JP2007335198A - Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it - Google Patents

Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it Download PDF

Info

Publication number
JP2007335198A
JP2007335198A JP2006164833A JP2006164833A JP2007335198A JP 2007335198 A JP2007335198 A JP 2007335198A JP 2006164833 A JP2006164833 A JP 2006164833A JP 2006164833 A JP2006164833 A JP 2006164833A JP 2007335198 A JP2007335198 A JP 2007335198A
Authority
JP
Japan
Prior art keywords
active material
transition metal
material particles
metal element
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164833A
Other languages
Japanese (ja)
Inventor
Takashi Otsuka
隆 大塚
Sumuto Ishida
澄人 石田
Hiroaki Matsuda
博明 松田
Kunihiko Bessho
邦彦 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006164833A priority Critical patent/JP2007335198A/en
Publication of JP2007335198A publication Critical patent/JP2007335198A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite active material that provides a non-aqueous electrolyte secondary battery in which a higher initial discharge capacity and superior cycle characteristics than those in conventional ones can be compatible. <P>SOLUTION: This is the composite active material for the non-aqueous electrolyte secondary battery which contains active material particles capable of storing and releasing lithium, and fibers grown from surfaces of the active material particles, in which the active material particles contain at least silicon, and the fibers contain at least carbon, and which has between the active material particles and the fibers an adhesive phase that enhances connection force of the active material particles and the fibers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に非水電解質二次電池用複合活物質に関し、詳しくは、少なくともケイ素を含む活物質粒子と、活物質粒子の表面から成長させたファイバとを含む複合活物質に関する。本発明の複合活物質は、活物質粒子とファイバとの間に、活物質粒子とファイバとの結合力を高める密着相を有する。   The present invention mainly relates to a composite active material for a non-aqueous electrolyte secondary battery, and more particularly to a composite active material including active material particles containing at least silicon and fibers grown from the surface of the active material particles. The composite active material of the present invention has an adhesive phase between the active material particles and the fiber to increase the bonding force between the active material particles and the fiber.

非水電解質二次電池は、小型かつ軽量で、高エネルギー密度を有する。よって、機器のポータブル化およびコードレス化が進む中で、非水電解質二次電池の需要が高まっている。現在、非水電解質二次電池の負極活物質には、主に炭素材料(天然黒鉛、人造黒鉛など)が用いられている。黒鉛の理論容量は372mAh/gである。現在実用化されている炭素材料からなる負極活物質の容量は、黒鉛の理論容量に近くなってきている。よって、炭素材料の改良により、更なる容量の向上を実現することは非常に困難である。   The nonaqueous electrolyte secondary battery is small and lightweight and has a high energy density. Therefore, the demand for non-aqueous electrolyte secondary batteries is increasing as equipment becomes more portable and cordless. Currently, carbon materials (natural graphite, artificial graphite, etc.) are mainly used for the negative electrode active material of non-aqueous electrolyte secondary batteries. The theoretical capacity of graphite is 372 mAh / g. The capacity of a negative electrode active material made of a carbon material that is currently in practical use is approaching the theoretical capacity of graphite. Therefore, it is very difficult to realize a further increase in capacity by improving the carbon material.

一方、リチウムと合金化可能な元素、特にSiを含む材料の容量は、黒鉛の理論容量を大きく上回る。よって、ケイ素を含む材料が、次世代の負極活物質として期待されている。しかし、ケイ素を含む材料は、リチウムの吸蔵および放出に伴う体積変化が非常に大きい。よって、電池の充放電サイクルを繰り返すと、負極活物質が膨張と収縮を繰り返し、活物質粒子間の導電ネットワークが切断される。そのため、充放電サイクルに伴う劣化が非常に大きくなる。   On the other hand, the capacity of an element that can be alloyed with lithium, particularly a material containing Si, greatly exceeds the theoretical capacity of graphite. Therefore, a material containing silicon is expected as a next-generation negative electrode active material. However, a material containing silicon has a very large volume change associated with insertion and extraction of lithium. Therefore, when the charge / discharge cycle of the battery is repeated, the negative electrode active material repeatedly expands and contracts, and the conductive network between the active material particles is cut. Therefore, the deterioration accompanying the charge / discharge cycle becomes very large.

そこで、活物質粒子の割れを防ぐために、活物質の結晶子サイズをナノレベルにすることが提案されている。また、ケイ素を含む材料と炭素材料とを複合化することが提案されている。更に、ケイ素と遷移金属とを合金化することが検討されている。しかし、実用的なサイクル特性を得ることは困難である。   Therefore, in order to prevent cracking of the active material particles, it has been proposed to reduce the crystallite size of the active material to the nano level. It has also been proposed to combine a material containing silicon and a carbon material. Further, it has been studied to alloy silicon with a transition metal. However, it is difficult to obtain practical cycle characteristics.

このような状況において、ケイ素を含む負極活物質と、カーボンナノファイバの成長を促す触媒元素と、負極活物質の表面から成長させたカーボンナノファイバとを含む複合粒子が、負極材料として提案されている。このような複合粒子を用いることにより、高い充放電容量と、優れたサイクル特性とを実現できることが見出されつつある(特許文献1参照)。   Under such circumstances, composite particles including a negative electrode active material containing silicon, a catalytic element that promotes the growth of carbon nanofibers, and carbon nanofibers grown from the surface of the negative electrode active material have been proposed as negative electrode materials. Yes. It has been found that by using such composite particles, high charge / discharge capacity and excellent cycle characteristics can be realized (see Patent Document 1).

特許文献1の複合粒子では、活物質粒子がカーボンナノファイバと化学結合しており、カーボンナノファイバ同士は互いに絡み合っている。このため、負極活物質が膨張と収縮を繰り返しても、活物質粒子同士の電気的接続は、カーボンナノファイバを通じて維持される。よって、活物質粒子間の導電ネットワークの切断は、従来よりも起こりにくくなる。また、カーボンナノファイバが、活物質粒子間に空間を確保するため、活物質粒子の体積変化に伴う応力が緩和される。
特開2004−349056号公報
In the composite particles of Patent Document 1, the active material particles are chemically bonded to the carbon nanofibers, and the carbon nanofibers are intertwined with each other. For this reason, even if the negative electrode active material repeats expansion and contraction, the electrical connection between the active material particles is maintained through the carbon nanofibers. Therefore, the disconnection of the conductive network between the active material particles is less likely to occur than before. In addition, since the carbon nanofibers secure a space between the active material particles, the stress accompanying the volume change of the active material particles is relieved.
JP 2004-349056 A

特許文献1の複合粒子の場合、活物質粒子がリチウムの吸蔵および放出を繰り返すと、活物質粒子の膨張と収縮に伴い、粒子表面からカーボンナノファイバが脱落する場合がある。また、ファイバと活物質粒子との結合が弱いと、複合粒子をバインダーと混合して、電極合剤ペーストを調製する際や、電極合剤ペーストを集電体に塗布して電極を形成する際に、活物質粒子の表面からファイバが脱落しやすい。脱落したファイバが電極に含まれると、サイクル特性を十分に向上させることは困難である。更に、活物質粒子の表面からファイバが脱落すると、活物質粒子とファイバとの比率が変動する。よって、電極容量を厳密に制御することが困難になる。   In the case of the composite particles of Patent Document 1, when the active material particles repeatedly occlude and release lithium, the carbon nanofibers may fall off from the particle surface as the active material particles expand and contract. Also, when the bond between the fiber and the active material particles is weak, the composite particles are mixed with a binder to prepare an electrode mixture paste, or the electrode mixture paste is applied to a current collector to form an electrode. In addition, the fiber tends to fall off from the surface of the active material particles. If the dropped fiber is included in the electrode, it is difficult to sufficiently improve the cycle characteristics. Furthermore, when the fiber falls off from the surface of the active material particles, the ratio between the active material particles and the fiber varies. Therefore, it becomes difficult to strictly control the electrode capacity.

ファイバは、電池容量にほとんど寄与しない。よって、電池容量を向上させるためには、負極に含まれる活物質粒子の密度を向上させることが不可欠となる。すなわち、容量を向上させる観点からは、活物質粒子とファイバとの合計に占めるファイバの体積割合は小さい方が望ましい。一方、ファイバの割合が減少すると、ファイバによって確保される空間が小さくなり、活物質粒子の体積変化に伴う応力を十分に緩和することができない。   Fiber makes little contribution to battery capacity. Therefore, in order to improve the battery capacity, it is essential to improve the density of the active material particles contained in the negative electrode. That is, from the viewpoint of improving the capacity, it is desirable that the volume ratio of the fiber in the total of the active material particles and the fiber is small. On the other hand, when the ratio of the fiber decreases, the space secured by the fiber becomes small, and the stress accompanying the volume change of the active material particles cannot be sufficiently relaxed.

サイクル特性を十分に向上させるには、ファイバの活物質粒子からの脱落を防ぐこと、すなわちファイバと活物質粒子とを強く結合させることが重要となる。また、電池容量の向上とサイクル特性の向上とを両立するには、活物質粒子間の空間を確保でき、導電ネットワークを確保できる範囲で、活物質粒子の表面にファイバを疎に成長させる必要がある。この場合、ファイバの活物質粒子からの脱落を防ぐことが特に重要となる。   In order to sufficiently improve the cycle characteristics, it is important to prevent the fiber from falling off the active material particles, that is, to strongly bond the fiber and the active material particles. In order to achieve both improvement in battery capacity and improvement in cycle characteristics, it is necessary to grow fibers on the surface of the active material particles sparsely within a range where a space between the active material particles can be secured and a conductive network can be secured. is there. In this case, it is particularly important to prevent the fiber from falling off the active material particles.

以上を鑑み、本発明は、第1に、リチウムを吸蔵および放出可能な活物質粒子と、活物質粒子の表面から成長させたファイバとを含み、活物質粒子は、少なくともケイ素を含み、ファイバは、少なくとも炭素を含み、活物質粒子とファイバとの間に、活物質粒子とファイバとの結合力を高める密着相を有する、非水電解質二次電池用複合活物質に関する。   In view of the above, the present invention firstly includes an active material particle capable of inserting and extracting lithium, and a fiber grown from the surface of the active material particle. The active material particle includes at least silicon. The present invention relates to a composite active material for a non-aqueous electrolyte secondary battery, which contains at least carbon and has an adhesive phase between the active material particles and the fiber to enhance the bonding force between the active material particles and the fiber.

ここで、密着相は、遷移金属元素を含み、遷移金属元素は、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種であることが好ましい。密着相は、例えばケイ素と遷移金属元素との合金や、遷移金属元素の酸化物を含む。   Here, the adhesion phase contains a transition metal element, and the transition metal element is preferably at least one selected from the group consisting of Ti, Fe, Co, Ni, Zr, and Hf. The adhesion phase includes, for example, an alloy of silicon and a transition metal element or an oxide of a transition metal element.

本発明は、第2に、(i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を付与する工程と、(ii)遷移金属元素とケイ素とを反応させて、合金を生成させる工程と、(iii)合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程とを含む、非水電解質二次電池用複合活物質の製造方法(方法A)に関する。   Secondly, the present invention provides (i) at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf on the surface of active material particles containing at least silicon. And (ii) reacting a transition metal element with silicon to form an alloy, and (iii) growing a carbon-containing fiber from the surface of the active material particles supporting the alloy. The present invention relates to a method for producing a composite active material for a nonaqueous electrolyte secondary battery (Method A).

