Mos field effect transistor Download PDF

Info

Publication number
JP2007335548A
JP2007335548A JP2006164278A JP2006164278A JP2007335548A JP 2007335548 A JP2007335548 A JP 2007335548A JP 2006164278 A JP2006164278 A JP 2006164278A JP 2006164278 A JP2006164278 A JP 2006164278A JP 2007335548 A JP2007335548 A JP 2007335548A
Authority
JP
Japan
Prior art keywords
region
source
oxide film
gate oxide
channel formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006164278A
Other languages
Japanese (ja)
Other versions
JP5078286B2 (en
Inventor
Shinjiro Kato
伸二郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006164278A priority Critical patent/JP5078286B2/en
Publication of JP2007335548A publication Critical patent/JP2007335548A/en
Application granted granted Critical
Publication of JP5078286B2 publication Critical patent/JP5078286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of suppressing leakage current of a MOS field effect transistor in a high-temperature environment. <P>SOLUTION: A source offset region 7 having concentration higher than that of a semiconductor substrate is provided between a source region 3 and a channel forming region 4, and a gate oxide film on the source offset region 7 is made to be thinned. In this way, the leakage current is reduced while keeping a threshold voltage at low. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、MOS型電界効果トランジスタのリーク電流抑制に関する。   The present invention relates to leakage current suppression of a MOS field effect transistor.

MOS型電界効果トランジスタのリーク電流を抑制して、低消費電力化を達成しようとする場合、最も簡単な方法は、半導体基板の濃度を高濃度にして、しきい値電圧を高くする方法である。   When trying to achieve low power consumption by suppressing the leakage current of MOS field effect transistors, the simplest method is to increase the threshold voltage by increasing the concentration of the semiconductor substrate. .

しかし、しきい値電圧を高くすれば、MOS型電界効果トランジスタを高速動作させる場合に障害となることから、更なる改善策として半導体基板領域にソース領域と半導体基板領域により形成されたpn接合ダイオードのビルドイン電圧よりも小さい順方向電圧を印加する方法などが考えられた。
特開平9−252125号公報
However, if the threshold voltage is increased, it becomes an obstacle when the MOS field effect transistor is operated at high speed. As a further improvement measure, a pn junction diode formed in the semiconductor substrate region by the source region and the semiconductor substrate region. For example, a method of applying a forward voltage smaller than the built-in voltage was considered.
JP 9-252125 A

上記の方法の場合、半導体基板領域に印加できる電圧は、上記pn接合ダイオードのビルドイン電圧までであるが、MOS型電界効果トランジスタを高温環境で使用する場合には、温度の上昇に伴い、上記ビルドイン電圧が下がってしまい十分な効果が発揮できない。   In the case of the above method, the voltage that can be applied to the semiconductor substrate region is up to the build-in voltage of the pn junction diode. However, when the MOS field effect transistor is used in a high temperature environment, the build-in voltage increases as the temperature rises. The voltage drops and a sufficient effect cannot be exhibited.

また、高耐圧が必要になる場合には、半導体基板領域の濃度を低濃度にする必要が出てくるため、半導体基板領域を高濃度にすること自体が難しくなる。   Further, when a high breakdown voltage is required, it is necessary to reduce the concentration of the semiconductor substrate region, so that it is difficult to increase the concentration of the semiconductor substrate region itself.

本発明は、高耐圧のMOS型電界効果トランジスタを高温環境で使用することを考慮して、MOS型電界効果トランジスタのしきい値電圧を低く保ったまま、即ち半導体基板の濃度を低濃度にしたまま、リーク電流を抑制する半導体装置を提供することにある。   In consideration of using a high voltage MOS field effect transistor in a high temperature environment, the present invention keeps the threshold voltage of the MOS field effect transistor low, that is, reduces the concentration of the semiconductor substrate. It is still another object to provide a semiconductor device that suppresses leakage current.

