JP2007334851A - Program for optical environment analysis and optical environment analyzer - Google Patents

Program for optical environment analysis and optical environment analyzer Download PDF

Info

Publication number
JP2007334851A
JP2007334851A JP2006227766A JP2006227766A JP2007334851A JP 2007334851 A JP2007334851 A JP 2007334851A JP 2006227766 A JP2006227766 A JP 2006227766A JP 2006227766 A JP2006227766 A JP 2006227766A JP 2007334851 A JP2007334851 A JP 2007334851A
Authority
JP
Japan
Prior art keywords
light
light source
primary
arrival
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227766A
Other languages
Japanese (ja)
Other versions
JP2007334851A5 (en
JP4974612B2 (en
Inventor
Shigeru Takasao
滋 高棹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2006227766A priority Critical patent/JP4974612B2/en
Publication of JP2007334851A publication Critical patent/JP2007334851A/en
Publication of JP2007334851A5 publication Critical patent/JP2007334851A5/ja
Application granted granted Critical
Publication of JP4974612B2 publication Critical patent/JP4974612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Generation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a program for optical environment analysis at high speed and which does not reduce accuracy. <P>SOLUTION: An internal space constituted of shape data of a building is divided into a unit cube or unit rectangular parallelpiped corresponding to a unit space, each face element of the unit cube or unit rectangular parallelpiped is classified into an opening face which is a face element corresponding to an opening of the shape data of the building and a face except the opening which is a face element corresponding to a part except the opening to execute processing by a light source face light quantity value setting part, processing for extracting face elements to be candidates for a reaching face where light may reach from a light source face by a virtual light beam vector setting part, processing for performing search processing by a light beam reach propriety setting part, processing for calculating a light quantity value of the reaching face by a reaching face light quantity value calculation part, processing for storing the light quantity value in face element data of the face element of the reaching face by a reaching face light quantity value storage part and processing for updating and storing the face element data of the face element by the reaching face light quantity value storage part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建物の屋内光環境を解析するに際して採光状態をシミュレーションする光環境解析用プログラム及び光環境解析装置に関するものである。   The present invention relates to a light environment analysis program and a light environment analysis apparatus for simulating lighting conditions when analyzing an indoor light environment of a building.

住宅の利用に際して、周辺環境を光源として建物内部での輝度、照度がどの様な分布となっているかを定量的に求めることで間取りや開口部の設定が適当なものとなっているか否かを知ることが望まれている。   When using a house, whether the floor plan and opening settings are appropriate by quantitatively determining the distribution of brightness and illuminance inside the building using the surrounding environment as the light source It is hoped to know.

このような解析をするためには光源となる周辺環境からの光が開口部を通して建物内部に侵入し、更に建物内部で反射する状況も考慮に入れる必要がある。   In order to perform such an analysis, it is necessary to take into account the situation where light from the surrounding environment that is a light source enters the building through the opening and is reflected inside the building.

この様な反射光も考慮した計算手法としてラジオシティ法というものが広く知られ、利用されている。   A radiosity method is widely known and used as a calculation method considering such reflected light.

この手法では、建物の天井、壁、床等を多くの面に分割し、その中の幾つかの面が光源となり、その光源から光線が放射され、その放射された光線が建物を構成する各面に到達し、更に反射して減衰しながら放射することを繰り返すことで最終的に各面に到達する光量を求めるものである。   In this method, the ceiling, wall, floor, etc. of a building are divided into many planes, and some of the planes serve as light sources, light rays are emitted from the light sources, and the emitted light rays constitute each building. The amount of light finally reaching each surface is obtained by repeatedly reaching the surface and then radiating while being reflected and attenuated.

この計算手法は検討対象の空間を多くの面に分割し、且つ光線の放射を模擬するために多数の光線を多数の面から射出して光線の放射や反射の様相を計算するものであり、非常に膨大で且つ複雑な計算を必要とするものとなっている。この計算においては光源となる面から放射された光線がその光線を受ける面に到達する程度を面相互の距離や傾き、面の大きさ等から形態係数として求めて光線の到達程度を算出すること、この関係を全ての面について相互に求めることが重要な要件であり、この算出様式によって計算精度と計算速度が変化する。   This calculation method is to divide the space under consideration into many planes, and to calculate the radiation and reflection aspects of the rays by emitting many rays from many surfaces to simulate the radiation of rays. It is a very huge and complicated calculation. In this calculation, the degree of arrival of light is calculated by obtaining the degree of arrival of the light emitted from the light source surface as the form factor from the distance, inclination, and size of the surface. It is an important requirement to obtain this relationship for all aspects mutually, and the calculation accuracy and calculation speed vary depending on the calculation format.

例えば、特許文献1では形態係数を求める際に、光源となる面から適当な数の光線を放射し、特定の面についてその光線が到達した本数を算出することで当該面に対する形態係数を求めることとし、また光源となる面から放射する光線数を放射光量に応じて変化させることで計算の簡便化、高速化を図っている。   For example, in Patent Document 1, when obtaining a form factor, an appropriate number of light rays are emitted from a surface serving as a light source, and the number of light rays that have reached a specific surface is calculated to obtain the shape factor for the surface. In addition, the calculation is simplified and speeded up by changing the number of light beams emitted from the light source surface in accordance with the amount of radiation.

特許第2747386号公報Japanese Patent No. 2747386

しかしながら、前述の特許文献1の技術では、光源面から放射する光線の本数が十分ではなく、放射する光線の放射程度が十分に一様な乱雑さを有していなければ、計算精度が十分に確保出来ないおそれがある。特に光源の光量が小さい場合には光線数が減少するために、計算を高速化することが出来るが、算出された光量値が妥当でない可能性がある。   However, in the technique of the above-mentioned Patent Document 1, the number of rays emitted from the light source surface is not sufficient, and the calculation accuracy is sufficiently high unless the degree of emission of the emitted rays is sufficiently uniform. There is a risk that it cannot be secured. In particular, when the light amount of the light source is small, the number of light rays decreases, so that the calculation can be speeded up, but the calculated light amount value may not be appropriate.

また、住宅のような光源となる開口部分は多様な形、大きさであり、且つ建物の内部空間は部屋単位で区画されているが、部屋間を部分的な間仕切りでつなげたり、ガラス入り建具等で採光上のつながりを確保する場合があり、光源から放射される光線は建物の内部空間内の複数の光源の到達面である天井、壁または床等を何回も反射して目的の到達面に到達する現象を再現して実際の感覚に近い光量値の計算を行う必要があるため、いきおいコンピュータによる計算量を増加させる要因ともなる。   In addition, the opening part that serves as a light source such as a house has various shapes and sizes, and the interior space of the building is partitioned by room unit. The light beam emitted from the light source may be reflected several times on the ceiling, wall or floor, etc., which is the arrival surface of multiple light sources in the interior space of the building. Since it is necessary to reproduce the phenomenon of reaching the surface and calculate the light amount value close to the actual sense, it is a factor that increases the amount of calculation by the computer.

本発明は前記課題を解決するものであり、その目的とするところは、出来るだけ計算速度を高め且つ精度を落とさない光環境解析用プログラム及び光環境解析装置を提供せんとするものである。   The present invention solves the above-mentioned problems, and an object of the present invention is to provide an optical environment analysis program and an optical environment analysis apparatus that increase the calculation speed as much as possible and do not reduce the accuracy.

前記目的を達成するための本発明に係る光環境解析用プログラムの第1の構成は、建物情報取得手段により取得した評価対象の建物の形状データをもとにして、面要素データ構成手段により、前記建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する第1の処理と、光源面光量値設定手段により、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する第2の処理と、仮想光線ベクトル設定手段により、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する第3の処理と、光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する第4の処理と、到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理を順次実行して、前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次到達面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する第5の処理と、到達面光量値格納手段により、前記第5の処理で算出された前記1次光源面から前記1次到達面に到達する光量値を前記1次到達面に係る面要素データに格納する第6の処理と、前記到達面光量値格納手段により、前記1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、該1次到達面に係る面要素データを更新して格納する第7の処理とを実行することを特徴とする。   The first configuration of the light environment analysis program according to the present invention for achieving the above object is based on the shape data of the building to be evaluated acquired by the building information acquisition unit, by the surface element data configuration unit, The interior space composed of the building shape data is divided into unit cubes or unit cuboids corresponding to the unit space, and each surface element of the unit cube or unit cuboid corresponds to the opening of the building shape data. And a first process of storing coordinates and attribute data in the surface element data by dividing the surface into an opening surface and a surface other than the opening that is a surface element corresponding to a part other than the opening. The light source surface light quantity value setting means recognizes the opening surface as a primary light source surface serving as a surface element of the light source, and is a surface element through which light can reach the surface other than the opening from the primary light source surface. First arrival The light source value that reaches the primary light source surface from the outside of the building is stored in the surface element data relating to the primary light source surface, and the primary light source surface by the virtual light vector setting means A unit cube corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes by the third process of setting a ray vector for the primary arrival surface from the first ray and the ray reachability determination unit; Whether or not the ray vector intersects with other surface elements other than the primary light source surface and the primary arrival surface in the course of tracing the ray vector set by the virtual ray vector setting means with only a unit cuboid as a determination target And a fourth process for determining whether or not a light vector can reach the target primary arrival surface from the primary light source surface, When the light beam reachability determining means determines that the light vector set by the virtual light vector setting means is reachable from the primary light source surface to the target primary arrival surface, the primary arrival surface For the initial value of the primary light source surface, a light amount value obtained by multiplying the light amount value reaching the primary light source surface from the outside of the building set by the light source surface light amount value setting means and the aperture transmittance of the primary light source surface The amount of light reaching the primary arrival surface from the primary light source surface in consideration of the transmittance of the surface element other than the primary light source surface and the primary arrival surface where the ray vectors intersect as the radiant light amount value A value is calculated, and when the light beam reachability determining means determines that the light beam vector set by the virtual light beam vector setting means cannot reach the target primary arrival surface from the primary light source surface, Primary light From the source surface to the next candidate primary arrival surface, the third process by the virtual ray vector setting unit and the fourth process by the ray arrival possibility determination unit are sequentially performed to obtain the arrival surface light amount value. About the primary arrival surface determined by the calculation means that the ray vector set by the virtual ray vector setting means by the ray arrival possibility determination means can reach the target primary arrival surface from the primary light source surface. The primary light source surface and the primary arrival surface where the light ray vectors intersect with the light amount value given to the primary light source surface by the light source surface light amount value setting means as the initial radiation amount value of the primary arrival surface A fifth process of calculating a light amount value reaching the primary arrival surface from the primary light source surface in consideration of the transmittance of other surface elements other than the above, Calculated by processing The primary arrival surface is obtained by a sixth process of storing the light amount value reaching the primary arrival surface from the primary light source surface in the surface element data relating to the primary arrival surface and the arrival surface light amount value storage means. A light amount value given from the primary light source surface of the next candidate is added to the light amount value of the surface element data according to the above, and a seventh process of updating and storing the surface element data related to the primary arrival surface is executed It is characterized by doing.

ここで、建物の形状データとは、建物(住宅)の間取りに基づく天井、壁、床等の部位や、冷蔵庫等の家庭電化製品や家具等の器物、或いは建具要素及び開口部要素等をいう。また、建物の内部空間とは、床面、壁面、天井面で形成される立方体や直方体を含む3次元の立体をいう。   Here, building shape data refers to parts such as ceilings, walls, floors, etc. based on the floor plan of a building (house), household appliances such as refrigerators, furniture and other equipment, joinery elements and opening elements. . The internal space of a building refers to a three-dimensional solid including a cube or a rectangular parallelepiped formed by a floor surface, a wall surface, and a ceiling surface.

また、開口部以外の部位に対応する面要素とは、天井面、壁面、床面、建具表面、或いは器物面に対応する面要素である。   Moreover, the surface element corresponding to parts other than an opening part is a surface element corresponding to a ceiling surface, a wall surface, a floor surface, a fitting surface, or an instrument surface.

また、本発明に係る光環境解析用プログラムの第2の構成は、建物情報取得手段により取得した評価対象の建物の形状データをもとにして、面要素データ構成手段により、前記建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する第1の処理と、光源面光量値設定手段により、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する第2の処理と、仮想光線ベクトル設定手段により、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する第3の処理と、光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する第4の処理と、到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理を順次実行して、前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する第5の処理と、到達面光量値格納手段により、前記第5の処理で探索された前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理、及び前記到達面光量値算出手段による前記第5の処理を順次実行して、候補となる全ての1次到達面に対して前記第5の処理で算出された前記1次光源面から前記候補となる全ての1次到達面に到達する光量値を、前記候補となる全ての1次到達面に係る面要素データに格納する第6の処理と、前記到達面光量値格納手段により、前記候補となる全ての1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、前記候補となる全ての1次到達面に係る面要素データを更新して格納する第7の処理とを実行することを特徴とする。   Further, the second configuration of the light environment analysis program according to the present invention is based on the shape data of the building to be evaluated acquired by the building information acquisition unit, and the shape data of the building by the surface element data configuration unit. An interior surface composed of a unit cube or unit cuboid corresponding to the unit space, and each surface element of the unit cube or unit cuboid is an opening surface which is a surface element corresponding to the opening of the shape data of the building And a first process for storing the surface element data by assigning coordinates and attribute data to a surface other than the opening, which is a surface element corresponding to a part other than the opening, and a light source surface light amount value The setting means recognizes the opening surface as a primary light source surface that serves as a surface element of the light source, and uses a surface other than the opening as a primary arrival surface that is a surface element through which light can reach from the primary light source surface. Recognize The primary light reaching from the primary light source surface by the second process of storing the light quantity value reaching the primary light source surface from the outside of the object in the surface element data related to the primary light source surface and the virtual ray vector setting means. Only a unit cube or unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes is determined by the third process of setting the ray vector for the surface and the ray reachability determination unit. As a target, searching for whether or not the ray vector intersects with other surface elements other than the primary light source surface and the primary arrival surface in the course of tracing the ray vector set by the virtual ray vector setting means. By the fourth process for determining whether or not a light beam vector can reach the target primary arrival surface from the primary light source surface, and the arrival surface light amount value calculation means, When it is determined by the reachability determination means that the light vector set by the virtual light vector setting means is reachable from the primary light source surface to the target primary arrival surface, the light source is determined for the primary arrival surface. A light amount value obtained by multiplying the light amount value reaching the primary light source surface from the outside of the building set by the surface light amount value setting means by the aperture transmittance of the primary light source surface is used as the initial radiation light amount value of the primary light source surface. The light quantity value reaching the primary arrival surface from the primary light source surface is calculated in consideration of the transmittance of the surface element other than the primary light source surface and the primary arrival surface where the ray vectors intersect. The primary light source surface when the light beam reachability determining unit determines that the light vector set by the virtual light vector setting unit cannot reach the target primary arrival surface from the primary light source surface. To next candidate 1 For the next arrival surface, the third process by the virtual ray vector setting unit and the fourth process by the ray arrival possibility determination unit are sequentially performed, and the ray arrival light amount value calculation unit performs the ray arrival. The light source surface light amount value setting for the primary arrival surface determined by the availability determination means that the light vector set by the virtual light vector setting means is reachable from the primary light source surface to the target primary arrival surface. The light quantity value given to the primary light source surface by the means is used as the initial radiant light quantity value of the primary light source surface, and the primary light source surface and the other surface elements other than the primary arrival surface intersect with each other. The primary processing searched in the fifth processing by the fifth processing for calculating the light amount value reaching the primary arrival surface from the primary light source surface in consideration of the rate, and the arrival surface light amount value storage means Next to the light source For the primary arrival surface, the third processing by the virtual ray vector setting means, the fourth processing by the ray arrival possibility determination means, and the fifth processing by the arrival surface light quantity value calculation means. Sequentially executing the light quantity values reaching all the candidate primary arrival surfaces from the primary light source surface calculated in the fifth process with respect to all candidate primary arrival surfaces, The sixth process for storing the surface element data relating to all the primary arrival surfaces as candidates and the light amount value of the surface element data relating to all the candidate primary arrival surfaces by the reaching surface light amount value storage means. And adding a light amount value given from the primary light source surface of the next candidate, and executing a seventh process of updating and storing the surface element data related to all the primary arrival surfaces as candidates. Features.

また、本発明に係る光環境解析用プログラムの第3の構成は、前記第1、第2の構成の光環境解析用プログラムにおいて、前記開口部面を光源の面要素となる1次光源面とし、該1次光源面から目的の1次到達面に光線が到達した後、該1次到達面に光線が反射する場合に該1次到達面を2次光源面とし、該2次光源面から他の目的の2次到達面に光線が到達した後、該2次到達面に光線が反射する場合に該2次到達面を3次光源面として順次設定したn(n=1,2,3,…)次光源面から目的のn(n=1,2,3,…)次到達面に光線が到達した後、該n次到達面からそのn次到達面以外の到達面に向かって光線が反射する場合において、前記第2の処理では前記光源面光量値設定手段により、n次到達面を(n+1)次光源面として認識すると共に、前記n次到達面以外の到達面を(n+1)次光源面から光線が到達し得る(n+1)次到達面として認識して、前記n次到達面に係る面要素データが格納する光量値を前記(n+1)次光源面の光量値として設定し、前記第3の処理では前記仮想光線ベクトル設定手段により、前記(n+1)次光源面から前記(n+1)次到達面に対して光線ベクトルを設定し、前記第4の処理では前記光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素に交差するか否かを探索することにより、前記(n+1)次光源面から目的の(n+1)次到達面に到達可能か否かを判定し、前記第5の処理では前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記(n+1)次光源面から目的の(n+1)次到達面に到達可能であると判定された該(n+1)次到達面について、n次光源面からn次到達面に到達した光量値に該n次到達面の拡散放射率を乗じた光量値を前記(n+1)次光源面の初期放射光量値として、前記光線ベクトルが交差する前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素の透過率を考慮して前記(n+1)次光源面から前記(n+1)次到達面に到達する光量値を算出し、前記第7の処理では前記到達面光量値格納手段により、前記(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データの光量値に、次候補の(n+1)次光源面から付与された光量値を加算し、該(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データを更新して格納し、最終的光量値格納手段により、前記光源面光量値設定手段による前記第2の処理、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理、前記到達面光量値算出手段による前記第5の処理、及び前記到達面光量値格納手段による前記第6、第7の処理を順次実行して、前記(n+1)次光源面から前記(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として面要素データに格納する第8の処理を実行することを特徴とする。   According to a third configuration of the light environment analysis program according to the present invention, in the light environment analysis program of the first and second configurations, the opening surface is a primary light source surface serving as a surface element of a light source. After the light beam reaches the target primary arrival surface from the primary light source surface, when the light beam is reflected on the primary arrival surface, the primary arrival surface is used as the secondary light source surface, and the secondary light source surface After the light beam reaches the secondary arrival surface of another object and then the light beam is reflected on the secondary arrival surface, the secondary arrival surface is sequentially set as a tertiary light source surface n (n = 1, 2, 3) ,...) After the light beam reaches the target n (n = 1, 2, 3,...) Next arrival surface from the next light source surface, the light beam travels from the n-order arrival surface toward the arrival surface other than the n-order arrival surface. In the second process, the light source surface light quantity value setting means recognizes the nth order arrival surface as the (n + 1) th order light source surface. And an amount of light stored in the surface element data related to the nth order arrival surface by recognizing an arrival surface other than the nth order arrival surface as an (n + 1) th order arrival surface that can be reached from the (n + 1) th order light source surface. A value is set as a light amount value of the (n + 1) th order light source surface, and in the third process, a light ray vector from the (n + 1) th order light source surface to the (n + 1) th order arrival surface by the virtual ray vector setting means. In the fourth process, only the unit cube or the unit rectangular parallelepiped corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes is determined by the ray reachability determination unit. In the middle of tracing the ray vector set by the virtual ray vector setting means, the ray vector is other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface. By searching whether or not it intersects with other surface elements, it is determined whether or not the (n + 1) th order light source surface can reach the target (n + 1) th order arrival surface. The surface light quantity value calculating means determines that the ray vector set by the virtual ray vector setting means is reachable from the (n + 1) th order light source surface to the target (n + 1) th order arrival surface by the ray reachability determination means. In addition, for the (n + 1) -order arrival surface, the initial light emission of the (n + 1) -order light source surface is obtained by multiplying the light amount value reaching the n-order arrival surface from the n-order light source surface by the diffuse emissivity of the n-order arrival surface. Considering the transmittance of the surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface where the light vector intersects, the (n + 1) th order light source surface is used as the light amount value from the (n + 1) th order light source surface. Amount of light reaching the next surface In the seventh process, the reaching surface light amount value storage means calculates the next candidate to the light amount value of the surface element data relating to the (n + 1) th order reaching surface or all (n + 1) th order reaching surfaces as candidates. The amount of light given from the (n + 1) th order light source surface is added, and the surface element data relating to the (n + 1) th order arrival surface or all candidate (n + 1) th order arrival surfaces is updated and stored. The light quantity value storage means causes the second process by the light source surface light quantity value setting means, the third process by the virtual light vector setting means, the fourth process by the light ray reachability determination means, the arrival surface light quantity. The fifth process by the value calculation means and the sixth and seventh processes by the arrival surface light quantity value storage means are sequentially executed and added from the (n + 1) th light source surface to the (n + 1) th arrival surface. The amount of light And executes an eighth process of storing the light intensity value when it reaches the level the surface element data as the final light amount value of the face elements.

ここで、n(n=1,2,3,…)次到達面における光線の反射とは、該n(n=1,2,3,…)次到達面における光の吸収及び光の放射を含む。   Here, the reflection of the light beam at the n (n = 1, 2, 3,...) Next arrival surface means the light absorption and light emission at the n (n = 1, 2, 3,...) Next arrival surface. Including.

また、本発明に係る光環境解析用プログラムの第4の構成は、前記第1〜第3の構成の光環境解析用プログラムにおいて、前記光線到達可否判定手段による前記第4の処理が、前記n(n=1,2,3,…)次光源面から前記n(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定する演算処理を含むことを特徴とする。   Further, a fourth configuration of the light environment analysis program according to the present invention is the light environment analysis program according to any one of the first to third configurations, wherein the fourth process by the light beam reachability determining unit is the n. (N = 1, 2, 3,...) When determining whether or not a light beam can reach from the next light source surface to the n (n = 1, 2, 3,...) Next arrival surface, It includes a calculation process for determining whether or not the next arrival plane is visible from the magnitude relation on the coordinate axes.

また、本発明に係る光環境解析用プログラムの第5の構成は、前記第1〜第4の構成の光環境解析用プログラムにおいて、前記建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体が、建物の設計モジュール寸法に基づく単位立方体または単位直方体であることを特徴とする。   A fifth configuration of the light environment analysis program according to the present invention corresponds to the unit space of the internal space configured by the shape data of the building in the light environment analysis program of the first to fourth configurations. The unit cube or unit rectangular parallelepiped is a unit cube or unit rectangular parallelepiped based on the design module dimensions of the building.