方法Aにおいて、合金を生成させる工程(ii)は、還元雰囲気または不活性雰囲気中で、遷移金属元素を金属状態に還元してからケイ素と反応させる工程を含むことが好ましい。   In Method A, it is preferable that the step (ii) of forming an alloy includes a step of reducing the transition metal element to a metal state and then reacting with silicon in a reducing atmosphere or an inert atmosphere.

本発明は、第3に、(i)Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を含む化合物の蒸気を、少なくともケイ素を含む活物質粒子の表面と接触させ、活物質粒子に遷移金属元素を付与する工程、(ii)ケイ素を含む化合物の蒸気を、遷移金属元素が付与された活物質粒子の表面と接触させ、遷移金属元素とケイ素との合金を生成させる工程、(iii)合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程を含む、非水電解質二次電池用複合活物質の製造方法(方法B)に関する。   Thirdly, the present invention relates to (i) active material particles containing at least silicon and vapor of a compound containing at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf. (Ii) bringing a vapor of a compound containing silicon into contact with the surface of the active material particle to which the transition metal element has been applied, and bringing the transition metal element into contact with the surface of the active material particle. And (iii) a method for producing a composite active material for a non-aqueous electrolyte secondary battery (Method B), including a step of growing a carbon-containing fiber from the surface of active material particles supporting the alloy. About.

方法Bにおいて、遷移金属元素を付与する工程(i)が、遷移金属元素を含む化合物の蒸気を、遷移金属元素を含む化合物が分解する温度で、活物質粒子の表面と接触させる工程を含むことが好ましく、合金を生成させる工程(ii)は、ケイ素を含む化合物の蒸気を、ケイ素を含む化合物が分解する温度で、活物質粒子の表面と接触させる工程を含むことが好ましい。   In the method B, the step (i) of applying the transition metal element includes a step of bringing the vapor of the compound containing the transition metal element into contact with the surface of the active material particle at a temperature at which the compound containing the transition metal element is decomposed. Preferably, the step (ii) of forming an alloy includes a step of bringing the vapor of the compound containing silicon into contact with the surface of the active material particles at a temperature at which the compound containing silicon decomposes.

本発明は、第4に、(i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第1の遷移金属元素を含む化合物を付与し、第1の遷移金属元素を酸化物に変化させる工程と、(ii)酸化物を担持した活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第2の遷移金属元素を付与する工程と、(iii)第2の遷移金属元素を還元してから、活物質粒子の表面から、炭素を含むファイバを成長させる工程とを含む、非水電解質二次電池用複合活物質の製造方法(方法C)に関する。   Fourthly, the present invention relates to (i) at least one first transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf on the surface of active material particles containing at least silicon. And (ii) the surface of the active material particles carrying the oxide is made of Ti, Fe, Co, Ni, Zr and Hf. A step of applying at least one second transition metal element selected from the group; and (iii) reducing the second transition metal element, and then growing a carbon-containing fiber from the surface of the active material particles. The manufacturing method (method C) of the composite active material for nonaqueous electrolyte secondary batteries including a process.

本発明は、更に、リチウムの吸蔵および放出が可能な正極、上記の複合活物質を含む負極、正極と負極との間に介在するセパレータ、ならびに非水電解質を具備する、非水電解質二次電池に関する。   The present invention further includes a non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium, a negative electrode including the composite active material, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte. About.

少なくともケイ素を含む活物質粒子と炭素を含むファイバとの間に、上記のような密着相を形成することで、活物質粒子とファイバとの結合が顕著に高められる。これは、ケイ素を含む活物質粒子および炭素を含むファイバの両方に対して、密着相が高い結合力を有するためと推測される。   By forming an adhesive phase as described above between the active material particles containing at least silicon and the fiber containing carbon, the bond between the active material particles and the fiber is significantly increased. This is presumed to be because the adhesion phase has a high bonding force with respect to both the active material particles containing silicon and the fiber containing carbon.

本発明によれば、少なくともケイ素を含む活物質粒子と炭素を含むファイバとの結合が顕著に高められる。よって、電極製造工程において、ファイバの活物質粒子からの脱落が抑制され、活物質粒子の表面と接続していないファイバが複合活物質に混入するのを防ぐことができる。また、電池の充放電過程において、活物質粒子が膨張と収縮を繰り返しても、ファイバの活物質粒子からの脱落が起こりにくい。   According to the present invention, the bond between the active material particles containing at least silicon and the fiber containing carbon is remarkably enhanced. Therefore, in the electrode manufacturing process, dropping of the fibers from the active material particles can be suppressed, and fibers that are not connected to the surface of the active material particles can be prevented from being mixed into the composite active material. In addition, even if the active material particles repeatedly expand and contract during the charging / discharging process of the battery, the fibers are not easily detached from the active material particles.

以上より、本発明によれば、電極の集電性が向上し、非水電解質二次電池の初期放電容量およびサイクル特性が向上する。また、活物質粒子とファイバとの比率の変動を防止できるため、電極容量を厳密に制御することができる。
本発明は、活物質粒子の表面にファイバを疎に成長させることにより、電池容量の更なる向上とサイクル特性の向上とを両立する場合に特に有用である。
As described above, according to the present invention, the current collecting property of the electrode is improved, and the initial discharge capacity and cycle characteristics of the nonaqueous electrolyte secondary battery are improved. Moreover, since the fluctuation | variation of the ratio of an active material particle and a fiber can be prevented, an electrode capacity | capacitance can be controlled strictly.
The present invention is particularly useful when both a further improvement in battery capacity and an improvement in cycle characteristics are achieved by growing fibers sparsely on the surface of active material particles.

本発明の非水電解質二次電池用複合活物質(以下、複合活物質)は、少なくともケイ素を含む活物質粒子と、活物質粒子の表面から成長させた炭素を含むファイバとを含む。活物質粒子とファイバとの間には、活物質粒子とファイバとの結合力を高める密着相が存在する。   The composite active material for nonaqueous electrolyte secondary batteries of the present invention (hereinafter referred to as composite active material) includes active material particles containing at least silicon and fibers containing carbon grown from the surface of the active material particles. Between the active material particles and the fiber, there is an adhesive phase that increases the binding force between the active material particles and the fiber.

図1は、複合活物質の一形態を示す。図1の複合活物質10では、活物質粒子11の表面の一部に、密着相12が形成されている。炭素を含むファイバ13は、活物質粒子11の表面の密着相12が形成された領域から成長している。ファイバ13の先端(自由端)には、触媒元素からなる粒子(触媒粒子)14が担持されている。図1では触媒粒子14がファイバ13の自由端に担持されているが、触媒粒子14は活物質粒子11の表面に存在する場合もある。   FIG. 1 shows one embodiment of the composite active material. In the composite active material 10 of FIG. 1, an adhesive phase 12 is formed on a part of the surface of the active material particles 11. The fiber 13 containing carbon grows from a region where the adhesion phase 12 on the surface of the active material particle 11 is formed. At the tip (free end) of the fiber 13, particles (catalyst particles) 14 made of a catalyst element are supported. In FIG. 1, the catalyst particles 14 are supported on the free ends of the fibers 13, but the catalyst particles 14 may exist on the surface of the active material particles 11.

図2は、複合活物質の別の一形態を示す。図2の複合活物質20では、活物質粒子21の表面のほぼ全体に、密着相22が層状に形成されている。図2では触媒粒子24がファイバ23の自由端に担持されているが、触媒粒子24は活物質粒子21の表面に存在する場合もある。   FIG. 2 shows another embodiment of the composite active material. In the composite active material 20 of FIG. 2, the adhesion phase 22 is formed in a layer shape on almost the entire surface of the active material particles 21. In FIG. 2, the catalyst particles 24 are supported on the free ends of the fibers 23, but the catalyst particles 24 may exist on the surface of the active material particles 21.

炭素を含むファイバは、活物質粒子間に空間を確保する役割を果たす。ファイバが形成する空間は、活物質粒子の体積変化に伴う応力を緩和する。ファイバ同士の接触や絡み合いにより、活物質粒子間の導電ネットワークも確保される。   The fiber containing carbon plays a role of securing a space between the active material particles. The space formed by the fiber relaxes the stress accompanying the volume change of the active material particles. A conductive network between the active material particles is also ensured by contact and entanglement between the fibers.

活物質粒子とファイバとの結合は化学結合(共有結合、イオン結合など)である。すなわち、ファイバは、活物質粒子の表面の密着相に直接結合している。よって、充放電時に活物質が大きな膨張と収縮を繰り返しても、ファイバと活物質との結合が維持されやすい。   The bond between the active material particle and the fiber is a chemical bond (covalent bond, ionic bond, etc.). That is, the fiber is directly bonded to the adhesive phase on the surface of the active material particles. Therefore, even if the active material repeats large expansion and contraction during charge and discharge, the bond between the fiber and the active material is easily maintained.

密着相は、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を含むことが好ましい。例えば、ケイ素と遷移金属元素との合金を含む密着相や、遷移金属元素の化合物を含む密着相が好適である。このような密着相は、ケイ素を含む活物質粒子および炭素を含むファイバと強く結合する。よって、密着相は、活物質粒子とファイバとの結合を顕著に高める役割を果たす。   The adhesion phase preferably contains at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf. For example, an adhesive phase containing an alloy of silicon and a transition metal element or an adhesive phase containing a compound of a transition metal element is suitable. Such an adhesive phase is strongly bonded to active material particles containing silicon and fibers containing carbon. Therefore, the adhesion phase plays a role of remarkably enhancing the bond between the active material particles and the fiber.

ケイ素と遷移金属元素との合金としては、例えばニッケルシリサイド、鉄シリサイド、コバルトシリサイドなどが挙げられる。また、遷移金属元素の化合物としては、例えばチタン酸化物、ジルコニア酸化物、ハフニウム酸化物などが挙げられる。   Examples of the alloy of silicon and a transition metal element include nickel silicide, iron silicide, and cobalt silicide. Examples of the transition metal element compound include titanium oxide, zirconia oxide, and hafnium oxide.

ケイ素を含む活物質は、特に限定されないが、ケイ素単体、ケイ素酸化物、ケイ素合金などが挙げられる。ケイ素酸化物には、例えばSiOx(0<x<2、好ましくは0.1<x<1.9)を用いることができる。ケイ素合金には、例えばSiと遷移金属元素とを含む合金(M−Si合金)を用いることができる。例えば、Ni−Si合金、Ti−Si合金などを用いることが好ましい。 The active material containing silicon is not particularly limited, and examples include silicon alone, silicon oxide, and silicon alloy. For example, SiO x (0 <x <2, preferably 0.1 <x <1.9) can be used as the silicon oxide. As the silicon alloy, for example, an alloy containing Si and a transition metal element (M-Si alloy) can be used. For example, it is preferable to use a Ni—Si alloy, a Ti—Si alloy, or the like.

