JP2007334843A - Optimum control method for system - Google Patents

Optimum control method for system Download PDF

Info

Publication number
JP2007334843A
JP2007334843A JP2006187190A JP2006187190A JP2007334843A JP 2007334843 A JP2007334843 A JP 2007334843A JP 2006187190 A JP2006187190 A JP 2006187190A JP 2006187190 A JP2006187190 A JP 2006187190A JP 2007334843 A JP2007334843 A JP 2007334843A
Authority
JP
Japan
Prior art keywords
equation
control
vehicle
here
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006187190A
Other languages
Japanese (ja)
Inventor
Naoto Fukushima
直人 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006187190A priority Critical patent/JP2007334843A/en
Publication of JP2007334843A publication Critical patent/JP2007334843A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To derive a control rule for a nonlinear optimum control problem in a finite evaluation section following an unpredictable time-varying target value. <P>SOLUTION: An approximate solution method for the nonlinear optimum control problem using Receding Horizon control is developed to derive a general technique applicable for real time control for a nonlinear system. Followability (in both responsiveness and convergency) is confirmed to be remarkably enhanced compared with general proportional control, as a result of application to a target side slip angle following control of a DYC in a turning limit area of an RR vehicle as a concrete example. A neutral steering characteristic can be attained even in the turning limit area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主として機械力学系システムの実時間最適制御方法に関する.線形、非線形を問わず広範囲のシステムに適用できる.  The present invention mainly relates to a real-time optimal control method for a mechanical system. It can be applied to a wide range of systems, whether linear or non-linear.

システムの状態量を目標値に追従させる最適制御は,システムが線形の場合については土谷らの提案による手法があるものの(非特許文献1),非線形システムで有限評価区間の時変目標値に追従させる最適制御則を解析的に求める困難である.
例えば、近年、車両の運動を制駆動力でアクティブに制御するDYC(Direct Yaw Moment Control)が普及している.しかし今までのDYCの研究や実用化されたシステムでは、タイヤの限界を検知してタイヤの作動状況を限界域の内側に入れ込む制御が広く行われている(例えば、非特許文献2,3参照).車両の運動性能を高めるという目的からは,図2のタイヤの全作動域で安定性とコントロール性を維持させる制御法の研究は意味のあることと考えられるが,制御則の導出が困難であることから、非特許文献4を除き今までに研究例は見られない.
Optimal control for tracking the state quantity of the system to the target value follows the time-varying target value in the finite evaluation interval in a nonlinear system, although there is a method proposed by Tsuchiya et al. When the system is linear (Non-Patent Document 1). It is difficult to analytically find the optimal control law.
For example, in recent years, DYC (Direct Yaw Moment Control) that actively controls the movement of a vehicle with a braking / driving force has become widespread. However, in conventional DYC research and practical systems, control for detecting the tire limit and inserting the tire operating state inside the limit range is widely performed (for example, Non-Patent Documents 2 and 3). reference). For the purpose of improving vehicle motion performance, research on control methods that maintain stability and controllability in the entire operating range of the tire in Fig. 2 is considered meaningful, but it is difficult to derive control laws. Therefore, except for Non-Patent Document 4, no research examples have been found so far.

非特許文献4では、この問題に対する解法の一般理論を提示し、続いて後置エンジン後輪駆動車(RR車)を題材にとり、これにDYCを搭載し制御を工夫することでダイナミックスを考慮した状態でも全駆動域ニュートラルステアを実現できることを述べている.この場合の目標値は時変かつ将来の値は予見不可能であり,さらに横すべり角が大きくなるとタイヤの非線形性が極めて強くなり,また一般の運転では評価区間は有限である.このような目標値追従を最適制御し,かつ制御則の演算負荷が小さくて実時間制御が可能なことを述べている.本発明は特許法30条の例外規定を適用し、非特許文献4の内容の一部を特許申請するものである。
土谷武士,江上正,ディジタル予見制御,(1992),26−27,産業図書. Anton T.van Zanten,Rainer Erhardt,Georg Pfaff:VDC,The Vehicle Dynamics Control System of Bosch,SAE paper 950759(1995) 山本真規,鯉淵健,深田善樹,稲垣匠二:限界付近での車両安定性向上のためのアクティブ制動力制御,自動車技術会 学術講演会前刷集953(1995−5) 福島直人:非線形最適制御問題の近似解法と大横すべり角追従制御への適用,日本機械学会論文集(C編)Vol.72,No.713(2006),84−91.
Non-Patent Document 4 presents a general theory of a solution to this problem, followed by a rear-engine rear-wheel drive vehicle (RR vehicle), which incorporates DYC and devise controls to consider dynamics. It is stated that neutral steer in the entire drive range can be realized even in this state. The target value in this case is time-varying and the future value is unpredictable, and the tire slip becomes extremely strong when the side slip angle increases, and the evaluation interval is finite in general driving. It describes that the target value tracking is optimally controlled, and that the computation load of the control law is small and real-time control is possible. The present invention applies an exception of Article 30 of the Patent Law and applies for a part of the contents of Non-Patent Document 4.
Takeshi Tsuchiya, Tadashi Egami, Digital Predictive Control, (1992), 26-27, Industrial Books. Anton T. van Zanten, Rainer Erhardt, Georg Pfaff: VDC, The Vehicle Dynamics Control System of Bosch, SAE paper 950759 (1995) Masanori Yamamoto, Ken Takeshi, Yoshiki Fukada, Takuji Inagaki: Active Braking Force Control for Improving Vehicle Stability near the Limit, Automotive Technology Society Preliminary Proc. 953 (1995-5) Naoto Fukushima: Approximate Solution of Nonlinear Optimal Control Problem and Application to Large Side Slip Angle Tracking Control, Transactions of the Japan Society of Mechanical Engineers (C) Vol. 72, no. 713 (2006), 84-91.

予見不可能な時変目標値に追従する有限評価区間の非線形最適制御問題の制御則を導くことが課題である。  The challenge is to derive a control law for a nonlinear optimal control problem in a finite evaluation interval that follows an unpredictable time-varying target value.