半導体基板上に形成されたMOS型電界効果トランジスタのソース電極とチャネル形成領域の間に基板と同じ導電型を有する基板より濃度の濃いソースオフセット領域を形成し、かつ、ソースオフセット領域上のゲート酸化膜を薄くすることで、MOS型電界効果トランジスタのしきい値電圧を低く抑えたままMOS型電界効果トランジスタのリーク電流を抑制する。   A source offset region having a concentration higher than that of the substrate having the same conductivity type as that of the substrate is formed between the source electrode and the channel forming region of the MOS field effect transistor formed on the semiconductor substrate, and gate oxidation on the source offset region is performed. By making the film thin, the leakage current of the MOS field effect transistor is suppressed while the threshold voltage of the MOS field effect transistor is kept low.

温度環境の上昇によるMOS型電界効果トランジスタのリーク電流の主な原因の一つは、ソース領域と半導体基板領域(ウェル領域)の界面で作られるpn接合の表面近傍のポテンシャル障壁が、環境温度の上昇によって下がることによる。   One of the main causes of the leakage current of MOS field-effect transistors due to an increase in temperature environment is that the potential barrier near the surface of the pn junction formed at the interface between the source region and the semiconductor substrate region (well region) By going down by rising.

本発明のようにソース領域とチャネル形成領域の間にソースオフセット領域を設け、ソースオフセット領域の濃度を基板より濃くし、ソースオフセット領域の上の酸化膜を薄くすれば、MOS型電界効果トランジスタのしきい値電圧を低く抑えたまま、ソース領域とソースオフセット領域との界面におけるpn接合のポテンシャル障壁を予め高く設定することができ、温度環境の上昇によるリーク電流を抑制することができる。   If a source offset region is provided between the source region and the channel forming region as in the present invention, the concentration of the source offset region is made higher than that of the substrate, and the oxide film on the source offset region is made thin, the MOS field effect transistor While the threshold voltage is kept low, the potential barrier of the pn junction at the interface between the source region and the source offset region can be set high in advance, and leakage current due to an increase in temperature environment can be suppressed.

以下、本発明を実施するための最良の形態について、図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施形態に係る半導体装置100の断面図である。   FIG. 1 is a cross-sectional view of a semiconductor device 100 according to the first embodiment of the present invention.

半導体装置100は、第1導電型(例えばP型)の半導体基板領域(ウェル領域)1表面に互いに間隔をおいて設けられた第2導電型(例えばN型)のソース領域3とドレイン領域2と、ソース領域3とドレイン領域2との間に半導体基板領域(ウェル領域)1のチャネル形成領域4と、チャネル形成領域4に接してソース領域3の一部に設けられた第1導電型の半導体基板領域(ウェル領域)1と同じ導電型を有し第1導電型の半導体基板領域(ウェル領域)1より濃度が濃いソースオフセット領域7と、チャネル形成領域4に接してドレイン領域2の一部に設けられた低濃度ドレイン領域9と、チャネル形成領域4の上に設けられたゲート酸化膜5と、ソースオフセット領域7の上に設けられたゲート酸化膜5より薄いソースゲート酸化膜8と、低濃度ドレイン領域9上に設けられたゲート酸化膜より厚い高耐圧用絶縁膜10と、ソースオフセット領域7及びチャネル形成領域4及び低濃度ドレイン領域9の上にソースゲート酸化膜8及びゲート酸化膜5及び高耐圧用絶縁膜10を介して設けられたゲート電極6を有しているMOS型電界効果トランジスタである。   The semiconductor device 100 includes a first conductivity type (for example, P type) semiconductor substrate region (well region) 1 and a second conductivity type (for example, N type) source region 3 and drain region 2 that are spaced apart from each other. Between the source region 3 and the drain region 2, the channel formation region 4 of the semiconductor substrate region (well region) 1, and the first conductivity type provided in part of the source region 3 in contact with the channel formation region 4. A source offset region 7 having the same conductivity type as that of the semiconductor substrate region (well region) 1 and having a higher concentration than the semiconductor substrate region (well region) 1 of the first conductivity type, and one of the drain regions 2 in contact with the channel formation region 4 A low-concentration drain region 9 provided in the region, a gate oxide film 5 provided on the channel formation region 4, a source gate oxide film 8 thinner than the gate oxide film 5 provided on the source offset region 7, , Low concentration A high breakdown voltage insulating film 10 thicker than the gate oxide film provided on the drain region 9, a source gate oxide film 8, a gate oxide film 5, and a source offset region 7, a channel formation region 4, and a low concentration drain region 9 This is a MOS field effect transistor having a gate electrode 6 provided through an insulating film 10 for high withstand voltage.