活物質粒子の粒径は、特に限定はされないが、0.1μm〜100μmが好ましく、1〜10μmが特に好ましい。平均粒径が0.1μmより小さくなると、活物質粒子の比表面積が大きくなり、初回充放電時の不可逆容量が大きくなることがある。平均粒径が100μmより大きくなると、充放電により、活物質粒子が粉砕されやすくなる。活物質粒子の平均粒径は、レーザー回折式粒度分布測定装置(例えば(株)日機装製の「マイクロトラックFRA」)により測定することができる。この場合、体積基準の粒度分布におけるメディアン径(D50)が平均粒径となる。 The particle size of the active material particles is not particularly limited, but is preferably 0.1 μm to 100 μm, and particularly preferably 1 to 10 μm. When the average particle size is smaller than 0.1 μm, the specific surface area of the active material particles increases, and the irreversible capacity during the first charge / discharge may increase. When the average particle size is larger than 100 μm, the active material particles are easily pulverized by charge / discharge. The average particle diameter of the active material particles can be measured by a laser diffraction particle size distribution measuring apparatus (for example, “Microtrac FRA” manufactured by Nikkiso Co., Ltd.). In this case, the median diameter (D 50 ) in the volume-based particle size distribution is the average particle diameter.

炭素を含むファイバは、カーボンナノファイバおよびカーボンナノチューブよりなる群から選ばれた少なくとも1種を含むことが好ましい。ここで、カーボンナノファイバとは、繊維状の炭素材料全般を意味し、カーボンナノチューブとは、中空で繊維状の炭素材料を意味する。カーボンナノチューブは、カーボンナノファイバの一形態に相当する。   The fiber containing carbon preferably contains at least one selected from the group consisting of carbon nanofibers and carbon nanotubes. Here, the carbon nanofiber refers to all fibrous carbon materials, and the carbon nanotube refers to a hollow fibrous carbon material. Carbon nanotubes correspond to one form of carbon nanofibers.

炭素を含むファイバの繊維長は、10nm〜1000μmが好ましく、500nm〜500μmが更に好ましい。ファイバの繊維長が10nm未満では、活物質粒子間の導電ネットワークを維持する効果などが小さくなる。繊維長が1000μmを超えると、電極の活物質密度が低下し、高いエネルギー密度が得られない場合がある。
ファイバの繊維径は1nm〜1000nmが好ましく、50nm〜300nmが更に好ましい。ただし、ファイバの一部は、電極の電子伝導性を向上させる観点から、繊維径1nm〜40nmの微細なファイバであることが好ましい。例えば、繊維径40nm以下の微細なファイバと、繊維径50nm以上の大きなファイバとを同時に含むことが好ましい。繊維径20nm以下の微細なファイバと、繊維径80nm以上の大きなファイバとを同時に含むことが更に好ましい。
The fiber length of the fiber containing carbon is preferably 10 nm to 1000 μm, and more preferably 500 nm to 500 μm. When the fiber length of the fiber is less than 10 nm, the effect of maintaining the conductive network between the active material particles becomes small. When the fiber length exceeds 1000 μm, the active material density of the electrode is lowered, and a high energy density may not be obtained.
The fiber diameter of the fiber is preferably 1 nm to 1000 nm, and more preferably 50 nm to 300 nm. However, a part of the fiber is preferably a fine fiber having a fiber diameter of 1 nm to 40 nm from the viewpoint of improving the electron conductivity of the electrode. For example, it is preferable to simultaneously include a fine fiber having a fiber diameter of 40 nm or less and a large fiber having a fiber diameter of 50 nm or more. It is more preferable to include a fine fiber having a fiber diameter of 20 nm or less and a large fiber having a fiber diameter of 80 nm or more at the same time.

活物質粒子の表面に成長させるファイバの量は、複合活物質全体の5〜70重量%が好ましく、10〜40重量%が、更に好ましい。ファイバの量が5重量%未満では、活物質粒子間の導電ネットワークを維持する効果などが小さくなる。ファイバの量が70重量%を超えると、電極の活物質密度が低下し、高いエネルギー密度が得られない場合がある。   The amount of the fiber grown on the surface of the active material particles is preferably 5 to 70% by weight, more preferably 10 to 40% by weight, based on the entire composite active material. When the amount of the fiber is less than 5% by weight, the effect of maintaining the conductive network between the active material particles becomes small. When the amount of the fiber exceeds 70% by weight, the active material density of the electrode is lowered and a high energy density may not be obtained.

ファイバの形状は、特に限定されないが、例えばチューブ状、アコーディオン状、プレート状、ヘーリング・ボーン状などが挙げられる。   The shape of the fiber is not particularly limited, and examples thereof include a tube shape, an accordion shape, a plate shape, and a herring bone shape.

複合活物質は、例えば以下の方法A〜Cにより製造することができる。
[方法A]
方法Aは、(i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を付与する工程と、(ii)遷移金属元素とケイ素とを反応させて、合金を生成させる工程と、(iii)合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程とを有する。
The composite active material can be produced, for example, by the following methods A to C.
[Method A]
Method A includes (i) applying at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr, and Hf to the surface of active material particles containing at least silicon; ii) reacting a transition metal element with silicon to form an alloy; and (iii) growing a carbon-containing fiber from the surface of the active material particles supporting the alloy.

Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素には、炭素を含むファイバの成長を促す触媒作用がある。遷移金属元素とケイ素との合金は、密着相を構成する。   At least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr, and Hf has a catalytic action that promotes the growth of carbon-containing fibers. An alloy of a transition metal element and silicon constitutes an adhesion phase.

工程(i)は、例えば、遷移金属化合物の溶液と、活物質粒子とを混合する工程を含む。溶液において、遷移金属化合物の濃度は、0.01〜5重量%が好適である。遷移金属化合物には、例えば、酸化物、炭化物、硝酸塩などを用いることが好ましい。例えば硝酸ニッケル、硝酸コバルト、硝酸鉄などを用いることができる。これらのうちでは、特に、硝酸ニッケル、硝酸コバルトなどが好ましい。溶液の溶媒には、例えば、水、有機溶媒、水と有機溶媒との混合物などが用いられる。有機溶媒には、例えばエタノール、イソプロピルアルコール、トルエン、ベンゼン、ヘキサン、テトラヒドロフランなどを用いることができる。   Step (i) includes, for example, a step of mixing a transition metal compound solution and active material particles. In the solution, the concentration of the transition metal compound is preferably 0.01 to 5% by weight. As the transition metal compound, it is preferable to use, for example, an oxide, a carbide, a nitrate, or the like. For example, nickel nitrate, cobalt nitrate, iron nitrate, or the like can be used. Of these, nickel nitrate and cobalt nitrate are particularly preferable. As the solvent of the solution, for example, water, an organic solvent, a mixture of water and an organic solvent, or the like is used. As the organic solvent, for example, ethanol, isopropyl alcohol, toluene, benzene, hexane, tetrahydrofuran and the like can be used.

次に、得られた溶液と活物質粒子とを混合する。その際、溶液の温度は、常温(例えば10〜30℃)でよい。活物質粒子と溶液との混合物は、十分に攪拌することが望ましい。
その後、活物質粒子から溶媒を除去し、遷移金属化合物を担持した活物質粒子を乾燥させる。乾燥温度は80〜120℃が好適であり、乾燥時間は15〜30分間が好適である。乾燥は、例えば大気中で行うことができる。これにより、活物質粒子の表面に、遷移金属化合物の粒子(以下、触媒粒子)が付与される。遷移金属化合物として硝酸ニッケルを用いた場合、触媒粒子として硝酸ニッケル粒子が形成される。
Next, the obtained solution and active material particles are mixed. At that time, the temperature of the solution may be room temperature (for example, 10 to 30 ° C.). It is desirable to sufficiently stir the mixture of the active material particles and the solution.
Thereafter, the solvent is removed from the active material particles, and the active material particles carrying the transition metal compound are dried. The drying temperature is preferably 80 to 120 ° C., and the drying time is preferably 15 to 30 minutes. Drying can be performed in air | atmosphere, for example. Thereby, particles of the transition metal compound (hereinafter referred to as catalyst particles) are imparted to the surface of the active material particles. When nickel nitrate is used as the transition metal compound, nickel nitrate particles are formed as catalyst particles.

活物質粒子に付与する遷移金属元素の量は、活物質粒子100重量部あたり、0.01〜10重量部であることが望ましく、0.5〜3重量部であることが、更に望ましい。遷移金属元素の量が0.01重量部未満では、炭素を含むファイバを成長させるのに長時間を要し、複合活物質の生産効率が低下する。遷移金属元素の量が10重量部を超えると、触媒粒子の凝集により、不均一で太い繊維径のファイバが成長する。そのため、電極の導電性や活物質密度が低下する。   The amount of the transition metal element imparted to the active material particles is preferably 0.01 to 10 parts by weight and more preferably 0.5 to 3 parts by weight per 100 parts by weight of the active material particles. If the amount of the transition metal element is less than 0.01 parts by weight, it takes a long time to grow the fiber containing carbon, and the production efficiency of the composite active material is lowered. When the amount of the transition metal element exceeds 10 parts by weight, non-uniform and thick fiber diameter fibers grow due to aggregation of the catalyst particles. For this reason, the conductivity and active material density of the electrode are reduced.

触媒粒子の粒径は、1nm〜1000nmが好ましく、10nm〜100nmが更に好ましい。粒径が1nm未満の触媒粒子の生成は非常に難しい。触媒粒子の粒径が1000nmを超えると、触媒粒子の大きさが極端に不均一となり、ファイバを成長させることが困難になる。   The particle size of the catalyst particles is preferably 1 nm to 1000 nm, more preferably 10 nm to 100 nm. Generation of catalyst particles having a particle size of less than 1 nm is very difficult. When the particle size of the catalyst particles exceeds 1000 nm, the size of the catalyst particles becomes extremely non-uniform and it becomes difficult to grow the fiber.

工程(ii)は、例えば、遷移金属元素(触媒粒子)を担持した活物質粒子を還元し、その後、加熱して、触媒元素とケイ素とを反応させる工程を含む。
まず、遷移金属元素を担持した活物質粒子を、アルゴン(Ar)やヘリウム(He)を含む不活性雰囲気中に導入し、300〜400℃で、5分〜1時間加熱する。この間に、触媒粒子は酸化物に変換される。例えば硝酸ニッケル粒子は、酸化ニッケル粒子に変化する。
Step (ii) includes, for example, a step of reducing active material particles carrying a transition metal element (catalyst particles) and then heating to react the catalyst element with silicon.
First, active material particles carrying a transition metal element are introduced into an inert atmosphere containing argon (Ar) or helium (He) and heated at 300 to 400 ° C. for 5 minutes to 1 hour. During this time, the catalyst particles are converted to oxides. For example, nickel nitrate particles change to nickel oxide particles.

その後、例えば水素ガスを含む還元雰囲気中で、遷移金属元素を担持した活物質粒子を、300〜600℃で、1分〜1時間加熱する。この間に、遷移金属元素は金属状態に還元される。例えば酸化ニッケル粒子は、金属状態のニッケル粒子に還元される。   Thereafter, the active material particles carrying the transition metal element are heated at 300 to 600 ° C. for 1 minute to 1 hour, for example, in a reducing atmosphere containing hydrogen gas. During this time, the transition metal element is reduced to the metallic state. For example, nickel oxide particles are reduced to nickel particles in a metallic state.