また、本発明に係る光環境解析装置の第1の構成は、評価対象の建物の形状データを取得する建物情報取得手段と、前記建物情報取得手段により取得した建物の形状データに基づいて、該建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する面要素データ構成手段と、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する光源面光量値設定手段と、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する仮想光線ベクトル設定手段と、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する光線到達可否判定手段と、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、及び前記光線到達可否判定手段によるそれぞれの演算処理を順次実行して、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する到達面光量値算出手段と、前記到達面光量値算出手段により算出された前記1次光源面から前記1次到達面に到達する光量値を前記1次到達面に係る面要素データに格納する到達面光量値格納手段とを備えたことを特徴とする。   The first configuration of the light environment analysis apparatus according to the present invention is based on building information acquisition means for acquiring shape data of a building to be evaluated, and on the building shape data acquired by the building information acquisition means. The internal space composed of building shape data is divided into unit cubes or unit cuboids corresponding to the unit space, and each surface element of the unit cube or unit cuboid is a surface element corresponding to the opening of the building shape data. A surface element data composing unit that divides into a certain opening surface and a surface other than the opening that is a surface element corresponding to a portion other than the opening, and assigns coordinates and attribute data to store in the surface element data The aperture surface is recognized as a primary light source surface that is a surface element of the light source, and the surface other than the aperture is recognized as a primary arrival surface that is a surface element that can be reached by light from the primary light source surface. , Building exterior A light source surface light amount value setting means for storing a light amount value reaching the primary light source surface in surface element data relating to the primary light source surface, and a light vector from the primary light source surface to the primary arrival surface. Set by the virtual ray vector setting means, and only the unit cube or unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting means passes is set as a determination target. In the course of tracing the light vector, the target light source surface is searched from the primary light source surface by searching for whether the light vector intersects the surface element other than the primary light source surface and the primary arrival surface. Set by the light ray reachability determining means for determining whether or not a light vector can reach the reaching surface, and the virtual light ray vector setting means by the light ray reachability determining means. When it is determined that the light vector can reach the target primary arrival surface from the primary light source surface, the primary arrival surface is determined from the outside of the building set by the light source surface light amount value setting means. The primary light source surface where the light vector intersects, with the light amount value obtained by multiplying the light amount value reaching the primary light source surface multiplied by the aperture transmittance of the primary light source surface as the initial radiant light amount value of the primary light source surface; A light amount value reaching the primary arrival surface from the primary light source surface is calculated in consideration of transmittance of other surface elements other than the primary arrival surface, and the virtual ray vector setting is performed by the light ray reachability determination unit. When it is determined that the ray vector set by the means cannot reach the target primary arrival surface from the primary light source surface, the primary candidate surface from the primary light source surface to the next candidate primary arrival surface Virtual ray vector setting means and the ray Each calculation process by the reachability determination unit is sequentially executed, and the light beam vector set by the virtual light vector setting unit by the light beam reachability determination unit can reach the target primary arrival surface from the primary light source surface. With respect to the primary arrival surface determined to be present, the light vector intersects with the light amount value given to the primary light source surface by the light source surface light amount value setting means as the initial radiant light amount value of the primary light source surface. A reaching surface light amount value calculating means for calculating a light amount value reaching the primary reaching surface from the primary light source surface in consideration of the transmittance of the primary light source surface and other surface elements other than the primary reaching surface; Reaching surface light amount value storing means for storing light amount values reaching the primary reaching surface from the primary light source surface calculated by the reaching surface light amount value calculating means in surface element data relating to the primary reaching surface; Prepared And features.

また、本発明に係る光環境解析装置の第2の構成は、評価対象の建物の形状データを取得する建物情報取得手段と、前記建物情報取得手段により取得した建物の形状データに基づいて、該建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する面要素データ構成手段と、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する光源面光量値設定手段と、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する仮想光線ベクトル設定手段と、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する光線到達可否判定手段と、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、及び前記光線到達可否判定手段によるそれぞれの演算処理を順次実行して、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する到達面光量値算出手段と、前記到達面光量値算出手段により算出された前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、前記光線到達可否判定手段、及び前記到達面光量値算出手段によるそれぞれの演算処理を順次実行して、候補となる全ての1次到達面に対して前記到達面光量値算出手段により算出された前記1次光源面から前記候補となる全ての1次到達面に到達する光量値を、前記候補となる全ての1次到達面に係る面要素データに格納した後、前記候補となる全ての1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、前記候補となる全ての1次到達面に係る面要素データを更新して格納する到達面光量値格納手段とを備えたことを特徴とする。   Further, the second configuration of the light environment analysis apparatus according to the present invention is based on building information acquisition means for acquiring the shape data of the building to be evaluated, and the building shape data acquired by the building information acquisition means. The internal space composed of building shape data is divided into unit cubes or unit cuboids corresponding to the unit space, and each surface element of the unit cube or unit cuboid is a surface element corresponding to the opening of the building shape data. A surface element data composing unit that divides into a certain opening surface and a surface other than the opening that is a surface element corresponding to a portion other than the opening, and assigns coordinates and attribute data to store in the surface element data The aperture surface is recognized as a primary light source surface that is a surface element of the light source, and the surface other than the aperture is recognized as a primary arrival surface that is a surface element that can be reached by light from the primary light source surface. , Building exterior A light source surface light amount value setting means for storing a light amount value reaching the primary light source surface in surface element data relating to the primary light source surface, and a light vector from the primary light source surface to the primary arrival surface. Set by the virtual ray vector setting means, and only the unit cube or unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting means passes is set as a determination target. In the course of tracing the light vector, the target light source surface is searched from the primary light source surface by searching for whether the light vector intersects the surface element other than the primary light source surface and the primary arrival surface. Set by the light ray reachability determining means for determining whether or not a light vector can reach the reaching surface, and the virtual light ray vector setting means by the light ray reachability determining means. When it is determined that the light vector can reach the target primary arrival surface from the primary light source surface, the primary arrival surface is determined from the outside of the building set by the light source surface light amount value setting means. The primary light source surface where the light vector intersects, with the light amount value obtained by multiplying the light amount value reaching the primary light source surface multiplied by the aperture transmittance of the primary light source surface as the initial radiant light amount value of the primary light source surface; A light amount value reaching the primary arrival surface from the primary light source surface is calculated in consideration of transmittance of other surface elements other than the primary arrival surface, and the virtual ray vector setting is performed by the light ray reachability determination unit. When it is determined that the ray vector set by the means cannot reach the target primary arrival surface from the primary light source surface, the primary candidate surface from the primary light source surface to the next candidate primary arrival surface Virtual ray vector setting means and the ray Each calculation process by the reachability determination unit is sequentially executed, and the light beam vector set by the virtual light vector setting unit by the light beam reachability determination unit can reach the target primary arrival surface from the primary light source surface. With respect to the primary arrival surface determined to be present, the light vector intersects with the light amount value given to the primary light source surface by the light source surface light amount value setting means as the initial radiant light amount value of the primary light source surface. A reaching surface light amount value calculating means for calculating a light amount value reaching the primary reaching surface from the primary light source surface in consideration of the transmittance of the primary light source surface and other surface elements other than the primary reaching surface; From the primary light source surface calculated by the arrival surface light quantity value calculation means to the next candidate primary arrival surface, the virtual ray vector setting means, the light ray reachability determination means, and the arrival surface light quantity value calculation Steps are sequentially executed, and all candidate primary arrivals are obtained from the primary light source surface calculated by the reaching surface light amount value calculating unit for all candidate primary arrival surfaces. After the light quantity value reaching the surface is stored in the surface element data related to all the primary arrival surfaces as candidates, the next candidate is set to the light amount value of the surface element data related to all the primary arrival surfaces as candidates. A reaching surface light amount value storage means for adding the light amount values given from the primary light source surfaces and updating and storing the surface element data related to all the primary reaching surfaces as candidates. To do.

また、本発明に係る光環境解析装置の第3の構成は、前記第1、第2の構成の光環境解析装置において、前記開口部面を光源の面要素となる1次光源面とし、該1次光源面から目的の1次到達面に光線が到達した後、該1次到達面に光線が反射する場合に該1次到達面を2次光源面とし、該2次光源面から他の目的の2次到達面に光線が到達した後、該2次到達面に光線が反射する場合に該2次到達面を3次光源面として順次設定したn(n=1,2,3,…)次光源面から目的のn(n=1,2,3,…)次到達面に光線が到達した後、該n次到達面からそのn次到達面以外の到達面に向かって光線が反射する場合において、前記光源面光量値設定手段は、n次到達面を(n+1)次光源面として認識すると共に、前記n次到達面以外の到達面を(n+1)次光源面から光線が到達し得る(n+1)次到達面として認識して、前記n次到達面に係る面要素データが格納する光量値を(n+1)次光源面の光量値として設定し、前記仮想光線ベクトル設定手段は、前記(n+1)次光源面から前記(n+1)次到達面に対して光線ベクトルを設定し、前記光線到達可否判定手段は、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素に交差するか否かを探索することにより、前記(n+1)次光源面から目的の(n+1)次到達面に到達可能か否かを判定し、前記到達面光量値算出手段は、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記(n+1)次光源面から目的の(n+1)次到達面に到達可能であると判定された該(n+1)次到達面について、前記n次光源面からn次到達面に到達した光量値に該n次到達面の拡散放射率を乗じた光量値を前記(n+1)次光源面の初期放射光量値として、前記光線ベクトルが交差する前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素の透過率を考慮して前記(n+1)次光源面から前記(n+1)次到達面に到達する光量値を算出し、前記到達面光量値格納手段は、前記(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データの光量値に、次候補の(n+1)次光源面から付与された光量値を加算し、(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データを更新して格納し、前記光源面光量値設定手段、前記仮想光線ベクトル設定手段、前記光線到達可否判定手段、前記到達面光量値算出手段、及び前記到達面光量値格納手段によるそれぞれの演算処理を順次実行して、前記(n+1)次光源面から前記(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として面要素データに格納する最終的光量値格納手段を備えたことを特徴とする。   According to a third configuration of the light environment analysis apparatus of the present invention, in the light environment analysis apparatus of the first and second structures, the opening surface is a primary light source surface serving as a surface element of the light source, After a light beam reaches the target primary arrival surface from the primary light source surface, when the light beam is reflected on the primary arrival surface, the primary arrival surface is used as a secondary light source surface, and the secondary light source surface After the light beam reaches the target secondary arrival surface, when the light beam is reflected on the secondary arrival surface, n (n = 1, 2, 3,...) Sequentially set as the secondary light source surface. ) After the light beam reaches the target n (n = 1, 2, 3,...) Next arrival surface from the next light source surface, the light beam is reflected from the n-order arrival surface toward the arrival surface other than the n-order arrival surface. In this case, the light source surface light quantity value setting means recognizes the nth order arrival surface as the (n + 1) th order light source surface and reaches other than the nth order arrival surface. Is recognized as the (n + 1) th order arrival surface that can be reached from the (n + 1) th order light source surface, and the light amount value stored in the surface element data related to the nth order arrival surface is used as the light amount value of the (n + 1) th order light source surface. The virtual ray vector setting means sets a ray vector from the (n + 1) th order light source surface to the (n + 1) th order arrival surface, and the ray reachability determination means is determined by the virtual ray vector setting means. In the course of tracing the ray vector set by the virtual ray vector setting means with only the unit cube or unit cuboid corresponding to the unit space through which the set ray vector passes as the determination target, the ray vector is the (n + 1) th order light source. The target (n +) from the (n + 1) th order light source plane is searched by searching for whether or not it intersects with any other surface element other than the (n + 1) th order arrival surface. 1) It is determined whether or not the next arrival surface is reachable, and the arrival surface light amount value calculation means determines that the ray vector set by the virtual ray vector setting means by the ray arrival possibility determination means is the (n + 1) next light source surface. Diffusing the n-th order arrival surface to the light quantity value reaching the n-order arrival surface from the n-th order light source surface for the (n + 1) -order arrival surface determined to be reachable from the target (n + 1) -order arrival surface The light amount value multiplied by the emissivity is used as the initial radiant light amount value of the (n + 1) th order light source surface, and the surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface where the light ray vectors intersect. The light amount value reaching the (n + 1) th order arrival surface from the (n + 1) th order light source surface is calculated in consideration of the transmittance, and the arrival surface light amount value storage means becomes the (n + 1) th order arrival surface or a candidate. On all (n + 1) th arrival planes The light amount value given from the (n + 1) th order light source surface of the next candidate is added to the light amount value of the surface element data, and the surface element related to the (n + 1) th order arrival surface or all (n + 1) th order arrival surfaces as candidates The data is updated and stored, and the respective calculations by the light source surface light quantity value setting means, the virtual light beam vector setting means, the light ray reachability determination means, the reaching surface light quantity value calculation means, and the reaching surface light quantity value storage means The process is sequentially executed, and the light amount value when the light amount value added from the (n + 1) th order light source surface to the (n + 1) th order arrival surface reaches a predetermined reference is used as the final light amount value of the surface element. A final light quantity value storing means for storing in the element data is provided.

また、本発明に係る光環境解析装置の第4の構成は、前記第1〜第3の構成の光環境解析装置において、前記光線到達可否判定手段は、前記n(n=1,2,3,…)次光源面から前記n(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定することを特徴とする。   Further, a fourth configuration of the optical environment analysis apparatus according to the present invention is the optical environment analysis apparatus of the first to third configurations, in which the light beam reachability determining means is the n (n = 1, 2, 3). ,...) When determining whether or not a light beam can reach the n (n = 1, 2, 3,...) Next arrival surface from the next light source surface, the n-order light source surface and the n-order arrival surface are coordinate axes. It is characterized by determining whether it can be seen from the above magnitude relationship.

また、本発明に係る光環境解析装置の第5の構成は、前記第1〜第4の構成の光環境解析装置において、前記建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体が、建物の設計モジュール寸法に基づく単位立方体または単位直方体であることを特徴とする。   Moreover, the 5th structure of the optical environment analysis apparatus which concerns on this invention is a unit corresponding to the unit space of the internal space comprised by the shape data of the said building in the optical environment analysis apparatus of the said 1st-4th structure. The cube or unit cuboid is a unit cube or unit cuboid based on the design module dimensions of the building.

また、本発明に係る光環境解析装置の第6の構成は、前記第1〜第5の構成の光環境解析装置において、前記評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体の各面要素の面要素データに格納された最終的到達光量値に基づいて、該建物の内部空間の単位空間毎の最終的到達光量値を表示する光量値表示手段を備えたことを特徴とする。   According to a sixth configuration of the optical environment analysis apparatus of the present invention, in the optical environment analysis apparatus having the first to fifth configurations, a unit space of an internal space configured by the shape data of the building to be evaluated. Light quantity value display means for displaying the final reached light quantity value for each unit space of the internal space of the building based on the final reached light quantity value stored in the face element data of each face element of the corresponding unit cube or unit rectangular parallelepiped It is provided with.

また、本発明に係る光環境解析装置の第7の構成は、前記第1〜第5の構成の光環境解析装置において、前記評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体を基にして格子状に分割した領域の各々に対して該建物の内部空間の単位空間毎の最終的到達光量値を表示する光量値表示手段を備えたことを特徴とする。   According to a seventh configuration of the optical environment analysis apparatus of the present invention, in the optical environment analysis apparatus of the first to fifth configurations, a unit space of an internal space configured by the shape data of the building to be evaluated A light amount value display means for displaying a final light amount value for each unit space of the internal space of the building for each of the regions divided into a lattice based on the corresponding unit cube or unit rectangular parallelepiped And

また、本発明に係る光環境解析装置の第8の構成は、前記第2〜第7の構成の光環境解析装置において、前記評価対象の建物の形状データの座標軸上の所定の位置に測定用面要素を設定する測定用面要素設定手段と、前述の本発明に係る光環境解析装置の第3の構成に記載した前記最終的光量値格納手段により格納された全ての面要素の最終的光量値と、前述の本発明に係る光環境解析装置の第1、第2の構成に記載した前記開口部面を光源の面要素となる1次光源面に係る面要素データに格納された光量値とを光源として、前記測定用面要素設定手段により設定された測定用面要素上の明るさを演算する明るさ演算手段と、前記明るさ演算手段により演算された前記測定用面要素上の明るさを表示する明るさ表示手段とを備えることを特徴とする。   Further, an eighth configuration of the optical environment analysis apparatus according to the present invention is the optical environment analysis apparatus of the second to seventh configurations, in which measurement is performed at a predetermined position on the coordinate axis of the shape data of the building to be evaluated. The final light quantity of all the surface elements stored by the measurement surface element setting means for setting the surface element and the final light quantity value storage means described in the third configuration of the light environment analyzer according to the present invention described above. Value and the light quantity value stored in the surface element data relating to the primary light source surface, which is the surface element of the light source, the opening surface described in the first and second configurations of the light environment analyzing apparatus according to the present invention described above. Brightness calculating means for calculating the brightness on the measuring surface element set by the measuring surface element setting means, and the brightness on the measuring surface element calculated by the brightness calculating means Brightness display means for displaying the brightness To.

また、本発明に係る光環境解析装置の第9の構成は、前記第8の構成の光環境解析装置において、前記測定用面要素設定手段により設定された測定用面要素は、前記評価対象の建物の形状データで構成される床面から一定の高さの水平面上に設定されることを特徴とする。   The ninth configuration of the optical environment analysis apparatus according to the present invention is the optical environment analysis apparatus of the eighth configuration, wherein the measurement surface element set by the measurement surface element setting means is the evaluation target. It is characterized in that it is set on a horizontal plane of a certain height from the floor composed of building shape data.

上記本発明に係る光環境解析用プログラムの第1、第2の構成、及び本発明に係る光環境解析装置の第1、第2の構成によれば、評価対象の建物の形状データを基にして外光を取り込む開口部を光源と見なした屋内の明るさ環境を予測することが出来、光環境解析計算に際して建物の内部空間を面要素の組み合わせとして再構成することで、開口部である光源面から各到達面に放射される光線の到達可能性を1つ1つ予測し、到達可能性のある到達面の光量値を算出し、到達可能性のない光量値の計算を排除するので演算処理が簡易かつ迅速である。   According to the first and second configurations of the light environment analysis program according to the present invention and the first and second configurations of the light environment analysis apparatus according to the present invention, based on the shape data of the building to be evaluated. It is possible to predict the indoor brightness environment that considers the opening that takes in outside light as a light source, and it is an opening by reconfiguring the interior space of the building as a combination of surface elements in the light environment analysis calculation Because it predicts the reachability of light rays radiated from the light source surface to each arrival surface one by one, calculates the light amount value of the reachable reach surface, and eliminates the calculation of the unreachable light amount value Arithmetic processing is simple and quick.

また、本発明に係る光環境解析用プログラムの第3の構成、及び本発明に係る光環境解析装置の第3の構成によれば、屋内環境における光の反射(吸収・放射)を勘案することで自然な光環境分布を予測することが出来る。   According to the third configuration of the light environment analysis program according to the present invention and the third configuration of the light environment analysis device according to the present invention, light reflection (absorption / radiation) in the indoor environment is taken into consideration. Can predict the natural light environment distribution.

また、本発明に係る光環境解析用プログラムの第4の構成、及び本発明に係る光環境解析装置の第4の構成によれば、光環境解析計算の途上で形状データの幾何学的関係を利用することで演算処理を高速化することが出来る。   Further, according to the fourth configuration of the light environment analysis program according to the present invention and the fourth configuration of the light environment analysis apparatus according to the present invention, the geometric relationship of the shape data is determined in the course of the light environment analysis calculation. By using it, it is possible to speed up the arithmetic processing.

また、本発明に係る光環境解析用プログラムの第5の構成、及び本発明に係る光環境解析装置の第5の構成によれば、建物の内部空間の単位空間に対応する単位立方体または単位直方体を建物の設計モジュール寸法に基づいて規格化することで光環境解析演算処理の手順を簡素化することが出来る。   According to the fifth configuration of the light environment analysis program according to the present invention and the fifth configuration of the light environment analysis apparatus according to the present invention, a unit cube or a unit cuboid corresponding to the unit space of the internal space of the building Is standardized based on the design module dimensions of the building, the procedure of the light environment analysis calculation processing can be simplified.

本発明に係る光環境解析装置の第6の構成によれば、屋内の明るさを表現する方法として面要素の光量分布を示すことが出来る。   According to the sixth configuration of the light environment analysis apparatus of the present invention, the light quantity distribution of the surface element can be shown as a method of expressing the indoor brightness.

本発明に係る光環境解析装置の第7の構成によれば、屋内の明るさを表現する方法として面要素に対応する格子状の領域で表現することが出来る。   According to the seventh configuration of the light environment analysis apparatus of the present invention, the indoor brightness can be expressed by a grid area corresponding to the surface element.

本発明に係る光環境解析装置の第8の構成によれば、任意の位置における測定用面要素上の明るさを算出し且つ表示することが出来る。これにより、仮想の高さでの水平面光量値及び鉛直面光量値を合成した光量値を算出し、且つ単位面積あたりの明るさ分布を表示することが出来る。   According to the eighth configuration of the light environment analysis apparatus of the present invention, the brightness on the measurement surface element at an arbitrary position can be calculated and displayed. As a result, a light amount value obtained by combining the horizontal plane light amount value and the vertical surface light amount value at the virtual height can be calculated, and the brightness distribution per unit area can be displayed.

本発明に係る光環境解析装置の第9の構成によれば、任意の高さの水平面上の明るさを算出し且つ表示することが出来る。これにより、建物の内部空間全体について作業面の明るさ分布を表示することが出来る。   According to the ninth configuration of the light environment analysis apparatus according to the present invention, it is possible to calculate and display the brightness on a horizontal plane having an arbitrary height. Thereby, the brightness distribution of the work surface can be displayed for the entire interior space of the building.

本発明では、光環境のシミュレーションの対象となる室内空間を単位立方体に細分化して光源面と到達面を1対1対応で処理を行うようにしている為に従来法のように光源面からの放射光線を到達面数以上に多量に拡散する場合に比べて、明らかに計算処理量が減る。更に全ての到達面を同じ様に漏れなく対象とするために全体として計算精度が向上する。   In the present invention, the interior space to be simulated for the light environment is subdivided into unit cubes, and the light source surface and the arrival surface are processed in a one-to-one correspondence. Compared with the case where the radiation beam is diffused in a larger amount than the number of arrival surfaces, the calculation processing amount is obviously reduced. In addition, since all the reaching surfaces are similarly targeted without omission, the calculation accuracy is improved as a whole.

言い換えると、従来法は一本の光線の追跡を基本に置いている為に、到達面全てに漏れなく到達する様な計算精度を維持する為には多数の光線追跡を行わなければならず計算量が増加し、しかも確実に全ての到達面に対して漏れなく計算対象としているかどうかの保証は無い。   In other words, since the conventional method is based on the tracking of a single ray, a large number of ray tracing must be performed in order to maintain the calculation accuracy to reach all the arrival surfaces without omission. There is no guarantee that the amount will increase and that all the reach surfaces will be subject to calculation without omission.

これに比して、本発明は光源面と到達面の関係を仮想光線ベクトルを介して記述しており、到達面全てを漏れなく計算対象に出来る上に計算量も従来法に比べて少なくすることが出来る。   Compared to this, the present invention describes the relationship between the light source surface and the arrival surface through the virtual ray vector, so that all the arrival surfaces can be calculated without omission and the calculation amount is reduced as compared with the conventional method. I can do it.

両者の方法は計算対象となる空間分割を極限まで細かくした場合で、かつ放射光線も無限に多くした場合には同等の方法になる。   Both methods are equivalent when the space division to be calculated is made as fine as possible and when the number of radiation rays is increased infinitely.

しかしながら空間分割を適当な大きさで実施し、計算速度・精度を維持するには計算手順に本発明の方策が必要となる。   However, the method of the present invention is necessary for the calculation procedure in order to perform the space division with an appropriate size and maintain the calculation speed and accuracy.

これにより、建物の屋内の明るさの充分な間取り上の位置(場所)を特定出来るとともに明るさが不充分(弱点)となっている間取り上の位置(場所)を検出し、画面に表示することにより建物の屋内全体の明るさの分布の程度を建物の設計者や住まい手に認識させることが出来る。   As a result, it is possible to identify a position (place) on the floor plan with sufficient brightness in the building, and detect the position (place) on the floor plan where the brightness is insufficient (weak point) and display it on the screen. This makes it possible for the building designer and the resident to recognize the degree of brightness distribution throughout the building.