以下、リーク電流を抑制するしくみをN型のMOS型電界効果トランジスタの場合を例に説明する。図2〜5は、ソース領域3とソースオフセット領域7の界面で作られるpn接合の表面近傍のバンド図で、図2〜3はソースオフセット領域7の濃度が半導体基板領域(ウェル領域)1の濃度と等しい従来のMOS型電界効果トランジスタのものである。   Hereinafter, a mechanism for suppressing the leakage current will be described by taking an N-type MOS field effect transistor as an example. 2 to 5 are band diagrams in the vicinity of the surface of the pn junction formed at the interface between the source region 3 and the source offset region 7, and FIGS. 2 to 3 show the concentration of the source offset region 7 in the semiconductor substrate region (well region) 1. A conventional MOS field effect transistor having the same concentration.

図6はドナーまたはアクセプターの濃度に対するフェルミ準位の位置を温度に対して描いたものであり、Andrew S.Grove著 "Physics and Technology of Semiconductor Device"からの引用である。一般に不純物半導体の環境温度を上昇させるとフェルミ準位は、図6のように導電型を問わずに真性半導体のフェルミ準位に近づくから、室温環境のときの上記pn接合のバンド図を101(図2)とすれば、高温環境では102(図3)のようになり、温度の上昇に伴って上記pn接合のポテンシャル障壁11は低くなり、リーク電流が増大する。   FIG. 6 depicts the Fermi level position versus temperature for donor or acceptor concentrations, and is quoted from Andrew S. Grove, “Physics and Technology of Semiconductor Device”. In general, when the environmental temperature of an impurity semiconductor is raised, the Fermi level approaches the Fermi level of the intrinsic semiconductor regardless of the conductivity type as shown in FIG. If FIG. 2), it becomes like 102 (FIG. 3) in a high temperature environment, and the potential barrier 11 of the pn junction becomes lower and the leakage current increases as the temperature rises.

本発明のようにソースオフセット領域7の濃度を半導体基板領域(ウェル領域)1の濃度よりも濃くすれば、室温環境での上記pn接合のバンド図103(図4)のポテンシャル障壁11は、従来のMOS型電界効果トランジスタのバンド図101(図2)のポテンシャル障壁11より大きくできる。高温環境においてはバンド図104(図5)に示すポテンシャル障壁11の方が、従来のMOS型電界効果トランジスタのバンド図102(図3)のポテンシャル障壁11より大きくなることから、リーク電流は抑制される。   If the concentration of the source offset region 7 is made higher than the concentration of the semiconductor substrate region (well region) 1 as in the present invention, the potential barrier 11 in the band diagram 103 (FIG. 4) of the pn junction in the room temperature environment is conventional. The MOS field effect transistor can be made larger than the potential barrier 11 in the band diagram 101 (FIG. 2). In a high temperature environment, the potential barrier 11 shown in the band diagram 104 (FIG. 5) is larger than the potential barrier 11 in the band diagram 102 (FIG. 3) of the conventional MOS field effect transistor, so that the leakage current is suppressed. The

更に、本発明では、ソースオフセット領域7の上の酸化膜を薄くすることにより、ソースオフセット領域7の濃度を濃くすることによるMOS型電界効果トランジスタのしきい値の増分を抑え、しきい値電圧を低く保ったまま、リーク電流を抑制することができる。   Furthermore, in the present invention, by increasing the thickness of the source offset region 7 by reducing the thickness of the oxide film on the source offset region 7, the increase in threshold value of the MOS field effect transistor is suppressed, and the threshold voltage is increased. Leakage current can be suppressed while maintaining low.