触媒粒子の直径、分布密度などは、触媒元素を含む塩の溶液の濃度、還元温度、活物質粒子の表面状態などに影響される。これらのパラメータを制御することにより、触媒粒子の分布密度を109〜1010個/μm2程度に制御することが好ましい。 The diameter and distribution density of the catalyst particles are affected by the concentration of the salt solution containing the catalyst element, the reduction temperature, the surface state of the active material particles, and the like. It is preferable to control the distribution density of the catalyst particles to about 10 9 to 10 10 particles / μm 2 by controlling these parameters.

遷移金属元素を金属状態に還元した後、ケイ素と遷移金属元素との反応を進行させる。このときの反応温度は、活物質粒子や遷移金属元素の種類に依存する。ケイ素と遷移金属元素との反応は、金属状態の触媒粒子を担持した活物質粒子を、400〜800℃で、還元雰囲気中で加熱することにより進行する。これにより、遷移金属元素とケイ素との合金が生成する。この合金が密着相として機能する。例えば金属状態のニッケル粒子の少なくとも一部は、ケイ素と反応し、ニッケルシリサイド(例えばNi2Si)を生成する。Ni2Siは炭素を含むファイバの成長を促す触媒作用を有する。優れた触媒活性と密着相を得る観点から、Ni2Siは部分的に生成させることが好ましい。Ni2Siの生成量は、反応温度および反応時間によって制御できる。 After the transition metal element is reduced to the metal state, the reaction between silicon and the transition metal element is allowed to proceed. The reaction temperature at this time depends on the type of active material particles and transition metal element. The reaction between silicon and the transition metal element proceeds by heating the active material particles carrying the catalyst particles in the metal state at 400 to 800 ° C. in a reducing atmosphere. Thereby, an alloy of a transition metal element and silicon is generated. This alloy functions as an adhesive phase. For example, at least part of the nickel particles in the metal state reacts with silicon to form nickel silicide (eg, Ni 2 Si). Ni 2 Si has a catalytic action that promotes the growth of carbon-containing fibers. From the viewpoint of obtaining excellent catalytic activity and an adhesive phase, Ni 2 Si is preferably partially generated. The amount of Ni 2 Si produced can be controlled by the reaction temperature and reaction time.

遷移金属元素とケイ素との反応を行わない場合、活物質粒子とファイバとの間に、密着相を形成することができない。この場合、活物質粒子の表面にファイバが密に成長する傾向があり、高容量を維持しながら活物質粒子間に必要な空間を確保することが困難になる。   When the reaction between the transition metal element and silicon is not performed, an adhesion phase cannot be formed between the active material particles and the fiber. In this case, the fibers tend to grow densely on the surface of the active material particles, and it becomes difficult to secure a necessary space between the active material particles while maintaining a high capacity.

活物質粒子が酸素を多く含むケイ素酸化物からなる場合、シリサイドが生成しにくくなる。このような場合には、ケイ素酸化物を不活性雰囲気または還元雰囲気で、例えば600℃以上の温度で熱処理しておく。熱処理は、触媒粒子を活物質粒子に担持させる前に予め行っておく。この熱処理により、不均化反応が起こり、ケイ素酸化物中にケイ素単体からなるドメインと、SiO2に近い酸素量を有するケイ素酸化物からなるドメインとが分離する。ケイ素単体からなるドメインでは、シリサイドが容易に生成する。FeやCoは、Niに較べて比較的容易にケイ素と反応し、シリサイドを生成するため、上述の不均化反応を行う必要はない。 In the case where the active material particles are made of silicon oxide containing a large amount of oxygen, silicide is hardly generated. In such a case, the silicon oxide is heat-treated in an inert atmosphere or a reducing atmosphere, for example, at a temperature of 600 ° C. or higher. The heat treatment is performed in advance before the catalyst particles are supported on the active material particles. By this heat treatment, a disproportionation reaction occurs, and a domain made of silicon alone in silicon oxide and a domain made of silicon oxide having an oxygen amount close to SiO 2 are separated. Silicide is easily generated in a domain composed of silicon alone. Fe or Co reacts with silicon relatively easily as compared with Ni to produce silicide, so that it is not necessary to carry out the above disproportionation reaction.

工程(iii)は、炭素を含むファイバを成長させる工程である。炭素を含むファイバは、金属状態の遷移金属元素を担持した活物質粒子と、炭素源となる反応性ガスとを、所定温度に設定された反応装置内に導入することで進行する。ファイバは、金属状態の遷移金属元素を起点として成長する。   Step (iii) is a step of growing a fiber containing carbon. The fiber containing carbon proceeds by introducing active material particles carrying a transition metal element in a metallic state and a reactive gas serving as a carbon source into a reaction apparatus set at a predetermined temperature. The fiber grows starting from a transition metal element in a metallic state.

反応性ガスには、炭素原子含有ガスと水素ガスとの混合ガスを用いることが好ましい。炭素原子含有ガスと水素ガスとの混合割合、トータル量は、特に限定されない。炭素原子含有ガスは、特に限定されないが、メタン、エタン、エチレン、ブタン、一酸化炭素などが用いられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。炭素を含むファイバを成長させる際の条件は、特に限定されない。ファイバの成長中、触媒粒子は金属状態であることが望ましい。   It is preferable to use a mixed gas of a carbon atom-containing gas and hydrogen gas as the reactive gas. The mixing ratio and total amount of the carbon atom-containing gas and hydrogen gas are not particularly limited. The carbon atom-containing gas is not particularly limited, but methane, ethane, ethylene, butane, carbon monoxide and the like are used. These may be used alone or in combination of two or more. Conditions for growing a fiber containing carbon are not particularly limited. It is desirable that the catalyst particles be in a metallic state during fiber growth.

所定の時間をかけてファイバを成長させた後、反応性ガスの導入を停止すると、ファイバの成長も停止する。その後、反応装置内の温度を常温に戻し、複合活物質を回収する。   If the introduction of the reactive gas is stopped after the fiber is grown for a predetermined time, the growth of the fiber is also stopped. Thereafter, the temperature in the reactor is returned to room temperature, and the composite active material is recovered.

[方法B]
方法Bは、(i)Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を含む化合物の蒸気を、少なくともケイ素を含む活物質粒子の表面と接触させ、活物質粒子に遷移金属元素を付与する工程、(ii)ケイ素を含む化合物の蒸気を、遷移金属元素が付与された活物質粒子の表面と接触させ、遷移金属元素とケイ素との合金を生成させる工程、(iii)合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程を有する。
[Method B]
In the method B, (i) a vapor of a compound containing at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf is brought into contact with the surface of active material particles containing at least silicon. And (ii) bringing a vapor of a compound containing silicon into contact with the surface of the active material particle to which the transition metal element has been applied, and forming an alloy of the transition metal element and silicon. And (iii) growing a fiber containing carbon from the surface of the active material particle supporting the alloy.

工程(i)および(ii)は、CVD(Chemical Vapor Deposition)によって密着相を構成する工程である。CVDの手法は特に限定されないが、以下に例を挙げる。
工程(i)は、例えば、遷移金属化合物の蒸気を、遷移金属化合物が分解する温度で、活物質粒子の表面と接触させる工程を含む。このとき、活物質粒子100重量部あたり、0.01〜5重量部の遷移金属元素を活物質粒子に付与することが好ましい。
Steps (i) and (ii) are steps for forming an adhesive phase by CVD (Chemical Vapor Deposition). The CVD method is not particularly limited, but examples are given below.
Step (i) includes, for example, a step of bringing the transition metal compound vapor into contact with the surface of the active material particles at a temperature at which the transition metal compound decomposes. At this time, it is preferable to apply 0.01 to 5 parts by weight of a transition metal element to the active material particles per 100 parts by weight of the active material particles.

遷移金属化合物には、例えばNi(TMOD)2(TMOD:テトラメチルオクタンジオン)のような有機金属化合物を用いることができる。
遷移金属化合物は、溶媒に溶解させて、溶液にしてからガス化させることが好ましい。溶液の溶媒には、トルエン、ヘキサン等を用いることができる。溶液において、遷移金属化合物の濃度は、0.05mol/L〜0.1mol/Lが好適である。
As the transition metal compound, for example, an organometallic compound such as Ni (TMOD) 2 (TMOD: tetramethyloctanedione) can be used.
The transition metal compound is preferably dissolved in a solvent to form a solution and then gasified. As the solvent of the solution, toluene, hexane or the like can be used. In the solution, the concentration of the transition metal compound is preferably 0.05 mol / L to 0.1 mol / L.

溶液をガス化させる方法は、特に限定されないが、溶液を150〜250℃に加熱したり、超音波振動子により溶液に超音波を印加したりして行われる。溶液の蒸気を活物質粒子の表面と接触させる際、チャンバ内はアルゴン、窒素などの雰囲気であることが好ましい。チャンバ内では、活物質粒子を300〜600℃に加熱することが好ましい。その後、必要に応じて、CVDチャンバ内に水素ガスを導入し、還元雰囲気中で、遷移金属元素を金属状態に還元する。   The method for gasifying the solution is not particularly limited, and is performed by heating the solution to 150 to 250 ° C. or applying ultrasonic waves to the solution with an ultrasonic vibrator. When the vapor of the solution is brought into contact with the surface of the active material particles, the inside of the chamber is preferably an atmosphere such as argon or nitrogen. In the chamber, the active material particles are preferably heated to 300 to 600 ° C. Thereafter, if necessary, hydrogen gas is introduced into the CVD chamber, and the transition metal element is reduced to a metallic state in a reducing atmosphere.

工程(ii)は、例えば、ケイ素を含む化合物の蒸気を、ケイ素を含む化合物が分解する温度で、活物質粒子の表面と接触させる工程を含む。このとき、活物質粒子100重量部あたり、0.01〜5重量部のケイ素を活物質粒子に付与することが好ましい。   Step (ii) includes, for example, a step of bringing the vapor of a compound containing silicon into contact with the surface of the active material particles at a temperature at which the compound containing silicon is decomposed. At this time, it is preferable to apply 0.01 to 5 parts by weight of silicon to the active material particles per 100 parts by weight of the active material particles.

ケイ素を含む化合物には、様々な化合物を用いることができ、例えばシランガス(SiH4)、ジシランガス(Si26)などを用いることができる。シランガスは、金属状態の遷移金属元素と反応して、シリサイドを生成する。シランガスを活物質粒子の表面と接触させる際、チャンバ内はアルゴン、窒素などの雰囲気であることが好ましい。チャンバ内では、活物質粒子を400〜600℃に加熱することが好ましい。 As the compound containing silicon, various compounds can be used. For example, silane gas (SiH 4 ), disilane gas (Si 2 H 6 ), or the like can be used. Silane gas reacts with a transition metal element in a metallic state to generate silicide. When the silane gas is brought into contact with the surface of the active material particles, the inside of the chamber is preferably an atmosphere such as argon or nitrogen. In the chamber, the active material particles are preferably heated to 400 to 600 ° C.