また、明るさが不充分となっている間取り上の位置(場所)については、設計者が建物の間取りの変更(間仕切壁、開口部の移動、追加、削除)を行い、試行錯誤的にCAD(Computer Aided Design;コンピュータによる支援設計)システムによりその変更入力を行った上で、本発明に係る光環境解析用プログラム及び光環境解析装置により明るさ分布の演算処理を行うことにより、自然採光を確保した建物の設計が可能になるという格別の効果を奏する。   In addition, for the position (place) on the floor plan where the brightness is insufficient, the designer changes the floor plan of the building (moving, adding, and deleting the partition walls and openings), and CAD is performed on a trial and error basis. (Computer Aided Design; computer-aided design) After the change is input by the system, the light environment analysis program and the light environment analysis apparatus according to the present invention perform brightness distribution calculation processing, thereby performing natural lighting. There is a special effect that it is possible to design a secured building.

図により本発明に係る光環境解析用プログラム及び光環境解析装置の一実施形態を具体的に説明する。図1は本発明に係る光環境解析装置の外観の一例を示す図、図2は本発明に係る光環境解析装置の制御系の構成を説明するブロック図、図3(a),(b)は評価対象の建物の間取りの一例をCAD図面により表現する斜視図及び平面図、図4は本発明に係る光環境解析用プログラムによる演算処理の一例を示すフローチャート、図5は図4のステップS,S18の詳細を示すフローチャート、図6は解析対象となる建物の形状データの一例を示す図、図7は評価対象の建物の解析空間のイメージ図、図8は評価対象の建物の内部空間を構成する単位立方体と面要素との関係を示す図、図9は光源面要素と光線到達候補面との座標軸上の大小関係から可視判断を行う様子を示す図、図10は光源面要素から放射された光線が到達面要素に到達する様子と、途中に他の面要素で遮られる様子を示す図、図11(a)〜(c)は光源面要素から放射された光線が到達面要素に到達するか否かを判断する原理を説明する概念説明図、図12は光源面要素が座標軸のX軸方向壁要素で到達面候補もX軸方向壁要素の場合で形態係数の求め方を説明する概念説明図、図13は光源面から複数の到達面に放射光線が到達し、光量値が与えられる様子を示す図、図14は複数の光源面からの放射光線が同じ到達面に到達し、光量値が加算される様子を示す図、図15は面要素に到達した光線が放射することで再度他の到達面に光線が到達する様子を示す図、図16は階段前近くに開口部が設定されていない建物の一階部分の明るさ分布を表示した一例を示す図、図17は階段前近くに開口部が設定されている建物の一階部分の明るさ分布を表示した一例を示す図、図18は測定用面要素設定手段の設定のための入力画面を示す図、図19(a)〜(c)は面要素データの一例を示す図である。 An embodiment of an optical environment analysis program and an optical environment analysis apparatus according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram showing an example of the appearance of an optical environment analysis apparatus according to the present invention, FIG. 2 is a block diagram illustrating the configuration of a control system of the optical environment analysis apparatus according to the present invention, and FIGS. FIG. 4 is a perspective view and plan view showing an example of the floor plan of the building to be evaluated by a CAD drawing, FIG. 4 is a flowchart showing an example of calculation processing by the light environment analysis program according to the present invention, and FIG. 5 is step S of FIG. 6, a flowchart illustrating the details of the S 18, FIG. 6 is a diagram showing an example of the shape data of the buildings to be analyzed, 7 the image view of the analysis space of the building to be evaluated, the interior space of FIG. 8 is evaluated building 9 is a diagram showing a relationship between unit cubes and surface elements constituting FIG. 9, FIG. 9 is a diagram showing a state in which a visual judgment is made based on a magnitude relationship on a coordinate axis between a light source surface element and a light ray arrival candidate surface, and FIG. The emitted ray reaches the surface element FIGS. 11 (a) to 11 (c) are diagrams showing how the light rays emitted from the light source surface element reach the arrival surface element. FIG. 12 is a conceptual explanatory diagram for explaining how to obtain a form factor when the light source surface element is an X-axis direction wall element of the coordinate axis and the reaching surface candidate is also an X-axis direction wall element, and FIG. Fig. 14 shows how radiation light reaches a plurality of arrival surfaces from a surface and gives light quantity values.Fig. 14 shows how radiation light from a plurality of light source surfaces reaches the same arrival surface and the light amount values are added. Fig. 15 is a diagram showing how light rays that reach a surface element radiate to reach another arrival surface again. Fig. 16 is the first floor of a building where no opening is set near the stairs. Fig. 17 shows an example of the brightness distribution of a part. Fig. 17 shows the first floor of a building with an opening near the stairs. FIG. 18 shows an example of an input screen for setting the measurement surface element setting means, and FIGS. 19A to 19C show examples of surface element data. FIG.

図1及び図2において、1はパーソナルコンピュータ(以下、「パソコン」という)により構成される制御装置(CPU)であり、2は表示手段となるディスプレイ、3は入力手段となるキーボード、4は入力手段となるマウス、25は出力手段となるプリンタである。   1 and 2, reference numeral 1 denotes a control device (CPU) constituted by a personal computer (hereinafter referred to as “personal computer”), 2 is a display as display means, 3 is a keyboard as input means, and 4 is input. A mouse serving as means, and a printer 25 serving as output means.

5は建物情報取得手段となる建物情報取得部であり、建物形状情報記憶手段となる建物形状情報データベース(以下、「建物形状情報DB」)7に記憶して格納された各種の建物の形状データから評価対象の建物の形状データを取得する。建物形状データとしては、屋根、外壁27、ベランダ、天井、間仕切壁26、床28、開口部19、建具29、および洗面台、キッチンセット、ユニットバス、家具、または家庭電化製品等の器物30の種々の形状データが格納されている。   Reference numeral 5 denotes a building information acquisition unit as building information acquisition means, and various building shape data stored and stored in a building shape information database (hereinafter “building shape information DB”) 7 as building shape information storage means. To obtain the shape data of the building to be evaluated. The building shape data includes roofs, outer walls 27, verandas, ceilings, partition walls 26, floors 28, openings 19, fixtures 29, and items 30 such as sinks, kitchen sets, unit baths, furniture, or home appliances. Various shape data are stored.

6は面要素データ構成手段となる面要素データ構成部であり、建物情報取得部5により取得した建物の形状データに基づいて、該建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を建物の形状データの開口部19に対応する面要素である開口部面20と、該開口部19以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して図19に示して詳しくは後述する面要素データに格納する(第1の処理)。   Reference numeral 6 denotes a surface element data configuration unit serving as a surface element data configuration unit. Based on the building shape data acquired by the building information acquisition unit 5, the internal space configured by the shape data of the building corresponds to the unit space. Dividing into unit cubes or unit cuboids, each surface element of the unit cube or unit cuboid corresponds to an opening surface 20 that is a surface element corresponding to the opening 19 of the building shape data, and a portion other than the opening 19 It is divided into surfaces other than the opening, which are surface elements, and coordinates and attribute data are given and stored in surface element data described later in detail with reference to FIG. 19 (first processing).

8は光源面光量値設定手段となる光源面光量値設定部であり、建物の形状データの開口部19に対応する面要素である開口部面20を光源の面要素となる1次光源面として認識すると共に、その開口部19以外の面を1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る図19に示して詳しくは後述する面要素データに格納する(第2の処理)。   Reference numeral 8 denotes a light source surface light amount value setting unit serving as a light source surface light amount value setting means. The opening surface 20 corresponding to the opening 19 of the building shape data is used as a primary light source surface serving as a surface element of the light source. Recognize and recognize the surface other than the opening 19 as a primary arrival surface which is a surface element that the light beam can reach from the primary light source surface, and determine the light quantity value reaching the primary light source surface from the outside of the building. Details of the primary light source surface shown in FIG. 19 are stored in the surface element data described later (second processing).

9は仮想光線ベクトル設定手段となる仮想光線ベクトル設定部であり、1次光源面から1次到達面に対して光線ベクトル22を設定する(第3の処理)。   Reference numeral 9 denotes a virtual ray vector setting unit serving as a virtual ray vector setting means, which sets a ray vector 22 from the primary light source surface to the primary arrival surface (third process).

10は光線到達可否判定手段となる光線到達可否判定部であり、仮想光線ベクトル設定部9により設定した光線ベクトル22が通過する単位空間に対応する単位立方体または単位直方体のみを判定対象として、該仮想光線ベクトル設定部9により設定した光線ベクトル22を辿る途中において、該光線ベクトル22が1次光源面及び1次到達面以外の他の面要素に交差するか否かを探索することにより、該1次光源面から目的の1次到達面に光線ベクトル22が到達可能か否かを判定する(第4の処理)。   Reference numeral 10 denotes a light beam reachability determination unit serving as a light beam reachability determination unit. Only a unit cube or a unit cuboid corresponding to a unit space through which the light beam vector 22 set by the virtual light beam vector setting unit 9 passes is determined as the determination target. In the middle of tracing the light ray vector 22 set by the light ray vector setting unit 9, the light vector 22 is searched for whether it intersects with other surface elements other than the primary light source surface and the primary arrival surface. It is determined whether or not the light vector 22 can reach the target primary arrival surface from the next light source surface (fourth processing).

11は到達面光量値算出手段となる到達面光量値算出部であり、光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、光源面光量値設定部8により設定された建物外部から1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、光線ベクトル22が交差する該1次光源面及び該1次到達面以外の他の面要素の透過率を考慮して該1次光源面から該1次到達面に到達する光量値を算出し、該光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が該1次光源面から目的の1次到達面に到達不可能であると判定された場合に、該1次光源面から次候補の1次到達面に対して、仮想光線ベクトル設定部9による前述の第3の処理、及び光線到達可否判定部10による前述の第4の処理を順次実行して、該光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が該1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、光源面光量値設定部8により1次光源面に付与された光量値を該1次光源面の初期放射光量値として、光線ベクトルが交差する該1次光源面及び該1次到達面以外の他の面要素の透過率を考慮して該1次光源面から該1次到達面に到達する光量値を算出する(第5の処理)。   Reference numeral 11 denotes an arrival surface light amount value calculation unit serving as an arrival surface light amount value calculation unit. The light ray vector 22 set by the virtual light ray vector setting unit 9 by the light ray reachability determination unit 10 is changed from the primary light source surface to the target primary arrival surface. When it is determined that the primary light source surface is reachable, the aperture of the primary light source surface is set to the light amount value that has reached the primary light source surface from the outside of the building set by the light source surface light amount value setting unit 8. The light quantity value multiplied by the partial transmittance is taken as the initial radiant light quantity value of the primary light source surface, and the transmittance of the other surface elements other than the primary light source surface and the primary arrival surface where the light vector 22 intersects is taken into consideration. Then, the light quantity value reaching the primary arrival surface from the primary light source surface is calculated, and the light ray vector 22 set by the virtual light ray vector setting unit 9 by the light ray reachability determination unit 10 is obtained from the primary light source surface. If it is determined that the primary reach is not reachable, From the primary light source surface to the next candidate primary arrival surface, the above-described third processing by the virtual ray vector setting unit 9 and the above-described fourth processing by the ray reachability determination unit 10 are sequentially executed, For the primary arrival surface determined by the light ray reachability determination unit 10 that the light vector 22 set by the virtual light vector setting unit 9 is reachable from the primary light source surface to the target primary arrival surface, the light source The light quantity value given to the primary light source surface by the surface light quantity value setting unit 8 is used as the initial radiant light quantity value of the primary light source face, and other than the primary light source face and the primary arrival face where the light vectors intersect. A light amount value reaching the primary arrival surface from the primary light source surface is calculated in consideration of the transmittance of the surface element (fifth process).

12は到達面光量値格納手段となる到達面光量値格納部であり、到達面光量値算出部11により、前述の第5の処理で算出された1次光源面から1次到達面に到達する光量値を該1次到達面に係る図19に示して詳しくは後述する面要素データに格納する(第6の処理)。   Reference numeral 12 denotes an arrival surface light amount value storage unit serving as an arrival surface light amount value storage unit. The arrival surface light amount value calculation unit 11 reaches the primary arrival surface from the primary light source surface calculated in the fifth process described above. The light amount value is shown in FIG. 19 relating to the primary arrival surface, and is stored in surface element data described in detail later (sixth processing).

また、到達面光量値格納部12は、1次到達面に係る図19に示して詳しくは後述する面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、該1次到達面に係る図19に示して詳しくは後述する面要素データを更新して格納する(第7の処理)。   The arrival surface light amount value storage unit 12 adds the light amount value given from the primary light source surface of the next candidate to the light amount value of the surface element data shown in FIG. The surface element data, which will be described later in detail with reference to FIG. 19 relating to the primary arrival surface, is updated and stored (seventh processing).

また、到達面光量値格納部12は、前述の第5の処理で探索された1次光源面から次候補の1次到達面に対して、仮想光線ベクトル設定部9による前述の第3の処理、光線到達可否判定部10による前述の第4の処理、及び到達面光量値算出部11による前述の第5の処理を順次実行して、候補となる全ての1次到達面に対して、前述の第5の処理で算出された1次光源面から候補となる全ての1次到達面に到達する光量値を、該候補となる全ての1次到達面に係る図19に示して詳しくは後述する面要素データに格納する(他の第6の処理)。   Further, the arrival surface light amount storage unit 12 performs the above-described third process by the virtual ray vector setting unit 9 from the primary light source surface searched in the above-described fifth process to the next candidate primary arrival surface. The above-described fourth processing by the light beam reachability determination unit 10 and the above-described fifth processing by the arrival surface light amount value calculation unit 11 are sequentially executed, and the above-described processing is performed on all candidate primary arrival surfaces. The light quantity values that reach all the primary arrival surfaces that are candidates from the primary light source surface calculated in the fifth process are shown in FIG. 19 for all the primary arrival surfaces that are candidates and will be described in detail later. Is stored in the surface element data (other sixth processing).

また、到達面光量値格納部12は、候補となる全ての1次到達面に係る図19に示して詳しくは後述する面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、該候補となる全ての1次到達面に係る図19に示して詳しくは後述する面要素データを更新して格納する(他の第7の処理)。   Further, the reaching surface light amount value storage unit 12 is given from the primary light source surface of the next candidate to the light amount value of the surface element data shown in FIG. The light quantity value is added, and the surface element data shown in FIG. 19 relating to all the primary arrival surfaces as candidates is updated and stored in detail (other seventh processing).

また、建物の形状データの開口部19に対応する面要素である開口部面20を光源の面要素となる1次光源面とし、該1次光源面から目的の1次到達面に光線が到達した後、該1次到達面に光線が反射する場合に該1次到達面を2次光源面とし、該2次光源面から他の目的の2次到達面に光線が到達した後、該2次到達面に光線が反射する場合に該2次到達面を3次光源面として順次設定したn(n=1,2,3,…)次光源面から目的のn(n=1,2,3,…)次到達面に光線が到達した後、該n次到達面からそのn次到達面以外の到達面に向かって光線が反射する場合において、前述の第2の処理では光源面光量値設定部8により、n次到達面を(n+1)次光源面として認識すると共に、該n次到達面以外の到達面を(n+1)次光源面から光線が到達し得る(n+1)次到達面として認識して、該n次到達面に係る面要素データが格納する光量値を(n+1)次光源面の光量値として設定し、前述の第3の処理では仮想光線ベクトル設定部9により、(n+1)次光源面から(n+1)次到達面に対して光線ベクトル22を設定し、前述の第4の処理では光線到達可否判定部10により、仮想光線ベクトル設定部9により設定した光線ベクトル22が通過する単位空間に対応する単位立方体または単位直方体のみを判定対象として、仮想光線ベクトル設定部9により設定した光線ベクトル22を辿る途中において、該光線ベクトル22が(n+1)次光源面及び(n+1)次到達面以外の他の面要素に交差するか否かを探索することにより、(n+1)次光源面から目的の(n+1)次到達面に到達可能か否かを判定し、前述の第5の処理では到達面光量値算出部11により、光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が(n+1)次光源面から目的の(n+1)次到達面に到達可能であると判定された該(n+1)次到達面について、n次光源面からn次到達面に到達した光量値に該n次到達面の拡散放射率を乗じた光量値を(n+1)次光源面の初期放射光量値として、光線ベクトル22が交差する該(n+1)次光源面及び該(n+1)次到達面以外の他の面要素の透過率を考慮して該(n+1)次光源面から該(n+1)次到達面に到達する光量値を算出し、前述の第7の処理では到達面光量値格納部12により、(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データの光量値に、次候補の(n+1)次光源面から付与された光量値を加算し、該(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データを更新して格納する。   The opening surface 20 corresponding to the opening 19 of the building shape data is used as a primary light source surface as a surface element of the light source, and light rays reach the target primary arrival surface from the primary light source surface. After that, when light rays are reflected on the primary arrival surface, the primary arrival surface is used as a secondary light source surface, and after the light rays reach the other secondary arrival surface from the secondary light source surface, the 2 When the light ray is reflected on the next arrival surface, the secondary arrival surface is set as the tertiary light source surface in order, and the target n (n = 1, 2, 2,...) Is sequentially set from the n (n = 1, 2, 3,. 3,...) When the light beam is reflected from the nth order arrival surface toward the arrival surface other than the nth order arrival surface after the light beam has reached the next arrival surface, The setting unit 8 recognizes the nth-order arrival surface as the (n + 1) th-order light source surface, and sets the arrival surface other than the nth-order arrival surface from the (n + 1) th-order light source surface. Recognizing as the (n + 1) th order arrival surface that the line can reach and setting the light quantity value stored in the surface element data relating to the nth order arrival surface as the light quantity value of the (n + 1) th order light source surface, In the processing, the light ray vector setting unit 9 sets the light vector 22 from the (n + 1) th order light source surface to the (n + 1) th order arrival surface, and in the above-described fourth processing, the light ray reachability determination unit 10 sets the virtual light ray. In the course of tracing the ray vector 22 set by the virtual ray vector setting unit 9, only the unit cube or unit rectangular parallelepiped corresponding to the unit space through which the ray vector 22 set by the vector setting unit 9 passes is determined. From the (n + 1) th order light source surface to the target (n + 1) th order arrival surface by searching whether or not the surface element other than the (n + 1) th order light source surface and the (n + 1) th order reach surface In the fifth process described above, the light vector 22 set by the virtual light vector setting unit 9 by the light arrival reachability determination unit 10 is changed to the (n + 1) th order light source by the arrival surface light amount value calculation unit 11. For the (n + 1) th order arrival surface that is determined to be reachable from the surface to the target (n + 1) th order arrival surface, the nth order arrival surface is diffused to the light amount value that has reached the nth order arrival surface from the nth order light source surface. The light quantity value multiplied by the emissivity is used as the initial radiant light quantity value of the (n + 1) th order light source surface, and the transmission through other surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface where the light vector 22 intersects. The amount of light reaching the (n + 1) th order arrival surface from the (n + 1) th order light source surface is calculated in consideration of the rate, and in the seventh process described above, the arrival surface amount of light value storage unit 12 performs (n + 1) th order arrival. Surface elements related to all (n + 1) th arrival surfaces that are surfaces or candidates The light quantity value given from the (n + 1) th order light source surface of the next candidate is added to the light quantity value of the data, and the surface element data relating to the (n + 1) th order arrival surface or all candidate (n + 1) th order arrival surfaces Update and store.

13は最終的光量値格納手段となる最終的光量値算出部であり、前述の光源面光量値設定部8による前記第2の処理、仮想光線ベクトル設定部9による前記第3の処理、光線到達可否判定部10による前記第4の処理、到達面光量値算出部11による前記第5の処理、及び到達面光量値格納部12による前記第6、第7の処理を順次実行して、(n+1)次光源面から(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として図19に示して詳しくは後述する面要素データに格納する(第8の処理)。   Reference numeral 13 denotes a final light quantity value calculation unit serving as a final light quantity value storage unit. The second process by the light source surface light quantity value setting unit 8, the third process by the virtual light vector setting unit 9, and light arrival. The fourth process by the availability determination unit 10, the fifth process by the arrival surface light amount value calculation unit 11, and the sixth and seventh processes by the arrival surface light amount value storage unit 12 are sequentially executed, and (n + 1) ) FIG. 19 shows the light amount value when the light amount value added from the next light source surface to the (n + 1) next arrival surface reaches a predetermined reference as the final light amount value of the surface element. (Eighth processing).

光線到達可否判定部10による前述の第4の処理では、n(n=1,2,3,…)次光源面からn(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定する演算処理を含む。   In the above-described fourth process by the light beam reachability determination unit 10, the light beam reaches from the n (n = 1, 2, 3,...) Next light source surface to the n (n = 1, 2, 3,...) Next reach surface. Computation processing for determining whether or not the nth-order light source surface and the nth-order arrival surface can be seen from each other based on the magnitude relationship on the coordinate axes when determining whether or not they are possible is included.

本実施形態の場合、面要素データ構成部6により作成される建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体は、建物の設計モジュール寸法に基づく単位立方体または単位直方体で構成される。   In the case of the present embodiment, the unit cube or unit cuboid corresponding to the unit space of the internal space constituted by the building shape data created by the surface element data construction unit 6 is a unit cube or unit based on the design module dimensions of the building. Consists of a rectangular parallelepiped.

14は光量値表示手段となる光量値表示部であり、評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体の各面要素の面要素データに格納された最終的到達光量値に基づいて、該建物の内部空間の単位空間毎の最終的到達光量値をディスプレイ2上に表示する。   14 is a light intensity value display unit serving as a light intensity value display means, and is stored in the surface element data of each surface element of a unit cube or a unit rectangular parallelepiped corresponding to the unit space of the internal space configured by the shape data of the building to be evaluated. Based on the final reached light quantity value, the final reached light quantity value for each unit space of the interior space of the building is displayed on the display 2.

また、光量値表示部14は、評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体を基にして格子状に分割した領域の各々に対して該建物の内部空間の単位空間毎の最終的到達光量値をディスプレイ2上に表示する。   In addition, the light quantity value display unit 14 is provided for each of the regions divided into a grid based on a unit cube or a unit rectangular parallelepiped corresponding to a unit space of the internal space configured by the shape data of the building to be evaluated. The final reached light amount value for each unit space of the internal space is displayed on the display 2.

15は測定用面要素設定手段となる測定用面要素設定部であり、評価対象の建物の形状データの座標軸上の所定の位置に測定用面要素を設定する。   A measurement surface element setting unit 15 serving as a measurement surface element setting unit sets a measurement surface element at a predetermined position on the coordinate axis of the shape data of the building to be evaluated.

16は明るさ演算手段となる明るさ演算部であり、最終的光量値格納部13により格納された全ての面要素の最終的光量値と、建物の形状データの開口部19に対応する面要素である開口部面20を光源の面要素となる1次光源面に係る面要素データに格納された光量値とを光源として、測定用面要素設定部15により設定された測定用面要素上の明るさを演算する。   Reference numeral 16 denotes a brightness calculation unit serving as a brightness calculation means. The final light amount values of all the surface elements stored by the final light amount value storage unit 13 and the surface elements corresponding to the openings 19 of the building shape data On the surface element for measurement set by the surface element setting unit 15 for measurement, the light quantity value stored in the surface element data relating to the primary light source surface as the surface element of the light source is used as the light source value. Calculate brightness.

17は明るさ表示手段となる明るさ表示部であり、明るさ演算部16により演算された測定用面要素上の明るさを表示する。   Reference numeral 17 denotes a brightness display section serving as a brightness display means, which displays the brightness on the measurement surface element calculated by the brightness calculation section 16.

測定用面要素設定部15により設定された測定用面要素は、評価対象の建物の形状データで構成される床28面から一定の高さの水平面上に設定される。   The measurement surface element set by the measurement surface element setting unit 15 is set on a horizontal plane having a certain height from the floor 28 composed of the shape data of the building to be evaluated.

以下、図4及び図5に示すフローチャートに沿って、本発明に係る光環境解析装置及びそれに搭載された光環境解析用プログラムの処理動作について説明する。   The processing operation of the light environment analysis apparatus according to the present invention and the light environment analysis program installed therein will be described below with reference to the flowcharts shown in FIGS.