図7は、本発明の第2の実施形態に係る半導体装置105の断面図である。   FIG. 7 is a cross-sectional view of a semiconductor device 105 according to the second embodiment of the present invention.

半導体装置105は、第1導電型(例えばP型)の半導体基板領域(ウェル領域)1表面に互いに間隔をおいて設けられた第2導電型(例えばN型)のソース領域3とドレイン領域2と、ソース領域3とドレイン領域2との間に半導体基板領域(ウェル領域)1のチャンネル形成領域4と、チャネル形成領域4に接してドレイン領域2の一部に設けられた低濃度ドレイン領域9と、チャネル形成領域4に接してソース領域3の一部に設けられた半導体基板領域 (ウェル領域)1よりも濃度の濃い第1導電型のソースオフセット領域7と、チャネル形成領域4およびソースオフセット領域7の上に設けられたゲート酸化膜5と、低濃度ドレイン領域9の上に設けられたゲート酸化膜5より厚い高耐圧用絶縁膜10と、チャネル形成領域4及び低濃度ドレイン領域9の上にゲート酸化膜5及び高耐圧用絶縁膜10を介して設けられたゲート電極6と、ソースオフセット領域7の上にゲート酸化膜5を介して第2ゲート電極16が設けられていることを特徴とするMOS型電界効果トランジスタである。   The semiconductor device 105 includes a source region 3 and a drain region 2 of a second conductivity type (for example, N type) provided on the surface of a semiconductor substrate region (well region) 1 of a first conductivity type (for example, P type) at a distance from each other. Between the source region 3 and the drain region 2, a channel formation region 4 of the semiconductor substrate region (well region) 1, and a low concentration drain region 9 provided in a part of the drain region 2 in contact with the channel formation region 4 A source offset region 7 of the first conductivity type having a concentration higher than that of the semiconductor substrate region (well region) 1 provided in part of the source region 3 in contact with the channel forming region 4, and the channel forming region 4 and the source offset Gate oxide film 5 provided on region 7, high-voltage insulating film 10 thicker than gate oxide film 5 provided on lightly doped drain region 9, channel forming region 4 and lightly doped drain region A gate electrode 6 provided on the gate oxide film 5 and the high breakdown voltage insulating film 10 on the gate electrode 6 and a second gate electrode 16 on the source offset region 7 via the gate oxide film 5 are provided. This is a MOS field effect transistor.

リーク電流を抑制するしくみは、第1の実施形態と同じである。第2の実施形態では、ソースオフセット領域7を制御するための第2ゲート電極16をゲート電極6とは別に設けた。MOS型電界効果トランジスタが待機状態の時に、第2ゲート電極16をオフさせるように制御すれば、待機時のリーク電流が低減できる。或いは、第2ゲート電極16とドレイン領域2を結線すればソース領域3と半導体基板領域(ウェル領域)1が接する面積が減るので、その分のリーク電流が抑制される。   The mechanism for suppressing the leakage current is the same as in the first embodiment. In the second embodiment, the second gate electrode 16 for controlling the source offset region 7 is provided separately from the gate electrode 6. Leakage current during standby can be reduced by controlling the second gate electrode 16 to be turned off when the MOS field effect transistor is in standby. Alternatively, if the second gate electrode 16 and the drain region 2 are connected, the area where the source region 3 and the semiconductor substrate region (well region) 1 are in contact with each other is reduced, so that the leakage current is reduced accordingly.