Receding Horizon制御(例えば、非特許文献5参照)をベースとした近似解法により準最適制御則を導く手法を提案する.まず一般論を述べ,次に車両の運動制御装置としてDYCをRR車に搭載した状態を想定,旋回駆動時のニュートラルステア特性を維持する制御に適用する.この結果,制御が極めて難しい状況である旋回限界域における車両の横すべり角制御を可能にし,ほぼ狙い通りの性能を実現できることをシミュレーションにより確認する.  We propose a method for deriving a suboptimal control law by an approximate solution based on Receding Horizon control (for example, see Non-Patent Document 5). First, a general theory will be described, and then applied to the control that maintains the neutral steering characteristics during turning drive, assuming that the DYC is mounted on an RR vehicle as a vehicle motion control device. As a result, it is confirmed by simulation that it is possible to control the side slip angle of the vehicle in the turning limit region, which is extremely difficult to control, and to achieve almost the intended performance.

最小化すべき評価関数を時間軸を移動する有限評価区間Tで定義した,Receding Horizon制御による最適制御則を導く.仮想時間τ(0≦τ≦T)を導入して,目標値追従方式の非線形最適制御問題を記述する.こうすると状態変数と制御入力のτ=0における初期値は実時間軸上の状態変数x(t),制御入力u(t)になる.
非線形システムのτに関する状態方程式を式(1)とし、最小化すべき評価関数を式(2)とする.

Figure 2007334843
ここでx(τ,t)∈R,u(τ,t)∈Rはτ軸上で定義された状態変数と制御入力である.f
Figure 2007334843
値で予見はできないものとする.式(2)を最小化する制御則を求めることが制御問題となる.The optimal control law by Receding Horizon control, in which the evaluation function to be minimized is defined by the finite evaluation interval T that moves along the time axis, is derived. Introduce virtual time τ (0 ≦ τ ≦ T) and describe nonlinear optimal control problem of target value tracking method. Thus, the initial values of the state variable and the control input at τ = 0 become the state variable x (t) and the control input u (t) on the real time axis.
Let Eq. (1) be the state equation for τ of the nonlinear system, and Eq. (2) be the evaluation function to be minimized.
Figure 2007334843
Here, x (τ, t) εR n and u (τ, t) εR r are state variables and control inputs defined on the τ axis. f
Figure 2007334843
The value cannot be predicted. Finding a control law that minimizes Equation (2) is a control problem.

次に最適制御則の導出法を述べる。評価区間Tを十分小さくとれば,式(1)は次のように線形化される.

Figure 2007334843
ここで,ヤコビアンf(t),f(t)とf(t)は次式で定義される.
Figure 2007334843
Figure 2007334843
Next, the derivation method of the optimal control law is described. If the evaluation interval T is sufficiently small, Equation (1) is linearized as follows.
Figure 2007334843
Here, Jacobian f x (t), f u (t) and f 0 (t) is defined by the following equation.
Figure 2007334843
Figure 2007334843

数式6Formula 6

(t)=f(x(t),u(t))−f(t)x(t)−f(t)u(t)
同様に,評価区間Tを十分小さくとれば,この区間内では式(2)は次のように近似できる.以下,近似の場合は右肩に*印をつけて識別する.

Figure 2007334843
ここで.区間0≦τ≦Tにおけるx(t),x(T,t),u(t),u(T,t)について考える.
まず,Receding Horizon制御であるからx(t)はτ=0における状態量の初期値として与えられる.一般にgが2次形式で与えられれば,最適性の原理(例えば、非特許文献6参照)より明らかに,u(T,t)=0である.
従って,図1のイメージ図に示すように,白丸が未知,黒丸が既知という関係になり,Jを最小化する問題は白丸で示したx(T,t)とu(t)を求める2点境界値問題になる.ここで図1においてu(τ,t)の変化を直線で近似すると,
Figure 2007334843
と記述できる.この近似もTが十分小さければ許容される.このような近似により2点境界値問題を初期値問題に転換できる.式(8)を式(3)に代入してこれをτについて解いてx(τ,t)を求め,これよりx(T,t)をu(t)の関数として求めることができる.従って式(7)のJ(t)がu(t)の関数として定まる.J(t)を最小化する条件は次式から求まる.
Figure 2007334843
ここで,式(7)のx(T,t),u(t)をx(T,t),u(t)でおきかえたものをあらためてJ(t)としている.これより,準最適制御則u opt(t)が得られる.ただし,制御装置は計測された状態量からヤコビアンf(t),f(t)とf(t)を算出する手段を有するものとする.本手法のような有限時間評価関数の最適化では,閉ループ系が有限時間発散系でないかぎり制御則は意味を持つ.従って得られる制御則は漸近安定の保証はないが,制御目的に合致した適切な評価関数を設定すれば,考えられる可能性の中のベストな制御則になっているということは保証される.
以上が一般論であり,次章への繋がりを考慮してgの変数に目標値が含まれることを前提に述べてきたが,目標値を含まない形であってもここまでの議論は適用できる.f 0 (t) = f (x (t), u (t)) − f x (t) x (t) −f u (t) u (t)
Similarly, if the evaluation interval T is sufficiently small, Equation (2) can be approximated as follows within this interval. In the following, approximates are identified with a * on the right shoulder.
Figure 2007334843
here. Consider x (t), x (T, t), u (t), u (T, t) in the interval 0 ≦ τ ≦ T.
First, since it is Receding Horizon control, x (t) is given as an initial value of the state quantity at τ = 0. In general, if g is given in a quadratic form, u (T, t) = 0 clearly from the principle of optimality (for example, see Non-Patent Document 6).
Therefore, as shown in the image diagram of FIG. 1, there is a relationship that the white circle is unknown and the black circle is known, and the problem of minimizing J * is to obtain x (T, t) and u (t) indicated by white circles. It becomes a boundary value problem. Here, when the change of u (τ, t) in FIG. 1 is approximated by a straight line,
Figure 2007334843
Can be described. This approximation is acceptable if T is small enough. This approximation can convert a two-point boundary value problem into an initial value problem. Substituting equation (8) into equation (3) and solving for τ finds x * (τ, t), from which x * (T, t) can be found as a function of u * (t). it can. Therefore, J * (t) in equation (7) is determined as a function of u * (t). The condition for minimizing J * (t) is obtained from the following equation.
Figure 2007334843
Here, x * (T, t) and u (t) in the equation (7) are replaced with x * (T, t) and u * (t), and are rewritten as J * (t). From this, the suboptimal control law u * opt (t) is obtained. However, the control device shall have a means for calculating the Jacobian f x from the state amount measured (t), f u (t ) and f 0 (t). In the optimization of the finite-time evaluation function like this method, the control law is meaningful unless the closed-loop system is a finite-time divergent system. Therefore, the obtained control law is not guaranteed asymptotically stable, but if an appropriate evaluation function that matches the control objective is set, it is guaranteed that the control law is the best possible control law.
The above is general theory, and it has been described on the premise that the target value is included in the variable of g in consideration of the connection to the next chapter, but the discussion up to this point applies even if the target value is not included. it can.