方法Bの工程(iii)は、方法Aの工程(iii)と同様である。
[方法C]
方法Cは、(i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第1の遷移金属元素を含む化合物を付与し、第1の遷移金属元素を酸化物に変化させる工程と、(ii)酸化物を担持した活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第2の遷移金属元素を付与する工程と、(iii)第2の遷移金属元素を還元してから、活物質粒子の表面から、炭素を含むファイバを成長させる工程とを有する。この場合、第1の遷移金属元素に由来する酸化物が、密着相を構成する。
Step (iii) of Method B is the same as Step (iii) of Method A.
[Method C]
Method C includes (i) a compound containing at least one first transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr, and Hf on the surface of active material particles containing at least silicon. And (ii) the surface of the active material particles supporting the oxide is selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf. A step of providing at least one second transition metal element; and (iii) a step of growing a fiber containing carbon from the surface of the active material particle after reducing the second transition metal element. . In this case, the oxide derived from the first transition metal element constitutes the adhesion phase.

工程(i)は、例えば、第1の遷移金属元素を含む化合物(以下、第1遷移金属化合物)の溶液と、活物質粒子とを混合する工程を含む。溶液において、第1遷移金属の濃度は、活物質粒子重量に対して0.01〜5重量%が好適である。第1遷移金属化合物には、様々な化合物を用いることができるが、例えば水溶性の乳酸チタンなどの有機金属化合物を用いることが好ましい。溶液の溶媒には、例えば、水、有機溶媒、水と有機溶媒との混合物などが用いられる。   Step (i) includes, for example, a step of mixing a solution of a compound containing a first transition metal element (hereinafter referred to as a first transition metal compound) and active material particles. In the solution, the concentration of the first transition metal is preferably 0.01 to 5% by weight with respect to the weight of the active material particles. Although various compounds can be used for the first transition metal compound, for example, an organic metal compound such as water-soluble titanium lactate is preferably used. As the solvent of the solution, for example, water, an organic solvent, a mixture of water and an organic solvent, or the like is used.

次に、得られた溶液と活物質粒子とを混合する。その際、溶液の温度は、常温(例えば10〜30℃)でよい。活物質粒子と溶液との混合物は、十分に攪拌することが望ましい。
その後、活物質粒子から溶媒を除去し、第1遷移金属化合物を担持した活物質粒子を乾燥させる。乾燥温度は80〜120℃が好適であり、乾燥時間は10〜60分間が好適である。乾燥は、例えば大気中で行うことができる。これにより、活物質粒子の表面に、第1遷移金属化合物が付与される。
Next, the obtained solution and active material particles are mixed. At that time, the temperature of the solution may be room temperature (for example, 10 to 30 ° C.). It is desirable to sufficiently stir the mixture of the active material particles and the solution.
Thereafter, the solvent is removed from the active material particles, and the active material particles carrying the first transition metal compound are dried. The drying temperature is preferably 80 to 120 ° C., and the drying time is preferably 10 to 60 minutes. Drying can be performed in air | atmosphere, for example. Thereby, a 1st transition metal compound is provided to the surface of active material particle.

次に、第1遷移金属化合物を担持した活物質粒子を、空気や酸素などを含む酸化雰囲気中で、300〜600℃で、1分〜1時間加熱する。これにより、第1遷移金属化合物は酸化物に変化する。第1の遷移金属元素の酸化物は、活物質粒子100重量部あたり、0.01〜5重量部であることが好ましい。   Next, the active material particles carrying the first transition metal compound are heated at 300 to 600 ° C. for 1 minute to 1 hour in an oxidizing atmosphere containing air or oxygen. Thereby, a 1st transition metal compound changes to an oxide. The oxide of the first transition metal element is preferably 0.01 to 5 parts by weight per 100 parts by weight of the active material particles.

方法Cの工程(ii)および工程(iii)は、方法Aの工程(i)および工程(iii)と同様である。
方法Aは、図1に示したような、活物質粒子11とファイバ13との結合部付近だけに密着相12を有する複合活物質10の製造に適している。方法BおよびCは、図2に示したような、層状の密着相22を有する複合活物質20の製造に適している。
Step (ii) and step (iii) of method C are the same as step (i) and step (iii) of method A.
Method A is suitable for producing a composite active material 10 having an adhesive phase 12 only in the vicinity of the joint between the active material particles 11 and the fiber 13 as shown in FIG. Methods B and C are suitable for producing a composite active material 20 having a layered adhesive phase 22 as shown in FIG.

次に、活物質粒子の表面から、炭素を含むファイバとしてカーボンナノファイバを成長させる工程の一例について、更に詳しく説明する。ただし、ファイバを成長させる方法は以下に限定されない。カーボンナノチューブなど、他のファイバを成長させる場合には、触媒、反応原料などを適宜変更すればよい。   Next, an example of a process for growing carbon nanofibers as carbon-containing fibers from the surface of the active material particles will be described in more detail. However, the method for growing the fiber is not limited to the following. When other fibers such as carbon nanotubes are grown, the catalyst, reaction raw material, etc. may be changed as appropriate.

以上のような方法で製造された複合活物質は、活物質粒子とファイバとの間に密着相を有するため、活物質粒子とファイバとが強く結合している。例えば、水中に複合活物質を分散させ、得られた分散液に超音波エネルギーを付与しても、ファイバの脱落はほとんど認められない。密着相を有さない活物質粒子にファイバを成長させた複合活物質の場合、分散液の水面に脱落したファイバが浮遊する様子が認められる。   Since the composite active material manufactured by the above method has an adhesive phase between the active material particles and the fiber, the active material particles and the fiber are strongly bonded. For example, even when the composite active material is dispersed in water and ultrasonic energy is applied to the obtained dispersion, the fiber is hardly dropped. In the case of a composite active material in which fibers are grown on active material particles that do not have an adhesive phase, it is observed that the fibers that have fallen off the surface of the dispersion float.

次に、本発明を実施例および比較例に基づいて具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Next, the present invention will be specifically described based on examples and comparative examples. However, the present invention is not limited to the following examples.

本実施例では、上記の方法Aにより、図1に示すような複合活物質を製造した。図3のフロー図を参照しながら説明する。   In this example, a composite active material as shown in FIG. This will be described with reference to the flowchart of FIG.

工程(i)
まず、関東化学(株)製の硝酸ニッケル6水和物(特級)1gをイオン交換水100gに溶解させた。得られた溶液を、平均粒径8μmの(株)高純度化学研究所製のケイ素酸化物(SiO)と混合し、室温(RT)で1時間攪拌した(S31)。その後、エバポレータ装置で混合物から水分を除去し、120℃で、30分間乾燥させた(S32)。その結果、硝酸ニッケル粒子を担持したケイ素酸化物が得られた。ケイ素酸化物に担持された硝酸ニッケル粒子中のニッケル元素の量は、ケイ素酸化物100重量部あたり0.5重量部であった。硝酸ニッケル粒子の平均粒径をSEMで観測したところ約50nmであった。
Process (i)
First, 1 g of nickel nitrate hexahydrate (special grade) manufactured by Kanto Chemical Co., Ltd. was dissolved in 100 g of ion-exchanged water. The obtained solution was mixed with silicon oxide (SiO) manufactured by Kojundo Chemical Laboratory Co., Ltd. having an average particle diameter of 8 μm and stirred at room temperature (RT) for 1 hour (S31). Then, the water | moisture content was removed from the mixture with the evaporator apparatus, and it was made to dry for 30 minutes at 120 degreeC (S32). As a result, a silicon oxide carrying nickel nitrate particles was obtained. The amount of nickel element in the nickel nitrate particles supported on the silicon oxide was 0.5 parts by weight per 100 parts by weight of the silicon oxide. When the average particle diameter of the nickel nitrate particles was observed by SEM, it was about 50 nm.

工程(ii)
次に、硝酸ニッケルを担持したケイ素酸化物を、セラミック製反応容器内に投入し、ヘリウムガスの存在下で、反応容器内を400℃まで昇温させた。反応容器内の温度を400℃で1時間保持し、硝酸ニッケルの脱硝を行った(S33)。その結果、硝酸ニッケルは、酸化ニッケルに変化した。
Step (ii)
Next, silicon oxide carrying nickel nitrate was put into a ceramic reaction vessel, and the temperature in the reaction vessel was raised to 400 ° C. in the presence of helium gas. The temperature in the reaction vessel was kept at 400 ° C. for 1 hour, and nickel nitrate was denitrated (S33). As a result, nickel nitrate was changed to nickel oxide.

次に、反応容器内のヘリウムガスを、水素ガス20体積%とヘリウムガス80体積%との混合ガスに切り替え、反応容器内の温度を400℃で30分間保持した(S34)。この間に、酸化ニッケルは金属ニッケルに還元された。   Next, the helium gas in the reaction vessel was switched to a mixed gas of 20% by volume of hydrogen gas and 80% by volume of helium gas, and the temperature in the reaction vessel was maintained at 400 ° C. for 30 minutes (S34). During this time, nickel oxide was reduced to metallic nickel.

その後、反応容器内の温度を700℃へ上昇させ、その後、反応容器内の温度を700℃で1時間保持した(S35)。この間に、ケイ素酸化物中のケイ素とニッケルとが反応して、触媒活性を示す合金(Ni2Si)が生成した。反応容器内を室温まで冷却後、ケイ素酸化物粒子を取り出し、そのX線回折分析を行ったところ、Ni2Siの生成が確認できた。 Thereafter, the temperature in the reaction vessel was raised to 700 ° C., and then the temperature in the reaction vessel was maintained at 700 ° C. for 1 hour (S35). During this time, silicon in the silicon oxide and nickel reacted to produce an alloy (Ni 2 Si) exhibiting catalytic activity. After cooling the reaction vessel to room temperature, silicon oxide particles were taken out and subjected to X-ray diffraction analysis. As a result, it was confirmed that Ni 2 Si was formed.

工程(iii)
Ni2Siを担持したケイ素酸化物粒子を、反応容器内に投入し、ヘリウムガス存在下で、反応容器内を400℃まで昇温させた。次に、ヘリウムガスを、水素ガス20体積%とエチレンガス80体積%との混合ガス(トータル流量は毎分4L)に置換した。その後、反応容器内の温度を400℃で1時間保持し、カーボンナノファイバを成長させて(S36)、複合活物質Aを得た。その後、混合ガスをヘリウムガスに置換し、室温になるまで冷却させた。
Step (iii)
Silicon oxide particles carrying Ni 2 Si were put into the reaction vessel, and the temperature in the reaction vessel was raised to 400 ° C. in the presence of helium gas. Next, the helium gas was replaced with a mixed gas of 20% by volume of hydrogen gas and 80% by volume of ethylene gas (total flow rate was 4 L / min). Thereafter, the temperature in the reaction vessel was held at 400 ° C. for 1 hour to grow carbon nanofibers (S36), and composite active material A was obtained. Thereafter, the mixed gas was replaced with helium gas and cooled to room temperature.

複合活物質Aにおいて、カーボンナノファイバの繊維径は80nm、繊維長は20μmであった。カーボンナノファイバの量は、ケイ素酸化物粒子100重量部あたり25重量部(複合活物質全体の20重量%がカーボンナノファイバ)であった。カーボンナノファイバの量は、カーボンナノファイバを成長させる前後のケイ素酸化物粒子の重量変化から測定した。   In the composite active material A, the carbon nanofibers had a fiber diameter of 80 nm and a fiber length of 20 μm. The amount of carbon nanofibers was 25 parts by weight per 100 parts by weight of silicon oxide particles (20% by weight of the total composite active material was carbon nanofibers). The amount of carbon nanofibers was measured from the change in weight of the silicon oxide particles before and after the carbon nanofibers were grown.