先ず、図4のステップSにおいて、建物情報取得手段となる建物情報取得部5により建物形状情報DB7に格納された評価対象の建物の形状データを取得する。ここで、建物の形状データとは、建物の間取りに基づく、天井、壁、床28、器物30、建具29要素及び開口部19要素等の各部位をいう。器物30とは冷蔵庫等の家庭電化製品や家具をいう。 First, in step S 1 in FIG. 4, to obtain the shape data of the subject building by building information acquisition unit 5 serving as a building information acquisition means is stored in the building shape information DB7. Here, the building shape data refers to each part such as a ceiling, a wall, a floor 28, a fixture 30, a fitting 29 element, and an opening 19 element, based on the floor plan of the building. The container 30 refers to home appliances such as a refrigerator and furniture.

入力手段となるキーボード3やマウス4により入力して、建物形状情報DB7に記憶された特定の建物CAD(Computer Aided Design;コンピュータによる支援設計製図)データを読み出し、評価に必要な建物の間取りに基づく部位の形状データのみを抽出することが出来る。   Based on the floor plan of the building necessary for evaluation, by reading the specific building CAD (Computer Aided Design; computer-aided design) data stored in the building shape information DB 7 by inputting with the keyboard 3 or mouse 4 as input means Only the shape data of the part can be extracted.

また、入力手段となるキーボード3やマウス4により入力し、記憶手段となるメモリ18に一時記憶したCADデータから建物情報取得部5により一時記憶した建物の形状データのみを抽出することも可能である。   It is also possible to extract only the building shape data temporarily stored by the building information acquisition unit 5 from the CAD data which is input by the keyboard 3 or mouse 4 serving as input means and temporarily stored in the memory 18 serving as storage means. .

図3(a)は、建物のCADデータを表示したものである。これらのデータから図3(b)に示すように建物の形状データとして、屋根、外壁27、開口部19、天井面、間仕切壁26、床28面、建具29、家具等を抽出する。   FIG. 3A shows building CAD data. From these data, as shown in FIG. 3B, the roof, the outer wall 27, the opening 19, the ceiling surface, the partition wall 26, the floor 28, the fitting 29, furniture, and the like are extracted as building shape data.

次に図4のステップSにおいて、建物の形状データで構成された評価対象の建物内部空間を、図7に示すように、単位空間に対応する単位立方体または単位直方体に分割する。次にステップSにおいて、建物の形状データを単位空間に対応する単位立方体または単位直方体の建物の形状に対応付けて、単位空間に対応する単位立方体または単位直方体を構成している面要素の集合として再構成する。 In step S 2 in FIG. 4, the evaluation of the building interior space constructed by building shape data, as shown in FIG. 7, it is divided into unit cubes or unit cuboid corresponding to the unit space. Next, in step S 3 , a set of surface elements constituting the unit cube or unit cuboid corresponding to the unit space by associating the building shape data with the unit cube or unit cuboid building shape corresponding to the unit space. Reconfigure as.

次にステップSにおいて、図6及び図7に示す建物の形状データの開口部19に対応する面要素である開口部面20と、該開口部以外の部位に対応する面要素である開口部以外面と、を区分して面要素を開口部面20を光源の面要素となる1次光源面と、開口部以外面を1次光源面から光線が到達し得る面要素である1次到達面とに区分する。 In step S 4, the opening surface 20 is a corresponding surface element to the opening 19 of the shape data of the buildings shown in FIGS. 6 and 7, the opening is a surface element corresponding to a site other than the opening The primary light source surface that separates the surface from the primary surface and makes the aperture surface 20 the surface element of the light source, and the primary arrival that is a surface element that allows light rays to reach the surface other than the aperture from the primary light source surface. Divided into planes.

次にステップSにおいて、各面要素ごとに面要素光量値情報記憶手段となる面要素光量値情報データベース(以下、「面要素光量値情報DB」という)21に面要素データを格納する。 In step S 5, each surface becomes a surface element light quantity value data storing means for each element surface element light value information database (hereinafter, "surface element light value information DB" hereinafter) stores the surface element data 21.

上記ステップS〜Sは、面要素データ構成手段となる面要素データ構成部6の演算処理により実行される。 The above steps S 1 to S 5 are executed by the calculation process of the surface element data configuration unit 6 which is a surface element data configuration unit.

ここで、面要素データ構成手段となる面要素データ構成部6は、図7に示すように、建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を、図6に示す建物の形状データの開口部19に対応する面要素である開口部面20と、開口部19以外の部位に対応する面要素である開口部以外面とに区分して、座標及び属性データを付与して面要素光量値情報DB21に記憶された図19(a)に示す各面要素データに格納する。   Here, as shown in FIG. 7, the surface element data configuration unit 6 serving as the surface element data configuration unit divides the internal space configured by the building shape data into unit cubes or unit cuboids corresponding to the unit spaces, Each surface element of the unit cube or unit rectangular parallelepiped is a surface element corresponding to the opening surface 20 corresponding to the opening 19 of the building shape data shown in FIG. It is divided into surfaces other than the opening, and coordinates and attribute data are given and stored in each surface element data shown in FIG. 19A stored in the surface element light quantity value information DB 21.

本実施形態では、建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体は、建物の設計モジュール寸法に基づく単位立方体または単位直方体に再構成したものである。   In this embodiment, the unit cube or unit cuboid corresponding to the unit space of the internal space constituted by the building shape data is reconfigured into a unit cube or unit cuboid based on the design module dimensions of the building.

図6及び図7は、面要素データ構成部6により建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に再構成した一例である。即ち、建物内部空間の光環境を解析する単位空間に対応する単位立方体または単位直方体を再定義するために、例えば、建物の内部空間を図7の様に同一の単位立方体の組合せとして再構成する(図4のステップS)。 FIG. 6 and FIG. 7 show an example in which the surface element data construction unit 6 reconstructs the internal space composed of building shape data into unit cubes or unit cuboids corresponding to the unit spaces. That is, in order to redefine the unit cube or the unit rectangular parallelepiped corresponding to the unit space for analyzing the light environment of the building internal space, for example, the internal space of the building is reconfigured as a combination of the same unit cubes as shown in FIG. (Step S 3 in FIG. 4).

更に単位空間に対応する単位立方体または単位直方体を構成する各面要素について建物の形状データのうち、天井、床28、壁(外壁27、間仕切壁26)、開口部19、建具29表面、およびキッチンセット、洗面台、ユニットバス、家具、または家庭電化製品等の器物30その他の光線の通過を遮る要素と、単位空間に対応する単位立方体または単位直方体を構成する各面要素の位置座標の重なりを検査して、天井、壁、床28等の開口部19以外に対応する面要素(以下、「開口部以外面」という)と、開口部19に対応する面要素(以下、「開口部面20」という)とに区分してそれぞれの属性データを与える(図4のステップS)。 Furthermore, among the surface data constituting the unit cube or unit rectangular parallelepiped corresponding to the unit space, among the building shape data, the ceiling, floor 28, wall (outer wall 27, partition wall 26), opening 19, surface of fitting 29, and kitchen Set 30, washbasin, unit bath, furniture, home appliances and other items 30 Other elements that block the passage of light and the position coordinates of each surface element that constitutes a unit cube or unit cuboid corresponding to the unit space The surface element corresponding to the part other than the opening 19 such as the ceiling, the wall, the floor 28 (hereinafter referred to as “surface other than the opening”) and the surface element corresponding to the opening 19 (hereinafter referred to as “opening surface 20”) And attribute data are given (step S 4 in FIG. 4 ).

本実施形態では、座標軸上の平面軸(X軸、Y軸)及び鉛直軸(Z軸)の3方向の座標を建物の平面モジュール寸法を基準にしてその内部空間を単位空間に対応する単位立方体または単位立方体に分割する。ここで、モジュール寸法は、建物の設計において基準として用いる単位寸法をいい、建物の柱間等の各部の寸法は、この単位寸法の倍数で統一して設計される。   In the present embodiment, a unit cube in which the internal space corresponds to the unit space with the coordinate in the three directions of the plane axis (X-axis, Y-axis) and the vertical axis (Z-axis) on the coordinate axis as the reference of the plane module dimensions of the building. Or divide into unit cubes. Here, the module dimension refers to a unit dimension used as a reference in the design of a building, and the dimensions of each part such as between the columns of the building are designed to be a multiple of this unit dimension.

従って、建物の内部空間を単位空間である単位立方体または単位直方体に分割する場合には、建物の平面モジュール寸法に合わせて行うのが好ましい。例えば、モジュール寸法が305mmの場合は、座標軸上のX軸、Y軸及びZ軸方向について一辺が305mmの立方体を単位空間に対応する単位立方体として分割することが出来る。モジュール寸法が500mmの場合は、座標軸上のX軸、Y軸及びZ軸方向について一辺が500mmの立方体を単位空間に対応する単位立方体として分割することが出来る。   Therefore, when the internal space of the building is divided into unit cubes or unit cuboids which are unit spaces, it is preferable that the internal space of the building is matched to the planar module dimensions of the building. For example, when the module size is 305 mm, a cube whose side is 305 mm in the X-axis, Y-axis, and Z-axis directions on the coordinate axis can be divided as a unit cube corresponding to the unit space. When the module size is 500 mm, a cube having a side of 500 mm in the X-axis, Y-axis, and Z-axis directions on the coordinate axis can be divided as a unit cube corresponding to the unit space.

また、上記単位空間に対応する単位立方体に分割した場合は、天井高によっては、全て平面モジュール寸法を適用しても、Z軸方向が整数値に割り切れない場合もある。この場合は、単位立方体の代わりに鉛直軸(Z軸)方向について平面モジュール寸法以外の別の単位に分割して均等な容積の立体(単位直方体)に分割しても良い。   In addition, when divided into unit cubes corresponding to the unit space, depending on the ceiling height, the Z-axis direction may not be divisible by an integer value even if all plane module dimensions are applied. In this case, instead of the unit cube, the vertical axis (Z-axis) direction may be divided into other units other than the plane module dimensions to be divided into a solid (unit cuboid) having an equal volume.

図8は、建物の設計に用いられる平面モジュール寸法を基準寸法にして、座標軸上のX軸、Y軸、Z軸方向(3次元方向)に格子状の基準線を引き、これら基準線同士により形成されるグリッドに対応した建物の内部空間の単位空間である単位直方体を示したものである。   FIG. 8 shows a grid-like reference line drawn in the X-axis, Y-axis, and Z-axis directions (three-dimensional directions) on the coordinate axes, using the plane module dimensions used for building design as reference dimensions. It shows a unit rectangular parallelepiped which is a unit space of the internal space of the building corresponding to the formed grid.

このようにして構成された単位立方体または単位直方体の位置は該単位立方体または単位直方体の各頂点のうちで空間軸に関して最も大きな座標値を持つ点を代表点とし、この代表点の位置を単位立方体または単位直方体の位置として認識する。具体的には、図8に示されるように原点から一番遠い位置にある単位直方体の頂点を代表点(i,j,k)とする。   The position of the unit cube or unit cuboid configured in this way is the point having the largest coordinate value with respect to the spatial axis among the vertices of the unit cube or unit cuboid, and the position of this representative point is the unit cube. Or it recognizes as the position of a unit rectangular parallelepiped. Specifically, as shown in FIG. 8, the vertex of the unit rectangular parallelepiped located farthest from the origin is set as the representative point (i, j, k).

また、単位立方体または単位直方体は6つの面を有している。即ち、単位立方体または単位直方体は、座標軸上のX軸、Y軸、Z軸方向の3つの空間軸に垂直な面をそれぞれ2面ずつ、全体で6面を有している。   The unit cube or unit rectangular parallelepiped has six faces. That is, the unit cube or unit rectangular parallelepiped has six surfaces in total, two surfaces each perpendicular to the three spatial axes in the X-axis, Y-axis, and Z-axis directions on the coordinate axis.

そして、X軸、Y軸、Z軸方向の何れか同じ空間軸についての2面のうち、空間軸に対して外側(正方向)になる面要素のみを認識することにより、その位置を単位立方体の位置指定整数値で指定する。   Then, by recognizing only the surface element that is outside (positive direction) with respect to the spatial axis among the two planes about the same spatial axis in the X-axis, Y-axis, or Z-axis direction, the position is unit cube. The position specification integer value of is specified.

即ち、図8に示されるように、1つの単位空間に対応する単位立方体または単位直方体について、X軸方向面要素、Y軸方向面要素、及びZ軸方向面要素の3つの面要素の位置座標を特定する。これにより、単位立方体または単位直方体は6面全てのデータを持つ必要がなく、演算処理の手順を削減することが出来、高速処理に寄与する。   That is, as shown in FIG. 8, the position coordinates of the three surface elements of the X-axis direction surface element, the Y-axis direction surface element, and the Z-axis direction surface element for the unit cube or unit rectangular parallelepiped corresponding to one unit space. Is identified. As a result, the unit cube or unit cuboid does not need to have data on all six sides, and the procedure of arithmetic processing can be reduced, contributing to high-speed processing.

次に、単位立方体または単位直方体のX軸方向面要素、Y軸方向面要素、Z軸方向面要素について、建物の形状データとの位置座標の重なりから開口部面20と、開口部以外面とに区分して、それぞれの建物の形状データを引用して属性データを与える。   Next, with respect to the X-axis direction surface element, Y-axis direction surface element, and Z-axis direction surface element of the unit cube or unit rectangular parallelepiped, the opening surface 20 and the surface other than the opening are determined from the overlap of the position coordinates with the building shape data. The attribute data is given by quoting the shape data of each building.

具体的には、(1)開口部19に重なる面要素である場合、(2)天井、壁(外壁27、間仕切壁26)、床28等の開口部19以外の部位に重なる面要素である場合、(3)何も形状データがない場合(nullデータ)、以上の3つの属性の何れであるかを判別して属性データ(部位属性)を付与する。このとき、各部位は光の透過率である部位透過率も属性データとして付与する。特に開口部19についてはガラスの透過率(開口部透過率)が付与される。   Specifically, (1) when the surface element overlaps the opening 19, (2) the surface element overlaps a portion other than the opening 19 such as the ceiling, wall (outer wall 27, partition wall 26), floor 28, etc. In this case, (3) when there is no shape data (null data), the attribute data (part attribute) is given by determining which of the above three attributes. At this time, each part also provides part transmittance, which is light transmittance, as attribute data. In particular, the opening 19 is given glass transmittance (opening transmittance).

また、X軸方向面要素、Y軸方向面要素、及びZ軸方向面要素は、それぞれX,Y,Zの各方向の空間軸に対して表側(座標軸の正方向側)と裏側(座標軸の負方向側)の2面が存在するところ、2面をそれぞれ別個の面として扱う必要があるために、(1)表、(2)裏、の何れであるかを判別して属性データ(面属性)が付与される。後述するように、各面要素同士が互いに座標軸上の大小関係から可視出来る位置関係にあるか否かを判定するために格納される面要素データである。   In addition, the X-axis direction surface element, the Y-axis direction surface element, and the Z-axis direction surface element are respectively the front side (positive side of the coordinate axis) and the back side (coordinate axis side) with respect to the X, Y, and Z spatial axes. Since there are two surfaces on the negative direction side, it is necessary to treat the two surfaces as separate surfaces. Therefore, it is necessary to determine whether the surface is (1) front or (2) back, and attribute data (surface Attribute). As will be described later, the surface element data is stored to determine whether or not the surface elements are in a positional relationship that can be seen from the magnitude relationship on the coordinate axes.

更に解析のための演算処理や後述する表示のため演算処理において各面要素ごとに光量値データを持つことが必要である。このため、光源面光量値設定手段となる光源面光量値設定部8によりX軸方向面要素、Y軸方向面要素、Z軸方向面要素の各面要素に対して、代表する1つの光量値データが格納される。即ち、各面要素ごとに代表座標に対する代表光量値、または代表到達光量値のデータが対応している。   Furthermore, it is necessary to have light quantity value data for each surface element in the calculation processing for analysis and the calculation processing for display described later. For this reason, the light source surface light amount value setting unit 8 serving as the light source surface light amount value setting unit 8 represents one light amount value for each of the surface elements of the X-axis direction surface element, the Y-axis direction surface element, and the Z-axis direction surface element. Data is stored. That is, the data of the representative light amount value or the representative reaching light amount value with respect to the representative coordinates corresponds to each surface element.

以上をまとめると、単位空間に対応する単位立方体または単位直方体の各面要素データは、図19(a)に示すように、[部位属性(床F、壁W、天井C、その他建具、器物等の開口部以外、開口部19等の開口Wi),部位透過率,面要素方向(X、Y、Z) ,代表点座標値(X座標値,Y座標値,Z座標値(例えば図8のi,j,k)),面属性(表、裏),光量値(光源光量値、到達光量値)] というデータ構造を構成する。   To summarize the above, each surface element data of a unit cube or a unit rectangular parallelepiped corresponding to the unit space is [part attribute (floor F, wall W, ceiling C, other fittings, equipment, etc., as shown in FIG. 19 (a)]. In addition to the openings, the opening Wi of the opening 19 and the like, the part transmittance, the surface element direction (X, Y, Z), the representative point coordinate values (X coordinate value, Y coordinate value, Z coordinate value (for example, FIG. 8) i, j, k)), surface attributes (front and back), light quantity value (light source light quantity value, reached light quantity value)].

こうした手順を経て、評価解析の対象となる建物の内部空間を独自のデータ構造を有する単位空間に対応する単位立方体または単位直方体の面要素で再構成し、図19(a)に示すデータ構造からなる面要素データを使用して、各面要素の位置、各面要素がどの方向に面しているかを直角座標系と整数座標値で表現出来る。   Through these procedures, the internal space of the building subject to evaluation analysis is reconstructed with plane elements of unit cubes or unit cuboids corresponding to unit spaces having unique data structures, and from the data structure shown in FIG. 19 (a) By using the surface element data, the position of each surface element and in which direction each surface element faces can be expressed by a rectangular coordinate system and integer coordinate values.

これにより後述する仮想光線ベクトル22が面要素で遮られるか否かを判定する際に面要素の位置に整数座標値を使用するために曖昧な比較・判断が発生せず、信頼性が高く計算手順を簡便なものにすることが出来る。   As a result, when determining whether or not a virtual ray vector 22 described later is obstructed by a surface element, an integer coordinate value is used for the position of the surface element. The procedure can be simplified.

次に、図4のステップSにおいて、開口部面20を光源の面要素となる1次光源面とし、開口部19以外面を該1次光源面から光線が到達し得る面要素である1次到達面として、該1次光源面から1次到達面に到達する到達光量値を演算する。 Next, in step S 6 in FIG. 4, the primary light source surface opening surface 20 a surface element of the light source is a surface element that light can reach the non-opening portion 19 faces from the primary light source surface 1 As the next arrival surface, a reaching light amount value reaching the primary arrival surface from the primary light source surface is calculated.

即ち、図5のステップS7に進んで、1次光源面から光線が到達する候補となる1次到達面を探す。先ず前処理として光源面光量値設定手段となる光源面光量値設定部8により、図7に示す開口部面20を、光源の面要素となる1次光源面として認識すると共に、図6に示す開口部19以外の面を1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する。   That is, the process proceeds to step S7 in FIG. 5 to search for a primary arrival surface that is a candidate for a ray to reach from the primary light source surface. First, as a preprocessing, the light source surface light amount value setting unit 8 serving as a light source surface light amount value setting unit recognizes the opening surface 20 shown in FIG. 7 as a primary light source surface serving as a surface element of the light source, and also illustrated in FIG. A surface other than the opening 19 is recognized as a primary arrival surface, which is a surface element through which light can reach from the primary light source surface, and a light amount value reaching the primary light source surface from the outside of the building is determined as the primary light source surface. Is stored in the surface element data relating to the.

具体的には、図6に示す開口部19の属性である面要素は、図7に示す開口部面20として抽出されて1次光源面として認識される。本実施形態では、全天空照度5000ルックスに相当する光量値を建物の開口部19に到達する光量値とみなし、該開口部19を構成する各面要素の光量値として、面要素データに格納する演算処理が行われる。この光量値は、1次光源面は、建物内部空間の各1次到達面に対して、放射する光量値の初期値であるから、外部から到達した値そのものではなく、開口部透過率(主にガラスの透過率に相当する)を乗じた値が用いられる。   Specifically, the surface element that is the attribute of the opening 19 shown in FIG. 6 is extracted as the opening surface 20 shown in FIG. 7 and recognized as the primary light source surface. In the present embodiment, the light amount value corresponding to the total sky illuminance of 5000 lux is regarded as the light amount value reaching the opening 19 of the building, and is stored in the surface element data as the light amount value of each surface element constituting the opening 19. Arithmetic processing is performed. Since the primary light source surface is the initial value of the emitted light amount value with respect to each primary arrival surface of the interior space of the building, this light amount value is not the value reached from the outside, but the aperture transmittance (mainly Multiplied by (corresponding to the transmittance of the glass).

開口部19に到達する光量値の設定方法としては、例えば特開2000−8476号公報に示された様な方法で光量値を設定する方策も想定出来る。尚、全天空照度とは、何も遮るものがなく、全天空を望める水平面を受照面とする天空光照度である。また、天空光照度とは、天空光による照度であり、天空光とは、太陽以外の天空からの光である。全天空照度5000ルックスに対応する天空光の状況は直射日光がなく、昼間のかなり薄暗い曇天に対応する。   As a method for setting the light amount value reaching the opening 19, a method for setting the light amount value by a method as disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-8476 can be assumed. Note that the whole sky illuminance is the sky light illuminance with nothing being obstructed and a horizontal plane over which the whole sky can be seen as a receiving surface. The sky light illuminance is the illuminance by sky light, and the sky light is light from the sky other than the sun. The skylight condition corresponding to a total sky illumination of 5000 lux corresponds to a cloudy sky with no direct sunlight and a rather dim daytime.

また、開口部19以外の床28、壁(外壁27、間仕切壁26)、天井等の面要素は、開口部以外面として抽出されて1次到達面として認識される。また、部位が何もない(nullデータ)である場合は、到達面の候補から除外される。   Further, the surface elements other than the opening 19 such as the floor 28, the wall (the outer wall 27, the partition wall 26), and the ceiling are extracted as surfaces other than the opening and recognized as the primary arrival surface. Further, when there is no part (null data), it is excluded from the reachable surface candidates.

次にステップSにおいて、光線到達可否判定部10による演算処理が、1次光源面から1次到達面への光線到達可否を判定する際に該1次光源面と、該1次到達面とが、互いに可視出来るか否かを判定し、可視出来なければ前記ステップS7に戻って次候補の1次到達面を抽出する。これにより、光源面から光線が到達することが当然ありえない面要素を光量計算から事前に排除することが出来、計算時間の短縮が出来る。 In step S 8, the arithmetic processing by the light beam reaches determination unit 10, and the primary light source surface in determining the light arrival whether from the primary light source surface to the primary reach surfaces, and said primary reach surface However, if it is not visible, the process returns to the step S7 to extract the next candidate primary arrival surface. As a result, surface elements that cannot naturally reach from the light source surface can be excluded from the light amount calculation in advance, and the calculation time can be shortened.

ここで、光線到達可否判定部10は、n(n=1,2,3,…)次光源面からn(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定する。   Here, the light beam reachability determination unit 10 determines whether or not the light beam can reach from the n (n = 1, 2, 3,...) Next light source surface to the n (n = 1, 2, 3,...) Next reach surface. At this time, it is determined whether or not the n-order light source surface and the n-order arrival surface are visible from the magnitude relationship on the coordinate axes.