次に、上記一般論をDYC制御への適用しシミュレーションで確認する手法を説明する。まずこのためのシミュレーションモデルについて最初に説明する.
DYCの性能を評価するためには,車輪の運動を考慮して前後力を表現する必要があり,この目的のためにはブラシモデル(例えば、非特許文献7参照)が適している.今回の車両モデルのリアタイヤの計算例を図2に示す.
図2の特性は,横すべり角βをパラメータとして横力は2価関数の形になっているが,横力,前後力はβとスリップ比γと荷重をパラメータとしているため,βとγと荷重が定まると一意的に定まる.いずれにしても,旋回限界域におけるタイヤの状態は図2の円周付近にあり車両の運動制御の視点からみると極めて制御が難しい状況であることがわかる.このため,走行安全性を狙ったDYCの研究や実用化されたシステムではβとγを限界域の内側に入れ込む制御が広く行われている(前述の非特許文献2,3参照).車両の運動性能を高めるという目的からは,図2のタイヤの全作動域で安定性とコントロール性を維持させる制御法の研究は意味のあることと考えられるが,今までに研究例は見られない.
車両モデルは図3に示すような車体3自由度,各輪1自由度,計7自由度モデルとした.

Figure 2007334843
各輪の回転1自由度モデルは線形で特に新しさはないため,ここでは記述を省略する.各輪のタイヤ発生力Fxi,Fyiは各輪のβ,γと輪荷重からブラシモデルを用いて計算される.各輪荷重は車両の前後,横加速度から計算される.
DYCによる性能向上ポテンシャルが高いRR車の諸元を用いて具体的なDYC制御法を検討する.表1に使用したRR(後置きエンジン後輪駆動)スポーツカーの諸元を示す.
DYCモデルは,図4のようなモータで直接左右輪に互いに逆相のトルクを発生させる左右駆動力配分方式のDYCを想定する.各センサからの信号がコントローラに送られ,この出力信号でデフに組み込まれた油圧モータが駆動される.
モータトルクは左右駆動軸に互いに逆相で伝達され,エンジンによる駆動トルクに加算される.このモータトルクが,図4(b)に示すように左右タイヤに互いに逆方向の制駆動力を発生させヨーモーメントを生じさせている.モータへのトルク指令値および出カトルクをTとすると,これによる左右輪の駆動力はそれぞれ−T/r,T/rになる.これによる車両に加わる制御ヨーモーメントは,M=Ttr/rとなる.ただしrはタイヤ動半径である.Next, a method of applying the above general theory to DYC control and confirming it by simulation will be described. First, the simulation model for this purpose is explained first.
In order to evaluate the performance of DYC, it is necessary to express the longitudinal force in consideration of the wheel motion. For this purpose, a brush model (for example, see Non-Patent Document 7) is suitable. Fig. 2 shows an example of the calculation of the rear tire of this vehicle model.
The characteristics shown in Fig. 2 have a lateral slip angle β as a parameter and the lateral force is in the form of a bivalent function, but the lateral force and longitudinal force have β, slip ratio γ, and load as parameters. When is determined, it is uniquely determined. In any case, the condition of the tire in the turning limit area is near the circumference of Fig. 2, and it can be seen that it is extremely difficult to control from the viewpoint of vehicle motion control. For this reason, in DYC research aimed at driving safety and systems put into practical use, control to insert β and γ inside the limit range is widely performed (see Non-Patent Documents 2 and 3 above). For the purpose of improving vehicle motion performance, research on control methods that maintain stability and control in the entire operating range of the tire in Fig. 2 is considered meaningful, but there have been no examples of research so far. Absent.
The vehicle model is a model with three degrees of freedom as shown in Fig. 3, one degree of freedom for each wheel, and a total of seven degrees of freedom.
Figure 2007334843
Since the one-degree-of-freedom model for each wheel is linear and not particularly new, its description is omitted here. The tire generation forces F xi and F yi of each wheel are calculated from the β i and γ i of each wheel and the wheel load using a brush model. Each wheel load is calculated from the longitudinal acceleration and lateral acceleration of the vehicle.
A specific DYC control method will be examined using the specifications of an RR vehicle with high potential for performance improvement by DYC. Table 1 shows the specifications of the RR (rear engine rear wheel drive) sports car used.
The DYC model is assumed to be a left / right driving force distribution type DYC in which the motor shown in FIG. The signal from each sensor is sent to the controller, and the hydraulic motor built in the differential is driven by this output signal.
The motor torque is transmitted to the left and right drive shafts in opposite phases and added to the drive torque from the engine. As shown in FIG. 4 (b), this motor torque generates braking / driving forces in opposite directions to the left and right tires to generate a yaw moment. When the torque command value to the motor and exits the force torque and T m, respectively driving forces of the left and right wheels by which -T m / r, becomes T m / r. The control yaw moment applied to the vehicle is M c = T m I tr / r. Where r is the tire radius.

表1Table 1

続いて、制御則導出のための車両モデルの簡略化方法について述べる。図2,3に示したタイヤ・車両モデルは複雑で非線形であるが,Receding Horizon制御の評価区間Tが小さければ,この区間の中では前後車体速度Vは他の二つの状態変数に比べ変動率が小さいので定数とみなすことができる.このため,モデルを線形化できて近似解法により準最適制御則を求めることができる.