工程(iv)
複合活物質Aを100重量部と、ポリフッ化ビニリデン樹脂(PVDF)7重部と、適量のN−メチル−2−ピロリドン(NMP)とを混合し、電極合剤スラリーを調製した。得られたスラリーを厚さ15μmの銅箔の片面に塗布し、乾燥後、電極合剤を圧延して、電極Aを得た。
Step (iv)
100 parts by weight of the composite active material A, 7 parts by weight of polyvinylidene fluoride resin (PVDF), and an appropriate amount of N-methyl-2-pyrrolidone (NMP) were mixed to prepare an electrode mixture slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 15 μm, and after drying, the electrode mixture was rolled to obtain an electrode A.

本実施例では、上記の方法Bにより、図2に示すような複合活物質を製造した。
工程(i)
平均粒径8μmの(株)高純度化学研究所製のケイ素酸化物(SiO)を、CVDチャンバ内にセットし、500℃に加熱した。一方、Ni(TMOD)2をトルエンに溶解させた溶液を調製した。溶液中のNi(TMOD)2の濃度は0.1mol/Lとした。
In this example, a composite active material as shown in FIG.
Process (i)
Silicon oxide (SiO) manufactured by Kojundo Chemical Laboratory Co., Ltd. having an average particle diameter of 8 μm was set in a CVD chamber and heated to 500 ° C. On the other hand, a solution in which Ni (TMOD) 2 was dissolved in toluene was prepared. The concentration of Ni (TMOD) 2 in the solution was 0.1 mol / L.

得られた溶液を200℃でガス化させ、CVDチャンバ内に導入した。チャンバ内はアルゴン雰囲気とした。その結果、ケイ素酸化物粒子の表面にNiO膜が形成された。次に、CVDチャンバ内に水素ガスを導入し、NiO膜を有するケイ素酸化物粒子を500℃に加熱して、NiO膜を金属状態のNi膜に還元した。形成されたNi膜の量は、ケイ素酸化物100重量部あたり1重量部であった。   The resulting solution was gasified at 200 ° C. and introduced into the CVD chamber. The inside of the chamber was an argon atmosphere. As a result, a NiO film was formed on the surface of the silicon oxide particles. Next, hydrogen gas was introduced into the CVD chamber, and the silicon oxide particles having the NiO film were heated to 500 ° C. to reduce the NiO film to a metallic Ni film. The amount of Ni film formed was 1 part by weight per 100 parts by weight of silicon oxide.

工程(ii)
その後、CVDチャンバ内に、シランガスを導入し、シランガスを500℃に加熱されたNi膜を有するケイ素酸化物粒子に接触させた。その結果、シランがNi膜と反応して、Ni2Siが生成した。Ni2Siの生成は、X線回折分析により確認した。シランガスとの反応により、Ni膜を有するケイ素酸化物の重量は0.1重量%増加した。
Step (ii)
Thereafter, silane gas was introduced into the CVD chamber, and the silane gas was brought into contact with silicon oxide particles having a Ni film heated to 500 ° C. As a result, silane reacted with the Ni film to produce Ni 2 Si. The formation of Ni 2 Si was confirmed by X-ray diffraction analysis. Due to the reaction with the silane gas, the weight of the silicon oxide having the Ni film increased by 0.1% by weight.

工程(iii)
実施例1の工程(iii)と同様の操作により、Ni2Siを担持したケイ素酸化物粒子の表面にカーボンナノファイバを成長させて、複合活物質Bを得た。カーボンナノファイバの繊維径、繊維長および生成量は、実施例1と同様であった。
Step (iii)
Carbon nanofibers were grown on the surface of silicon oxide particles supporting Ni 2 Si by the same operation as in step (iii) of Example 1, and composite active material B was obtained. The fiber diameter, fiber length, and generation amount of the carbon nanofiber were the same as in Example 1.

工程(iv)
複合活物質Bを用いたこと以外、実施例1と同様の操作により、電極Bを作製した。
Step (iv)
An electrode B was produced in the same manner as in Example 1 except that the composite active material B was used.

本実施例では、上記の方法Cにより、図2に示すような複合活物質を製造した。
工程(i)
松本製薬工業(株)製のチタンラクテート(TiC6107)を水に溶解させ、活物質粒子重量に対してチタン濃度が1重量%の水溶液を調製した。得られた溶液を、平均粒径8μmの(株)高純度化学研究所製のケイ素酸化物(SiO)と混合した。この混合物を1時間攪拌後、エバポレータ装置で水分を除去し、ケイ素酸化物の表面にチタンラクテートを担持させた。
In this example, a composite active material as shown in FIG.
Process (i)
Titanium lactate (TiC 6 H 10 O 7 ) manufactured by Matsumoto Pharmaceutical Co., Ltd. was dissolved in water to prepare an aqueous solution having a titanium concentration of 1% by weight with respect to the weight of the active material particles. The obtained solution was mixed with silicon oxide (SiO) manufactured by Kojundo Chemical Laboratory Co., Ltd. having an average particle size of 8 μm. After stirring this mixture for 1 hour, water was removed with an evaporator device, and titanium lactate was supported on the surface of the silicon oxide.

チタンラクテートを担持したケイ素酸化物を、セラミックス製反応容器内に投入し、大気中で、反応容器内を400℃まで昇温させた。反応容器内の温度を400℃で1時間保持することにより、チタンラクテートを酸化チタン(TiO)に変化させた。ケイ素酸化物に担持されたチタン量は、ケイ素酸化物100重量部あたり1重量部であった。   Silicon oxide carrying titanium lactate was put into a ceramic reaction vessel, and the temperature in the reaction vessel was raised to 400 ° C. in the atmosphere. By maintaining the temperature in the reaction vessel at 400 ° C. for 1 hour, the titanium lactate was changed to titanium oxide (TiO). The amount of titanium supported on silicon oxide was 1 part by weight per 100 parts by weight of silicon oxide.

工程(ii)
関東化学(株)製の硝酸ニッケル6水和物(特級)1gをイオン交換水100gに溶解させた。得られた溶液を、酸化チタンを担持したケイ素酸化物粒子と混合し、混合物を1時間攪拌した。その後、エバポレータ装置で混合物から水分を除去し、乾燥させた。その結果、酸化チタンを担持したケイ素酸化物の表面に、更に硝酸ニッケル粒子が担持された。ケイ素酸化物に付与された硝酸ニッケル粒子中のニッケル元素の量は、ケイ素酸化物100重量部あたり1重量部であった。また、硝酸ニッケル粒子の平均粒径をSEMで観測したところ約50nmであった。
Step (ii)
1 g of nickel nitrate hexahydrate (special grade) manufactured by Kanto Chemical Co., Ltd. was dissolved in 100 g of ion-exchanged water. The obtained solution was mixed with silicon oxide particles supporting titanium oxide, and the mixture was stirred for 1 hour. Then, the water | moisture content was removed from the mixture with the evaporator apparatus, and it was made to dry. As a result, nickel nitrate particles were further supported on the surface of the silicon oxide supporting titanium oxide. The amount of nickel element in the nickel nitrate particles applied to the silicon oxide was 1 part by weight per 100 parts by weight of the silicon oxide. Further, when the average particle diameter of the nickel nitrate particles was observed by SEM, it was about 50 nm.

工程(iii)
実施例1の工程(iii)と同様の操作により、酸化チタンと硝酸ニッケルとを担持したケイ素酸化物粒子の表面にカーボンナノファイバを成長させて、複合活物質Cを得た。カーボンナノファイバの繊維径、繊維長および生成量は、実施例1と同様であった。
Step (iii)
Carbon nanofibers were grown on the surface of silicon oxide particles supporting titanium oxide and nickel nitrate by the same operation as in step (iii) of Example 1 to obtain composite active material C. The fiber diameter, fiber length, and generation amount of the carbon nanofiber were the same as in Example 1.

工程(iv)
複合活物質Cを用いたこと以外、実施例1と同様の操作により、電極Cを作製した。
Step (iv)
An electrode C was produced in the same manner as in Example 1 except that the composite active material C was used.

《比較例1》
本比較例では、密着相を有さない複合活物質を製造した。図4のフロー図を参照しながら説明する。
実施例1と同様に、ケイ素酸化物の表面に硝酸ニッケルを担持させた(S41〜42)。次に、硝酸ニッケルを担持したケイ素酸化物を、セラミック製反応容器内に投入し、ヘリウムガスの存在下で、反応容器内を400℃まで昇温させた。反応容器内の温度を400℃で1時間保持し、硝酸ニッケルの脱硝を行った(S43)。その結果、硝酸ニッケルは、酸化ニッケルに変化した。
<< Comparative Example 1 >>
In this comparative example, a composite active material having no adhesive phase was produced. This will be described with reference to the flowchart of FIG.
Similarly to Example 1, nickel nitrate was supported on the surface of the silicon oxide (S41 to 42). Next, silicon oxide carrying nickel nitrate was put into a ceramic reaction vessel, and the temperature in the reaction vessel was raised to 400 ° C. in the presence of helium gas. The temperature in the reaction vessel was kept at 400 ° C. for 1 hour, and nickel nitrate was denitrated (S43). As a result, nickel nitrate was changed to nickel oxide.

次に、反応容器内のヘリウムガスを、水素ガスとヘリウムガスとの混合ガスに切り替え、反応容器内の温度を400℃で30分間保持した(S44)。この間に、酸化ニッケルは金属ニッケルに還元された。   Next, the helium gas in the reaction vessel was switched to a mixed gas of hydrogen gas and helium gas, and the temperature in the reaction vessel was maintained at 400 ° C. for 30 minutes (S44). During this time, nickel oxide was reduced to metallic nickel.

次に、実施例1の工程(iii)と同様の操作により、金属ニッケルを担持したケイ素酸化物粒子の表面にカーボンナノファイバを成長させて(S45)、複合活物質Dを得た。   Next, carbon nanofibers were grown on the surface of silicon oxide particles carrying metallic nickel by the same operation as in step (iii) of Example 1 (S45), and composite active material D was obtained.

本比較例では、図5に示すような複合活物質50が得られたと考えられる。複合活物質50は、活物質粒子51(ケイ素酸化物)と、活物質粒子51の表面に直接結合したファイバ53(カーボンナノファイバ)と、ファイバ53の先端に担持された触媒粒子54(金属ニッケル粒子)からなる。   In this comparative example, it is considered that a composite active material 50 as shown in FIG. 5 was obtained. The composite active material 50 includes an active material particle 51 (silicon oxide), a fiber 53 (carbon nanofiber) directly bonded to the surface of the active material particle 51, and a catalyst particle 54 (metallic nickel) supported on the tip of the fiber 53. Particles).

複合活物質Dを用いたこと以外、実施例1と同様の操作により、電極Dを作製した。
実施例1〜3および比較例1で作製した電極の合剤密度は0.8〜1.4g/cm3であった。
An electrode D was produced in the same manner as in Example 1 except that the composite active material D was used.
The mixture density of the electrodes prepared in Examples 1 to 3 and Comparative Example 1 was 0.8 to 1.4 g / cm 3 .