図8は、本発明の第3の実施形態に係る半導体装置106の断面図である。   FIG. 8 is a cross-sectional view of a semiconductor device 106 according to the third embodiment of the present invention.

第1導電型の半導体基板領域 (ウェル領域)1の表面に互いに間隔をおいて設けられた第2導電型のソース領域3とドレイン領域2と、ソース領域3とドレイン領域2との間に半導体基板領域(ウェル領域)1のチャネル形成領域4と、チャネル形成領域4に接してドレイン領域2の一部に設けられた低濃度ドレイン領域9と、チャネル形成領域4に接してソース領域3の一部に設けられたソースオフセット領域7と、チャネル形成領域4およびソースオフセット領域7の上に設けられた第1ゲート酸化膜17と、低濃度ドレイン領域9の上に設けられた第1ゲート酸化膜17より厚い高耐圧用絶縁膜10と、チャネル形成領域4と低濃度ドレイン領域9の上に第1ゲート酸化膜17と高耐圧用絶縁膜10を介して設けられた第1ゲート電極18と、第1ゲート電極18の上に設けられた第2ゲート酸化膜19と、ソースオフセット領域7と第1ゲート電極18の上に第1ゲート酸化膜17と第2ゲート酸化膜19を介して第2ゲート電極16を設け、第1ゲート電極18をフローティングにすることを特徴とするMOS型電界効果トランジスタである。   A semiconductor between the source region 3 and the drain region 2 of the second conductivity type and the source region 3 and the drain region 2 which are spaced from each other on the surface of the first conductivity type semiconductor substrate region (well region) 1. A channel formation region 4 in the substrate region (well region) 1, a low-concentration drain region 9 provided in a part of the drain region 2 in contact with the channel formation region 4, and a source region 3 in contact with the channel formation region 4 Source offset region 7 provided in the region, first gate oxide film 17 provided on channel formation region 4 and source offset region 7, and first gate oxide film provided on lightly doped drain region 9 The first gate electrode 18 provided on the channel formation region 4 and the low-concentration drain region 9 with the first gate oxide film 17 and the high breakdown voltage insulating film 10 being interposed therebetween. The second gate oxide film 19 provided on the first gate electrode 18, the first gate oxide film 17 and the second gate oxide film 19 on the source offset region 7 and the first gate electrode 18 through the first gate oxide film 19. The MOS field effect transistor is characterized in that two gate electrodes 16 are provided and the first gate electrode 18 is in a floating state.

リーク電流を抑制するしくみは、第1の実施形態と同じである。第3の実施形態では、ソースオフセット領域7を制御するための第2ゲート電極16にかかる電圧が第2ゲート酸化膜19を介してフローティングにした第1ゲート電極18に容量結合を介してかかるように構成した。   The mechanism for suppressing the leakage current is the same as in the first embodiment. In the third embodiment, the voltage applied to the second gate electrode 16 for controlling the source offset region 7 is applied to the first gate electrode 18 which is floated via the second gate oxide film 19 via capacitive coupling. Configured.

第2ゲート電極16に電圧を印加すれば、容量結合の結果、印加した電圧よりも低い電圧が第1ゲート電極17にかかるため、半導体基板領域(ウェル領域)1の濃度を低く保ったまま、MOS型電界効果トランジスタのリーク電流を抑制することができる。   If a voltage is applied to the second gate electrode 16, a voltage lower than the applied voltage is applied to the first gate electrode 17 as a result of capacitive coupling, so that the concentration of the semiconductor substrate region (well region) 1 is kept low. The leakage current of the MOS field effect transistor can be suppressed.