具体的には図9に1次光源面と1次到達面となる各面要素の関係の一例を示す。図9において、1次光源面と1次到達面の相互の位置関係は各面要素の座標値(単位立方体の代表点座標値)と各面要素のデータの面属性(表、裏)を参照して判定する。   Specifically, FIG. 9 shows an example of the relationship between the primary light source surface and each surface element serving as the primary arrival surface. In FIG. 9, for the mutual positional relationship between the primary light source surface and the primary arrival surface, refer to the coordinate values (representative point coordinate values of the unit cube) of each surface element and the surface attributes (front and back) of the data of each surface element. Judgment.

これにより、相互に可視出来る関係にあるか否か(可視性)を単純な座標値の大小関係で判断することが出来、且つ座標値の比較が整数値で行うことが出来るために曖昧な判断を伴わずに信頼性に高い判定が出来る。   This makes it possible to determine whether or not they are visible to each other (visibility) based on the simple relationship between the coordinate values, and the comparison of the coordinate values can be performed with integer values, making it ambiguous Highly reliable judgment can be made without accompanying.

例えば、図9の「光源面α」のデータ構造は、[開口部,透過率100%,X,a,b,c,表,光量値]である。即ち、この光源面αは、部位属性は開口部19であり、面要素方向はXであり、代表点の座標値は、X軸方向はa、Y軸方向はb、Z軸方向はcであり、面属性は表(座標軸上の正方向側)である。   For example, the data structure of “light source surface α” in FIG. 9 is [aperture, transmittance 100%, X, a, b, c, table, light amount value]. That is, the light source surface α has a part attribute of opening 19, the surface element direction is X, and the coordinate value of the representative point is a in the X-axis direction, b in the Y-axis direction, and c in the Z-axis direction. Yes, the surface attribute is a table (positive direction side on the coordinate axis).

これに対して「到達面A」のデータ構造は、部位属性は壁であり、面要素方向はYであり、代表点の座標値は、X軸方向はd、Y軸方向はe、Z軸方向はfであり、面属性は表(座標軸上の正方向側)である。   On the other hand, in the data structure of “arrival surface A”, the site attribute is a wall, the surface element direction is Y, and the coordinate values of the representative points are d in the X axis direction, e in the Y axis direction, and Z axis. The direction is f, and the surface attribute is a table (positive direction side on the coordinate axis).

この場合のX、Y、Z座標値の関係は、X軸方向では、到達面Aの座標値d>光源面αの座標値a、Y軸方向では、到達面Aの座標値e<光源面αの座標値b、Z軸方向では、到達面Aの座標値cと光源面αの座標値fとは任意である。X軸方向について到達面dが光源面aよりも座標値が大であるから「光源面α」から「到達面A」は座標軸上の大小関係から「可視出来る」と判定される。   In this case, the relationship between the X, Y, and Z coordinate values is as follows: in the X-axis direction, the coordinate value d of the reaching surface A> the coordinate value a of the light source surface α, and in the Y-axis direction, the coordinate value e of the reaching surface A <light source surface. In the coordinate value b of α and the Z-axis direction, the coordinate value c of the reaching surface A and the coordinate value f of the light source surface α are arbitrary. Since the arrival surface d has a larger coordinate value than the light source surface a in the X-axis direction, it is determined that “light source surface α” to “arrival surface A” are “visible” from the magnitude relationship on the coordinate axis.

また図9に「他の面要素B」として示している他の到達面として想定した面要素は、部位属性はnull、代表点の座標値は、X軸方向はg、Y軸方向はh、Z軸方向はiであり、面属性は表(座標軸上の正方向側)である。   In addition, the surface element assumed as another reaching surface shown as “other surface element B” in FIG. 9 has a part attribute of null, a representative point coordinate value of g in the X-axis direction, h in the Y-axis direction, The Z-axis direction is i, and the surface attribute is a table (positive direction side on the coordinate axis).

この場合の座標値の関係はX軸方向について、想定した到達面Bの座標値g<光源面αの座標値aとなっており、「光源面α」から「他の面要素B」は座標軸上の大小関係から「可視出来ない」と判定し、光源面から光線が到達することが当然ありえない面要素として認識する。   In this case, the relationship between the coordinate values in the X-axis direction is as follows: the assumed coordinate value g of the arrival surface B <the coordinate value a of the light source surface α, and the “other surface element B” from the “light source surface α” to the coordinate axis Based on the above magnitude relationship, it is determined that it is “not visible”, and it is recognized as a surface element that a light beam cannot naturally reach from the light source surface.

このようにして、前記ステップSで光源面から到達候補面を可視出来ると判定された場合にはステップSに進む。また、前記ステップSで光源面から到達候補面を可視出来ないと判定された場合には前記ステップSに戻り次の到達面候補に関して、上述と同様に可視出来るか否かの判定を行う。 In this manner, when the arrival candidate surfaces from the light source surface is determined it can be visualized in the step S 8 proceeds to step S 9. Further, the with respect to step S 7 to return the next arrival face candidate, it is determined whether the visible may similarly to the above, if it is determined not be visible arrival candidate surfaces from the light source surface in the step S 8 .

次にステップSでは、仮想光線ベクトル設定手段となる仮想光線ベクトル設定部9により、1次光源面から1次到達面に対して光線ベクトル22を設定する。 In step S 9, the virtual light vector setting unit 9 serving as a virtual light vector setting means sets a light vector 22 to the primary reaches surface from the primary light source surface.

そして、ステップS10〜S12では、光線到達可否判定手段となる光線到達可否判定部10により、仮想光線ベクトル設定部9により設定した光線ベクトル22が通過する単位空間に対応する単位立方体または単位直方体のみを判定対象として該光線ベクトル22を辿る途中において該光線ベクトル22が1次光源面及び1次到達面以外の他の面要素に交差するか否かを探索する探索処理を行う。 In steps S 10 to S 12 , a unit cube or unit rectangular parallelepiped corresponding to the unit space through which the light beam vector 22 set by the virtual light vector setting unit 9 passes by the light beam reachability determination unit 10 serving as a light beam reachability determination unit. A search process is performed to search whether or not the ray vector 22 intersects with other surface elements other than the primary light source surface and the primary arrival surface in the middle of tracing the ray vector 22 with only the determination target.

図10は1次光源面と1次到達面との関係のうち、両方の面要素の中心点同士を直線で結んだ仮想の光線ベクトル22を設定して、1次光源面から目的の1次到達面に光線ベクトル22が到達可能か否かを判定する一例を示す。図10では、1次光源面αから放射される光線ベクトル22の始点から終点を辿る途中において他の面要素によって遮られる面要素Aの場合と、遮られない面要素Bの場合の関係を示す。   FIG. 10 shows the relationship between the primary light source surface and the primary arrival surface, and sets a virtual ray vector 22 in which the center points of both surface elements are connected by straight lines to set the target primary from the primary light source surface. An example of determining whether or not the light vector 22 can reach the reaching surface is shown. FIG. 10 shows the relationship between the case of the surface element A that is blocked by another surface element and the surface element B that is not blocked during the course from the start point to the end point of the ray vector 22 emitted from the primary light source surface α. .

1次光源面αから面要素Aへ向かった光線ベクトル22は、その始点から終点を辿る途中において他の面要素で構成された障害物23で遮られており、光線ベクトル22が面要素Aに到達出来ない。   The light ray vector 22 from the primary light source surface α toward the surface element A is blocked by an obstacle 23 composed of other surface elements in the middle of tracing from the start point to the end point. I can't reach it.

ここで、障害物23は、天井、間仕切壁26、建具29、または家具若しくは家庭電化製品等の器物30の建物の形状データにより部位属性(開口部以外)が付与された面要素である。   Here, the obstacle 23 is a surface element to which a site attribute (other than the opening) is given by the shape data of the building of the ceiling 30, the partition wall 26, the fitting 29, or the furniture 30 such as furniture or home appliances.

一方、1次光源面αから1次到達面となる面要素Bへ向かった光線ベクトル22は途中他の面要素で遮られることもなく到達することが出来る。   On the other hand, the light vector 22 from the primary light source surface α toward the surface element B that becomes the primary arrival surface can reach without being blocked by other surface elements on the way.

図11は、光線到達可否判定部10により、仮想光線ベクトル設定部9により設定した光線ベクトル22が通過する単位空間に対応する単位立方体または単位直方体のみを判定対象として該光線ベクトル22を辿る途中において該光線ベクトル22が1次光源面及び1次到達面以外の他の面要素に交差するか否かを探索する探索処理を説明する図である。図11により面要素同士に設定した仮想の光線ベクトル22の始点から終点を辿る途中において該光線ベクトル22を遮断するか否かの判定について詳細に説明する。   FIG. 11 shows a case where the light beam reachability determination unit 10 traces the light vector 22 with only the unit cube or unit cuboid corresponding to the unit space through which the light vector 22 set by the virtual light vector setting unit 9 passes as a determination target. It is a figure explaining the search process which searches whether this ray vector 22 cross | intersects other surface elements other than a primary light source surface and a primary arrival surface. The determination as to whether or not to block the ray vector 22 in the middle of tracing from the start point to the end point of the virtual ray vector 22 set between the surface elements will be described in detail with reference to FIG.

或る1次光源面の探索処理は、X軸方向面要素、Y軸方向要素面、Z軸方向面要素の3方向について処理を行うが、ここでは、便宜上、1次光源面、1次到達面、及び途中に光線ベクトル22を遮断する他の面要素について、全てX軸方向面要素である場合について説明する。   The search process for a certain primary light source surface is performed in three directions, ie, an X-axis direction surface element, a Y-axis direction element surface, and a Z-axis direction surface element. A description will be given of a case where the surface and other surface elements that block the light vector 22 in the middle are all X-axis direction surface elements.

先ず、探索処理の前処理として探索対象となる単位空間に対応する単位立方体または単位直方体を抽出する。具体的には、光線ベクトル22が通過する単位空間に対応する単位立方体または単位直方体のみを抽出する。これにより、光線ベクトル22が通過しない単位空間に対応する単位立方体または単位直方体の探索処理を省略することが出来、演算処理速度の高速化に寄与する。   First, a unit cube or a unit cuboid corresponding to a unit space to be searched is extracted as a pre-process of the search process. Specifically, only the unit cube or unit cuboid corresponding to the unit space through which the light vector 22 passes is extracted. Thereby, the search process of the unit cube or the unit rectangular parallelepiped corresponding to the unit space through which the light vector 22 does not pass can be omitted, which contributes to the increase in the calculation processing speed.

次に、探索処理の本処理を行う。その光線ベクトル22を辿る途中には、以下の数1式で示される増分で表現される座標値に対応するX軸方向面要素が存在する可能性がある。ここで、以下の数1式における(xs,ys,zs)は探索の始点である光源面の座標値(代表点座標値)であり、(xt,yt,zt)は探索の終点である到達面の候補となる面要素の座標値(代表点座標値)、ΔX,ΔY,ΔZはそれぞれX軸,Y軸,Z軸での座標値の増分である。また、Int(数式)は( )の中の数式の結果を整数値に変化させる関数である。   Next, the main process of the search process is performed. In the middle of tracing the ray vector 22, there may be an X-axis direction plane element corresponding to the coordinate value represented by the increment represented by the following equation (1). Here, (xs, ys, zs) in the following equation 1 is the coordinate value (representative point coordinate value) of the light source surface that is the start point of the search, and (xt, yt, zt) is the end point of the search. Coordinate values (representative point coordinate values), ΔX, ΔY, and ΔZ of surface elements that are candidates for surfaces are increments of coordinate values on the X, Y, and Z axes, respectively. Int (formula) is a function that changes the result of the formula in () to an integer value.

〔数1〕
ΔX=1
ΔY=Int(ΔX×(yt−ys)/(xt−xs))
ΔZ=Int(ΔX×(zt−zs)/(xt−xs))
[Equation 1]
ΔX = 1
ΔY = Int (ΔX × (yt−ys) / (xt−xs))
ΔZ = Int (ΔX × (zt−zs) / (xt−xs))

尚、本実施形態では単位立方体は建物の設計モジュール寸法に合わせているので、X軸方向の面要素を演算処理するためにX軸方向の座標値増分ΔXに単位は1モジュール(305mm)と定義する。   In this embodiment, the unit cube is adjusted to the design module size of the building. Therefore, the unit is defined as one module (305 mm) for the coordinate value increment ΔX in the X-axis direction in order to process the surface element in the X-axis direction. To do.

そうすると、探索処理におけるX軸方向面要素の座標値(X,Y,Z)は以下の様に変化してゆく。即ち、図11(a)に示すように、探索処理の最初に通過する単位立方体のX軸方向面要素の座標値は以下の数2式で表される。ここで、到達面の座標値は、X=xt、Y=yt、Z=ztとする。   Then, the coordinate value (X, Y, Z) of the X-axis direction plane element in the search process changes as follows. That is, as shown in FIG. 11A, the coordinate value of the X-axis direction plane element of the unit cube that passes at the beginning of the search process is expressed by the following equation (2). Here, the coordinate values of the reaching surface are X = xt, Y = yt, and Z = zt.

〔数2〕
X=xs+1
Y=ys+Int(1×(yt−ys)/(xt−xs))
Z=zs+Int(1×(zt−zs)/(xt−xs))
[Equation 2]
X = xs + 1
Y = ys + Int (1 × (yt−ys) / (xt−xs))
Z = zs + Int (1 × (zt−zs) / (xt−xs))

また、図11(b)に示すように、次に通過する単位立方体のX軸方向面要素の座標値は以下の数3式で表される。   Further, as shown in FIG. 11B, the coordinate value of the X-axis direction plane element of the unit cube to be passed next is expressed by the following equation (3).

〔数3〕
X=xs+2
Y=ys+Int(2×(yt−ys)/(xt−xs))
Z=zs+Int(2×(zt−zs)/(xt−xs))
[Equation 3]
X = xs + 2
Y = ys + Int (2 × (yt−ys) / (xt−xs))
Z = zs + Int (2 × (zt−zs) / (xt−xs))

また、図11(c)に示すように、その次に通過する単位立方体のX軸方向面要素の座標値は以下の数4式で表される。   Further, as shown in FIG. 11 (c), the coordinate value of the X-axis direction plane element of the unit cube that passes next is expressed by the following equation (4).

〔数4〕
X=xs+3
Y=ys+Int(3×(yt−ys)/(xt−xs))
Z=zs+Int(3×(zt−zs)/(xt−xs))
[Equation 4]
X = xs + 3
Y = ys + Int (3 × (yt−ys) / (xt−xs))
Z = zs + Int (3 × (zt−zs) / (xt−xs))

このように、到達面に至るまで、1モジュールずつ探索処理を行う。ΔX,ΔY,ΔZで逐次増加する座標値を持つX軸方向面要素が存在すれば、光線ベクトル22の透過の障害となる面要素が存在すると判定する。   In this way, the search process is performed one module at a time until the arrival surface is reached. If there is an X-axis direction surface element having coordinate values that sequentially increase with ΔX, ΔY, and ΔZ, it is determined that there is a surface element that obstructs transmission of the light vector 22.

そして、図5のステップS11において、光線ベクトル22の透過の障害となる面要素が存在すると判定した場合には、ステップS12の判定に移る。即ち、当該面要素の部位属性を参照して、当該面要素が一部または全部透過(0%<透過率τ≦100%)するか、光線ベクトル22を完全に遮断する(透過率τ=0%)かを検討する。 Then, in step S 11 in FIG. 5, when it determines that failure to become surface element of the transmitted light vectors 22 is present, the procedure proceeds to the determination of step S 12. That is, referring to the site attribute of the surface element, the surface element transmits partly or entirely (0% <transmittance τ ≦ 100%) or completely blocks the light vector 22 (transmittance τ = 0). %).

例えば、面要素の部位属性がガラス入りの建具(透過率τ=80%)の場合、前記ステップS10に戻り、同じ光線ベクトル22の探索処理を継続する。この場合、面要素データから引用した光量値に透過率80%を掛けて光量値を減じる処理がなされる。このような演算処理により光線ベクトル22の始点から終点まで探索処理を終えると、次候補の到達面に対する光線ベクトル22の探索処理を行う。 For example, if the site attribute of the surface element including glass fittings (transmittance τ = 80%), returns to the step S 10, to continue the search process of the same light vector 22. In this case, a process of reducing the light amount value by multiplying the light amount value quoted from the surface element data by the transmittance of 80% is performed. When the search process from the start point to the end point of the light vector 22 is completed by such calculation processing, the light vector 22 is searched for the next candidate arrival surface.

また、面要素の部位属性が壁である場合、光線ベクトル22を完全に遮断する(透過率τ=0%)ので、前記ステップSに戻って、次の光線ベクトル22(同一の1次光源面から次候補の1次到達面へ)の探索処理を行う。 Also, if the site attribute of the surface element is a wall, so completely cut off the light vector 22 (0% transmission tau =), the process returns to step S 7, the next light vectors 22 (same primary light source Search process from the surface to the next candidate primary arrival surface).

このような探索処理においても面要素データの座標値は整数値で表現されるために判定に特段の処理は不要で曖昧な判定とはならない。   Even in such a search process, since the coordinate value of the surface element data is expressed by an integer value, a special process is not necessary for the determination and the determination is not ambiguous.

このステップS〜S12は一つの1次光源面からの光線が到達する可能性のある全ての1次到達面に対して実行される。更に、一つの1次光源面の検討が終了すると、ステップSに移り、次候補の光源面について逐次演算処理を行い、全ての1次光源面要素について演算処理を行う。 This step S 7 to S 12 is performed for all the primary arrival surface the rays are likely to reach from one primary light source surface. Furthermore, the study of one of the primary light source surface is completed, the flow proceeds to step S 7, performs a sequential processing for light source plane of the next candidate, performs arithmetic processing for all the primary light source surface elements.

また、床、壁等の開口部以外の面要素であっても、到達面に光が到達した後、該到達面は、光を一部吸収して、光量値が減衰するものの再び放射する(本発明ではこれを「反射」という)光量値を持つ。即ち、その放射光量値を有する光源面として認識される。   In addition, even if it is a surface element other than an opening such as a floor or a wall, after the light reaches the arrival surface, the arrival surface absorbs part of the light and radiates again although the light quantity value is attenuated ( In the present invention, this has a light quantity value (referred to as “reflection”). That is, it is recognized as a light source surface having the radiated light amount value.

このように、ステップS〜S12に示す探索処理を順次行い、到達面に至った場合には、即ち光線が遮られることが無いと判定され、演算処理は、次のステップS13以降に進む。 Thus, sequentially performs a search process shown in step S 7 to S 12, when it reaches the arrival surface, i.e. it is determined that it is not the light beam is interrupted, operation process, after the next step S 13 move on.

この手順であれば、前述した従来例のような光源面要素からの放射を模擬した多量の光線の設定する演算処理が不要であり、安定な計算が実現出来る。   According to this procedure, the calculation processing for setting a large amount of light rays simulating radiation from the light source surface element as in the conventional example described above is unnecessary, and stable calculation can be realized.

次に光量値を算出するステップS13〜S15に移行する。ここで、到達面光量値算出手段となる到達面光量値算出部11は、光線到達可否判定手段となる光線到達可否判定部10によって、光源面光量値設定部8により設定した光線ベクトル22が1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、光源面光量値設定部8により設定された建物外部から1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、光線ベクトル22が交差する該1次光源面及び1次到達面以外の他の面要素の透過率を考慮して1次光源面から1次到達面に到達する光量値を算出し、光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が1次光源面から目的の1次到達面に到達不可能であると判定された場合に、1次光源面から次候補の1次到達面に対して、仮想光線ベクトル設定部9による前述の第3の処理、光線到達可否判定部10による前述の第4の処理を順次実行して到達面光量値算出部11により、光線到達可否判定部10により仮想光線ベクトル設定部9により設定した光線ベクトル22が1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、光源面光量値設定部8により1次光源面に付与された光量値を該1次光源面の初期放射光量値として、光線ベクトル22が交差する該1次光源面及び1次到達面以外の他の面要素の透過率を考慮して該1次光源面から該1次到達面に到達する光量値を算出する。 Then, the process proceeds to step S 13 to S 15 for calculating a light intensity value. Here, the reaching surface light amount value calculating unit 11 serving as the reaching surface light amount value calculating unit has the light beam vector 22 set by the light source surface light amount value setting unit 8 by the light beam reachability determining unit 10 serving as the light beam reachability determining unit. When it is determined that the target primary arrival surface can be reached from the secondary light source surface, the primary arrival surface has reached the primary light source surface from the outside of the building set by the light source surface light quantity value setting unit 8. The light quantity value obtained by multiplying the light quantity value by the aperture transmittance of the primary light source surface is used as the initial radiant light quantity value of the primary light source surface, other than the primary light source surface and the primary arrival surface where the light vector 22 intersects. The amount of light reaching the primary arrival surface from the primary light source surface is calculated in consideration of the transmittance of the surface element, and the ray vector 22 set by the virtual ray vector setting unit 9 by the ray reachability determination unit 10 is the primary. If the target primary arrival surface cannot be reached from the light source surface If it is determined, from the primary light source surface to the next candidate primary arrival surface, the above-described third processing by the virtual ray vector setting unit 9 and the above-described fourth processing by the ray reachability determination unit 10 are performed. The ray vector 22 set by the virtual ray vector setting unit 9 by the ray arrival possibility determination unit 10 by the arrival surface light amount value calculation unit 11 is sequentially executed and can reach the target primary arrival surface from the primary light source surface. For the determined primary arrival surface, the light beam vector 22 intersects with the light amount value given to the primary light source surface by the light source surface light amount value setting unit 8 as the initial radiant light amount value of the primary light source surface. A light amount value reaching the primary arrival surface from the primary light source surface is calculated in consideration of the transmittance of other surface elements other than the light source surface and the primary arrival surface.

ステップS13では、到達面への到達光量値を求める際には、光源となる面要素と、到達する候補となる面要素との幾何学的な関係から以下の数5式により形態係数Fを求める。図12は形態係数Fの求め方の一例を示し、以下の数5式で、Lは光線ベクトル22の長さ、αは光線ベクトル22の始点を含み、且つX軸とY軸を含む平面に平行な平面にZ軸方向から投影したときの該光線ベクトル22の始点を含む平面と光線ベクトル22とが成す角度、βは光線ベクトル22の終点を含み、且つX軸とZ軸を含む平面に平行な平面にY軸方向から投影したときの該光線ベクトル22の終点を含む平面と光線ベクトル22とが成す角度、Aは面要素の面積である。光源面要素がX軸方向の壁要素で到達する面要素もX軸方向の壁要素の場合である。形態係数Fは無次元の量となる。 In step S 13, when determining the arrival quantity value to reach surfaces, a surface element as a light source, the following equation 5 formulas geometric relationship between the surface elements that are arriving candidate view factor F Ask. FIG. 12 shows an example of how to obtain the form factor F, where L is the length of the ray vector 22, α is the plane containing the start point of the ray vector 22, and the X and Y axes. The angle formed between the plane including the start point of the ray vector 22 and the ray vector 22 when projected onto the parallel plane from the Z-axis direction, β is the plane including the end point of the ray vector 22 and including the X axis and the Z axis. An angle formed by the plane including the end point of the ray vector 22 and the ray vector 22 when projected onto the parallel plane from the Y-axis direction, A is the area of the surface element. The surface element that the light source surface element reaches by the wall element in the X-axis direction is also the case of the wall element in the X-axis direction. The form factor F is a dimensionless quantity.

〔数5〕
F=cosα×cosβ×A/L/π
cosα=|Xs−Xt|/L
cosβ=|Xs−Xt|/L
L={(Xs−Xt)+(Ys−Yt)+(Zs−Zt)1/2
[Equation 5]
F = cos α × cos β × A / L 2 / π
cos α = | Xs−Xt | / L
cos β = | Xs−Xt | / L
L = {(Xs−Xt) 2 + (Ys−Yt) 2 + (Zs−Zt) 2 } 1/2

次にステップS14において、前記数5式により求めた形態係数Fに光源面からの放射光量値を乗じた量が到達する面要素に達する光量値を以下の数6式により算出する。以下の数6式で、αはn(n=1,2,3,…)次光源面の光量値の初期値である。 In step S 14, it is calculated by equation (6) the amount obtained by multiplying the emission light quantity value is less than the light quantity value reaches the surface element that reaches from the light source surface to the view factor F determined by the number 5 type. In the following Expression 6, α is an initial value of the light amount value of the n (n = 1, 2, 3,...) Next light source surface.