[評価]
以下の要領で、図6に示すようなコイン型リチウムイオン二次電池60を作製した。実施例1〜3および比較例1で作製した電極を、120℃のオーブンで十分に乾燥させた後、作用電極64として用いた。対極にはリチウム金属箔65を用いた。電池容量は作用電極64で規制した。
[Evaluation]
A coin-type lithium ion secondary battery 60 as shown in FIG. 6 was produced in the following manner. The electrodes prepared in Examples 1 to 3 and Comparative Example 1 were sufficiently dried in an oven at 120 ° C., and then used as the working electrode 64. A lithium metal foil 65 was used for the counter electrode. Battery capacity was regulated by working electrode 64.

まず、電池缶61に作用電極64を載置して、その上に、ポリエチレン製の不織布からなるセパレータ66を被せた。セパレータ66の上から、所定量の非水電解質を注液した。非水電解質には、エチレンカーボネートとジエチルカーボネートとの体積1:1の混合溶媒にLiPF6を1.0mol/Lの濃度で溶解させたものを用いた。次に、封口板62の内面にリチウム金属箔65を圧着し、その封口板62で電池缶61の開口を塞いだ。電池缶61と封口板62との間にはガスケット63を介在させた。 First, the working electrode 64 was placed on the battery can 61, and a separator 66 made of a non-woven fabric made of polyethylene was placed thereon. A predetermined amount of non-aqueous electrolyte was injected from above the separator 66. As the non-aqueous electrolyte, a solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate was used. Next, a lithium metal foil 65 was pressure-bonded to the inner surface of the sealing plate 62, and the opening of the battery can 61 was closed with the sealing plate 62. A gasket 63 was interposed between the battery can 61 and the sealing plate 62.

(初期放電容量)
各電池に対し、0.2Cの充電速度で0Vまで充電を行い、その後、0.2Cの放電速度で1.5Vになるまで放電を行い、初期放電容量(0.2C放電容量)を求めた。活物質重量あたりの放電容量を表1に示す。活物質重量あたりの放電容量は、作用電極の重量から、銅箔、PVDFおよびカーボンナノファイバの重量を差し引き、得られたケイ素酸化物の重量で、放電容量を除して求めた。
(Initial discharge capacity)
Each battery was charged to 0 V at a charge rate of 0.2 C, and then discharged to 1.5 V at a discharge rate of 0.2 C to obtain an initial discharge capacity (0.2 C discharge capacity). . The discharge capacity per active material weight is shown in Table 1. The discharge capacity per active material weight was determined by subtracting the weight of the copper foil, PVDF and carbon nanofiber from the weight of the working electrode and dividing the discharge capacity by the weight of the silicon oxide obtained.

(放電効率)
各電池に対し、0.2Cの充電速度で0Vまで充電を行い、その後、3.0Cの放電速度で1.5Vになるまで放電を行い、3.0C放電容量を求めた。3.0C放電容量の0.2C放電容量に対する割合(放電効率)を百分率値で表1に示す。
(Discharge efficiency)
Each battery was charged to 0V at a charge rate of 0.2C, and then discharged to 1.5V at a discharge rate of 3.0C to obtain a 3.0C discharge capacity. Table 1 shows the ratio (discharge efficiency) of the 3.0 C discharge capacity to the 0.2 C discharge capacity as a percentage value.

(サイクル特性)
各電池に対し、0.2Cの充電速度で0Vまで充電を行い、その後、0.2Cの放電速度で1.5Vになるまで放電するサイクルを200サイクル繰り返した。200サイクル目の放電容量の初期放電容量に対する割合(容量維持率)を百分率値で表1に示す。
(Cycle characteristics)
Each battery was charged to 0 V at a charging rate of 0.2 C, and then discharged 200 cycles at a discharging rate of 0.2 C until 1.5 V was repeated. Table 1 shows the ratio (capacity maintenance ratio) of the discharge capacity at the 200th cycle to the initial discharge capacity as a percentage value.

(剥離度)
各複合活物質5gを、100mlの水中に分散させた。得られた分散液に、30分間、300Wの出力で、超音波を印加して、ケイ素酸化物粒子から剥離するカーボンナノファイバ量を測定した。超音波の印加終了後、静止状態で24時間放置し、溶液の上澄み部分に含まれるカーボンナノファイバを回収し、その重量を測定した。ただし、元から活物質粒子に結合していなかったカーボンファイバは、超音波処理を行う前に回収した。複合活物質5gに含まれていたカーボンナノファイバの重量に対する、剥離したカーボンナノファイバの重量の割合(剥離度)を百分率値で表1に示す。剥離度は、活物質粒子とカーボンナノファイバとの結合力に関連すると考えられる。
(Peeling degree)
5 g of each composite active material was dispersed in 100 ml of water. An ultrasonic wave was applied to the obtained dispersion at an output of 300 W for 30 minutes, and the amount of carbon nanofibers peeled off from the silicon oxide particles was measured. After the application of the ultrasonic wave, the sample was left standing for 24 hours, and the carbon nanofibers contained in the supernatant of the solution were collected and the weight was measured. However, the carbon fiber that was not originally bonded to the active material particles was collected before the ultrasonic treatment. Table 1 shows the ratio (peeling degree) of the weight of the peeled carbon nanofiber to the weight of the carbon nanofiber contained in 5 g of the composite active material as a percentage value. The degree of peeling is considered to be related to the bonding force between the active material particles and the carbon nanofibers.

Figure 2007335198
Figure 2007335198

表1が示すように、実施例1〜3の電極を用いた電池は、初期放電容量、放電効率および容量維持率が、いずれも比較例1の結果よりも優れていた。比較例1では、剥離度が50%であることから、複合活物質Dを用いて調製したスラリー中でも、カーボンナノファイバの多くが剥離し易い状態であることが想定される。比較例1のスラリー中には、カーボンナノファイバだけが凝集したと思われる大きな粒子が多く存在した。そのため、スラリーをろ過しなければ銅箔へ塗布することができなかった。比較例1では、カーボンナノファイバの剥離による集電性の劣化が原因で、放電容量、放電効率および容量維持率が低下したと考えられる。   As shown in Table 1, the batteries using the electrodes of Examples 1 to 3 were superior in the initial discharge capacity, discharge efficiency, and capacity retention rate to the results of Comparative Example 1. In Comparative Example 1, since the degree of peeling is 50%, it is assumed that many of the carbon nanofibers are easily peeled even in the slurry prepared using the composite active material D. In the slurry of Comparative Example 1, there were many large particles that seemed to be agglomerated only by the carbon nanofibers. Therefore, unless the slurry was filtered, it could not be applied to the copper foil. In Comparative Example 1, it is considered that the discharge capacity, the discharge efficiency, and the capacity retention rate were lowered due to the deterioration of the current collecting property due to the peeling of the carbon nanofibers.

本発明は、従来よりも高い初期放電容量と優れたサイクル特性との両立が要求される非水電解質二次電池の実現において有用である。本発明を適用可能な非水電解質二次電池は、特に限定されず、例えば円筒型、偏平型、角型、コイン型、ボタン型、シート型などの何れの形状の電池でもよい。正極、負極およびセパレータからなる極板群の形態は、捲回型でも積層型でもよい。電池の大きさは、小型携帯機器などに用いる小型でも、電気自動車等に用いる大型でもよい。本発明の非水電解質二次電池は、例えば携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等の電源に用いることができる。   INDUSTRIAL APPLICABILITY The present invention is useful in realizing a non-aqueous electrolyte secondary battery that requires both a higher initial discharge capacity and excellent cycle characteristics than before. The nonaqueous electrolyte secondary battery to which the present invention can be applied is not particularly limited, and may be a battery of any shape such as a cylindrical shape, a flat shape, a square shape, a coin shape, a button shape, and a sheet shape. The form of the electrode plate group composed of the positive electrode, the negative electrode, and the separator may be a wound type or a laminated type. The size of the battery may be small for a small portable device or the like, or large for an electric vehicle or the like. The nonaqueous electrolyte secondary battery of the present invention can be used as a power source for, for example, a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, and a hybrid electric vehicle.

本発明の複合活物質の一形態を示す概念図である。It is a conceptual diagram which shows one form of the composite active material of this invention. 本発明の複合活物質の別の一形態を示す概念図である。It is a conceptual diagram which shows another one form of the composite active material of this invention. 本発明の複合活物質の製造プロセスの一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing process of the composite active material of this invention. 従来の複合活物質の製造プロセスの一例を示すフロー図である。It is a flowchart which shows an example of the manufacturing process of the conventional composite active material. 従来の複合活物質の一形態を示す概念図である。It is a conceptual diagram which shows one form of the conventional composite active material. 実施例に係るコイン型リチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of the coin-type lithium ion secondary battery which concerns on an Example.

符号の説明Explanation of symbols

10、20、50 複合活物質
11、21、51 活物質粒子
12、22 密着相
13、23、53 ファイバ
14、24、54 触媒粒子
60 コイン型リチウムイオン二次電池
61 電池缶
62 封口板
63 ガスケット
64 作用電極
65 リチウム金属箔
66 セパレータ
10, 20, 50 Composite active material 11, 21, 51 Active material particle 12, 22 Adhesive phase 13, 23, 53 Fiber 14, 24, 54 Catalyst particle 60 Coin type lithium ion secondary battery 61 Battery can 62 Sealing plate 63 Gasket 64 working electrode 65 lithium metal foil 66 separator

Claims (13)