Figure 2007334843
ここで,F=Fy1+Fy2,F=Fy3+Fy4,Mは各輪の制駆動力によるヨーモーメントである.
これを図示すると図5のように簡略化されたモデルになる.
さらに評価区間T内では.スリップ比γと各輪荷重もほぼ一定,横すべり角βは変数であるが変動幅は小さいとみなすことができるため,タイヤ横力特性を図6のように線形化することができる.スリップ比γと輪荷重が定まると一つの特性曲線が定まる.横すべり角βの変動幅は小さいと作動点は図中のA点近傍で変動するため,タイヤの横力特性は次のようにβに関して線形化表示できる.
Figure 2007334843
化するが評価区間T内では定数とみなすことができる.
続いて、ヤコビアンf(t),f(t)およびfの算出法を述べる。線形近似したモデルのパラメータは実時間では刻々変化するが,評価区間0≦τ≦Tの間では,定数とみなしてf(t),f(t)およびfを求めることができる.
計測される車両状態量と前後・横加速度から,まずF ,F ,C,Cを推定する.ヨ
Figure 2007334843
速度から計算される.横速度Vは計測もしくは他の計測データから推定されるものとする.以上のデータが制御演算装置に入力される.制御演算装置は前後輪ともブラシモデルを2ヶ有し,その1つには各輪荷重,各輪横すべり角,各輪スリップ比のデータを
Figure 2007334843
=C+Cとして求める.F=Fy1+Fy2,F=Fy3+Fy4として,F ,F は式(22),(23)から逆算する.
式(20)のMは各輪の制駆動力によるヨーモーメントでありこの場合は制御入力になる.よって,Next, a vehicle model simplification method for deriving a control law will be described. While tire vehicle model shown in FIG. 2 and 3 is a complex non-linear, the smaller the evaluation interval T of Receding Horizon Control, vehicle speed V x before and after in this interval variation than the other two state variables Since the rate is small, it can be regarded as a constant. For this reason, the model can be linearized and a suboptimal control law can be obtained by an approximate solution.
Figure 2007334843
Here, F f = F y1 + F y2, F r = F y3 + F y4, M c is the yaw moment by the braking driving force of each wheel.
This is a simplified model as shown in FIG.
Furthermore, in the evaluation section T. Since the slip ratio γ and the load on each wheel are also almost constant and the side slip angle β is a variable but the fluctuation range is small, the tire lateral force characteristics can be linearized as shown in FIG. When the slip ratio γ and wheel load are determined, one characteristic curve is determined. If the fluctuation range of the side slip angle β is small, the operating point fluctuates in the vicinity of point A in the figure. Therefore, the lateral force characteristics of the tire can be displayed linearly with respect to β as follows.
Figure 2007334843
However, it can be regarded as a constant within the evaluation interval T.
Subsequently, Jacobian f x (t), describing the calculation method of the f u (t) and f 0. Although the parameters of the linearly approximated model change every moment in real time, f x (t), f u (t), and f 0 can be obtained by considering them as constants during the evaluation interval 0 ≦ τ ≦ T.
First, F f 0 , F r 0 , C f , and C r are estimated from the measured vehicle state quantity and longitudinal / lateral acceleration. Yo
Figure 2007334843
Calculated from speed. The lateral velocity V y is estimated from measurement or other measurement data. The above data is input to the control arithmetic unit. The control arithmetic unit has two brush models for both the front and rear wheels, one of which is data on each wheel load, each wheel side slip angle, and each wheel slip ratio.
Figure 2007334843
Calculate as C r = C 3 + C 4 . As F f = F y1 + F y2 and F r = F y3 + F y4 , F f 0 and F r 0 are calculated backward from equations (22) and (23).
M c in this case a yaw moment by the braking driving force of each wheel is a control input of the formula (20). Therefore,

数式24Formula 24

=u(t)

Figure 2007334843
ここで,
Figure 2007334843
非特許文献(8)では,エンジンからの駆動力を2Fとすると,図7のような制御により,図8のように前後の横すべり角がほぼ同じ値になってニュートラルステアを維持した状態で静的にバランスすることを示した.比較参考のためFR車の結果も表示している.
しかしながら,これを動的に実現するための制御法の検討は未着手であったため,本論文にて提案する手法を適用して評価を行う.M c = u (t)
Figure 2007334843
here,
Figure 2007334843
In Non-Patent Document (8), assuming that the driving force from the engine is 2F d , the front and rear side slip angles are almost the same as shown in FIG. It was shown to balance statically. The result of the FR vehicle is also displayed for comparison.
However, since the investigation of the control method to realize this dynamically has not been started, the method proposed in this paper is applied and evaluated.

次に、DYC制御問題の定式化と準最適制御則の導出法を述べる。タイヤの限界横力付近で定常旋回中(舵角固定,車速80Km/h,旋回半径60m)に1.0secの立ち上がり時間で4速フルスロットル相当の駆動力(推進軸トルク400Nm,駆動力2.3KN/1輪)を加えて加速し,その後の1.0secの時間でスロットルをもとに戻した後,一定駆動力を保持する.
状態量毎に目標値を与える.車両の横すべり角の目標値については,図8に示す横すべり角と駆動力の関係を実現するように設定する.このように大きな目標横すべり角に追従制御することはかなり難しい部類の問題であり、単純な比例制御では実現困難と予想される.
の目標値を次式で与えた.