〔数6〕
到達面光量値=α×F
[Equation 6]
Amount of light reaching surface = α × F

そして、ステップS15において、到達面光量値算出部11により算出された到達光量値を、到達面光量値格納手段となる到達面光量値格納部12により1次到達面に係る面要素データに格納することにより光量値算出処理を終了する。 Then, stored in step S 15, the arrival quantity value calculated by the arrival surface light quantity value calculation unit 11, by reaching surface light amount value storage unit 12 composed of the arrival surface light quantity value storing means to the surface element data according to the primary reach surface As a result, the light quantity value calculation processing is completed.

ここで、到達面光量値格納手段となる到達面光量値格納部12は、前述の第5の処理で探索された1次光源面から次候補の1次到達面に対して、仮想光線ベクトル設定部9による前述の第3の処理、光線到達可否判定部10による前述の第4の処理、及び到達面光量値算出部11による前述の第5の処理を順次実行して、候補となる全ての1次到達面に対して前述の第5の処理で算出された該1次光源面から候補となる全ての1次到達面に到達する光量値を、候補となる全ての1次到達面に係る面要素データに格納する。   Here, the arrival surface light amount value storage unit 12 serving as the arrival surface light amount value storage means sets the virtual ray vector from the primary light source surface searched in the above-described fifth process to the next candidate primary arrival surface. The above-described third process by the unit 9, the above-described fourth process by the light beam arrival / absence determination unit 10, and the above-described fifth process by the arrival surface light amount value calculation unit 11 are sequentially executed, and all candidates are obtained. The light quantity values reaching all the primary arrival surfaces as candidates from the primary light source surface calculated in the above-described fifth process with respect to the primary arrival surface are related to all the primary arrival surfaces as candidates. Store in the surface element data.

そして、到達面光量値格納部12により、候補となる全ての1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、候補となる全ての1次到達面に係る面要素データを更新して格納する。これにより一つの光源面に対する一つの到達面の光量値算出の演算処理が終了したことになる。   Then, the reaching surface light amount value storage unit 12 adds the light amount value given from the primary light source surface of the next candidate to the light amount values of the surface element data related to all the primary reaching surfaces as candidates, and becomes a candidate. Update and store the surface element data related to all primary arrival surfaces. As a result, the calculation processing for calculating the light amount value of one arrival surface with respect to one light source surface is completed.

次にステップS16において、同一の光源面について到達する候補の有無を判定する。ステップS16において、まだ、到達面の候補があれば、前記ステップSに戻り、同一の光源面について候補となる全ての到達面要素についてステップS〜S16の処理を行う。前記ステップS15では前述した到達面光量値格納手段となる到達面光量値格納部12により、1次到達面に係る面要素データに、次候補の1次光源面から付与された光量値を加算して面要素データを更新して格納する。 In step S 16, it determines the presence or absence of a candidate to arrive for the same light source plane. In step S 16, yet, if there is a candidate of the arrival surface, returns to the step S 7, the process of step S 7 to S 16 for all of the arrival surface elements that are candidates for the same light source plane. By reaching surface light quantity value storing unit 12 as the arrival plane light amount value storage means said step S 15 in the foregoing, the surface element data according to the primary reach surface, adding the light intensity value granted from the primary light source surface of the next candidate Then, the surface element data is updated and stored.

図13に一つの光源面αに着目した場合の光源面αから候補となる複数の到達面A,B,Cに光線ベクトル22が到達し光量値が与えられる演算処理の状況を示す。この状況は、一つの光源面から全方向に対して光線が「放射」されている状況をコンピュータ上で行う演算処理のために模擬的に現したものである。この手順であれば光源面の面要素から各到達面への光線の放射(全方向に拡散する)を模擬して、不必要に多数の光線の設定を行う演算処理が発生せず、安定な計算が実現出来る。   FIG. 13 shows the state of calculation processing in which the light vector 22 arrives at a plurality of candidate arrival surfaces A, B, and C from the light source surface α and the light quantity value is given when focusing on one light source surface α. This situation is a simulation of a situation in which light rays are “radiated” from one light source surface in all directions on a computer. This procedure simulates the radiation of light rays from the surface elements of the light source surface to each arrival surface (diffuses in all directions), and does not require computation processing to set an unnecessarily large number of light rays. Calculation can be realized.

図5のステップS〜S16において、同一の1次光源面から次候補の1次到達面に対して、仮想光線ベクトル設定手段となる仮想光線ベクトル設定部9、光線到達可否判定手段となる光線到達可否判定部10、到達面光量値算出手段となる到達面光量値算出部11によるそれぞれの演算処理を順次実行して、候補となる全ての1次到達面に対して光量値を面要素データに格納した後、ステップS17では、次の演算処理すべき1次光源面が有るか否かをチェックする。 In steps S 7 to S 16 in FIG. 5, the virtual light vector setting unit 9 serving as a virtual light vector setting unit and a light reachability determination unit are provided from the same primary light source surface to the next candidate primary arrival surface. The light beam reachability determination unit 10 and the arrival surface light amount value calculation unit 11 serving as the arrival surface light amount value calculation unit sequentially execute the respective calculation processes to obtain light amount values for all the primary arrival surfaces that are candidates. after storing the data, in step S 17, checking whether the primary light source surface to be next processing there.

図14は複数の光源面α,β,γから一つの到達面Aに光線ベクトル22が到達して光量値が与えられる演算処理の状況を示す図である。   FIG. 14 is a diagram showing a state of calculation processing in which a light vector 22 reaches a single arrival surface A from a plurality of light source surfaces α, β, and γ and a light amount value is given.

更にステップS17において、次候補の1次光源面が有る場合は、上述と同じ演算処理(図5のステップS〜S17)を行う。そして、全ての1次光源面についての演算処理が終了すれば、図4のステップSの処理を終了する。 Further, in step S 17, when the primary light source plane of the next candidate is present, perform the same processing as described above (step S 7 to S 17 in FIG. 5). Then, the calculation processing for all the primary light source surface if completed, the process ends in step S 6 in FIG.

次に図4のステップS18において、到達面に到達した光量値を与えられた面要素が光を放射する段階となる。ステップS18では、いわゆる開口部19等の光源面(以下、「1次光源面」という)から該到達面(以下、「1次到達面」という)が受ける光量値を更に該到達面が反射した光により他の到達面に放射する場合の演算処理をする。 In step S 18 of FIG. 4, a step of face elements given light quantity reaching the arrival surface emits light. In step S 18 , the reaching surface further reflects the amount of light received by the reaching surface (hereinafter referred to as “primary reaching surface”) from the light source surface (hereinafter referred to as “primary light source surface”) such as the so-called opening 19. A calculation process is performed in the case of radiating to another arrival surface by the emitted light.

ここで、「反射した光」とは、或る到達面に到達した光線の光量値にその到達面の拡散放射率を乗じた光量値をその到達面以外の到達面に放射する光をいう。即ち、本発明に係る光環境解析用プログラム及び光環境解析装置では、その到達面の到達光量値の一部がその到達面に吸収され、残りがその到達面を光源面と認識して放射することになる。   Here, “reflected light” refers to light that radiates to a reaching surface other than the reaching surface a light amount value obtained by multiplying the light amount value of a light beam reaching a certain reaching surface by the diffusion emissivity of the reaching surface. That is, in the light environment analysis program and the light environment analysis apparatus according to the present invention, a part of the reaching light amount value of the reaching surface is absorbed by the reaching surface, and the rest recognizes the reaching surface as the light source surface and emits it. It will be.

ステップS18では、請求項3に記載された光環境解析用プログラムによる演算処理を行う。いわば、1次到達面から反射する光量値を2次光源面として2次到達面への放射光量値を演算処理するものである。到達面光量値算出手段となる到達面光量値算出部11により、前記到達手段で求められた1次光源面からの到達した光量値に1次到達面の拡散放射率を乗じて、1次到達面が2次光源として発する光量値の初期値とする。 In step S 18 , a calculation process is performed by the light environment analysis program according to claim 3. In other words, the light quantity value reflected from the primary arrival surface is used as the secondary light source surface, and the radiation light amount value to the secondary arrival surface is calculated. The arrival surface light amount value calculation unit 11 serving as the arrival surface light amount value calculation means multiplies the amount of light reached from the primary light source surface obtained by the arrival means by the diffusion emissivity of the primary arrival surface to achieve the primary arrival. The initial value of the light amount value emitted from the surface as a secondary light source is used.

前述したように1次光源面から受けた光を反射する1次到達面は、当然に1次光源面とはならないので、全てが2次光源面の候補となる。2次光源面から2次到達面に到達する到達光量値の演算処理は、上述の図5に示したステップS〜S17と同じ手順が採用されるのでここでは詳しい説明を省略する。 As described above, since the primary arrival surface that reflects the light received from the primary light source surface is naturally not the primary light source surface, all of them are candidates for the secondary light source surface. The calculation process of the amount of light reaching the secondary arrival surface from the secondary light source surface employs the same procedure as steps S 7 to S 17 shown in FIG. 5 described above, and detailed description thereof is omitted here.

図15は、ステップS18,S〜S17の処理の一例を示している。この例では先ず1次光源面αの面要素データの座標値(a,b,c)からの光量を1次到達面Aの面要素データの座標値(d,e,f)が受けて、この1次到達面A(d,e,f)が2次光源面となり、他の面要素である2次到達面Bに対して放射している例である。 FIG. 15 shows an example of the processing of steps S 18 and S 7 to S 17 . In this example, first, the coordinate value (d, e, f) of the surface element data of the primary arrival surface A receives the light quantity from the coordinate value (a, b, c) of the surface element data of the primary light source surface α. In this example, the primary arrival surface A (d, e, f) serves as a secondary light source surface and radiates to the secondary arrival surface B which is another surface element.

このようにして算出された2次到達面の光量値は、前述したステップSから流れたステップS15の到達面光量値格納手段となる到達面光量値格納部12により同到達面に加算されて面要素データに更新データとして格納される。更に、2次到達面の光量値を基にして3次光源面としてステップS18,S〜S17の演算処理を行う。 Light quantity value of the secondary reaches surface calculated in this way is added to the arrival surface by reaching surface light quantity value storing unit 12 as the arrival plane light amount value storage means in step S 15 that flows from step S 6 described above Stored in the surface element data as update data. Further, the calculation processing of steps S 18 and S 7 to S 17 is performed as a tertiary light source surface based on the light amount value of the secondary arrival surface.

図4のステップS19では、このように光源面からの光線の放射と、到達面への到達光量値の算出及び加算を繰り返して到達面への到達光量値を求めて行く。即ち、光源面光量値設定手段となる光源面光量値設定部8、仮想光線ベクトル設定手段となる仮想光線ベクトル設定部9、光線到達可否判定手段となる光線到達可否判定部10、到達面光量値算出手段となる到達面光量値算出部11、及び到達面光量値格納手段となる到達面光量値格納部12によるそれぞれの演算処理を順次実行して、到達面への到達光量値を加算し、その面要素データを更新してゆく。 In step S 19 of FIG. 4, the radiation beam from such a light source surface, by repeating the calculation and addition of the arrival quantity value to reach surfaces to seek the arrival quantity value to reach surfaces. That is, a light source surface light amount value setting unit 8 serving as a light source surface light amount value setting unit, a virtual ray vector setting unit 9 serving as a virtual ray vector setting unit, a light beam reachability determining unit 10 serving as a light ray reachability determining unit, and a reaching surface light amount value. Execute the respective calculation processing by the arrival surface light amount value calculation unit 11 serving as the calculation means and the arrival surface light amount value storage unit 12 serving as the arrival surface light amount value storage means in order to add the arrival light amount value to the arrival surface, The surface element data is updated.

そして、最終的光量値格納手段となる最終的光量値格納部13により、(n+1)次光源面から(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として面要素データに格納する。   Then, the final light quantity value storage unit 13 serving as the final light quantity value storage means calculates the light quantity value when the light quantity value added from the (n + 1) -order light source surface to the (n + 1) -order arrival surface reaches a predetermined reference. The final light quantity value of the surface element is stored in the surface element data.

この際の光線放射量は到達面への吸収・放射を繰り返して行くうちに急激に減衰し、数回手順を繰り返すことでほぼ積算された到達光量値は飽和値に達する。即ち、ステップS15の到達面光量値算出手段となる到達面光量値算出部11において算出された光量値の加算前と加算後とを比較して予め定めた変化量を超えない状態になれば計算を終了する(図4のステップS19)。 The amount of light emitted at this time is abruptly attenuated while repeating the absorption and emission to the arrival surface, and the amount of light reaching the sum almost reached the saturation value by repeating the procedure several times. That is, if the state does not exceed the amount of change previously determined by comparing summed before and the after the addition of the light quantity value calculated in reaching surface light quantity value calculation unit 11 as a reaching surface light quantity value calculation means in Step S 15 The calculation is terminated (step S 19 in FIG. 4).

ところで、輝度分布は光量の存在分布とみなすことが出来、建物の内部空間の明るさ分布をみるためには単位空間ごとの光量値の分布を表示することが重要である。   By the way, the luminance distribution can be regarded as the presence distribution of the light quantity, and it is important to display the distribution of the light quantity value for each unit space in order to see the brightness distribution of the internal space of the building.

そこで、本発明に係る光環境解析装置は、評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体の各面要素の面要素データに格納された最終的到達光量値に基づいて、該建物の内部空間の単位空間毎の最終的到達光量値を表示する光量値表示手段となる光量値表示部14を備えている。ここで、建物の内部空間とは、床28面、壁(外壁27、間仕切壁26)面、天井面で形成される立方体や直方体を含む3次元の立体をいう。   Therefore, the light environment analysis apparatus according to the present invention is finally stored in the surface element data of each surface element of the unit cube or the unit rectangular parallelepiped corresponding to the unit space of the internal space composed of the shape data of the building to be evaluated. There is provided a light amount value display unit 14 serving as a light amount display means for displaying a final reached light amount value for each unit space of the internal space of the building based on the reached light amount value. Here, the internal space of the building means a three-dimensional solid including a cube and a rectangular parallelepiped formed by the floor 28, the walls (outer wall 27, partition wall 26), and the ceiling.

また、光量値表示部14は、評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体を基にして格子状に分割した領域の各々に対して建物の内部空間の単位空間毎の最終的到達光量値を表示する。   In addition, the light quantity value display unit 14 is provided for each area divided into a grid based on a unit cube or a unit rectangular parallelepiped corresponding to the unit space of the internal space constituted by the shape data of the building to be evaluated. Displays the final light intensity value for each unit space of the internal space.

光量値表示部14は、単位空間に対応する単位立方体または単位直方体の各面要素データに格納された最終的到達光量値データを使用する。   The light quantity value display unit 14 uses the final reached light quantity value data stored in each surface element data of a unit cube or a unit rectangular parallelepiped corresponding to the unit space.

例えば、単位空間に対応する単位立方体または単位直方体の各面要素データに格納された最終的到達光量値データをそのまま表示用光量値として引用する。   For example, the final reached light quantity value data stored in each surface element data of the unit cube or the unit rectangular parallelepiped corresponding to the unit space is referred to as the display light quantity value as it is.

即ち、床28面の表示用光量値は、座標軸上のZ軸方向面要素の最終的到達光量値データを引用し、壁面の表示用光量値は、X軸方向面要素またはY軸方向面要素の最終的到達光量値データを引用する。   That is, the light amount value for display on the floor 28 refers to the final reached light amount value data of the Z-axis direction surface element on the coordinate axis, and the light amount value for display on the wall surface is the X-axis direction surface element or the Y-axis direction surface element The final reached light quantity value data is quoted.

また、単位空間に対応する単位立方体または単位直方体のX軸、Y軸、Z軸の各方向の面要素の面要素データに最終的到達光量値データを加算して該単位立方体または単位直方体を代表する1つの表示用データとしても良い。   Also, the unit cube or unit cuboid is represented by adding final arrival light quantity value data to the surface element data of the surface element in the X axis, Y axis, and Z axis directions of the unit cube or unit cuboid corresponding to the unit space. One display data may be used.

光量値表示部14は、単位空間に対応する単位立方体または単位直方体の表示用参照データを引用して、該表示用参照データと照合して、単位空間に対応する単位立方体または単位直方体毎に、表示する光量値を決定し、表示要素を画面に表示する。また、プリンタ25等の印刷機能により紙等に印刷することも可能である。   The light amount value display unit 14 refers to the reference data for display of the unit cube or unit cuboid corresponding to the unit space, collates with the reference data for display, and for each unit cube or unit cuboid corresponding to the unit space, The light quantity value to be displayed is determined and the display element is displayed on the screen. It is also possible to print on paper or the like by the printing function of the printer 25 or the like.

ここで、図19は表示用参照データである。表示用参照データは、光量値(または光量値の範囲)と表示要素の対応表である。表示要素は、例えば、色(RGBの階調の組み合わせ)、記号、図形、文字等の値が定義されている。   Here, FIG. 19 shows display reference data. The reference data for display is a correspondence table between light quantity values (or light quantity value ranges) and display elements. The display element defines values such as color (combination of RGB gradations), symbols, figures, characters, and the like.

即ち、図19(a)に示して前述した面画素データに応じて、図19(b)では該面画素データの光量値が予め設定された閾値の範囲内に含まれる場合に色に応じた所定の数値が付与される。例えば、図19(a)の♯1面画素の光量値データが「1.8」であり、該光量値が「1.8」は、図19(b)に示された閾値「1.0<1.8≦2.0」の範囲内にあるためR(赤)G(緑)B(青)値の組み合わせとして「R=0」「G=0」「B=42850」が色表現として選択され、図19(c)のごとく表された面要素表示の色表現として作成され、その色が図16及び図17に示すごとく表示される。尚、図16及び図17は実際はカラー表示である。   That is, according to the surface pixel data shown in FIG. 19A and according to the color in the case where the light quantity value of the surface pixel data is included in a preset threshold range in FIG. A predetermined numerical value is given. For example, the light quantity value data of the # 1 plane pixel in FIG. 19A is “1.8”, and the light quantity value “1.8” is the threshold “1.0” shown in FIG. 19B. Since it is within the range of <1.8 ≦ 2.0, “R = 0”, “G = 0”, and “B = 42850” are used as color expressions as combinations of R (red), G (green), and B (blue) values. It is selected and created as a color representation of the surface element display represented as shown in FIG. 19C, and the color is displayed as shown in FIGS. 16 and 17 are actually color displays.

また、光量値表示部14は、単位空間に対応する単位立方体または単位直方体毎に表示することが出来るから、平面図、立断面図等で表示された建物の間取りをその単位空間に対応する単位立方体または単位直方体(建物の設計モジュール寸法を基準としたグリッドに合致したもの)に合わせて、格子状に分割した領域(グリッド)の各々に表示要素を割り付けて明るさ分布を表示することが出来る。   In addition, since the light quantity value display unit 14 can display for each unit cube or unit rectangular parallelepiped corresponding to the unit space, the floor plan of the building displayed in a plan view, a sectional view, etc. is a unit corresponding to the unit space. The brightness distribution can be displayed by assigning display elements to each of the grid-divided areas (grids) according to the cube or unit cuboid (matching the grid based on the building design module dimensions). .

図16は、明るさ表示部17による明るさ分布の表示例である。図16に示す平面間取り図に面要素を格子状に区分して、そこに光量値を与えて表示することで建物の階単位で建物内部を俯瞰(ふかん;鳥の視線のような高い所から見下ろし眺める)出来る様な表示が可能となる。   FIG. 16 is a display example of brightness distribution by the brightness display unit 17. By dividing the surface elements into a grid pattern in the floor plan shown in Fig. 16 and giving the light quantity value there, it is possible to look down on the interior of the building in units of floors. It is possible to display such that you can look down.

図16の例では階段部24の近くの壁には開口部19の設定がなく、階段部24の前周辺は全体的に暗いことが表示出来る。   In the example of FIG. 16, there is no setting of the opening 19 on the wall near the staircase portion 24, and it can be displayed that the front periphery of the staircase portion 24 is entirely dark.

図17では図の左上部に示された階段部24の近くの壁に開口部19が設定されているために階段部24の前周辺は全体的に若干の明るさが生じている。   In FIG. 17, since the opening 19 is set in the wall near the staircase 24 shown in the upper left part of the figure, the front periphery of the staircase 24 is slightly bright as a whole.

尚、図16及び図17における表示は建物の一階部分の水平断面図であり、この図面だけでは解らないが、階段部24の2階部分には図示しない開口部19が設定されており、この効果のために階段部24周辺は若干の明るさが認められる。階全体を俯瞰的に表示することと、建物全体を解析対象とすることで初めてこうした結果を得ることが出来、開口部19による間取りでの明るさ分布が説明出来る。   The display in FIGS. 16 and 17 is a horizontal sectional view of the first floor portion of the building. Although not understood only by this drawing, an opening 19 (not shown) is set in the second floor portion of the staircase portion 24. Due to this effect, a slight brightness is recognized around the staircase 24. Such a result can be obtained for the first time by displaying the entire floor in a bird's-eye view and analyzing the entire building as an object of analysis, and explain the brightness distribution in the floor plan by the opening 19.

本発明に係る光環境解析装置では、評価対象の建物の形状データの座標軸上の所定の位置に測定用面要素を設定する測定用面要素設定手段となる測定用面要素設定部15と、請求項8に記載した最終的光量値格納手段となる最終的光量値格納部13により算出された全ての面要素の最終的光量値と、請求項6または請求項7に記載した開口部面20を光源の面要素となる1次光源面に係る面要素データに格納された光量値とを光源として、測定用面要素設定部15により設定された測定用面要素上の明るさを演算する明るさ演算手段となる明るさ演算部16と、該明るさ演算部16により演算された測定用面要素上の明るさを表示する明るさ表示手段となる明るさ表示部17とを備え、測定用面要素設定部15により設定された測定用面要素は、評価対象の建物の形状データで構成される床28面から一定の高さの水平面上に設定される。   In the light environment analysis apparatus according to the present invention, the measurement surface element setting unit 15 serving as a measurement surface element setting means for setting the measurement surface element at a predetermined position on the coordinate axis of the shape data of the building to be evaluated, and claim The final light amount values of all the surface elements calculated by the final light amount value storage unit 13 serving as the final light amount value storage means described in Item 8 and the opening surface 20 described in Claim 6 or Claim 7 Brightness to calculate the brightness on the measurement surface element set by the measurement surface element setting unit 15 using the light quantity value stored in the surface element data relating to the primary light source surface as the surface element of the light source as the light source A brightness calculation unit 16 serving as a calculation means, and a brightness display unit 17 serving as a brightness display means for displaying the brightness on the measurement surface element calculated by the brightness calculation unit 16; The measurement surface element set by the element setting unit 15 is the shape of the building to be evaluated. It is set on a horizontal plane of a certain height from the floor 28 composed of the shape data.

図18は、測定用面要素設定部15の入力画面の一例である。図18では建物の内部空間の2階の床28面から1200mmの高さの明るさが表示されるように設定している。このように測定指標の水平方向を選ぶことにより明るさ演算部16で演算された明るさ分布を、床28面から一定の高さでの仮想面での水平面光量値として示すことが出来る。なお、階段共有空間は、階段昇り口の在る階(1階)を表示するか、階段降り口の在る階(2階)を表示するかの選択である。   FIG. 18 is an example of an input screen of the measurement surface element setting unit 15. In FIG. 18, brightness is set to be displayed at a height of 1200 mm from the floor 28 of the second floor of the internal space of the building. Thus, by selecting the horizontal direction of the measurement index, the brightness distribution calculated by the brightness calculation unit 16 can be shown as a horizontal plane light quantity value on a virtual plane at a certain height from the floor 28 surface. The stairway sharing space is a selection of whether to display the floor (first floor) where the staircase exit is located or to display the floor (second floor) where the stairway exit is located.