リチウムを吸蔵および放出可能な活物質粒子と、前記活物質粒子の表面から成長させたファイバとを含み、
前記活物質粒子は、少なくともケイ素を含み、
前記ファイバは、少なくとも炭素を含み、
前記活物質粒子と前記ファイバとの間に、前記活物質粒子と前記ファイバとの結合力を高める密着相を有する、非水電解質二次電池用複合活物質。
Active material particles capable of occluding and releasing lithium, and fibers grown from the surface of the active material particles,
The active material particles include at least silicon,
The fiber includes at least carbon;
A composite active material for a non-aqueous electrolyte secondary battery, which has an adhesive phase between the active material particles and the fiber to enhance the binding force between the active material particles and the fiber.
前記密着相は、遷移金属元素を含み、前記遷移金属元素は、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種である、請求項1記載の非水電解質二次電池用複合活物質。   The non-aqueous electrolyte 2 according to claim 1, wherein the adhesion phase includes a transition metal element, and the transition metal element is at least one selected from the group consisting of Ti, Fe, Co, Ni, Zr, and Hf. Composite active material for secondary batteries. 前記密着相は、ケイ素と前記遷移金属元素との合金を含む、請求項2記載の非水電解質二次電池用複合活物質。   The composite active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the adhesion phase includes an alloy of silicon and the transition metal element. 前記密着相は、前記遷移金属元素の酸化物を含む、請求項2記載の非水電解質二次電池用複合活物質。   The composite active material for a nonaqueous electrolyte secondary battery according to claim 2, wherein the adhesion phase includes an oxide of the transition metal element. 前記合金が、ニッケルシリサイドである、請求項3記載の非水電解質二次電池用複合活物質。   The composite active material for a non-aqueous electrolyte secondary battery according to claim 3, wherein the alloy is nickel silicide. 前記酸化物が、チタン酸化物である、請求項4記載の非水電解質二次電池用複合活物質。   The composite active material for a nonaqueous electrolyte secondary battery according to claim 4, wherein the oxide is a titanium oxide. 前記ファイバが、カーボンナノファイバおよびカーボンナノチューブよりなる群から選ばれた少なくとも1種を含む、請求項1記載の非水電解質二次電池用複合活物質。   The composite active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the fiber includes at least one selected from the group consisting of carbon nanofibers and carbon nanotubes. (i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を付与する工程と、
(ii)前記遷移金属元素とケイ素とを反応させて、合金を生成させる工程と、
(iii)前記合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程とを含む、非水電解質二次電池用複合活物質の製造方法。
(I) providing at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf on the surface of active material particles containing at least silicon;
(Ii) reacting the transition metal element with silicon to form an alloy;
(Iii) growing a fiber containing carbon from the surface of the active material particles carrying the alloy, and a method for producing a composite active material for a non-aqueous electrolyte secondary battery.
前記合金を生成させる工程(ii)が、還元雰囲気または不活性雰囲気中で、前記遷移金属元素を金属状態に還元してからケイ素と反応させる工程を含む、請求項8記載の非水電解質二次電池用複合活物質の製造方法。   The non-aqueous electrolyte secondary according to claim 8, wherein the step (ii) of forming the alloy includes a step of reducing the transition metal element to a metal state and then reacting with silicon in a reducing atmosphere or an inert atmosphere. A method for producing a composite active material for a battery. (i)Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の遷移金属元素を含む化合物の蒸気を、少なくともケイ素を含む活物質粒子の表面と接触させ、前記活物質粒子に前記遷移金属元素を付与する工程、
(ii)ケイ素を含む化合物の蒸気を、前記遷移金属元素が付与された活物質粒子の表面と接触させ、前記遷移金属元素とケイ素との合金を生成させる工程、
(iii)前記合金を担持した活物質粒子の表面から、炭素を含むファイバを成長させる工程を含む、非水電解質二次電池用複合活物質の製造方法。
(I) contacting a vapor of a compound containing at least one transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf with the surface of active material particles containing at least silicon, Adding the transition metal element to the material particles;
(Ii) contacting a vapor of a compound containing silicon with the surface of the active material particles provided with the transition metal element to form an alloy of the transition metal element and silicon;
(Iii) A method for producing a composite active material for a non-aqueous electrolyte secondary battery, comprising a step of growing a fiber containing carbon from the surface of the active material particles supporting the alloy.
前記遷移金属元素を付与する工程(i)が、前記遷移金属元素を含む化合物の蒸気を、前記遷移金属元素を含む化合物が分解する温度で、前記活物質粒子の表面と接触させる工程を含み、前記合金を生成させる工程(ii)が、前記ケイ素を含む化合物の蒸気を、前記ケイ素を含む化合物が分解する温度で、前記活物質粒子の表面と接触させる工程を含む、請求項10記載の非水電解質二次電池用複合活物質の製造方法。   The step (i) of applying the transition metal element includes a step of bringing the vapor of the compound containing the transition metal element into contact with the surface of the active material particles at a temperature at which the compound containing the transition metal element is decomposed. The step (ii) of generating the alloy includes the step of bringing the vapor of the compound containing silicon into contact with the surface of the active material particles at a temperature at which the compound containing silicon decomposes. A method for producing a composite active material for a water electrolyte secondary battery. (i)少なくともケイ素を含む活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第1の遷移金属元素を含む化合物を付与し、前記第1の遷移金属元素を酸化物に変化させる工程と、
(ii)前記酸化物を担持した活物質粒子の表面に、Ti、Fe、Co、Ni、ZrおよびHfよりなる群から選ばれた少なくとも1種の第2の遷移金属元素を付与する工程と、
(iii)前記第2の遷移金属元素を還元してから、前記活物質粒子の表面から、炭素を含むファイバを成長させる工程とを含む、非水電解質二次電池用複合活物質の製造方法。
(I) providing a compound containing at least one first transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf on the surface of active material particles containing at least silicon; Changing the first transition metal element to an oxide;
(Ii) providing at least one second transition metal element selected from the group consisting of Ti, Fe, Co, Ni, Zr and Hf on the surface of the active material particles supporting the oxide;
(Iii) A method for producing a composite active material for a non-aqueous electrolyte secondary battery, comprising reducing the second transition metal element and then growing a carbon-containing fiber from the surface of the active material particles.
リチウムの吸蔵および放出が可能な正極、請求項1記載の複合活物質を含む負極、前記正極と前記負極との間に介在するセパレータ、ならびに非水電解質を具備する、非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising: a positive electrode capable of inserting and extracting lithium; a negative electrode including the composite active material according to claim 1; a separator interposed between the positive electrode and the negative electrode; and a nonaqueous electrolyte.
JP2006164833A 2006-06-14 2006-06-14 Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it Pending JP2007335198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164833A JP2007335198A (en) 2006-06-14 2006-06-14 Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164833A JP2007335198A (en) 2006-06-14 2006-06-14 Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it

Publications (1)

Publication Number Publication Date
JP2007335198A true JP2007335198A (en) 2007-12-27

Family

ID=38934467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164833A Pending JP2007335198A (en) 2006-06-14 2006-06-14 Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it

Country Status (1)

Country Link
JP (1) JP2007335198A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
JP2011060432A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Particle covered with fine carbon fiber
JP2012033311A (en) * 2010-07-29 2012-02-16 Toyota Industries Corp Negative active material for nonaqueous secondary battery and method of manufacturing the same
WO2012175998A1 (en) * 2011-06-24 2012-12-27 Nexeon Limited Structured particles
WO2013162108A1 (en) * 2012-04-27 2013-10-31 (주) 나노기술 Metal-carbon composite, preparation method thereof, and paste prepared using same
JP2013229347A (en) * 2007-11-12 2013-11-07 Shin Etsu Chem Co Ltd Process for producing polycrystalline silicon particle for active material in negative electrode material for nonaqueous electrolyte secondary battery
JP2014116306A (en) * 2012-12-10 2014-06-26 Samsung Sdi Co Ltd Negative electrode active material, method of preparing the same, and lithium secondary battery employing electrode including the negative electrode active material
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR101590529B1 (en) * 2011-05-11 2016-02-05 그리드텐셜 에너지, 아이엔씨. An improved battery and assembly method
JP2016106360A (en) * 2010-03-22 2016-06-16 アンプリウス、インコーポレイテッド Electrode used in lithium ion battery
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10008713B2 (en) 2011-05-11 2018-06-26 Gridtential Energy, Inc. Current collector for lead acid battery
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10090515B2 (en) 2011-05-11 2018-10-02 Gridtential Energy, Inc. Bipolar hybrid energy storage device
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013229347A (en) * 2007-11-12 2013-11-07 Shin Etsu Chem Co Ltd Process for producing polycrystalline silicon particle for active material in negative electrode material for nonaqueous electrolyte secondary battery
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
US10461359B2 (en) 2009-05-27 2019-10-29 Amprius, Inc. Interconnected hollow nanostructures containing high capacity active materials for use in rechargeable batteries
JP2011060432A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Particle covered with fine carbon fiber
US9780365B2 (en) 2010-03-03 2017-10-03 Amprius, Inc. High-capacity electrodes with active material coatings on multilayered nanostructured templates
JP2016106360A (en) * 2010-03-22 2016-06-16 アンプリウス、インコーポレイテッド Electrode used in lithium ion battery
JP2012033311A (en) * 2010-07-29 2012-02-16 Toyota Industries Corp Negative active material for nonaqueous secondary battery and method of manufacturing the same
KR101702414B1 (en) * 2011-05-11 2017-02-03 그리드텐셜 에너지, 아이엔씨. An improved battery and assembly method
US10290904B2 (en) 2011-05-11 2019-05-14 Gridtential Energy, Inc. Wafer-based bipolar battery plate
US10090515B2 (en) 2011-05-11 2018-10-02 Gridtential Energy, Inc. Bipolar hybrid energy storage device
US10008713B2 (en) 2011-05-11 2018-06-26 Gridtential Energy, Inc. Current collector for lead acid battery
KR101590529B1 (en) * 2011-05-11 2016-02-05 그리드텐셜 에너지, 아이엔씨. An improved battery and assembly method
KR20160017108A (en) * 2011-05-11 2016-02-15 그리드텐셜 에너지, 아이엔씨. An improved battery and assembly method
US9570737B2 (en) 2011-05-11 2017-02-14 Gridtential Energy, Inc. Wafer-based bipolar battery plate
EP3396747A1 (en) * 2011-06-24 2018-10-31 Nexeon Limited Structured particles
GB2502500A (en) * 2011-06-24 2013-11-27 Nexeon Ltd Structured Particles
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
CN106935795A (en) * 2011-06-24 2017-07-07 奈克松有限公司 The particle of structuring
CN107104234A (en) * 2011-06-24 2017-08-29 奈克松有限公司 The particle of structuring
CN107104234B (en) * 2011-06-24 2019-11-08 奈克松有限公司 The particle of structuring
WO2012175998A1 (en) * 2011-06-24 2012-12-27 Nexeon Limited Structured particles
JP2014523066A (en) * 2011-06-24 2014-09-08 ネクソン リミテッド Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
JP2018152346A (en) * 2011-06-24 2018-09-27 ネクソン リミテッドNexeon Limited Structured particle
CN106935795B (en) * 2011-06-24 2019-09-24 奈克松有限公司 The particle of structuring
GB2502500B (en) * 2011-06-24 2018-12-12 Nexeon Ltd Pillared Particles
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
WO2013162108A1 (en) * 2012-04-27 2013-10-31 (주) 나노기술 Metal-carbon composite, preparation method thereof, and paste prepared using same
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
JP2014116306A (en) * 2012-12-10 2014-06-26 Samsung Sdi Co Ltd Negative electrode active material, method of preparing the same, and lithium secondary battery employing electrode including the negative electrode active material
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries

Similar Documents

Publication Publication Date Title
JP2007335198A (en) Composite active material for nonaqueous secondary battery, and nonaqueous secondary battery using it
KR100816604B1 (en) Composite particle for electrode, method for producing same and secondary battery
JP6306767B1 (en) Silicon composite oxide for cathode material of lithium secondary battery and method for producing the same
KR100835883B1 (en) Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
CN104813522B (en) Anode active material for lithium secondary battery and preparation method thereof
JP5500047B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
KR100855166B1 (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP5180211B2 (en) Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
JPWO2006067891A1 (en) Composite negative electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP6057402B2 (en) Electrode active material, method for producing the same, and lithium ion battery
JP2021506059A (en) Negative electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method
JP2008166013A (en) Composite active material and electrochemical element using same
JP2006244984A (en) Composite particle for electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
CN105226249A (en) A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap
KR100905691B1 (en) Anode active material hybridizing carbon nanofiber for lithium secondary battery
JP2007213825A (en) Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
JP2007265852A (en) Compound current collector and its manufacturing method
JP2013510405A (en) High capacity anode materials for lithium ion batteries
JP2007329001A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using it
KR102287983B1 (en) Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
US20200295356A1 (en) Process for producing semiconductor nanowires and carbon/semiconductor nanowire hybrid materials
JP2007012450A (en) Method of manufacturing active material for use in electrode of electrochemical element
WO2014204095A1 (en) Anode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery
JP2011063458A (en) Carbon nanotube powder, auxiliary conductive agent for electrode, electrode using the same, and electric storage device using the electrode
KR101692330B1 (en) Negative active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same