本発明の第1の実施形態に係る半導体装置100の断面図Sectional drawing of the semiconductor device 100 which concerns on the 1st Embodiment of this invention. 従来のMOS型電界効果トランジスタにおけるソース領域とチャネル形成領域界面のエネルギーバンド図(室温環境)Energy band diagram at the interface between the source region and the channel formation region in a conventional MOS field effect transistor (room temperature environment) 従来のMOS型電界効果トランジスタにおけるソース領域とチャネル形成領域界面のエネルギーバンド図(高温環境)Energy band diagram of the interface between the source region and the channel formation region in a conventional MOS field effect transistor (high temperature environment) 本発明のMOS型電界効果トランジスタにおけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図(室温環境)Energy band diagram of the interface between the source offset region and the channel forming region in the MOS field effect transistor of the present invention (room temperature environment) 本発明のMOS型電界効果トランジスタにおけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図(高温環境)Energy band diagram of source offset region and channel forming region interface in MOS field effect transistor of the present invention (high temperature environment) 濃度の異なる不純物半導体に対する温度とフェルミ準位の関係を表す図Diagram showing the relationship between temperature and Fermi level for impurity semiconductors with different concentrations 本発明の第2の実施形態に係る半導体装置105の断面図Sectional drawing of the semiconductor device 105 which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る半導体装置106の断面図Sectional drawing of the semiconductor device 106 concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 半導体基板領域(ウェル領域)
2 ドレイン領域
3 ソース領域
4 チャネル形成領域
5 ゲート酸化膜
6 ゲート電極
7 ソースオフセット領域
8 ソースゲート酸化膜
9 低濃度ドレイン領域
10 高耐圧用絶縁膜
11 ポテンシャル障壁
12 伝導帯
13 真性半導体のフェルミ準位
14 フェルミ準位
15 価電子帯
16 第2ゲート電極
17 第1ゲート酸化膜
18 第1ゲート電極
19 第2ゲート酸化膜
101 従来MOSトランジスタの室温環境におけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図
102 従来MOSトランジスタの高温環境におけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図
103 本発明実施形態の室温環境におけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図
104 本発明実施形態の高温環境におけるソースオフセット領域とチャネル形成領域界面のエネルギーバンド図
1 Semiconductor substrate area (well area)
2 drain region 3 source region 4 channel formation region 5 gate oxide film 6 gate electrode 7 source offset region 8 source gate oxide film 9 low concentration drain region 10 high breakdown voltage insulating film 11 potential barrier 12 conduction band 13 Fermi level of intrinsic semiconductor 14 Fermi level 15 Valence band 16 Second gate electrode 17 First gate oxide film 18 First gate electrode 19 Second gate oxide film 101 Energy band diagram of interface between source offset region and channel formation region in room temperature environment of conventional MOS transistor 102 Energy band diagram of interface between source offset region and channel forming region in high temperature environment of conventional MOS transistor 103 Energy band diagram of interface of source offset region and channel forming region in room temperature environment according to the embodiment of the present invention 104 In the high temperature environment of the embodiment of the present invention Energy band diagram of interface between source offset region and channel forming region

Claims (4)