図16及び図17における表示に使用される光量値は、建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体の面要素データに格納された最終的光量値を使用するのではなく、床28面から一定の高さで仮想の面要素を設定して、その面要素に最終的に到達する光量を個別に演算する。   16 and 17 use the final light intensity value stored in the surface element data of the unit cube or unit cuboid corresponding to the unit space for the internal space composed of the building shape data. Instead, a virtual surface element is set at a certain height from the surface of the floor 28, and the amount of light finally reaching the surface element is individually calculated.

この場合に光量値の演算処理には、前述のごとく算出したn(n=1,2,3,…)次光源面から測定用面要素設定部15により設定した仮想の面要素に到達する到達光量値を使用する。   In this case, the light quantity value calculation process reaches the virtual surface element set by the measurement surface element setting unit 15 from the n (n = 1, 2, 3,...) Next light source surface calculated as described above. Use the light intensity value.

一方で、例えば玄関での明るさを認識する場合には玄関全体を眺めた時の明るさ分布で明るさを判断していることが想像される。同様に階段部24周辺でも階段部24の周辺全体を見て明るい或いは暗いと判断しているものと推定出来る。   On the other hand, for example, when recognizing the brightness at the entrance, it is imagined that the brightness is judged based on the brightness distribution when the entire entrance is viewed. Similarly, it can be estimated that the vicinity of the staircase 24 is judged to be bright or dark when the entire periphery of the staircase 24 is viewed.

そうすると適当な高さの水平面照度の表現では不十分で、広がりを含めた、鉛直面での照度をも取り込んだ表現が必要なことが推定される。   Then, it is presumed that the expression of the horizontal plane illuminance at an appropriate height is insufficient, and the expression including the illuminance on the vertical plane including the spread is necessary.

図18は測定用面要素設定部15となる表示高さ設定手段の画面の例である。図18において、2階の床28面から1200mmの高さを表示を設定し、測定指標を水平方向或いは水平方向・鉛直方向を選ぶことにより床28面から一定の高さでの仮想面での水平面光量値、或いは同じ高さでの水平面光量値と鉛直面光量値とを合成した値を表示することが出来る。   FIG. 18 shows an example of a screen of display height setting means that becomes the measurement surface element setting unit 15. In Fig. 18, the display is set to a height of 1200mm from the 28th floor of the second floor, and by selecting the horizontal or horizontal / vertical direction as the measurement index, the virtual plane at a certain height from the 28th floor is selected. A horizontal plane light quantity value or a value obtained by combining a horizontal plane light quantity value and a vertical plane light quantity value at the same height can be displayed.

この場合も表示に使用される光量値は、上述してきた単位空間に対応する単位立方体または単位直方体の面要素データに格納された最終的到達光量値データを使用するのではなく、床28面から一定の高さで仮想の面要素を設定して、その面要素に最終的に到達する光量値を個別に演算する。   Also in this case, the light amount value used for display is not from the final reached light amount value data stored in the surface element data of the unit cube or unit rectangular parallelepiped corresponding to the unit space described above, but from the floor 28 surface. A virtual surface element is set at a certain height, and a light amount value finally reaching the surface element is individually calculated.

また、光量値の演算処理には、請求項1〜5に記載した何れかの光環境解析プログラムを使用し、算出したn(n=1,2,3,…)次光源面から前記仮想の面要素に到達する到達光量値を使用する。   Further, in the light quantity value calculation processing, any one of the light environment analysis programs described in claims 1 to 5 is used, and the virtual light source surface is calculated from the calculated n (n = 1, 2, 3,...) Next light source surface. Use the amount of light that reaches the surface element.

本発明の活用例として、建物の内部空間の光量値を使って屋内の明るさ分布の光環境シミュレーションに用いることが出来る他、飛行機や車等の内部空間の光量値を使って機内或いは車内等の明るさ分布の光環境シミュレーションにも応用可能である。   As an example of use of the present invention, it can be used for light environment simulation of indoor brightness distribution using the light amount value of the interior space of the building, or in the cabin or in the vehicle using the light amount value of the interior space of an airplane or a car. It can also be applied to the light environment simulation of the brightness distribution.

本発明に係る光環境解析装置の外観の一例を示す図である。It is a figure which shows an example of the external appearance of the optical environment analysis apparatus which concerns on this invention. 本発明に係る光環境解析装置の制御系の構成を説明するブロック図である。It is a block diagram explaining the structure of the control system of the optical environment analyzer which concerns on this invention. (a),(b)は評価対象の建物の間取りの一例をCAD図面により表現する斜視図及び平面図である。(A), (b) is the perspective view and top view which express an example of the floor plan of the evaluation object building with a CAD drawing. 本発明に係る光環境解析用プログラムによる演算処理の一例を示すフローチャートである。It is a flowchart which shows an example of the arithmetic processing by the program for light environment analysis which concerns on this invention. 図4のステップS,S18の詳細を示すフローチャートである。Is a flowchart showing details of step S 6, S 18 in FIG. 解析対象となる建物の形状データの一例を示す図である。It is a figure which shows an example of the shape data of the building used as analysis object. 評価対象の建物の解析空間のイメージ図である。It is an image figure of the analysis space of the building of evaluation object. 評価対象の建物の内部空間を構成する単位立方体と面要素との関係を示す図である。It is a figure which shows the relationship between the unit cube which comprises the internal space of the building of evaluation object, and a surface element. 光源面要素と光線到達候補面との座標軸上の大小関係から可視判断を行う様子を示す図である。It is a figure which shows a mode that visibility determination is performed from the magnitude relationship on the coordinate axis of a light source surface element and a light ray arrival candidate surface. 光源面要素から放射された光線が到達面要素に到達する様子と、途中に他の面要素で遮られる様子を示す図である。It is a figure which shows a mode that the light ray radiated | emitted from the light source surface element reaches | attains a reach | attainment surface element, and a mode that it interrupts | blocks by another surface element on the way. (a)〜(c)は光源面要素から放射された光線が到達面要素に到達するか否かを判断する原理を説明する概念説明図である。(A)-(c) is a conceptual explanatory drawing explaining the principle which judges whether the light ray radiated | emitted from the light source surface element arrives at an arrival surface element. 光源面要素が座標軸のX軸方向壁要素で到達面候補もX軸方向壁要素の場合で形態係数の求め方を説明する概念説明図である。It is a conceptual explanatory diagram explaining how to obtain a form factor when the light source surface element is the X-axis direction wall element of the coordinate axis and the reaching surface candidate is also the X-axis direction wall element. 光源面から複数の到達面に放射光線が到達し、光量値が与えられる様子を示す図である。It is a figure which shows a mode that a emitted light ray reaches | attains a several arrival surface from a light source surface, and a light quantity value is given. 複数の光源面からの放射光線が同じ到達面に到達し、光量値が加算される様子を示す図である。It is a figure which shows a mode that the emitted light from a several light source surface arrives at the same arrival surface, and a light quantity value is added. 面要素に到達した光線が放射することで再度他の到達面に光線が到達する様子を示す図である。It is a figure which shows a mode that a light ray reaches | attains another arrival surface again, when the light ray which reached | attained the surface element radiates | emits. 階段前近くに開口部が設定されていない建物の一階部分の明るさ分布を表示した一例を示す図である。It is a figure which shows an example which displayed the brightness distribution of the 1st floor part of the building where the opening part is not set near the stairs front. 階段前近くに開口部が設定されている建物の一階部分の明るさ分布を表示した一例を示す図である。It is a figure which shows an example which displayed the brightness distribution of the 1st floor part of the building in which the opening part is set near the stairs front. 測定用面要素設定手段の設定のための入力画面を示す図である。It is a figure which shows the input screen for the setting of the surface element setting means for a measurement. (a)〜(c)は面要素データの一例を示す図である。(A)-(c) is a figure which shows an example of surface element data.

符号の説明Explanation of symbols

1…制御装置
2…ディスプレイ
3…キーボード
4…マウス
5…建物情報取得部
6…面要素データ構成部
7…建物形状情報DB
8…光源面光量値設定部
9…仮想光線ベクトル設定部
10…光線到達可否判定部
11…到達面光量値算出部
12…到達面光量値格納部
13…最終的光量値格納部
14…光量値表示部
15…測定用面要素設定部
16…明るさ演算部
17…明るさ表示部
18…メモリ
19…開口部
20…開口部面
21…面要素光量値情報DB
22…光線ベクトル
23…障害物
24…階段部
25…プリンタ
26…間仕切壁
27…外壁
28…床
29…建具
30…家具または家庭電化製品などの器物
DESCRIPTION OF SYMBOLS 1 ... Control apparatus 2 ... Display 3 ... Keyboard 4 ... Mouse 5 ... Building information acquisition part 6 ... Plane element data structure part 7 ... Building shape information DB
8 ... Light source surface light quantity value setting unit 9 ... Virtual ray vector setting unit
10: Ray reachability determination unit
11: Achieving surface light quantity value calculation unit
12 ... Area light quantity value storage
13 ... Final light intensity value storage
14… Light intensity display
15… Measurement surface element setting section
16 ... Brightness calculator
17 ... Brightness display
18 ... Memory
19 ... Opening
20 ... Opening surface
21 ... surface element light quantity information DB
22 ... Ray vector
23. Obstacle
24… Staircase
25 ... Printer
26 ... partition wall
27… Outer wall
28… Floor
29 ... Joinery
30… Furniture or home appliances

Claims (14)