Figure 2007334843
[rad/N]とした.Fはドライバが与える駆動力であるから,この問題の目標値はドライバから刻々与えられることになり予見はできない.
また,車両がニュートラルを維持し,外側に膨れたり(アンダステア)内側に回り込んだり(オーバステア)しないようにする目的から,初期のヨーレートを維持するように目標ヨーレートを設定した.
Figure 2007334843
ここで,車速80Km/h,旋回半径60mの初期条件より,K=0.37 rad/secとした.
式(2)の被積分関数gを次式で与える.今回のような制御対象の自由度に対して独立した制御の数が少ない場合は,次式のようにgにuを入れなくても評価関数は凸性を持つ.
Figure 2007334843
式(7)のReceding Horizon制御形式の評価関数は次式になる.
Figure 2007334843
制御問題は,時刻tにおける状態x(t)を初期値として,式(29)の評価関数を最小にする準最適制御則u opt(t)を導けということになる.
opt(t)を求めるため,2.2節の手順に従いまずx(T,t)を求める.式(3)の一般解は次式で与えられる.
Figure 2007334843
制御では計測されたx(t)がこの値になる.
式(8)を式(30)のu(τ′,t)のに代入しx(T,t)を求める.
Figure 2007334843
式(31)を式(29)に代入し,最適条件式(9)を適用しその解をu opt(t)とすれば,
Figure 2007334843
ここで,
Figure 2007334843
T=0.4secとした.
今回のように評価関数がuを陽に含まないケースでも,最適性の原理からu(T,t)=0が成立するのかという疑問が残るため,この点を明らかにする.仮に本論文において,式(29)の評価関数にTRu/2を加えて2次形式とした場合は,式(32)の分母はS +S +RとなるだけでありR→0の極限値を考えることにより,R=0の場合においても最適性の原理からu(T,t)=0の成立が確認できる.
以上で準最適制御則が定まった.次章に述べるシミュレーションにより,制御効果を評価する.比較のため,次式で表される比例制御則u(t)についてもシミュレーションを行った.
Figure 2007334843
ここで,K,Kは式(32)における対応するゲインを考慮し,かつ制御入力の大きさが同程度になるように,K=29.0,K=−154.0とした.
今回は,目標値を式(26),(27)のように旋回状態に限定して定めたが,本手法の制御則導出のプロセスから明らかなように制御則は式(32)のままで目標値を任意設定できる.従ってより広い走行条件における目標性能に合わせて目標値を設定すれば適用域を拡大することができる.
大塚敏之,非線形最適フィードバック制御のための実時間最適化手法,計測と制御,36−11(1997),776−781. 高橋安人,システムと制御(下),(1978),456,岩波書店. 安部正人,自動車の運動と制御,30−36,山海堂. 福島直人,車両の超旋回限界域におけるDYC制御法に関する研究,(第2報,後置エンジン後輪駆動車への適用),日本機械学会論文集(C偏),Vol.71,No.705(2005),171−178. Next, the formulation of the DYC control problem and the method for deriving the suboptimal control law are described. Driving force equivalent to 4-speed full throttle (propulsion shaft torque 400 Nm, driving force 2) with a rise time of 1.0 sec during steady turning (steering angle fixed, vehicle speed 80 Km / h, turning radius 60 m) near the limit lateral force of the tire. (3KN / 1 wheel) is added to accelerate, and after a period of 1.0 sec, the throttle is returned to the original position, and then a constant driving force is maintained.
A target value is given for each state quantity. The target value of the side slip angle of the vehicle is set so as to realize the relationship between the side slip angle and the driving force shown in FIG. It is quite difficult to control following such a large target slip angle, and it is expected to be difficult to achieve with simple proportional control.
the target value of x 2 was given by the following equation.
Figure 2007334843
[Rad / N]. Since F d is the driving force given by the driver, the target value of this problem is given from the driver every moment and cannot be predicted.
In addition, the target yaw rate was set to maintain the initial yaw rate in order to keep the vehicle neutral and not to swell outward (understeer) or inward (oversteer).
Figure 2007334843
Here, K a = 0.37 rad / sec based on the initial conditions of a vehicle speed of 80 Km / h and a turning radius of 60 m.
The integrand g of equation (2) is given by If the number of independent controls for the degree of freedom of the control target is small, the evaluation function has convexity even if u is not included in g as in the following equation.
Figure 2007334843
The evaluation function of the Receding Horizon control form of Equation (7) is as follows.
Figure 2007334843
The control problem is to derive a sub-optimal control law u * opt (t) that minimizes the evaluation function of Equation (29) with the state x (t) at time t as an initial value.
To find u * opt (t), first find x * (T, t) according to the procedure in section 2.2. The general solution of equation (3) is given by
Figure 2007334843
In control, the measured x (t) is this value.
Substituting Equation (8) into u (τ ′, t) in Equation (30), finds x * (T, t).
Figure 2007334843
Substituting equation (31) into equation (29), applying optimal condition equation (9), and taking the solution as u * opt (t),
Figure 2007334843
here,
Figure 2007334843
T = 0.4 sec.
Even in the case where the evaluation function does not explicitly include u as in this case, the question remains whether u (T, t) = 0 holds from the principle of optimality. In If this paper, the case of a quadratic evaluation function by adding TRu 2/2 of the formula (29), the denominator of formula (32) is only the S 1 2 + S 2 2 + R R → 0 From the principle of optimality, it can be confirmed that u (T, t) = 0 holds even when R = 0.
The sub-optimal control law has now been determined. The control effect is evaluated by the simulation described in the next section. For comparison, a simulation was also performed for the proportional control law u 0 (t) expressed by the following equation.
Figure 2007334843
Here, K 1 and K 2 are K 1 = 29.0 and K 2 = −154.0 so that the corresponding gains in the equation (32) are considered and the magnitudes of the control inputs are approximately the same. did.
This time, the target value is limited to the turning state as shown in equations (26) and (27), but the control law remains as in equation (32) as is clear from the control law derivation process of this method. Target value can be set arbitrarily. Therefore, if the target value is set according to the target performance under wider driving conditions, the applicable range can be expanded.
Toshiyuki Otsuka, Real-time Optimization Method for Nonlinear Optimal Feedback Control, Measurement and Control, 36-11 (1997), 776-781. Yasuhito Takahashi, System and Control (below), (1978), 456, Iwanami Shoten. Masato Abe, Movement and control of automobiles, 30-36, Sankaido. Naoto Fukushima, research on DYC control method in the super turning limit region of vehicles, (2nd report, application to rear engine rear wheel drive vehicle), Japan Society of Mechanical Engineers papers (C bias), Vol. 71, no. 705 (2005), 171-178.

発明の効果The invention's effect

前述の走行条件によるシミュレーションを行う.0.5<t<1.5secの間で駆動力を増加させ,1.5<t<2.5secの間で戻している.MATLAB/SIMULINKを使用し10−3secの固定ステップで4sec間のシミュレーションを行った.
シミュレーション結果を図9〜17に示す.
図9は車両軌跡を示す.制御なしでは4速フルスロットル相当の駆動力を加えたことによりアンダステアが顕著になり軌跡が外に膨れる.これに対し比例制御u(t)ではアンダステアを低減する効果はあるがやはり外に膨れている.準最適制御u opt(t)ではほぼ旋回半径60mを維持しニュートラルステアが保たれていることがわかる.
ステア特性の変化を見るのに次のような指数αを導入した.

Figure 2007334843
ここでβは各輪の横すべり角である.αが正の値なら前輪の横すべり角が大きくアンダステア,αが負なら後輪の横すべり角が大きくオーバステアになる.
図10は各条件でαの変化の様子を調べたものである.制御なしは駆動力が増した0.5<t<2.5secの間でアンダが増しその後の復元性も悪い.準最適制御はαの値が最も小さく抑えられておりニュートラルステアに近い状態が維持されている.比例制御も最初のうちはαの値が小さく抑えられているが制御の遅れがあるため図12に示すようにヨーレートにオーバシュートが生じこれが急激なアンダステアとなって現れる.
図11は次式で定義されるタイヤ発生力指数の比較を示す.
Figure 2007334843
は旋回におけるタイヤの有効活用度合いを表し,この値が大きいほど装着したタイヤのポテンシャルを引き出していると見ることができる.この評価をみても準最適制御が最も優れていることがわかる.
図12は,目標ヨーレートに対する追従性を示す.制御なしは目標横すべり角に追従しないためヨーレート変化は小さい.逆に目標横すべり角に追従するように制御するとどうしてもヨーレート変化が生じるが,準最適制御は比例制御に比べヨーレートの変動幅が小さいことがわかる.
図13は横すべり角についての追従性を比較したものである.目標値はドライバが意図した駆動力に応じて図の細い実線のように変化する.当然のことながら,制御なしは全く追従しない準最適制御は比例制御に比べ遅れが少なくオーバーシュートもなく収束が早いことがわかる.
図14は.準最適制御則と比例制御則の指令値をDYCのモータトルクに換算して示している.これより比例制御に比べ準最適制御は遅れが改善されていることが分かる.指令値の大きさも0.5kNm以下であり過大すぎず現実的なレベルに収まっている.
以上により,準最適制御が比例制御に比べて優れていることが明らかになった.式(32),(33)の比較から推測できるように,第一の要因は比例制御では定数であった制御ゲインが,準最適制御では図15に示すように車両の状況に応じて変化することによる.制御ゲインが低下する0.5<t<3.5secの間は横すべり角が増大して車両の復元性が低下しており,安定性を確保する必要性からゲインが低下しているものと考えられる.第二の要因は,準最適制御では目標値と比較する量をV(t),V(t)としており,式(32)の補足式から明らかなようにこれらは制御が無い場合のTsec先の状態量であることである.図16に示すように、状態量x(t),x(t)と比較すれば,この予測的制御により遅れが補償されていることがわかる.
一般に旋回中は後内輪荷重が減るため,DYCによって後内輪に過大な制御力を加えると空転が生じこれが性能面での拘束になっているが,RR車で大横すべり角制御を行えば後内輪のこの問題は生じない.これを確認したのが図17に示す後輪のスリップ比の結果である.旋回駆動時の後内輪のスリップ比γは最大0.3になるもののほとんどの時間帯で0.1以下に収まっていることがわかる.ここでスリップ比γとは各輪が取り付けられている部位での車体前後速度に対する各輪のスリップ速度の比である.
以上により,本手法による車両の大横すべり角制御が可能であることが確認できた.A simulation based on the above driving conditions is performed. The driving force is increased during 0.5 <t <1.5 sec and returned during 1.5 <t <2.5 sec. Using MATLAB / SIMULLINK, a simulation was performed for 4 sec with a fixed step of 10 −3 sec.
The simulation results are shown in Figs.
Figure 9 shows the vehicle trajectory. Without control, understeer becomes noticeable and the trajectory bulges out by applying a driving force equivalent to a 4-speed full throttle. On the other hand, the proportional control u n (t) has an effect of reducing understeer, but still swells outward. It can be seen that in the sub-optimal control u * opt (t), the turning radius is substantially maintained at 60 m and the neutral steer is maintained.
The following index α was introduced to see the change in the steering characteristics.
Figure 2007334843
Here, β i is the side slip angle of each wheel. If α is positive, the side slip angle of the front wheel is large and understeer, and if α is negative, the side slip angle of the rear wheel is large and oversteer.
Figure 10 shows the changes in α under each condition. Without control, under increases for 0.5 <t <2.5 seconds when the driving force increases, and the restorability after that increases. In sub-optimal control, the value of α is minimized, and a state close to neutral steer is maintained. In the proportional control, the value of α is initially kept small, but there is a delay in the control, so an overshoot occurs in the yaw rate as shown in FIG. 12, and this appears as a sudden understeer.
Fig. 11 shows a comparison of tire force index defined by the following equation.
Figure 2007334843
C c represents the degree of effective use of the tire in turning, and it can be seen that the larger the value, the more potential the tire is mounted. This evaluation shows that suboptimal control is the best.
Fig. 12 shows the followability to the target yaw rate. Without control, the yaw rate change is small because the target side slip angle is not followed. On the contrary, yaw rate changes inevitably occur when control is performed so as to follow the target side slip angle, but it can be seen that sub-optimal control has a smaller fluctuation range of yaw rate than proportional control.
Figure 13 shows a comparison of the trackability of the side slip angle. The target value changes like the thin solid line in the figure according to the driving force intended by the driver. Naturally, it can be seen that suboptimal control, which does not follow at all without control, has less delay than proportional control and converges quickly without overshoot.
FIG. The command values of the sub-optimal control law and proportional control law are converted into DYC motor torque. This shows that the delay of sub-optimal control is improved compared to proportional control. The size of the command value is 0.5kNm or less, which is not too large and is within a realistic level.
From the above, it became clear that suboptimal control is superior to proportional control. As can be inferred from the comparison of the equations (32) and (33), the first factor is that the control gain, which is a constant in the proportional control, changes according to the vehicle situation as shown in FIG. 15 in the sub-optimal control. It depends. During the period of 0.5 <t <3.5 seconds when the control gain decreases, the side slip angle increases and the vehicle's resilience decreases, and it is considered that the gain has decreased due to the need to ensure stability. It is possible. The second factor is that V 1 (t) and V 2 (t) are compared with the target values in the sub-optimal control, and as is apparent from the supplementary equation of Equation (32), these are the cases where there is no control. The state quantity is Tsec ahead. As shown in FIG. 16, when compared with the state quantities x 1 (t) and x 2 (t), it can be seen that the delay is compensated by this predictive control.
In general, the load on the rear inner ring decreases during turning, and if excessive control force is applied to the rear inner ring by DYC, slipping occurs and this imposes a constraint on performance. This problem does not occur. This was confirmed by the result of the slip ratio of the rear wheel shown in FIG. An inner ring of the slip ratio gamma 3 after the time of turn driving it can be seen that falls to 0.1 or less most of the time zone but maximized 0.3. Here, the slip ratio γ is the ratio of the slip speed of each wheel to the vehicle body longitudinal speed at the part where each wheel is attached.
From the above, it was confirmed that the large slip angle control of the vehicle by this method is possible.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

性能向上ポテンシャルが高いRR車にDYCを搭載した状況を図4に示す.操舵角センサ1、ヨーレートセンサ4、車体の前後横加速度を検出するGセンサ5および各車輪速センサ6からの信号と、エンジンコントローラ2からのスロットル角信号3がDYCコントローラ7に入る.デファレンシャルケースの中には油圧ユニット8が配置されている.油圧ユニットは、油圧モータ9、ポンプ10、制御バルブ11から成り、油圧モータで発生したトルクは差動ギア12を介して左右輪に互いに逆相のトルクとして伝達される.当然のことながら、これらのトルクとエンジンからの駆動トルクは合算され加算された最終トルクがタイヤ駆動力になっている.
左右駆動軸に互いに逆相で伝達された油圧モータトルクが,図4(b)に示すように左右タイヤに互いに逆方向の制駆動力を発生させヨーモーメントを生じさせている.モータへのトルク指令値および出力トルクをTとすると,これによる左右輪の駆動力はそれぞれ−T/r,T/rになる.これによる車両に加わる制御ヨーモーメントは,M=Ttr/rとなる.ただしrはタイヤ動半径である.
Figure 4 shows the situation where DYC is installed in an RR vehicle with high performance improvement potential. Signals from the steering angle sensor 1, the yaw rate sensor 4, the G sensor 5 that detects the longitudinal acceleration of the vehicle body and the wheel speed sensors 6, and the throttle angle signal 3 from the engine controller 2 enter the DYC controller 7. A hydraulic unit 8 is arranged in the differential case. The hydraulic unit includes a hydraulic motor 9, a pump 10, and a control valve 11, and torque generated by the hydraulic motor is transmitted to the left and right wheels through the differential gear 12 as opposite phase torques. As a matter of course, these torques and the driving torque from the engine are added together and the final torque added is the tire driving force.
The hydraulic motor torque transmitted to the left and right drive shafts in opposite phases generates a braking / driving force in opposite directions on the left and right tires as shown in FIG. Assuming that the torque command value and output torque to the motor are T m , the driving forces of the left and right wheels are −T m / r and T m / r, respectively. The control yaw moment applied to the vehicle is M c = T m I tr / r. Where r is the tire radius.

本制御手法は、非線形なシステムを実時間で制御する場合に優れた効果を発揮するため、車両の運動制御だけでなく、ロボットの制御など広く産業界で利用される可能性が高い.  Since this control method has an excellent effect when controlling a nonlinear system in real time, it is highly likely that it will be widely used not only in vehicle motion control but also in robotics.

本制御手法の概念図Conceptual diagram of this control method ブラシモデルを用いたタイヤ特性図Tire characteristics using brush model 車両モデル図Vehicle model diagram DYCシステムの構成図DYC system configuration diagram 簡易車両モデル図Simple vehicle model diagram タイヤ特性の線形化説明図Illustration of linearization of tire characteristics 非特許文献8の制御信号説明図Control signal explanatory diagram of Non-Patent Document 8 非特許文献8の横すべり角特性図Side slip angle characteristic diagram of Non-Patent Document 8 シミュレーション結果(車両軌跡比較)Simulation results (vehicle trajectory comparison) シミュレーション結果(ステア特性変化比較)Simulation results (Comparison of changes in steering characteristics) シミュレーション結果(タイヤ活用度比較)Simulation results (comparison of tire utilization) シミュレーション結果(ヨーレート比較)Simulation results (yaw rate comparison) シミュレーション結果(横すべり角比較)Simulation result (side slip angle comparison) シミュレーション結果(制御信号比較)Simulation results (control signal comparison) シミュレーション結果(制御ゲイン)Simulation result (control gain) シミュレーション結果(状態量と予測量比較)Simulation result (Comparison of state quantity and predicted quantity) シミュレーション結果(後輪スリップ比)Simulation results (rear wheel slip ratio)

符号の説明Explanation of symbols

1.操舵角センサ
2.エンジンコントローラ
3.スロットル角信号
4.ヨーレートセンサ
5.Gセンサ
6.車輪速センサ
7.DYCコントローラ
8.油圧ユニット
9.油圧モータ
10.ポンプ
11.制御バルブ
12.差動ギア
1. 1. Steering angle sensor Engine controller 3. 3. Throttle angle signal 4. Yaw rate sensor G sensor 6. 6. Wheel speed sensor DYC controller8. Hydraulic unit 9. Hydraulic motor 10. Pump 11. Control valve 12. Differential gear

Claims (2)

以下のステップで求めた制御則を一部に含むことを特徴とするシステムの最適制御方法.
非線形制御システムと最小化すべき評価関数を、現在の時間をt、仮想時間をτとしたReceding Horizon制御問題として記述し、非線形システムの状態方程式を式(101),最小化すべき評価関数を式(102)とする.
Figure 2007334843
ここでx(τ,t)∈R,u(τ,t)∈Rは仮想時間τ軸上で定義された状態変数と制御入力
Figure 2007334843
られる目標値、Tを評価区間とする.
式(101)を次のように線形化する.
Figure 2007334843
ここで,ヤコビアンf(t),f(t)とf(t)は次式で定義される.
Figure 2007334843
[数式106]f(t)=f(x(t),u(t))−f(t)x(t)−f(t)u(t)
同様に,式(102)を次のように近似する.以下,近似の場合は右肩に*印をつけて識別する.
Figure 2007334843
x(t)はτ=0における状態量の初期値として与えられる.ここでu(τ,t)の変化を次の直線で近似する。
Figure 2007334843
式(108)を式(103)に代入してこれをτについて解いてx(τ,t)を求め,これよりx(T,t)をu(t)の関数として求めることで、式(107)のJ(t)をu(t)の関数として求める.J(t)を最小化する準最適制御則を次式から求める.
Figure 2007334843
ここで,式(107)のx(T,t),u(t)をx(T,t),u(t)でおきかえたものをあらためてJ(t)としている.式(109)の偏微分の結果から準最適制御則u opt(t)を代数演算により求める.ここで,制御装置は計測された状態量からヤコビアンf(t),f(t)とf(t)を算出する手段を有する.
An optimal control method for a system characterized in that the control law obtained in the following steps is included in part.
The nonlinear control system and the evaluation function to be minimized are described as a Receding Horizon control problem where the current time is t and the virtual time is τ, the state equation of the nonlinear system is expressed by equation (101), and the evaluation function to be minimized is expressed by equation ( 102).
Figure 2007334843
Where x (τ, t) εR n and u (τ, t) εR r are state variables and control inputs defined on the virtual time τ axis.
Figure 2007334843
The target value, T, is defined as the evaluation interval.
Equation (101) is linearized as follows.
Figure 2007334843
Here, Jacobian f x (t), f u (t) and f 0 (t) is defined by the following equation.
Figure 2007334843
[Formula 106] f 0 (t) = f (x (t), u (t)) − f x (t) x (t) −f u (t) u (t)
Similarly, equation (102) is approximated as follows. In the following, approximates are identified with a * on the right shoulder.
Figure 2007334843
x (t) is given as an initial value of the state quantity at τ = 0. Here, the change of u (τ, t) is approximated by the following straight line.
Figure 2007334843
By substituting equation (108) into equation (103) and solving for τ, x * (τ, t) is obtained, and from this, x * (T, t) is obtained as a function of u * (t). J * (t) in equation (107) is obtained as a function of u * (t). The suboptimal control law that minimizes J * (t) is obtained from the following equation.
Figure 2007334843
Here, x * (T, t) and u (t) in the equation (107) are replaced with x * (T, t) and u * (t), and are rewritten as J * (t). The suboptimal control law u * opt (t) is obtained from the partial differential result of Equation (109) by algebraic calculation. Here, the control device comprises means for calculating the measured state quantity from the Jacobian f x (t), f u (t) and f 0 (t).
請求項1において、全体の一部を横成する最適制御則は以下ステップで求めた式(115)であることを特徴とする車両の制御方法.
非線形制御システムを、左右輪の駆動力制御装置付きの車両とし、車両の状態方程式を次のように線形化する。
Figure 2007334843
ここで,
Figure 2007334843
はヨーレート、xは横すべり速度である.Mは車両質量、Iはヨー慣性モーメント、
Figure 2007334843
は各々前後輪タイヤの各作動点における横すべり角の微小変化に対する横力の変化の比率、δは前輪舵角、F ,F は各々前後輪タイヤの各作動点における特性を線形近似した時の横すべり角ゼロにおける横力の値であり、式(103)との対応は次式となる.
Figure 2007334843
評価関数を、式(111)とする.
Figure 2007334843
式(107)のReceding Horizon制御形式の評価関数は次式になる.
Figure 2007334843
式(103)の一般解は次式で与えられる.
Figure 2007334843
制御では計測されたx(t)がこの値になる.
式(108)を式(113)のu(τ′,t)のに代入しx(T,t)を求める.
Figure 2007334843
式(114)を式(112)に代入し,最適条件式(109)を適用すればその解u opt(t)が次のように求まる.
Figure 2007334843
である.
2. The vehicle control method according to claim 1, wherein the optimal control law that partially forms a part of the vehicle is an expression (115) obtained in the following steps.
The nonlinear control system is a vehicle with left and right wheel driving force control devices, and the state equation of the vehicle is linearized as follows.
Figure 2007334843
here,
Figure 2007334843
x 1 is the yaw rate, x 2 is a side slip velocity. M is the vehicle mass, I z is the yaw moment of inertia,
Figure 2007334843
Is the ratio of the change in lateral force to the minute change in the side slip angle at each operating point of the front and rear wheel tires, δ is the front wheel steering angle, and F f 0 and F r 0 are linear approximations of the characteristics at the operating points of the front and rear wheel tires, respectively. This is the value of the lateral force at zero side slip angle, and the correspondence with equation (103) is as follows.
Figure 2007334843
Let the evaluation function be equation (111).
Figure 2007334843
The evaluation function of the Receding Horizon control form of Equation (107) is as follows.
Figure 2007334843
The general solution of equation (103) is given by
Figure 2007334843
In control, the measured x (t) is this value.
Substituting equation (108) into u (τ ′, t) in equation (113), find x * (T, t).
Figure 2007334843
Substituting equation (114) into equation (112) and applying optimal condition equation (109), the solution u * opt (t) is obtained as follows.
Figure 2007334843
It is.
JP2006187190A 2006-06-12 2006-06-12 Optimum control method for system Pending JP2007334843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006187190A JP2007334843A (en) 2006-06-12 2006-06-12 Optimum control method for system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187190A JP2007334843A (en) 2006-06-12 2006-06-12 Optimum control method for system

Publications (1)

Publication Number Publication Date
JP2007334843A true JP2007334843A (en) 2007-12-27

Family

ID=38934229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187190A Pending JP2007334843A (en) 2006-06-12 2006-06-12 Optimum control method for system

Country Status (1)

Country Link
JP (1) JP2007334843A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2076012A2 (en) 2007-12-26 2009-07-01 Sony Corporation Image processing device and method, and program
CN103116274A (en) * 2013-02-01 2013-05-22 浙江大学 Track optimization method for switching cannular polypropylene production marks
CN108762077A (en) * 2018-05-31 2018-11-06 浙江工业大学 A kind of mobile robot moving horizon estimation method with communication constraint
CN113359434A (en) * 2021-04-15 2021-09-07 山东师范大学 Finite time tracking control method and system for electric balance car

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2076012A2 (en) 2007-12-26 2009-07-01 Sony Corporation Image processing device and method, and program
CN103116274A (en) * 2013-02-01 2013-05-22 浙江大学 Track optimization method for switching cannular polypropylene production marks
CN108762077A (en) * 2018-05-31 2018-11-06 浙江工业大学 A kind of mobile robot moving horizon estimation method with communication constraint
CN113359434A (en) * 2021-04-15 2021-09-07 山东师范大学 Finite time tracking control method and system for electric balance car

Similar Documents

Publication Publication Date Title
JP6416574B2 (en) VEHICLE CONTROL METHOD, VEHICLE CONTROL SYSTEM, VEHICLE CONTROL DEVICE, AND CONTROL PROGRAM
JP4370605B2 (en) Vehicle control device
JP4143113B2 (en) Vehicle control device
JP4226059B2 (en) Vehicle control device
JP4143112B2 (en) Vehicle control device
CN111267835B (en) Four-wheel independent drive automobile stability control method based on model prediction algorithm
US6745112B2 (en) Method of estimating quantities that represent state of vehicle
CN112644455B (en) Distributed driving vehicle running stability control method
Kim et al. Drive control algorithm for an independent 8 in-wheel motor drive vehicle
CN104136290B (en) The turning performance estimating device of vehicle
Mashadi et al. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle
JP2016182959A (en) Motion control system of vehicle
JP5595323B2 (en) Slip angle estimation device
JP2018030582A (en) Motion control device of vehicle and motion control program
JP2007334843A (en) Optimum control method for system
JP2010195089A (en) Steering control device and method for vehicle
JP6428497B2 (en) Vehicle control device
JPH1178826A (en) Controller for assisting driving operation
Nhila et al. Integration of lane keeping assistance with steering
Riegl et al. Modeling and Validation of a Complex Vehicle Dynamics Model for Real-time Applications.
CN114684109A (en) Electric automobile yaw stability control method and device
JP2009185672A (en) Driving force controller for vehicle
JP2009275560A (en) Driving force control device of vehicle
Park Sideslip angle control of electronic-four-wheel drive vehicle using backstepping controller
JP5369039B2 (en) Vehicle motion control device