第1導電型の半導体基板領域表面に互いに間隔をおいて設けられた第2導電型のソース領域及びドレイン領域と、
前記ソース領域及び前記ドレイン領域との間の前記半導体基板領域に設けられたチャネル形成領域と、
前記チャネル形成領域に接して前記ドレイン領域の一部に設けられた低濃度ドレイン領域と、
前記チャネル形成領域と前記ソース領域との間に設けられた前記半導体基板領域よりも濃度の濃い第1導電型のソースオフセット領域と、
前記チャネル形成領域の上に設けられたゲート酸化膜と、
前記ソースオフセット領域の上に設けられた前記ゲート酸化膜より薄いソースゲート酸化膜と、
前記低濃度ドレイン領域の上に設けられた前記ゲート絶縁膜より厚い高耐圧用絶縁膜と、
前記ゲート酸化膜及び前記ソースゲート酸化膜及び前記高耐圧用絶縁膜の上に設けられたゲート電極とを有するMOS型電界効果トランジスタ。
A source region and a drain region of a second conductivity type provided on the surface of the semiconductor substrate region of the first conductivity type and spaced from each other;
A channel formation region provided in the semiconductor substrate region between the source region and the drain region;
A low concentration drain region provided in part of the drain region in contact with the channel formation region;
A source offset region of a first conductivity type having a concentration higher than that of the semiconductor substrate region provided between the channel formation region and the source region;
A gate oxide film provided on the channel formation region;
A source gate oxide film thinner than the gate oxide film provided on the source offset region;
A high breakdown voltage insulating film thicker than the gate insulating film provided on the low concentration drain region;
A MOS field effect transistor having a gate electrode provided on the gate oxide film, the source gate oxide film, and the high breakdown voltage insulating film.
第1導電型の半導体基板領域表面に互いに間隔をおいて設けられた第2導電型のソース領域及びドレイン領域と、
前記ソース領域及び前記ドレイン領域との間[に]の前記半導体基板領域に設けられたチャネル形成領域と、
前記チャネル形成領域に接して前記ドレイン領域の一部に設けられた低濃度ドレイン領域と、
前記チャネル形成領域と前記ソース領域との間に設けられた前記半導体基板領域よりも濃度の濃い第1導電型のソースオフセット領域と、
前記チャネル形成領域及び前記ソースオフセット領域の上に設けられたゲート酸化膜と、
前記低濃度ドレイン領域の上に設けられた前記ゲート絶縁膜より厚い高耐圧用絶縁膜と、
前記チャネル形成領域及び前記低濃度ドレイン領域の上に前記ゲート酸化膜及び前記高耐圧用絶縁膜を介して設けられた第1ゲート電極と、
前記ソースオフセット領域の上に前記ゲート酸化膜を介して設けられた第2ゲート電極とを有するMOS型電界効果トランジスタ。
A source region and a drain region of a second conductivity type provided on the surface of the semiconductor substrate region of the first conductivity type and spaced from each other;
A channel forming region provided in the semiconductor substrate region between the source region and the drain region;
A low concentration drain region provided in part of the drain region in contact with the channel formation region;
A source offset region of a first conductivity type having a concentration higher than that of the semiconductor substrate region provided between the channel formation region and the source region;
A gate oxide film provided on the channel formation region and the source offset region;
A high breakdown voltage insulating film thicker than the gate insulating film provided on the low concentration drain region;
A first gate electrode provided on the channel formation region and the low-concentration drain region via the gate oxide film and the high breakdown voltage insulating film;
A MOS field effect transistor having a second gate electrode provided on the source offset region via the gate oxide film.
前記第2ゲートの電極と前記ドレイン領域とを同電位にすることを特徴とする請求項2に記載のMOS型電界効果トランジスタ。   3. The MOS field effect transistor according to claim 2, wherein the second gate electrode and the drain region have the same potential. 第1導電型の半導体基板領域表面に互いに間隔をおいて設けられた第2導電型のソース領域及びドレイン領域と、
前記ソース領域及び前記ドレイン領域との間[に]の前記半導体基板領域に設けられたチャネル形成領域と、
前記チャネル形成領域に接して前記ドレイン領域の一部に設けられた低濃度ドレイン領域と、
前記チャネル形成領域と前記ソース領域との間に設けられた前記半導体基板領域よりも濃度の濃い第1導電型のソースオフセット領域と、
前記チャネル形成領域及び前記ソースオフセット領域の上に設けられた第1ゲート酸化膜と、
前記低濃度ドレイン領域の上に設けられた前記第1ゲート酸化膜より厚い高耐圧用絶縁膜と、
前記チャンネル形成領域及び前記低濃度ドレイン領域の上に前記第1ゲート酸化膜及び前記高耐圧用絶縁膜を介して設けられた第1ゲート電極と、
前記第1ゲート電極の上に設けられた第2ゲート酸化膜と、
前記ソースオフセット領域及び前記第1ゲート電極の上に前記第1ゲート酸化膜及び前記第2ゲート酸化膜を介して設けられた第2ゲート電極とを有し、前記第1ゲート電極をフローティングとするMOS型電界効果トランジスタ。
A source region and a drain region of a second conductivity type provided on the surface of the semiconductor substrate region of the first conductivity type and spaced from each other;
A channel forming region provided in the semiconductor substrate region between the source region and the drain region;
A low concentration drain region provided in part of the drain region in contact with the channel formation region;
A source offset region of a first conductivity type having a concentration higher than that of the semiconductor substrate region provided between the channel formation region and the source region;
A first gate oxide film provided on the channel formation region and the source offset region;
A high breakdown voltage insulating film thicker than the first gate oxide film provided on the low-concentration drain region;
A first gate electrode provided on the channel formation region and the low-concentration drain region via the first gate oxide film and the high breakdown voltage insulating film;
A second gate oxide film provided on the first gate electrode;
A second gate electrode provided on the source offset region and the first gate electrode via the first gate oxide film and the second gate oxide film, and the first gate electrode is set in a floating state. MOS field effect transistor.
JP2006164278A 2006-06-14 2006-06-14 MOS field effect transistor Expired - Fee Related JP5078286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164278A JP5078286B2 (en) 2006-06-14 2006-06-14 MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164278A JP5078286B2 (en) 2006-06-14 2006-06-14 MOS field effect transistor