建物情報取得手段により取得した評価対象の建物の形状データをもとにして、
面要素データ構成手段により、前記建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する第1の処理と、
光源面光量値設定手段により、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する第2の処理と、
仮想光線ベクトル設定手段により、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する第3の処理と、
光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する第4の処理と、
到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理を順次実行して、前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次到達面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する第5の処理と、
到達面光量値格納手段により、前記第5の処理で算出された前記1次光源面から前記1次到達面に到達する光量値を前記1次到達面に係る面要素データに格納する第6の処理と、
前記到達面光量値格納手段により、前記1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、該1次到達面に係る面要素データを更新して格納する第7の処理と、
を実行することを特徴とする光環境解析用プログラム。
Based on the shape data of the building to be evaluated acquired by the building information acquisition means,
The surface element data constituting means divides the internal space constituted by the shape data of the building into unit cubes or unit cuboids corresponding to the unit space, and each surface element of the unit cube or unit cuboid is stored in the shape data of the building. A surface element corresponding to the opening is divided into an opening surface and a surface other than the opening corresponding to a portion other than the opening, and coordinates and attribute data are assigned to the surface element data. A first process to store;
The light source surface light quantity value setting means recognizes the opening surface as a primary light source surface serving as a surface element of the light source, and is a surface element that allows light rays to reach the surfaces other than the opening from the primary light source surface. A second process of recognizing as the next arrival surface and storing the light amount value reaching the primary light source surface from the outside of the building in the surface element data relating to the primary light source surface;
A third process of setting a light vector from the primary light source surface to the primary arrival surface by a virtual light vector setting means;
The ray vector set by the virtual ray vector setting unit is set as a determination target by the ray reachability determination unit only for a unit cube or a unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes. In the course of tracing, by searching for whether the ray vector intersects the surface element other than the primary light source surface and the primary arrival surface, the primary light source surface to the target primary arrival surface is searched. A fourth process for determining whether or not a ray vector is reachable;
When it is determined by the arrival surface light quantity value calculation means that the light ray vector set by the virtual light ray vector setting means is reachable from the primary light source surface to the target primary arrival surface by the light ray reachability determination means. For the primary arrival surface, a light amount value obtained by multiplying the light amount value that has reached the primary light source surface from the outside of the building set by the light source surface light amount value setting means and the opening transmittance of the primary light source surface is Considering the transmittance of the primary light source surface other than the primary light source surface and the primary arrival surface where the light vector intersects as the initial radiant light amount value of the primary light source surface, the primary light source surface from the primary light source surface Calculate the amount of light reaching the arrival surface,
When the light beam reachability determining means determines that the light beam vector set by the virtual light beam vector setting means cannot reach the target primary arrival surface from the primary light source surface, The third process by the virtual ray vector setting unit and the fourth process by the ray reachability determination unit are sequentially executed on the next candidate primary arrival surface, and the arrival surface light amount value calculating unit The light source that has been determined by the light ray reachability determining means that the light vector set by the virtual light vector setting means is reachable from the primary light source surface to the target primary arrival surface is the light source. The primary light source surface intersecting the light beam vector and the first light amount value given to the primary light source surface by the surface light amount value setting means as the initial radiant light amount value of the primary arrival surface A fifth processing of calculating a light intensity value reaching the primary reaching surface from said primary light source surface in consideration of the transmittance of the other surface element other than reaching surface,
A light amount value reaching the primary arrival surface from the primary light source surface calculated in the fifth process is stored in the surface element data relating to the primary arrival surface by a reaching surface light amount value storage means. Processing,
The light amount value given from the primary light source surface of the next candidate is added to the light amount value of the surface element data related to the primary arrival surface by the arrival surface light amount value storage means, and the surface element related to the primary arrival surface A seventh process for updating and storing data;
A program for analyzing the light environment characterized by
建物情報取得手段により取得した評価対象の建物の形状データをもとにして、
面要素データ構成手段により、前記建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する第1の処理と、
光源面光量値設定手段により、前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する第2の処理と、
仮想光線ベクトル設定手段により、前記1次光源面から前記1次到達面に対して光線ベクトルを設定する第3の処理と、
光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する第4の処理と、
到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理を順次実行して、前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する第5の処理と、
到達面光量値格納手段により、前記第5の処理で探索された前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理、及び前記到達面光量値算出手段による前記第5の処理を順次実行して、候補となる全ての1次到達面に対して前記第5の処理で算出された前記1次光源面から前記候補となる全ての1次到達面に到達する光量値を、前記候補となる全ての1次到達面に係る面要素データに格納する第6の処理と、
前記到達面光量値格納手段により、前記候補となる全ての1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、前記候補となる全ての1次到達面に係る面要素データを更新して格納する第7の処理と、
を実行することを特徴とする光環境解析用プログラム。
Based on the shape data of the building to be evaluated acquired by the building information acquisition means,
The surface element data constituting means divides the internal space constituted by the shape data of the building into unit cubes or unit cuboids corresponding to the unit space, and each surface element of the unit cube or unit cuboid is stored in the shape data of the building. A surface element corresponding to the opening is divided into an opening surface and a surface other than the opening corresponding to a portion other than the opening, and coordinates and attribute data are assigned to the surface element data. A first process to store;
The light source surface light quantity value setting means recognizes the opening surface as a primary light source surface serving as a surface element of the light source, and is a surface element that allows light rays to reach the surfaces other than the opening from the primary light source surface. A second process of recognizing as the next arrival surface and storing the light amount value reaching the primary light source surface from the outside of the building in the surface element data relating to the primary light source surface;
A third process of setting a light vector from the primary light source surface to the primary arrival surface by a virtual light vector setting means;
The ray vector set by the virtual ray vector setting unit is set as a determination target by the ray reachability determination unit only for a unit cube or a unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes. In the course of tracing, by searching for whether the ray vector intersects the surface element other than the primary light source surface and the primary arrival surface, the primary light source surface to the target primary arrival surface is searched. A fourth process for determining whether or not a ray vector is reachable;
When it is determined by the arrival surface light quantity value calculation means that the light ray vector set by the virtual light ray vector setting means is reachable from the primary light source surface to the target primary arrival surface by the light ray reachability determination means. For the primary arrival surface, a light amount value obtained by multiplying the light amount value that has reached the primary light source surface from the outside of the building set by the light source surface light amount value setting means and the opening transmittance of the primary light source surface is Considering the transmittance of the primary light source surface other than the primary light source surface and the primary arrival surface where the light vector intersects as the initial radiant light amount value of the primary light source surface, the primary light source surface from the primary light source surface Calculate the amount of light reaching the arrival surface,
When the light beam reachability determining means determines that the light beam vector set by the virtual light beam vector setting means cannot reach the target primary arrival surface from the primary light source surface, The third process by the virtual ray vector setting unit and the fourth process by the ray reachability determination unit are sequentially executed on the next candidate primary arrival surface, and the arrival surface light amount value calculating unit The light source that has been determined by the light beam reachability determination unit that the light beam vector set by the virtual light beam vector setting unit is reachable from the primary light source surface to the target primary arrival surface is the light source. The primary light source surface intersecting the light vector and the primary arrival light amount value given to the primary light source surface by the surface light amount value setting means are used as the initial radiation light amount value of the primary light source surface. A fifth processing of calculating a light intensity value in consideration of the transmittance of the other surface element other than the surface to reach the primary reaching surface from said primary light source surface,
From the primary light source surface searched in the fifth process to the next candidate primary arrival surface by the arrival surface light amount storage means, the third process by the virtual ray vector setting means, the ray arrival The fourth process by the availability determining unit and the fifth process by the reaching surface light amount value calculating unit are sequentially executed, and the fifth process is calculated for all candidate primary reaching surfaces. A sixth process for storing light quantity values reaching all of the candidate primary arrival surfaces from the primary light source surface in surface element data relating to all of the candidate primary arrival surfaces;
The reaching surface light amount value storage means adds the light amount value given from the primary light source surface of the next candidate to the light amount values of the surface element data related to all the primary reaching surfaces that are candidates, and becomes the candidate. A seventh process of updating and storing the surface element data relating to all primary arrival surfaces;
A program for analyzing the light environment characterized by
前記開口部面を光源の面要素となる1次光源面とし、該1次光源面から目的の1次到達面に光線が到達した後、該1次到達面に光線が反射する場合に該1次到達面を2次光源面とし、該2次光源面から他の目的の2次到達面に光線が到達した後、該2次到達面に光線が反射する場合に該2次到達面を3次光源面として順次設定したn(n=1,2,3,…)次光源面から目的のn(n=1,2,3,…)次到達面に光線が到達した後、該n次到達面からそのn次到達面以外の到達面に向かって光線が反射する場合において、
前記第2の処理では前記光源面光量値設定手段により、n次到達面を(n+1)次光源面として認識すると共に、前記n次到達面以外の到達面を(n+1)次光源面から光線が到達し得る(n+1)次到達面として認識して、前記n次到達面に係る面要素データが格納する光量値を前記(n+1)次光源面の光量値として設定し、
前記第3の処理では前記仮想光線ベクトル設定手段により、前記(n+1)次光源面から前記(n+1)次到達面に対して光線ベクトルを設定し、
前記第4の処理では前記光線到達可否判定手段により、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素に交差するか否かを探索することにより、前記(n+1)次光源面から目的の(n+1)次到達面に到達可能か否かを判定し、
前記第5の処理では前記到達面光量値算出手段により、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記(n+1)次光源面から目的の(n+1)次到達面に到達可能であると判定された該(n+1)次到達面について、n次光源面からn次到達面に到達した光量値に該n次到達面の拡散放射率を乗じた光量値を前記(n+1)次光源面の初期放射光量値として、前記光線ベクトルが交差する前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素の透過率を考慮して前記(n+1)次光源面から前記(n+1)次到達面に到達する光量値を算出し、
前記第7の処理では前記到達面光量値格納手段により、前記(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データの光量値に、次候補の(n+1)次光源面から付与された光量値を加算し、該(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データを更新して格納し、
最終的光量値格納手段により、前記光源面光量値設定手段による前記第2の処理、前記仮想光線ベクトル設定手段による前記第3の処理、前記光線到達可否判定手段による前記第4の処理、前記到達面光量値算出手段による前記第5の処理、及び前記到達面光量値格納手段による前記第6、第7の処理を順次実行して、前記(n+1)次光源面から前記(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として面要素データに格納する第8の処理を実行することを特徴とする請求項1または請求項2に記載の光環境解析用プログラム。
The opening surface is used as a primary light source surface serving as a surface element of the light source, and when the light beam reaches the target primary arrival surface from the primary light source surface, the light beam is reflected on the primary arrival surface. The secondary arrival surface is defined as a secondary light source surface, and when the light beam is reflected from the secondary light source surface to another target secondary arrival surface and then reflected to the secondary arrival surface, the secondary arrival surface is defined as 3 After the light rays reach the target n (n = 1, 2, 3,...) Next arrival surface sequentially set as the next light source surface, the nth order. In the case where light rays are reflected from the arrival surface toward an arrival surface other than the nth order arrival surface,
In the second processing, the light source surface light amount value setting means recognizes the nth order reaching surface as the (n + 1) th order light source surface, and a reaching surface other than the nth order reaching surface is transmitted from the (n + 1) th order light source surface. Recognizing it as a reachable (n + 1) -order arrival surface, and setting the light amount value stored in the surface element data relating to the n-order arrival surface as the light amount value of the (n + 1) -order light source surface;
In the third process, a ray vector is set from the (n + 1) th order light source surface to the (n + 1) th order arrival surface by the virtual ray vector setting means,
In the fourth process, the light ray reachability determining means sets the virtual light vector setting with only a unit cube or a unit cuboid corresponding to the unit space through which the light vector set by the virtual light vector setting means passes as a determination target. In the course of tracing the ray vector set by the means, the ray vector is searched for whether it intersects with other surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface. n + 1) It is determined whether or not the target (n + 1) next arrival surface can be reached from the next light source surface,
In the fifth processing, the ray vector set by the virtual ray vector setting unit by the ray arrival reachability determining unit is changed from the (n + 1) th order light source surface to the target (n + 1) th order reach surface by the arrival surface light amount value calculating unit. For the (n + 1) th order reaching surface determined to be reachable, the light amount value obtained by multiplying the light amount value reaching the nth order reaching surface from the nth order light source surface by the diffuse emissivity of the nth order reaching surface is ( (n + 1) As the initial radiant light amount value of the next light source surface, the transmittance of the other surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface intersecting with the light vector is taken into consideration (n + 1). A light amount value reaching the (n + 1) next arrival surface from the next light source surface is calculated,
In the seventh process, the reaching surface light quantity value storage means adds the next candidate (n + 1) to the light quantity value of the surface element data relating to the (n + 1) th next reaching face or all the (n + 1) th next reaching faces. The light amount value given from the next light source surface is added, and the surface element data relating to the (n + 1) next arrival surface or all candidate (n + 1) next arrival surfaces is updated and stored,
The final light quantity value storage means causes the second process by the light source surface light quantity value setting means, the third process by the virtual light vector setting means, the fourth process by the light ray reachability determination means, and the arrival. The fifth process by the surface light quantity value calculating means and the sixth and seventh processes by the reaching face light quantity value storing means are sequentially executed, and the (n + 1) th next reach surface from the (n + 1) th light source surface. 8. The eighth process of storing the light quantity value when the light quantity value to be added to the predetermined reference value is stored in the surface element data as the final light quantity value of the surface element. Item 3. The light environment analysis program according to Item 2.
前記光線到達可否判定手段による前記第4の処理が、前記n(n=1,2,3,…)次光源面から前記n(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定する演算処理を含むことを特徴とする請求項1〜3の何れか1項に記載の光環境解析用プログラム。 The fourth process by the light ray arrival / absence determination means is performed by the light beam from the n (n = 1, 2, 3,...) Next light source surface to the n (n = 1, 2, 3,. The calculation process for determining whether the n-order light source surface and the n-order arrival surface are visible from the magnitude relationship on the coordinate axes when determining reachability is included. 4. The light environment analysis program according to any one of 3 above. 前記建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体が、建物の設計モジュール寸法に基づく単位立方体または単位直方体であることを特徴とする請求項1〜4の何れか1項に記載の光環境解析プログラム。 The unit cube or unit cuboid corresponding to the unit space of the internal space constituted by the building shape data is a unit cube or unit cuboid based on the design module dimensions of the building. The light environment analysis program according to claim 1. 評価対象の建物の形状データを取得する建物情報取得手段と、
前記建物情報取得手段により取得した建物の形状データに基づいて、該建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する面要素データ構成手段と、
前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する光源面光量値設定手段と、
前記1次光源面から前記1次到達面に対して光線ベクトルを設定する仮想光線ベクトル設定手段と、
前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する光線到達可否判定手段と、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、及び前記光線到達可否判定手段によるそれぞれの演算処理を順次実行して、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する到達面光量値算出手段と、
前記到達面光量値算出手段により算出された前記1次光源面から前記1次到達面に到達する光量値を前記1次到達面に係る面要素データに格納する到達面光量値格納手段と、
を備えたことを特徴とする光環境解析装置。
Building information acquisition means for acquiring shape data of the building to be evaluated;
Based on the building shape data acquired by the building information acquisition means, the internal space constituted by the building shape data is divided into unit cubes or unit cuboids corresponding to unit spaces, and each of the unit cubes or unit cuboids is divided. Coordinates and attributes are obtained by classifying the surface element into an opening surface that is a surface element corresponding to the opening of the shape data of the building and a surface other than the opening that is a surface element corresponding to a part other than the opening. A surface element data construction means for assigning data and storing it in the surface element data;
Recognizing the opening surface as a primary light source surface serving as a surface element of a light source, and recognizing a surface other than the opening as a primary arrival surface that is a surface element that a light beam can reach from the primary light source surface; A light source surface light amount value setting means for storing a light amount value reaching the primary light source surface from the outside of the building in surface element data relating to the primary light source surface;
Virtual ray vector setting means for setting a ray vector from the primary light source surface to the primary arrival surface;
In the course of tracing the ray vector set by the virtual ray vector setting unit, only the unit cube or unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes is determined. Whether or not a light vector can reach the target primary arrival surface from the primary light source surface by searching whether or not the surface element other than the primary light source surface and the primary arrival surface A ray reachability determination means for determining whether or not
When it is determined by the light beam reachability determining means that the light vector set by the virtual light beam vector setting means is reachable from the primary light source surface to the target primary arrival surface, for the primary arrival surface, A light amount value obtained by multiplying the light amount value reaching the primary light source surface from the outside of the building set by the light source surface light amount value setting means by the transmittance of the opening of the primary light source surface is an initial radiant light amount of the primary light source surface. As a value, a light amount value reaching the primary arrival surface from the primary light source surface in consideration of the transmittance of the surface element other than the primary light source surface and the primary arrival surface where the light vector intersects. Calculate
When the light beam reachability determining means determines that the light beam vector set by the virtual light beam vector setting means cannot reach the target primary arrival surface from the primary light source surface, The virtual ray vector setting means and the ray reachability determination means sequentially execute respective calculation processes on the next candidate primary arrival surface, and the ray reachability determination means causes the virtual ray vector setting means to The set light vector is given to the primary light source surface by the light source surface light quantity value setting means for the primary arrival surface determined to be reachable from the primary light source surface to the target primary arrival surface. Taking the light quantity value as the initial radiant light quantity value of the primary light source surface, the transmittance of the other surface elements other than the primary light source surface and the primary arrival surface intersecting the light vector is considered. And reaches surface light quantity value calculation means for calculating a light quantity value reaches the primary arriving plane from the primary light source surface,
A reaching surface light amount value storing means for storing a light amount value reaching the primary reaching surface from the primary light source surface calculated by the reaching surface light amount value calculating means in surface element data relating to the primary reaching surface;
A light environment analyzing apparatus comprising:
評価対象の建物の形状データを取得する建物情報取得手段と、
前記建物情報取得手段により取得した建物の形状データに基づいて、該建物の形状データで構成される内部空間を単位空間に対応する単位立方体または単位直方体に分割し、該単位立方体または単位直方体の各面要素を前記建物の形状データの開口部に対応する面要素である開口部面と、該開口部以外の部位に対応する面要素である開口部以外面と、に区分して、座標及び属性データを付与して面要素データに格納する面要素データ構成手段と、
前記開口部面を光源の面要素となる1次光源面として認識すると共に、前記開口部以外面を前記1次光源面から光線が到達し得る面要素である1次到達面として認識して、建物外部から該第1次光源面に到達する光量値を該1次光源面に係る面要素データに格納する光源面光量値設定手段と、
前記1次光源面から前記1次到達面に対して光線ベクトルを設定する仮想光線ベクトル設定手段と、
前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記1次光源面及び前記1次到達面以外の他の面要素に交差するか否かを探索することにより、前記1次光源面から目的の1次到達面に光線ベクトルが到達可能か否かを判定する光線到達可否判定手段と、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された場合に、該1次到達面について、前記光源面光量値設定手段により設定された建物外部から前記1次光源面に到達した光量値に該1次光源面の開口部透過率を乗じた光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出し、
前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達不可能であると判定された場合に、前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、及び前記光線到達可否判定手段によるそれぞれの演算処理を順次実行して、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記1次光源面から目的の1次到達面に到達可能であると判定された該1次到達面について、前記光源面光量値設定手段により前記1次光源面に付与された光量値を該1次光源面の初期放射光量値として、前記光線ベクトルが交差する前記1次光源面及び前記1次到達面以外の他の面要素の透過率を考慮して前記1次光源面から前記1次到達面に到達する光量値を算出する到達面光量値算出手段と、
前記到達面光量値算出手段により算出された前記1次光源面から次候補の1次到達面に対して、前記仮想光線ベクトル設定手段、前記光線到達可否判定手段、及び前記到達面光量値算出手段によるそれぞれの演算処理を順次実行して、候補となる全ての1次到達面に対して前記到達面光量値算出手段により算出された前記1次光源面から前記候補となる全ての1次到達面に到達する光量値を、前記候補となる全ての1次到達面に係る面要素データに格納した後、前記候補となる全ての1次到達面に係る面要素データの光量値に、次候補の1次光源面から付与された光量値を加算し、前記候補となる全ての1次到達面に係る面要素データを更新して格納する到達面光量値格納手段と、
を備えたことを特徴とする光環境解析装置。
Building information acquisition means for acquiring shape data of the building to be evaluated;
Based on the building shape data acquired by the building information acquisition means, the internal space constituted by the building shape data is divided into unit cubes or unit cuboids corresponding to unit spaces, and each of the unit cubes or unit cuboids is divided. Coordinates and attributes are obtained by classifying the surface element into an opening surface that is a surface element corresponding to the opening of the shape data of the building and a surface other than the opening that is a surface element corresponding to a part other than the opening. A surface element data construction means for assigning data and storing it in the surface element data;
Recognizing the opening surface as a primary light source surface serving as a surface element of a light source, and recognizing a surface other than the opening as a primary arrival surface that is a surface element that a light beam can reach from the primary light source surface; A light source surface light amount value setting means for storing a light amount value reaching the primary light source surface from the outside of the building in surface element data relating to the primary light source surface;
Virtual ray vector setting means for setting a ray vector from the primary light source surface to the primary arrival surface;
In the course of tracing the ray vector set by the virtual ray vector setting unit, only the unit cube or unit cuboid corresponding to the unit space through which the ray vector set by the virtual ray vector setting unit passes is determined. Whether or not a light vector can reach the target primary arrival surface from the primary light source surface by searching whether or not the surface element other than the primary light source surface and the primary arrival surface A ray reachability determination means for determining whether or not
When it is determined by the light beam reachability determining means that the light vector set by the virtual light beam vector setting means is reachable from the primary light source surface to the target primary arrival surface, for the primary arrival surface, A light amount value obtained by multiplying the light amount value reaching the primary light source surface from the outside of the building set by the light source surface light amount value setting means by the transmittance of the opening of the primary light source surface is an initial radiant light amount of the primary light source surface. As a value, a light amount value reaching the primary arrival surface from the primary light source surface in consideration of the transmittance of the surface element other than the primary light source surface and the primary arrival surface where the light vector intersects. Calculate
When the light beam reachability determining means determines that the light beam vector set by the virtual light beam vector setting means cannot reach the target primary arrival surface from the primary light source surface, The virtual ray vector setting means and the ray reachability determination means sequentially execute respective calculation processes on the next candidate primary arrival surface, and the ray reachability determination means causes the virtual ray vector setting means to The set light vector is given to the primary light source surface by the light source surface light quantity value setting means for the primary arrival surface determined to be reachable from the primary light source surface to the target primary arrival surface. Taking the light quantity value as the initial radiant light quantity value of the primary light source surface, the transmittance of the other surface elements other than the primary light source surface and the primary arrival surface intersecting the light vector is considered. And reaches surface light quantity value calculation means for calculating a light quantity value reaches the primary arriving plane from the primary light source surface,
From the primary light source surface calculated by the arrival surface light amount value calculation means to the next candidate primary arrival surface, the virtual ray vector setting means, the light ray reachability determination means, and the arrival surface light amount value calculation means All of the primary reaching surfaces that are candidates from the primary light source surface calculated by the reaching surface light amount value calculating unit for all the primary reaching surfaces that are candidates are sequentially executed by Are stored in the surface element data related to all the primary arrival surfaces that are candidates, and the light amount values of the surface element data related to all the primary arrival surfaces that are candidates are Reaching surface light amount value storage means for adding the light amount values given from the primary light source surface and updating and storing the surface element data relating to all the primary reaching surfaces as candidates;
A light environment analyzing apparatus comprising:
前記開口部面を光源の面要素となる1次光源面とし、該1次光源面から目的の1次到達面に光線が到達した後、該1次到達面に光線が反射する場合に該1次到達面を2次光源面とし、該2次光源面から他の目的の2次到達面に光線が到達した後、該2次到達面に光線が反射する場合に該2次到達面を3次光源面として順次設定したn(n=1,2,3,…)次光源面から目的のn(n=1,2,3,…)次到達面に光線が到達した後、該n次到達面からそのn次到達面以外の到達面に向かって光線が反射する場合において、
前記光源面光量値設定手段は、n次到達面を(n+1)次光源面として認識すると共に、前記n次到達面以外の到達面を(n+1)次光源面から光線が到達し得る(n+1)次到達面として認識して、前記n次到達面に係る面要素データが格納する光量値を(n+1)次光源面の光量値として設定し、
前記仮想光線ベクトル設定手段は、前記(n+1)次光源面から前記(n+1)次到達面に対して光線ベクトルを設定し、
前記光線到達可否判定手段は、前記仮想光線ベクトル設定手段により設定した光線ベクトルが通過する前記単位空間に対応する単位立方体または単位直方体のみを判定対象として、前記仮想光線ベクトル設定手段により設定した光線ベクトルを辿る途中において、該光線ベクトルが前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素に交差するか否かを探索することにより、前記(n+1)次光源面から目的の(n+1)次到達面に到達可能か否かを判定し、
前記到達面光量値算出手段は、前記光線到達可否判定手段により前記仮想光線ベクトル設定手段により設定した光線ベクトルが前記(n+1)次光源面から目的の(n+1)次到達面に到達可能であると判定された該(n+1)次到達面について、前記n次光源面からn次到達面に到達した光量値に該n次到達面の拡散放射率を乗じた光量値を前記(n+1)次光源面の初期放射光量値として、前記光線ベクトルが交差する前記(n+1)次光源面及び前記(n+1)次到達面以外の他の面要素の透過率を考慮して前記(n+1)次光源面から前記(n+1)次到達面に到達する光量値を算出し、
前記到達面光量値格納手段は、前記(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データの光量値に、次候補の(n+1)次光源面から付与された光量値を加算し、(n+1)次到達面または候補となる全ての(n+1)次到達面に係る面要素データを更新して格納し、
前記光源面光量値設定手段、前記仮想光線ベクトル設定手段、前記光線到達可否判定手段、前記到達面光量値算出手段、及び前記到達面光量値格納手段によるそれぞれの演算処理を順次実行して、前記(n+1)次光源面から前記(n+1)次到達面に加算される光量値が所定の基準に達した場合の光量値を該面要素の最終的光量値として面要素データに格納する最終的光量値格納手段を備えたことを特徴とする請求項6または請求項7に記載の光環境解析装置。
The opening surface is used as a primary light source surface serving as a surface element of the light source, and when the light beam reaches the target primary arrival surface from the primary light source surface, the light beam is reflected on the primary arrival surface. The secondary arrival surface is defined as a secondary light source surface, and when the light beam is reflected from the secondary light source surface to another target secondary arrival surface and then reflected to the secondary arrival surface, the secondary arrival surface is defined as 3 After the light rays reach the target n (n = 1, 2, 3,...) Next arrival surface sequentially set as the next light source surface, the nth order. In the case where light rays are reflected from the arrival surface toward an arrival surface other than the nth order arrival surface,
The light source surface light quantity value setting means recognizes the nth order reaching surface as the (n + 1) th order light source surface and allows a light beam to reach a reaching surface other than the nth order reaching surface from the (n + 1) th order light source surface (n + 1). Recognizing as the next arrival surface, the light amount value stored in the surface element data related to the nth arrival surface is set as the light amount value of the (n + 1) order light source surface
The virtual ray vector setting means sets a ray vector from the (n + 1) th order light source surface to the (n + 1) th order arrival surface,
The light ray reachability determination unit is configured to determine only a unit cube or a unit rectangular parallelepiped corresponding to the unit space through which the light vector set by the virtual light vector setting unit passes, and the light vector set by the virtual light vector setting unit. In the middle of tracing the above, the light vector is searched from the (n + 1) th order light source surface by searching whether it intersects with other surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface. Determine whether the target (n + 1) next arrival plane is reachable,
The reaching surface light amount value calculating means is configured such that the ray vector set by the virtual ray vector setting means by the ray reachability determining means can reach the target (n + 1) order reaching surface from the (n + 1) order light source surface. For the determined (n + 1) th order arrival surface, the (n + 1) th order light source surface is obtained by multiplying the light amount value reaching the nth order arrival surface from the nth order light source surface by the diffuse emissivity of the nth order arrival surface. In consideration of the transmittance of other surface elements other than the (n + 1) th order light source surface and the (n + 1) th order arrival surface where the light vector intersects, the initial radiant light quantity value is determined from the (n + 1) th order light source surface. (N + 1) Calculate the amount of light reaching the next arrival surface,
The reaching surface light amount value storage means is given from the (n + 1) th order light source surface of the next candidate to the light amount value of the surface element data relating to the (n + 1) th order reaching surface or all (n + 1) th order reaching surfaces as candidates. The surface element data relating to the (n + 1) -order arrival surface or all candidate (n + 1) -order arrival surfaces are updated and stored,
Each of the light source surface light amount value setting means, the virtual light beam vector setting means, the light ray arrival possibility determination means, the arrival surface light amount value calculation means, and the arrival surface light amount value storage means are sequentially executed, The final light amount stored in the surface element data as the final light amount value of the surface element when the light amount value added from the (n + 1) next light source surface to the (n + 1) next arrival surface reaches a predetermined reference. 8. The light environment analysis apparatus according to claim 6, further comprising a value storage unit.
前記光線到達可否判定手段は、前記n(n=1,2,3,…)次光源面から前記n(n=1,2,3,…)次到達面への光線到達可否を判定する際に該n次光源面と、該n次到達面とが、互いに座標軸上の大小関係から可視出来るか否かを判定することを特徴とする請求項6〜8の何れか1項に記載の光環境解析装置。 The light beam reachability determining means determines whether or not a light beam can reach from the n (n = 1, 2, 3,...) Next light source surface to the n (n = 1, 2, 3,...) Next reach surface. 9. The light according to claim 6, wherein it is determined whether or not the n-order light source surface and the n-order arrival surface are visible from the magnitude relationship on the coordinate axes. Environmental analysis equipment. 前記建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体が、建物の設計モジュール寸法に基づく単位立方体または単位直方体であることを特徴とする請求項6〜9の何れか1項に記載の光環境解析装置。 The unit cube or unit cuboid corresponding to the unit space of the internal space constituted by the building shape data is a unit cube or unit cuboid based on the design module dimensions of the building. The light environment analysis apparatus according to claim 1. 前記評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体の各面要素の面要素データに格納された最終的到達光量値に基づいて、該建物の内部空間の単位空間毎の最終的到達光量値を表示する光量値表示手段を備えたことを特徴とする請求項6〜10の何れか1項に記載の光環境解析装置。 Based on the final reached light amount value stored in the surface element data of each surface element of the unit cube or unit rectangular parallelepiped corresponding to the unit space of the internal space constituted by the shape data of the building to be evaluated, the interior of the building The light environment analysis device according to any one of claims 6 to 10, further comprising a light amount value display means for displaying a final reached light amount value for each unit space. 前記評価対象の建物の形状データで構成される内部空間の単位空間に対応する単位立方体または単位直方体を基にして格子状に分割した領域の各々に対して該建物の内部空間の単位空間毎の最終的到達光量値を表示する光量値表示手段を備えたことを特徴とする請求項6〜10の何れか1項に記載の光環境解析装置。 For each area divided into a grid based on a unit cube or unit cuboid corresponding to a unit space of the internal space constituted by the shape data of the building to be evaluated, for each unit space of the internal space of the building The light environment analysis apparatus according to any one of claims 6 to 10, further comprising a light amount value display means for displaying a final reached light amount value. 前記評価対象の建物の形状データの座標軸上の所定の位置に測定用面要素を設定する測定用面要素設定手段と、
請求項8に記載した前記最終的光量値格納手段により格納された全ての面要素の最終的光量値と、請求項6または請求項7に記載した前記開口部面を光源の面要素となる1次光源面に係る面要素データに格納された光量値とを光源として、前記測定用面要素設定手段により設定された測定用面要素上の明るさを演算する明るさ演算手段と、
前記明るさ演算手段により演算された前記測定用面要素上の明るさを表示する明るさ表示手段と、
を備えることを特徴とする請求項7〜12の何れか1項に記載の光環境解析装置。
A measuring surface element setting means for setting a measuring surface element at a predetermined position on the coordinate axis of the shape data of the building to be evaluated;
The final light amount values of all the surface elements stored by the final light amount value storage means according to claim 8 and the opening surface according to claim 6 or 7 serve as surface elements of a light source. Brightness calculation means for calculating the brightness on the measurement surface element set by the measurement surface element setting means, using the light amount value stored in the surface element data relating to the next light source surface as a light source,
Brightness display means for displaying the brightness on the surface element for measurement calculated by the brightness calculation means;
The optical environment analysis apparatus according to any one of claims 7 to 12, comprising:
前記測定用面要素設定手段により設定された測定用面要素は、前記評価対象の建物の形状データで構成される床面から一定の高さの水平面上に設定されることを特徴とする請求項13に記載の光環境解析装置。 The measurement surface element set by the measurement surface element setting means is set on a horizontal plane having a certain height from a floor surface constituted by shape data of the building to be evaluated. 13. The light environment analysis apparatus according to 13.
JP2006227766A 2006-05-18 2006-08-24 Light environment analysis program and light environment analysis apparatus Active JP4974612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227766A JP4974612B2 (en) 2006-05-18 2006-08-24 Light environment analysis program and light environment analysis apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006139571 2006-05-18
JP2006139571 2006-05-18
JP2006227766A JP4974612B2 (en) 2006-05-18 2006-08-24 Light environment analysis program and light environment analysis apparatus

Publications (3)

Publication Number Publication Date
JP2007334851A true JP2007334851A (en) 2007-12-27
JP2007334851A5 JP2007334851A5 (en) 2010-07-15
JP4974612B2 JP4974612B2 (en) 2012-07-11

Family

ID=38934237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227766A Active JP4974612B2 (en) 2006-05-18 2006-08-24 Light environment analysis program and light environment analysis apparatus

Country Status (1)

Country Link
JP (1) JP4974612B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128952A (en) * 2007-11-19 2009-06-11 Asahi Kasei Homes Kk Building outside light intensity value calculation program and light environment analysis program
JP2010097423A (en) * 2008-10-16 2010-04-30 Panasonic Electric Works Co Ltd Simulator, simulation method and simulation program of light distribution in three-dimensional space
JP2012089121A (en) * 2010-09-30 2012-05-10 Thomson Licensing Method of estimating quantity of light received at point of virtual environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05210746A (en) * 1992-01-31 1993-08-20 Matsushita Electric Ind Co Ltd Method and device for analyzing optical environment
JPH0773338A (en) * 1993-07-02 1995-03-17 Matsushita Electric Ind Co Ltd Virtual reality apparaus mainly based on vision
JP2747386B2 (en) * 1991-10-01 1998-05-06 松下電器産業株式会社 Light environment analysis device and light environment analysis method
JP2001075946A (en) * 1999-08-31 2001-03-23 Taisei Corp Sunchine analyzing method
JP2002132853A (en) * 2000-08-17 2002-05-10 Sekisui House Ltd Method and device for lighting environment evaluation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2747386B2 (en) * 1991-10-01 1998-05-06 松下電器産業株式会社 Light environment analysis device and light environment analysis method
JPH05210746A (en) * 1992-01-31 1993-08-20 Matsushita Electric Ind Co Ltd Method and device for analyzing optical environment
JPH0773338A (en) * 1993-07-02 1995-03-17 Matsushita Electric Ind Co Ltd Virtual reality apparaus mainly based on vision
JP2001075946A (en) * 1999-08-31 2001-03-23 Taisei Corp Sunchine analyzing method
JP2002132853A (en) * 2000-08-17 2002-05-10 Sekisui House Ltd Method and device for lighting environment evaluation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128952A (en) * 2007-11-19 2009-06-11 Asahi Kasei Homes Kk Building outside light intensity value calculation program and light environment analysis program
JP2010097423A (en) * 2008-10-16 2010-04-30 Panasonic Electric Works Co Ltd Simulator, simulation method and simulation program of light distribution in three-dimensional space
JP2012089121A (en) * 2010-09-30 2012-05-10 Thomson Licensing Method of estimating quantity of light received at point of virtual environment

Also Published As

Publication number Publication date
JP4974612B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5072547B2 (en) Light environment analysis program and light environment analysis system
US9892548B2 (en) Lighting simulation analysis using light path expressions
CN109815641B (en) Indoor light design method
Greenberg et al. Sustain: An experimental test bed for building energy simulation
Roy A comparative study of lighting simulation packages suitable for use in architectural design
CN106021674A (en) BIM technology-based construction project interactive design method
de Almeida Rocha et al. A pixel counting based method for designing shading devices in buildings considering energy efficiency, daylight use and fading protection
Lin et al. A metamodel based on intermediary features for daylight performance prediction of façade design
JP4974612B2 (en) Light environment analysis program and light environment analysis apparatus
US7116341B2 (en) Information presentation apparatus and method in three-dimensional virtual space and computer program therefor
JP2007334851A5 (en)
Marsh Integrating performance modelling into the initial stages of design
Xie et al. An interactive approach for generating spatial architecture layout based on graph theory
JP2007164667A (en) Radiation-simulating method and radiation-simulating device
Xiong Reconstructing and correcting 3d building models using roof topology graphs
McEwan et al. Some approaches to the treatment of obstruction in interior lighting design
Chang et al. Exploration of isovist fields to model 3D visibility with building facade
Karadag et al. Development of a Daylight Simulation Software for Early Design Stage: A Case Study of a Container House
Ermolenko Algorithm-aided Information Design: Hybrid Design approach on the edge of Associative Methodologies in AEC
Sermarini et al. Embodied facade retrofit design with Augmented Reality in the built environment
JPH02157973A (en) Device for supporting indoor lighting facility plan
Gábrová et al. Comparative evaluation of daylighting simulation programs
Fisher-Gewirtzman 3D LOS visibility analysis model: Incorporating quantitative/qualitative aspects in urban environments
US11009388B2 (en) Determining and visualising light and visibility in an area based on at least local information of the area and positions of one or more sources of light
JPH0783753A (en) Method and device for analyzing optical environment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350