Publications (2)

Publication Number Publication Date
JP2007335548A true JP2007335548A (en) 2007-12-27
JP5078286B2 JP5078286B2 (en) 2012-11-21

Family

ID=38934746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164278A Expired - Fee Related JP5078286B2 (en) 2006-06-14 2006-06-14 MOS field effect transistor

Country Status (1)

Country Link
JP (1) JP5078286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047830A (en) * 2015-03-26 2019-07-23 三重富士通半导体股份有限公司 Semiconductor devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060194A (en) * 2001-08-10 2003-02-28 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003060194A (en) * 2001-08-10 2003-02-28 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047830A (en) * 2015-03-26 2019-07-23 三重富士通半导体股份有限公司 Semiconductor devices
CN110047830B (en) * 2015-03-26 2023-03-28 联华电子日本株式会社 Semiconductor device with a plurality of transistors

Also Published As

Publication number Publication date
JP5078286B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US7663189B2 (en) Silicon-on-sapphire semiconductor device with shallow lightly-doped drain
JP5172083B2 (en) Semiconductor device, manufacturing method thereof, and memory circuit
JP4664631B2 (en) Semiconductor device and manufacturing method thereof
US11171232B2 (en) High voltage device and manufacturing method thereof
US9048267B2 (en) Semiconductor device
US20120241722A1 (en) Field effect transistor
US9171903B2 (en) Transistors having features which preclude straight-line lateral conductive paths from a channel region to a source/drain region
US8486754B1 (en) Method for manufacturing a gate-control diode semiconductor device
US8421153B2 (en) Semiconductor device
JP2008244466A (en) Semiconductor device
JP2015146390A (en) Semiconductor memory device and method of manufacturing the same
US8455309B2 (en) Method for manufacturing a semiconductor device
JP5078286B2 (en) MOS field effect transistor
JP5207666B2 (en) Semiconductor device
US9437735B1 (en) Tunnel FET
CN103762241A (en) Pectinate gate longitudinal channel SOI LDMOS unit
JP4704416B2 (en) Semiconductor device using SOI substrate and method of manufacturing the same
JP2007281006A (en) Semiconductor device and its manufacturing method
JP5078287B2 (en) MOS field effect transistor
JP2006147805A (en) Semiconductor apparatus
JP2010245484A (en) Mos transistor, semiconductor device having built-in mos transistor, and electronic equipment using semiconductor device
KR102704422B1 (en) Tunneling Field Effect Transistor having Fin-Shaped Semiconductor Pattern
JP2009088187A (en) Trench gate type transistor and method for manufacturing same
JP2018085383A (en) Switching element
JPH06209106A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees