JP2007333821A - Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure - Google Patents

Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure Download PDF

Info

Publication number
JP2007333821A
JP2007333821A JP2006162987A JP2006162987A JP2007333821A JP 2007333821 A JP2007333821 A JP 2007333821A JP 2006162987 A JP2006162987 A JP 2006162987A JP 2006162987 A JP2006162987 A JP 2006162987A JP 2007333821 A JP2007333821 A JP 2007333821A
Authority
JP
Japan
Prior art keywords
optical component
adhesive
optical
hole
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006162987A
Other languages
Japanese (ja)
Inventor
Yasuo Yokota
康夫 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006162987A priority Critical patent/JP2007333821A/en
Publication of JP2007333821A publication Critical patent/JP2007333821A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the deterioration of optical characteristic caused by the change of an adhesion state by applying an adhesive to an appropriate coating position in the adhesion of an optical component. <P>SOLUTION: The optical component supporting structure 40 is equipped with a prism 1 and a supporting member 20. The prism 1 is arranged in an optical path. The supporting member 20 fixedly supports the prism 1 with the adhesive, and a through-hole 10 is formed at the spot of the supporting member 20 where the prism 1 is adhesively fixed. The prism 1 is adhesively fixed on the supporting member 20 at a position opposed to the through-hole 10 of the supporting member 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学部品支持構造、特に、光路中に配置される光学部品を接着支持する構造に関する。また、本発明は、光学部品支持構造を備える光ピックアップ装置、光学部品支持構造の製造方法に関する。   The present invention relates to an optical component support structure, and more particularly to a structure for bonding and supporting an optical component arranged in an optical path. The present invention also relates to an optical pickup device including an optical component support structure and a method for manufacturing the optical component support structure.

成形品の接着に関し、従来より様々な提案が行われている(例えば、特許文献1、特許文献2参照。)。特に、光ピックアップを構成する光学部品の接着に関しては、基台上に塗布された接着剤によって、光学部品を基台に対して接着固定する技術が知られている。これについて、図9〜図12を用いて説明する。
図9は、従来のプリズム接着工程を示す図である。図10、図11は、プリズム設置後の接着剤の形状を示す図である。
図9〜図11において、1は光学部品としてのプリズム、2は基台、3はUV接着剤(以下、接着剤)、4はプリズムの第1の移動方向、5は第2の移動方向、8は高さ位置決め用突起である。
図9に示すように、従来のプリズム接着工程では、基台2の上面に接着剤3をディスペンサで数カ所塗布し、その後、第1の移動方向4にプリズム1を降下させ、プリズム1を突起8の上に載置する。その後、第2の移動方向5に微小距離だけずらし、基台2の側面に当接させるなど、基台2の上面に沿った方向の位置決めを行う。さらに、UV光を照射し、接着剤3を硬化させ接着固定を行う。
図10、図11に示すように、従来のプリズム接着工程では、プリズム1を位置決め用突起8上に設置した段階で、プリズム1の下面には接着剤3が付着すると共に接着剤3が押しつぶされプリズム1の下面に沿った方向に広がる。さらに、プリズム1を第2の移動方向5に微小変位させた段階で、接着剤3はプリズム1の下面に沿った方向にさらに流れる。そのため、接着剤3の塗布量、塗布位置を正確に制御しないと図10のように接着剤3が隣同士くっついたり、図11のように、接着剤3がプリズム1と基台2の側面との間にはみだしたり、突起8とプリズム1の下面との間に接着層ができたりすることがしばしば発生する。
Various proposals have been made regarding the adhesion of molded articles (see, for example, Patent Document 1 and Patent Document 2). In particular, with respect to bonding of optical components constituting an optical pickup, a technique is known in which an optical component is bonded and fixed to a base with an adhesive applied on the base. This will be described with reference to FIGS.
FIG. 9 is a diagram showing a conventional prism bonding process. 10 and 11 are views showing the shape of the adhesive after the prism is installed.
9 to 11, 1 is a prism as an optical component, 2 is a base, 3 is a UV adhesive (hereinafter referred to as an adhesive), 4 is a first moving direction of the prism, 5 is a second moving direction, Reference numeral 8 denotes a height positioning projection.
As shown in FIG. 9, in the conventional prism bonding process, the adhesive 3 is applied to the upper surface of the base 2 with several dispensers, and then the prism 1 is lowered in the first moving direction 4 so that the prism 1 is protruded 8. Place on top. Thereafter, the positioning in the direction along the upper surface of the base 2 is performed, for example, shifted by a minute distance in the second moving direction 5 and brought into contact with the side surface of the base 2. Further, UV light is irradiated to cure the adhesive 3 and perform adhesive fixing.
As shown in FIGS. 10 and 11, in the conventional prism bonding process, the adhesive 3 adheres to the lower surface of the prism 1 and the adhesive 3 is crushed when the prism 1 is placed on the positioning projection 8. It spreads in the direction along the lower surface of the prism 1. Further, when the prism 1 is slightly displaced in the second moving direction 5, the adhesive 3 further flows in a direction along the lower surface of the prism 1. Therefore, if the application amount and the application position of the adhesive 3 are not accurately controlled, the adhesive 3 adheres to each other as shown in FIG. 10, or the adhesive 3 adheres to the side surfaces of the prism 1 and the base 2 as shown in FIG. It often happens that the projection protrudes between the projections 8 and an adhesive layer is formed between the protrusion 8 and the lower surface of the prism 1.

このように接着剤3の塗布状態が正確に行われない場合、例えば、温度変化などにより、図12に示すように、接着剤3の熱膨張が発生すると、この接着剤3の膨張がプリズム1を変位あるいは回転させる結果、プリズム1を通過する光軸のずれが発生し、光学系の光学特性を悪化させる。
また、このような接着状態の変化による光学特性の悪化は、接着剤3が熱膨張する場合のみならず、接着剤3が経年変化する場合にも発生する。
このような接着剤の接着状態の変化による光学特性の悪化を防止することを目的として、接着面において接着剤の逃がし孔を設け、接着面に位置する接着剤を均一な厚さにしようとする技術が提案されている(例えば、特許文献3参照。)。
しかし、このような技術であっても、接着剤の塗布量を正確に制御する必要があるという課題や、光学部品の位置決めに伴って接着剤が光学部品の側面にはみ出したりするといった課題が依然として残る。
実開平3−65217号公報 特開平7−138534号公報 特開平5−210851号公報
Thus, when the application state of the adhesive 3 is not accurately performed, for example, when thermal expansion of the adhesive 3 occurs due to a temperature change or the like as shown in FIG. As a result of displacing or rotating the optical axis, the optical axis passing through the prism 1 is displaced, which deteriorates the optical characteristics of the optical system.
Further, the deterioration of the optical characteristics due to such a change in the adhesion state occurs not only when the adhesive 3 thermally expands but also when the adhesive 3 changes over time.
In order to prevent the deterioration of the optical characteristics due to such a change in the adhesive state of the adhesive, an adhesive relief hole is provided on the adhesive surface, and the adhesive located on the adhesive surface is intended to have a uniform thickness. A technique has been proposed (see, for example, Patent Document 3).
However, even with such a technique, the problem that it is necessary to accurately control the coating amount of the adhesive and the problem that the adhesive protrudes from the side surface of the optical part as the optical part is positioned are still present. Remain.
Japanese Utility Model Publication No. 3-65217 Japanese Patent Laid-Open No. 7-138534 Japanese Patent Laid-Open No. 5-210851

そこで、本発明は、光学部品の接着において、接着剤を適切な塗布位置に塗布し、接着状態の変化による光学特性の悪化を防ぐことを目的とする。   In view of the above, an object of the present invention is to apply an adhesive at an appropriate application position in bonding of optical components to prevent deterioration of optical characteristics due to a change in the bonding state.

本発明の光学部品支持構造は、光学部品と支持部材とを備えている。光学部品は、光路中に配置される。支持部材は、光学部品を接着剤で固定支持し、光学部品との接着固定箇所に貫通孔が形成されている。光学部品は、支持部材の貫通孔に対向する位置で、支持部材に接着固定される。
本発明の光学部品支持構造では、光学部品が支持部材の貫通孔に対向する位置で支持部材に接着固定されているため、接着剤を適切な塗布位置に塗布することが可能となり、不要な位置に塗布された接着剤の接着状態の変化により光学部品の位置が変化し、光学特性が悪化することが防止可能となる。
また、本発明の光学部品支持構造では、光学部品は、支持部材の貫通孔の側面と、接着剤を介して固定される、ことが望ましい。
本発明の光学部品支持構造では、光学部品と支持部材との接着固定は、主に光学部品の支持部材の貫通孔の側面との間で行われている。光学部品と支持部材とのそれぞれの対向面の間に接着剤が位置せず、接着剤の接着状態が変化することによる光学特性の悪化が防止可能となる。
また、本発明の光学部品支持構造では、接着剤は、貫通孔の光学部品側とは反対側から注入され、光学部品と支持部材とを固定する、ことが望ましい。
The optical component support structure of the present invention includes an optical component and a support member. The optical component is disposed in the optical path. The support member fixes and supports the optical component with an adhesive, and a through-hole is formed at a position where the optical component is bonded and fixed. The optical component is bonded and fixed to the support member at a position facing the through hole of the support member.
In the optical component support structure of the present invention, since the optical component is bonded and fixed to the support member at a position facing the through hole of the support member, it is possible to apply an adhesive to an appropriate application position, and an unnecessary position. It is possible to prevent the optical properties from deteriorating due to the change in the position of the optical component due to the change in the adhesive state of the adhesive applied to the adhesive.
In the optical component support structure of the present invention, the optical component is preferably fixed to the side surface of the through hole of the support member via an adhesive.
In the optical component support structure of the present invention, the adhesive fixing between the optical component and the support member is mainly performed between the side surface of the through hole of the support member of the optical component. The adhesive is not located between the opposing surfaces of the optical component and the support member, and it is possible to prevent deterioration of optical characteristics due to a change in the adhesive state of the adhesive.
In the optical component support structure of the present invention, it is desirable that the adhesive is injected from the side opposite to the optical component side of the through hole to fix the optical component and the support member.

本発明の光学部品支持構造では、例えば、支持部材に対する光学部品の位置決めが完了した後に、接着剤を貫通孔から注入することが可能となる。このため、光学部品の位置決めに際して、塗布された接着剤が光学部品と支持部材との間で広がったり、はみ出したりすることが防止可能となり、適切な接着位置で光学部品と支持部材とを接着することが可能となる。
また、本発明の光学部品支持構造では、貫通孔の光学部品側の孔径は、光学部品側とは反対側の孔径よりも小さい、ことが望ましい。
本発明の光学部品支持構造では、貫通孔の孔径は、光学部品側の方がその反対側に比して小さい。このため、例えば、光学部品側の反対側から貫通孔に接着剤を注入する場合などに、注入が容易となる。また、貫通孔に注入された接着剤が膨張しても、接着剤は、より孔径の大きい、光学部品側の反対側に主に変位するため、接着剤の変位により光学部品の位置が変化することが防止可能となる。
また、本発明の光学部品支持構造では、貫通孔の側面は、光学部品側に向けて縮径する傾斜面を含む、ことが望ましい。
本発明の光学部品支持構造では、貫通孔の側面を例えばテーパ状に形成しているため、高温時に接着剤が熱膨張しても、接着剤の熱膨張は、光学部品とは反対面に発生するため、光学部品の位置を変化させることなく、温度変化時の光学部品の変位や回転を抑制し、光学特性の悪化を防止可能となる。
In the optical component support structure of the present invention, for example, after the positioning of the optical component with respect to the support member is completed, the adhesive can be injected from the through hole. For this reason, when the optical component is positioned, the applied adhesive can be prevented from spreading or protruding between the optical component and the support member, and the optical component and the support member are bonded at an appropriate bonding position. It becomes possible.
In the optical component support structure of the present invention, it is desirable that the hole diameter of the through hole on the optical component side is smaller than the hole diameter on the side opposite to the optical component side.
In the optical component support structure of the present invention, the hole diameter of the through hole is smaller on the optical component side than on the opposite side. For this reason, for example, when the adhesive is injected into the through hole from the side opposite to the optical component side, the injection becomes easy. Further, even if the adhesive injected into the through hole expands, the adhesive mainly displaces to the opposite side of the optical component having a larger hole diameter, so the position of the optical component changes due to the displacement of the adhesive. Can be prevented.
In the optical component support structure of the present invention, it is desirable that the side surface of the through hole includes an inclined surface that is reduced in diameter toward the optical component side.
In the optical component support structure of the present invention, since the side surface of the through hole is formed in a tapered shape, for example, even if the adhesive thermally expands at a high temperature, the thermal expansion of the adhesive occurs on the surface opposite to the optical component. Therefore, without changing the position of the optical component, the displacement and rotation of the optical component at the time of temperature change can be suppressed, and deterioration of the optical characteristics can be prevented.

また、本発明の光学部品支持構造では、支持部材は、貫通孔が形成される基台と、基台から光学部品側に突出して光学部品に当接する突起部と、を有する、ことが望ましい。
本発明の光学部品支持構造では、光学部品は、接着剤を介さずに直接突起部に当接して位置決めされる。このため、接着剤の接着状態の変化が光学部品の位置決めに影響を与えることが防止可能となり、光学部品の位置の変化による光学特性の悪化が防止可能となる。また、低温時には、接着剤が収縮し、接着剤は、光学部品を支持部材側に引き寄せる。このため、低温時には、光学部品は、より正確に高さ方向に位置決めされることになる。
本発明の光ピックアップ装置は、光ディスクに記録された信号を読み取るための光ピックアップ装置であって、光源と、光ピックアップ光学系と、受光素子とを備える。光ピックアップ光学系は、光源からの光束を光ディスクに導く。受光素子は、光ディスクからの反射光束を受光する。光ピックアップ光学系は、上述の光学部品支持構造を有している。
本発明の光ピックアップ装置は、上述の光学部品支持構造を有しているため、上述したのと同様の効果を得ることが可能となる。
本発明の光学部品支持構造の製造方法は、光路中に配置される光学部品と、光学部品を接着剤で固定支持し、光学部品との接着固定箇所に貫通孔が形成された支持部材と、を有する光学部品支持構造の製造方法である。本製造方法では、光学部品を支持部材に載置して位置決めし、貫通孔の光学部品側とは反対側から接着剤を注入し、光学部品と貫通孔の側面とを固定する。
In the optical component support structure of the present invention, it is desirable that the support member has a base on which a through hole is formed and a protrusion that protrudes from the base toward the optical component and contacts the optical component.
In the optical component support structure of the present invention, the optical component is positioned in contact with the protrusion directly without using an adhesive. For this reason, it is possible to prevent the change in the adhesive state of the adhesive from affecting the positioning of the optical component, and it is possible to prevent the deterioration of the optical characteristics due to the change in the position of the optical component. At a low temperature, the adhesive contracts, and the adhesive pulls the optical component toward the support member. For this reason, at a low temperature, the optical component is positioned more accurately in the height direction.
An optical pickup device of the present invention is an optical pickup device for reading a signal recorded on an optical disc, and includes a light source, an optical pickup optical system, and a light receiving element. The optical pickup optical system guides the light beam from the light source to the optical disk. The light receiving element receives the reflected light beam from the optical disk. The optical pickup optical system has the optical component support structure described above.
Since the optical pickup device of the present invention has the optical component support structure described above, the same effects as described above can be obtained.
The manufacturing method of the optical component support structure of the present invention includes an optical component disposed in the optical path, a support member that fixes and supports the optical component with an adhesive, and a through hole is formed at an adhesive fixing location with the optical component, It is a manufacturing method of the optical component support structure which has this. In this manufacturing method, the optical component is placed and positioned on the support member, an adhesive is injected from the opposite side of the through hole to the optical component side, and the optical component and the side surface of the through hole are fixed.

本発明の光学部品支持構造の製造方法では、支持部材に対する光学部品の位置決めが完了した後に、接着剤を貫通孔から注入するため、光学部品の位置決めに際して、塗布された接着剤が光学部品と支持部材との間で広がったり、はみ出したりすることが防止可能となり、適切な接着位置で光学部品と支持部材とを接着することが可能となる。よって、接着状態が変化しても光学特性の悪化を防ぐことが可能となる。   In the method for manufacturing an optical component support structure of the present invention, since the adhesive is injected from the through hole after the positioning of the optical component with respect to the support member is completed, the applied adhesive is supported by the optical component and the support when positioning the optical component. It is possible to prevent the optical component and the support member from being bonded to each other at an appropriate bonding position. Therefore, it is possible to prevent deterioration of the optical characteristics even if the adhesion state changes.

本発明により、光学部品の接着において、接着剤を適切な塗布位置塗布し、接着状態の変化による光学特性の悪化を防ぐことが可能となる。   According to the present invention, it is possible to prevent the deterioration of optical characteristics due to a change in the adhesive state by applying an appropriate application position in the bonding of optical components.

以下、図面を参照しながら本発明の実施形態について説明する。
(第1実施形態)
(1)光ピックアップ装置の構成
図1に、本発明の第1実施形態に係る光学部品支持構造を採用した光学機器の一例としての光ピックアップ装置の概略構成図を示す。図1に示すように、光ピックアップ装置50は、光ディスク51に記録された信号を読み取るための装置であって、主に、信号を読み取るための光束を射出するとともに光ディスク51からの反射光束を受光する半導体レーザユニット58と、半導体レーザユニット58からの光束を光ディスク51に導くとともに光ディスク51からの反射光束を半導体レーザユニット58に導く光ピックアップ光学系53とから構成されている。
半導体レーザユニット58は、例えば光源としての半導体レーザ52と、光ディスク51からの反射光を回折するホログラム59と、ホログラム59で回折された光を検出する受光素子54とから構成されている。
光ピックアップ光学系53は、例えば半導体レーザ52からの光束を略平行光に変換するコリメート光学系55と、略平行光を折り曲げるプリズムなどの反射光学系57と、反射光学系57により折り曲げられた略平行光を光ディスクの記録面上に集光させる対物光学系56とから構成されており、この光ピックアップ光学系53の少なくとも一部に光学部品支持構造40が採用されている。光学部品支持構造40以外の構成については、従来の構成と何ら変わるところがないため、詳細な説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
(1) Configuration of Optical Pickup Device FIG. 1 is a schematic configuration diagram of an optical pickup device as an example of an optical apparatus that employs the optical component support structure according to the first embodiment of the present invention. As shown in FIG. 1, an optical pickup device 50 is a device for reading a signal recorded on an optical disk 51, and mainly emits a light beam for reading a signal and receives a reflected light beam from the optical disk 51. And an optical pickup optical system 53 that guides the light flux from the semiconductor laser unit 58 to the optical disc 51 and guides the reflected light flux from the optical disc 51 to the semiconductor laser unit 58.
The semiconductor laser unit 58 includes, for example, a semiconductor laser 52 as a light source, a hologram 59 that diffracts reflected light from the optical disc 51, and a light receiving element 54 that detects light diffracted by the hologram 59.
The optical pickup optical system 53 includes, for example, a collimating optical system 55 that converts a light beam from the semiconductor laser 52 into substantially parallel light, a reflection optical system 57 such as a prism that bends substantially parallel light, and a substantially bent shape by the reflection optical system 57. An objective optical system 56 that condenses parallel light on the recording surface of the optical disk, and an optical component support structure 40 is employed in at least a part of the optical pickup optical system 53. Since the configuration other than the optical component support structure 40 is not different from the conventional configuration, detailed description thereof is omitted.

(2)光学部品支持構造について
図2を用いて光学部品支持構造40について説明する。図2は本発明の光学部品支持構造40を示す断面図であり、1はプリズム(光学部品)、2は基台、3はUV接着剤(接着剤)、8は基台2に一体あるいは別体として形成された高さ位置決め用突起(突起部)、9は接着剤注入方向およびUV照射方向、10は基台2に形成された貫通孔を示している。
プリズム1は、図1に示す反射光学系57を構成する部材であり、半導体レーザ52からの光または光ディスク51からの反射光の光路中に配置される。
基台2および突起8は、光学部品としてのプリズム1を固定支持する支持部材20を構成している。基台2には、プリズム1との接着固定箇所に貫通孔10が形成されている。突起8は、基台2からプリズム1側に突出し、プリズム1に当接する部材であり、プリズム1の基台2に対する高さ方向(矢印9で示す方向)の位置決めを行っている。
接着剤3は、貫通孔10のプリズム1側とは反対側から接着剤注入方向9に沿って注入される。
以上の構成により、光学部品支持構造40は、プリズム1を基台2の貫通孔10に対向する位置で、基台2に接着固定している。より詳しくは、光学部品支持構造40は、光学部品と貫通孔10の側面とを接着剤3を介して固定している。
(2) About optical component support structure The optical component support structure 40 is demonstrated using FIG. FIG. 2 is a cross-sectional view showing the optical component support structure 40 of the present invention. 1 is a prism (optical component), 2 is a base, 3 is a UV adhesive (adhesive), and 8 is integrated with or separate from the base 2. A height positioning projection (projection) formed as a body, 9 is an adhesive injection direction and UV irradiation direction, and 10 is a through-hole formed in the base 2.
The prism 1 is a member constituting the reflection optical system 57 shown in FIG. 1 and is disposed in the optical path of the light from the semiconductor laser 52 or the reflected light from the optical disk 51.
The base 2 and the protrusion 8 constitute a support member 20 that fixes and supports the prism 1 as an optical component. A through-hole 10 is formed in the base 2 at a location where the prism 1 is bonded and fixed. The protrusion 8 is a member that protrudes from the base 2 toward the prism 1 and contacts the prism 1, and performs positioning of the prism 1 in the height direction (direction indicated by an arrow 9) with respect to the base 2.
The adhesive 3 is injected along the adhesive injection direction 9 from the side opposite to the prism 1 side of the through hole 10.
With the above configuration, the optical component support structure 40 adheres and fixes the prism 1 to the base 2 at a position facing the through hole 10 of the base 2. More specifically, the optical component support structure 40 fixes the optical component and the side surface of the through hole 10 via the adhesive 3.

なお、貫通孔10は、基台2に少なくとも1箇所以上形成されていればよく、貫通孔10に対向する位置でプリズム1と基台2とを接着する際に、十分な強度が確保できれば、その個数および孔径の大きさはどのようなものであってもよい。図2に示す光学部品支持構造40では、基台2の3箇所に貫通孔10が設けられ、この3箇所の接着箇所でプリズム1と基台2とを固定している。
次に、光学部品支持構造40の製造方法について説明する。
光学部品支持構造40の製造に際して、まず、支持部材20が用意される。支持部材20は、貫通孔10が形成された基台2と、基台2に一体または別体として形成された突起8とから構成される。
次に、プリズム1が支持部材20に載置され、位置決めされる。位置決めでは、プリズム1を支持部材20の突起8に当接させることにより、基台2に対するプリズム1の高さ方向位置が位置決めされる。さらに、プリズム1を突起8に当接させつつ、基台2に沿った方向(矢印9で示す方向に直交する2方向)の位置決めが行われる。
次に、基台2の貫通孔10に対して、プリズム1側とは反対側から接着剤注入方向9に向かって接着剤3が注入される。この時、接着剤3は、貫通孔10からプリズム1の基台2側端面にまで達するように盛り上がっている。また、貫通孔10には、接着剤3が充填されており、貫通孔10の側面と接着剤3とは十分な接着面積で接している。さらに、UV照射方向9に向かってUV光を照射し、接着剤3を硬化させ接着固定を行う。これにより、プリズム1の貫通孔10に対向する位置は、貫通孔10に充填された接着剤3を介して、貫通孔10の側面と固定される。
In addition, the through-hole 10 should just be formed in at least 1 place or more in the base 2, and when bonding the prism 1 and the base 2 at a position facing the through-hole 10, sufficient strength can be secured, The number and the size of the hole diameter may be anything. In the optical component support structure 40 shown in FIG. 2, through holes 10 are provided at three locations on the base 2, and the prism 1 and the base 2 are fixed at the three adhesion locations.
Next, a method for manufacturing the optical component support structure 40 will be described.
When manufacturing the optical component support structure 40, first, the support member 20 is prepared. The support member 20 includes a base 2 in which the through hole 10 is formed, and a protrusion 8 that is formed on the base 2 as a single body or as a separate body.
Next, the prism 1 is placed on the support member 20 and positioned. In positioning, the height direction position of the prism 1 with respect to the base 2 is positioned by bringing the prism 1 into contact with the protrusion 8 of the support member 20. Further, positioning in the direction along the base 2 (two directions orthogonal to the direction indicated by the arrow 9) is performed while the prism 1 is brought into contact with the protrusion 8.
Next, the adhesive 3 is injected in the adhesive injection direction 9 from the side opposite to the prism 1 side into the through hole 10 of the base 2. At this time, the adhesive 3 swells so as to reach the end face of the prism 1 from the through hole 10. The through hole 10 is filled with the adhesive 3, and the side surface of the through hole 10 and the adhesive 3 are in contact with each other with a sufficient bonding area. Furthermore, UV light is irradiated toward the UV irradiation direction 9 to cure the adhesive 3 and perform adhesive fixing. Thereby, the position of the prism 1 facing the through hole 10 is fixed to the side surface of the through hole 10 via the adhesive 3 filled in the through hole 10.

従来のプリズム1の接着(例えば、図9〜図12参照)では、プリズム1と基台2とを接着させる場合、基台2の上面に接着剤を塗布した後、プリズム1を基台2上に位置決めする。具体的には、プリズム1を突起8の上に載置して基台2に対する高さ方向の位置決めを行う。さらにその後、基台2に沿った方向にプリズム1を微小移動させ、基台2に沿った方向(水平方向)の位置決めを行う。さらにその後、UV光を基台2のプリズム1側から照射させ、接着剤を硬化させる。
一方、図2に示す本発明のプリズムの接着では、プリズム1を突起8の上に載置した状態でプリズム1を水平方向に微小移動させることにより、高さ方向および水平方向の位置決めを行う。さらにその後、基台2のプリズム1側とは反対側から貫通孔10を通じて接着剤3を注入硬化する。すなわち、本発明の貫通孔10は、余分な接着剤3を逃がす目的で設けられているものではなく、接着剤3を注入する目的で設けられている。
また特許文献3に開示された技術では、プリズムと基台との接着は、基台の上面(全体)とプリズムの下面(全体)との間で行われているが、本発明では(図2参照)、基台2の貫通孔10の側面とプリズム1の下面のうち貫通孔10と対向する部分との間で行われている。
In the conventional bonding of the prism 1 (see, for example, FIGS. 9 to 12), when the prism 1 and the base 2 are bonded, an adhesive is applied to the upper surface of the base 2, and then the prism 1 is placed on the base 2. Position to. Specifically, the prism 1 is placed on the protrusion 8 and positioned in the height direction with respect to the base 2. Thereafter, the prism 1 is slightly moved in the direction along the base 2 to perform positioning in the direction (horizontal direction) along the base 2. Thereafter, UV light is irradiated from the prism 1 side of the base 2 to cure the adhesive.
On the other hand, in the bonding of the prism according to the present invention shown in FIG. 2, the prism 1 is slightly moved in the horizontal direction in a state where the prism 1 is placed on the protrusion 8, thereby positioning in the height direction and the horizontal direction. Thereafter, the adhesive 3 is injected and cured through the through hole 10 from the side opposite to the prism 1 side of the base 2. That is, the through-hole 10 of the present invention is not provided for the purpose of releasing the excess adhesive 3, but is provided for the purpose of injecting the adhesive 3.
In the technique disclosed in Patent Document 3, the adhesion between the prism and the base is performed between the upper surface (the whole) of the base and the lower surface (the whole) of the prism, but in the present invention (FIG. 2). See), between the side surface of the through hole 10 of the base 2 and the portion of the lower surface of the prism 1 facing the through hole 10.

以下、本発明の作用について説明する。
従来のように、接着剤3を塗布した後、プリズム1を移動して位置決めする場合、背景技術で述べたように接着剤3が移動し、本来付着すべきでない部位へ付着したり、接着面積がアンバランスになることがある。この結果、温度変化時に接着剤が熱膨張や収縮することにより、プリズムが変位し、光学特性が悪化するおそれがある。
一方、本発明の場合、プリズム1を位置決めした後に、所定の箇所のみに接着剤3を塗布させることができる。このため、本発明では、接着剤3が移動することが防止可能となり、必要箇所のみに接着剤3を塗布して接着固定を行うことが可能となる。
その結果、本発明では、たとえ接着剤3が温度変化しても、プリズム1の変位を抑えることが可能となる、または設計通りにプリズム1を変位させることが可能となり、光学特性の悪化を抑制することが可能となる。
また、従来のように、基台2の上面(全体)に接着剤を塗布した場合には、高温下での接着剤3の熱膨張時に、接着剤3は、プリズム1側に膨張し、プリズム1に対して、プリズム1を押し上げる方向の力を作用させる。
一方、本発明では接着剤3の下面(貫通孔10のプリズム1側とは反対側)が自由面となっているため、接着剤3は、貫通孔10の下方にも熱膨張できる。このため、接着剤3が熱膨張しても、接着剤3のプリズム1側への膨張量およびプリズム1を押し上げる方向への力を小さくすることが可能となる。またさらに、冷却時には、接着剤3が収縮することにより、プリズム1には、プリズム1を下方に引っ張る方向の力が作用する。しかし、プリズム1は、基台2に形成された突起8により支持されているため、プリズム1が変位することはない。
The operation of the present invention will be described below.
As in the prior art, when the prism 1 is moved and positioned after the adhesive 3 is applied, the adhesive 3 moves as described in the background art, and adheres to a portion that should not originally adhere, May become unbalanced. As a result, the thermal expansion and contraction of the adhesive when the temperature changes causes the prism to displace and the optical characteristics may deteriorate.
On the other hand, in the case of the present invention, after positioning the prism 1, the adhesive 3 can be applied only to a predetermined location. For this reason, in this invention, it becomes possible to prevent that the adhesive agent 3 moves, and it becomes possible to apply | coat the adhesive agent 3 only to a required location, and to perform adhesive fixation.
As a result, in the present invention, even if the temperature of the adhesive 3 changes, the displacement of the prism 1 can be suppressed, or the prism 1 can be displaced as designed, and the deterioration of optical characteristics is suppressed. It becomes possible to do.
Further, when an adhesive is applied to the upper surface (whole) of the base 2 as in the prior art, the adhesive 3 expands toward the prism 1 when the adhesive 3 is thermally expanded at a high temperature. A force in the direction of pushing up the prism 1 is applied to 1.
On the other hand, since the lower surface of the adhesive 3 (the side opposite to the prism 1 side of the through hole 10) is a free surface in the present invention, the adhesive 3 can also thermally expand below the through hole 10. For this reason, even if the adhesive 3 is thermally expanded, the amount of expansion of the adhesive 3 toward the prism 1 and the force in the direction of pushing up the prism 1 can be reduced. Furthermore, during the cooling, the adhesive 3 contracts, so that a force in a direction of pulling the prism 1 downward acts on the prism 1. However, since the prism 1 is supported by the protrusions 8 formed on the base 2, the prism 1 is not displaced.

また、本発明では、プリズム1は、接着剤3を介さず、支持部材20(具体的には、突起8)に直接当接して支持されている。このため、接着剤3の膨張や収縮による変位が直接プリズム1に作用しにくく、光学特性を維持することが可能となっている。
(第2実施形態)
図3に本発明の第2実施形態としての光学部品支持構造40aを示す。図3は本発明の光学部品支持構造40aを示す断面図であり、1はプリズム(光学部品)、2は基台、3はUV接着剤(接着剤)、8は基台2に一体あるいは別体として形成された高さ位置決め用突起(突起部)、10aは基台2に形成された貫通孔である。
本発明が第1実施形態と異なるのは、貫通孔10aに段差部7が形成されている点である。これにより、貫通孔10aのプリズム1側の孔径は、プリズム1側とは反対側の孔径よりも小さくなっている。本構成により、貫通孔10aに対してプリズム1側とは反対側からのディスペンサでの樹脂の注入(接着剤の注入)が容易となり、貫通孔10aの周囲における接着剤の不要な付着が少なくなる。
(第3実施形態)
図4〜図8に本発明の第3実施形態としての光学部品支持構造40bを示す。図4は本発明の光学部品支持構造40bを示す断面図であり、1はプリズム(光学部品)、2は基台、3はUV接着剤(接着剤)、8は基台2に一体あるいは別体として形成された高さ位置決め用突起(突起部)、10bは基台2に形成された貫通孔、11は貫通孔10bの側面に形成されたテーパ(傾斜面)である。テーパ11は、テーパ角度θを有するように形成されている。
In the present invention, the prism 1 is supported by directly contacting the support member 20 (specifically, the protrusion 8) without using the adhesive 3. For this reason, the displacement due to expansion or contraction of the adhesive 3 does not directly act on the prism 1, and the optical characteristics can be maintained.
(Second Embodiment)
FIG. 3 shows an optical component support structure 40a as a second embodiment of the present invention. FIG. 3 is a cross-sectional view showing the optical component support structure 40a of the present invention, wherein 1 is a prism (optical component), 2 is a base, 3 is a UV adhesive (adhesive), and 8 is integrated with or separate from the base 2. Height positioning protrusions (protrusions) 10 a formed as a body are through holes formed in the base 2.
The present invention is different from the first embodiment in that a step 7 is formed in the through hole 10a. Thereby, the hole diameter by the side of the prism 1 of the through-hole 10a is smaller than the hole diameter by the side opposite to the prism 1 side. With this configuration, it becomes easy to inject resin (injection of adhesive) with a dispenser from the side opposite to the prism 1 side with respect to the through hole 10a, and unnecessary adhesion of the adhesive around the through hole 10a is reduced. .
(Third embodiment)
4 to 8 show an optical component support structure 40b as a third embodiment of the present invention. FIG. 4 is a cross-sectional view showing the optical component support structure 40b of the present invention, wherein 1 is a prism (optical component), 2 is a base, 3 is a UV adhesive (adhesive), and 8 is integrated with or separate from the base 2. The height positioning projections (projections) 10b formed as a body are through holes formed in the base 2, and 11 is a taper (inclined surface) formed on the side surface of the through hole 10b. The taper 11 is formed to have a taper angle θ.

本発明が従来技術および第1実施形態と異なるのは、貫通孔10bの側面に、プリズム1側に向けて縮径するテーパが設けられている点である。これにより、貫通孔10bのプリズム1側の孔径は、プリズム1側とは反対側の孔径よりも小さくなっている。
図5〜図8を用いて、光学部品支持構造40bの作用および効果について説明する。
図5を用いて、光学部品支持構造40bにおける高温時の接着剤3の熱膨張について説明する。
第1実施形態においても説明したように、本発明では、接着剤3が貫通孔に充填されており、接着剤3の下面(プリズム1側とは反対側の面)が自由面となっている。このため、接着剤3が熱膨張しても、接着剤3は下方に膨張することが可能であり、接着剤3の熱膨張がプリズム1を押し上げる方向に与える影響が小さくなる。
また、本発明では、貫通孔10bの側面にテーパ11を設けている。これにより、接着剤3が熱膨張する時には、接着剤3は、図5の矢印6で示す方向に熱膨張する。すなわち、接着剤3は、熱膨張する時に、テーパ11の作用によりプリズム1とは反対側に向かって主に変位する。このため、プリズム1側への変位が抑制される。
図6と図7とを用いて、本発明のテーパ11の効果について説明する。ここでは、テーパ角度θを異ならせた貫通孔10bを有するそれぞれの基台2において、温度を25℃から100℃まで上昇させた場合の接着剤3の上方向(プリズム1側)への熱膨張量(L1)と下方向(プリズム1側とは反対側)への熱膨張量(L2)とを有限要素法による数値解析で求めた。
The present invention differs from the prior art and the first embodiment in that a taper that reduces the diameter toward the prism 1 is provided on the side surface of the through hole 10b. Thereby, the hole diameter by the side of the prism 1 of the through-hole 10b is smaller than the hole diameter by the side opposite to the prism 1 side.
The operation and effect of the optical component support structure 40b will be described with reference to FIGS.
The thermal expansion of the adhesive 3 at the time of high temperature in the optical component support structure 40b will be described with reference to FIG.
As described in the first embodiment, in the present invention, the adhesive 3 is filled in the through holes, and the lower surface of the adhesive 3 (the surface opposite to the prism 1 side) is a free surface. . For this reason, even if the adhesive 3 is thermally expanded, the adhesive 3 can expand downward, and the influence of the thermal expansion of the adhesive 3 on the direction in which the prism 1 is pushed up is reduced.
In the present invention, the taper 11 is provided on the side surface of the through hole 10b. Thus, when the adhesive 3 is thermally expanded, the adhesive 3 is thermally expanded in the direction indicated by the arrow 6 in FIG. That is, the adhesive 3 is mainly displaced toward the side opposite to the prism 1 by the action of the taper 11 when thermally expanding. For this reason, the displacement to the prism 1 side is suppressed.
The effect of the taper 11 of the present invention will be described with reference to FIGS. Here, in each base 2 having the through holes 10b with different taper angles θ, the thermal expansion of the adhesive 3 upward (on the prism 1 side) when the temperature is increased from 25 ° C. to 100 ° C. The amount (L1) and the amount of thermal expansion (L2) in the downward direction (on the opposite side to the prism 1 side) were determined by numerical analysis using the finite element method.

図6に数値解析に用いたパラメータを示す。基台2としては、テーパ角度θを90度,60度,45度,30度とした4つのモデル(Model No.1〜4)を用いている。なお、それぞれのモデルでは、貫通孔10bのプリズム1側の孔径を所定の孔径φに固定し、基台2の厚みを2mmとしている。接着剤3としては、エポキシ系接着剤を想定し、熱膨張率50PPMを用いている。
図7に数値解析の結果を示す。図7に示すように、テーパ角度θが小さくなるほど、すなわち、貫通孔10bの上部の孔径(プリズム1側の孔径)に対する下部の孔径(プリズム1側とは反対側の孔径)の割合が大きくなるほど、接着剤3の下方向への熱膨張が大きくなる一方、上方向への熱膨張が小さくなる。これは、下方向に向くテーパ11により、上方向への熱膨張力が抑制され、下方向への熱膨張が促進されるためである。
このように、本発明では、テーパ11により、接着剤3の上方向への熱膨張を抑制することが可能となる。特に、テーパ角度θが、例えば、30度,45度,60度であれば、接着剤3の上方向への熱膨張を抑制することができると言える。この結果、接着剤3がプリズム1を上方向へ押し上げることによりプリズム1が変位することが防止でき、光学特性の悪化を防ぐことができる。
FIG. 6 shows parameters used for the numerical analysis. As the base 2, four models (Model Nos. 1 to 4) having a taper angle θ of 90 degrees, 60 degrees, 45 degrees, and 30 degrees are used. In each model, the diameter of the through hole 10b on the prism 1 side is fixed to a predetermined diameter φ, and the thickness of the base 2 is 2 mm. As the adhesive 3, an epoxy adhesive is assumed, and a thermal expansion coefficient of 50 PPM is used.
FIG. 7 shows the result of numerical analysis. As shown in FIG. 7, as the taper angle θ decreases, that is, as the ratio of the lower hole diameter (hole diameter opposite to the prism 1 side) to the upper hole diameter (hole diameter on the prism 1 side) of the through hole 10b increases. The thermal expansion in the downward direction of the adhesive 3 increases, while the thermal expansion in the upward direction decreases. This is because the downward thermal expansion force is suppressed by the downward taper 11 and the downward thermal expansion is promoted.
Thus, in the present invention, the taper 11 can suppress the upward thermal expansion of the adhesive 3. In particular, if the taper angle θ is, for example, 30 degrees, 45 degrees, or 60 degrees, it can be said that the upward thermal expansion of the adhesive 3 can be suppressed. As a result, it is possible to prevent the prism 1 from being displaced by the adhesive 3 pushing the prism 1 upward, and to prevent deterioration of the optical characteristics.

図8を用いて、低温時における光学部品支持構造40bの接着剤3に働く応力および接着剤3の挙動を説明する。
上述のように、光学部品支持構造40bでは、プリズム1と突起8との間には、接着層が介在しない。また、冷却時においては、接着剤3はプリズム1の下面を基台2側に引っ張るように収縮する。このため、冷却時においては、突起8によるプリズム1の位置決めがより強固なものとなり、位置ずれを起こす可能性は少なく、安定した光学特性を得ることが可能となる。
なお、光学部品支持構造40aと同様、本実施形態の光学部品支持構造40bにおいても、貫通孔10bのプリズム1側とは反対側の孔径は、プリズム1側の孔径よりも大きくなっている。このため、貫通孔10bに対してプリズム1側とは反対側からのディスペンサでの樹脂の注入(接着剤の注入)が容易となり、貫通孔10の周囲における接着剤の不要な付着が少なくなる。
また本実施形態では基台2の全厚みに対して貫通孔10bの側面にテーパを設ける構造としたが、図3において段差部7よりもプリズム1側に示したように、プリズム1側の孔径がプリズム1側とは反対側の孔径よりも小さく、所定の厚みで同一の孔径を有する貫通孔部を設けた二段形状としても良い。即ち、図3の段差部7よりもプリズム1側とは反対側の貫通孔をテーパ形状を有する貫通孔としても良い。
The stress acting on the adhesive 3 of the optical component support structure 40b and the behavior of the adhesive 3 will be described with reference to FIG.
As described above, no adhesive layer is interposed between the prism 1 and the protrusion 8 in the optical component support structure 40b. Further, during cooling, the adhesive 3 contracts so as to pull the lower surface of the prism 1 toward the base 2 side. For this reason, at the time of cooling, the positioning of the prism 1 by the protrusion 8 becomes stronger, and there is little possibility of causing a positional shift, and stable optical characteristics can be obtained.
Similar to the optical component support structure 40a, in the optical component support structure 40b of the present embodiment, the hole diameter on the opposite side of the through hole 10b from the prism 1 side is larger than the hole diameter on the prism 1 side. For this reason, it is easy to inject resin (injection of adhesive) with a dispenser from the side opposite to the prism 1 side with respect to the through hole 10b, and unnecessary adhesion of the adhesive around the through hole 10 is reduced.
Further, in this embodiment, the side surface of the through hole 10b is tapered with respect to the entire thickness of the base 2, but the hole diameter on the prism 1 side as shown in FIG. Is smaller than the hole diameter on the side opposite to the prism 1 side, and may have a two-stage shape provided with through holes having a predetermined thickness and the same hole diameter. That is, the through hole on the side opposite to the prism 1 side from the stepped portion 7 in FIG. 3 may be a through hole having a tapered shape.

本発明は、DVD等の光ピックアップの光学部品の光学部品支持構造に関するものであり、光学部品の接着において、接着剤を適切な塗布位置塗布し、接着状態の変化による光学特性の悪化を防ぐことが求められる分野において有用である。   The present invention relates to an optical component support structure for an optical component of an optical pickup such as a DVD, and in the bonding of an optical component, an adhesive is applied at an appropriate application position to prevent deterioration of optical characteristics due to a change in the adhesion state. It is useful in the field where is required.

第1実施形態に係る光学部品支持構造を採用した光ピックアップ装置の概略構成図1 is a schematic configuration diagram of an optical pickup device employing an optical component support structure according to a first embodiment. 第1実施形態に係る光学部品支持構造を示す断面図Sectional drawing which shows the optical component support structure which concerns on 1st Embodiment. 第2実施形態に係る光学部品支持構造を示す断面図Sectional drawing which shows the optical component support structure which concerns on 2nd Embodiment. 第3実施形態に係る光学部品支持構造を示す断面図Sectional drawing which shows the optical component support structure which concerns on 3rd Embodiment. 第3実施形態に係る光学部品支持構造の高温時における接着剤の熱膨張状態を示す断面図Sectional drawing which shows the thermal expansion state of the adhesive agent at the time of the high temperature of the optical component support structure which concerns on 3rd Embodiment. 第3実施形態に係る光学部品支持構造の効果を検証するための数値解析モデルNumerical analysis model for verifying the effect of the optical component support structure according to the third embodiment 第3実施形態に係る光学部品支持構造の効果を示す数値解析結果Numerical analysis results showing the effect of the optical component support structure according to the third embodiment 第3実施形態に係る光学部品支持構造の低温時における接着剤の収縮状態を示す断面図Sectional drawing which shows the contraction state of the adhesive agent at the time of the low temperature of the optical component support structure which concerns on 3rd Embodiment. 従来の接着工程および接着剤塗布状態を示す図The figure which shows the conventional adhesion process and adhesive application state 従来の接着工程における接着後の第1の接着剤状態を示す説明図Explanatory drawing which shows the 1st adhesive agent state after adhesion | attachment in the conventional adhesion process. 従来の接着工程における接着後の第2の接着剤状態を示す説明図Explanatory drawing which shows the 2nd adhesive agent state after adhesion | attachment in the conventional adhesion process. 従来の接着工程において高温時の接着剤の熱膨張状態を示す説明図Explanatory drawing which shows the thermal expansion state of the adhesive agent at the time of high temperature in the conventional adhesion process

符号の説明Explanation of symbols

1 プリズム
2 基台
3 UV接着剤
7 段差部
8 突起
10,10a,10b 貫通孔
11 テーパ
20 支持部材
40,40a,40b 光学部品支持構造

DESCRIPTION OF SYMBOLS 1 Prism 2 Base 3 UV adhesive 7 Step part 8 Protrusion 10, 10a, 10b Through-hole 11 Taper 20 Support member 40, 40a, 40b Optical component support structure

Claims (8)

光路中に配置される光学部品と、
前記光学部品を接着剤で固定支持し、前記光学部品との接着固定箇所に貫通孔が形成された支持部材と、
を備え、
前記光学部品は、前記支持部材の前記貫通孔に対向する位置で、前記支持部材に接着固定される、
光学部品支持構造。
Optical components placed in the optical path;
The optical component is fixed and supported with an adhesive, and a support member in which a through hole is formed at an adhesive fixing location with the optical component;
With
The optical component is bonded and fixed to the support member at a position facing the through hole of the support member.
Optical component support structure.
前記光学部品は、前記支持部材の前記貫通孔の側面と、前記接着剤を介して固定される、
請求項1に記載の光学部品支持構造。
The optical component is fixed to the side surface of the through hole of the support member via the adhesive.
The optical component support structure according to claim 1.
前記接着剤は、前記貫通孔の前記光学部品側とは反対側から注入され、前記光学部品と前記支持部材とを固定する、
請求項1または2に記載の光学部品支持構造。
The adhesive is injected from the side opposite to the optical component side of the through hole, and fixes the optical component and the support member.
The optical component support structure according to claim 1 or 2.
前記貫通孔の前記光学部品側の孔径は、前記光学部品側とは反対側の孔径よりも小さい、
請求項1〜3のいずれか1項に記載の光学部品支持構造。
The hole diameter on the optical component side of the through hole is smaller than the hole diameter on the side opposite to the optical component side,
The optical component support structure according to claim 1.
前記貫通孔の側面は、前記光学部品側に向けて縮径する傾斜面を含む、
請求項1〜4のいずれか1項に記載の光学部品支持構造。
The side surface of the through hole includes an inclined surface that decreases in diameter toward the optical component side.
The optical component support structure of any one of Claims 1-4.
前記支持部材は、前記貫通孔が形成される基台と、前記基台から前記光学部品側に突出して前記光学部品に当接する突起部と、を有する、
請求項1〜5のいずれか1項に記載の光学部品支持構造。
The support member includes a base on which the through-hole is formed, and a protrusion that protrudes from the base toward the optical component and contacts the optical component.
The optical component support structure according to any one of claims 1 to 5.
光ディスクに記録された信号を読み取るための光ピックアップ装置であって、
光源と、
前記光源からの光束を前記光ディスクに導く光ピックアップ光学系と、
前記光ディスクからの反射光束を受光する受光素子とを備え、
前記光ピックアップ光学系は、請求項1〜6のいずれか1項に記載の光学部品支持構造を有している、
光ピックアップ装置。
An optical pickup device for reading a signal recorded on an optical disc,
A light source;
An optical pickup optical system for guiding a light beam from the light source to the optical disc;
A light receiving element for receiving a reflected light beam from the optical disc,
The optical pickup optical system has the optical component support structure according to any one of claims 1 to 6.
Optical pickup device.
光路中に配置される光学部品と、前記光学部品を接着剤で固定支持し、前記光学部品との接着固定箇所に貫通孔が形成された支持部材と、を有する光学部品支持構造の製造方法であって、
前記光学部品を前記支持部材に載置して位置決めし、
前記貫通孔の前記光学部品側とは反対側から接着剤を注入し、前記光学部品と前記貫通孔の側面とを固定する、
光学部品支持構造の製造方法。

An optical component support structure comprising: an optical component disposed in an optical path; and a support member that fixes and supports the optical component with an adhesive and has a through-hole formed in an adhesive fixing position with the optical component. There,
Placing and positioning the optical component on the support member;
Injecting adhesive from the side opposite to the optical component side of the through hole, and fixing the optical component and the side surface of the through hole,
Manufacturing method of optical component support structure.

JP2006162987A 2006-06-13 2006-06-13 Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure Withdrawn JP2007333821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162987A JP2007333821A (en) 2006-06-13 2006-06-13 Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162987A JP2007333821A (en) 2006-06-13 2006-06-13 Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure

Publications (1)

Publication Number Publication Date
JP2007333821A true JP2007333821A (en) 2007-12-27

Family

ID=38933381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162987A Withdrawn JP2007333821A (en) 2006-06-13 2006-06-13 Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure

Country Status (1)

Country Link
JP (1) JP2007333821A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059443A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Adhesion fixing structure of optical element, method of adhesion fixing of optical element, optical scanner and image forming apparatus
JP2012146363A (en) * 2011-01-12 2012-08-02 Hitachi Media Electoronics Co Ltd Optical pickup device and bonding method of optical component
US20120307619A1 (en) * 2011-05-30 2012-12-06 Hitachi Media Electronics Co., Ltd. Optical pickup device
WO2017169114A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Light source device, image display device, and optical unit
JP2019120843A (en) * 2018-01-10 2019-07-22 カシオ計算機株式会社 Optical device, projection device, and method for manufacturing optical device
JP2020065314A (en) * 2018-10-15 2020-04-23 北陸電気工業株式会社 Vibration type power generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059443A (en) * 2009-09-10 2011-03-24 Ricoh Co Ltd Adhesion fixing structure of optical element, method of adhesion fixing of optical element, optical scanner and image forming apparatus
JP2012146363A (en) * 2011-01-12 2012-08-02 Hitachi Media Electoronics Co Ltd Optical pickup device and bonding method of optical component
US20120307619A1 (en) * 2011-05-30 2012-12-06 Hitachi Media Electronics Co., Ltd. Optical pickup device
WO2017169114A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Light source device, image display device, and optical unit
JPWO2017169114A1 (en) * 2016-03-31 2019-02-14 ソニー株式会社 Light source device, image display device, and optical unit
US10976649B2 (en) 2016-03-31 2021-04-13 Sony Corporation Light source apparatus, image display apparatus, and optical unit
JP2021192102A (en) * 2016-03-31 2021-12-16 ソニーグループ株式会社 Light source device, image display device, and optical unit
JP7127723B2 (en) 2016-03-31 2022-08-30 ソニーグループ株式会社 Light source device, image display device, and optical unit
JP2019120843A (en) * 2018-01-10 2019-07-22 カシオ計算機株式会社 Optical device, projection device, and method for manufacturing optical device
JP7169517B2 (en) 2018-01-10 2022-11-11 カシオ計算機株式会社 Optical device, projection device, and method for manufacturing optical device
JP2020065314A (en) * 2018-10-15 2020-04-23 北陸電気工業株式会社 Vibration type power generator

Similar Documents

Publication Publication Date Title
JP2007333821A (en) Optical component supporting structure, optical pickup device, and method for manufacturing optical component supporting structure
JP5396138B2 (en) Suspension for disk device and method for manufacturing the same
JP4278364B2 (en) Actuator for pickup device
JP2008203587A (en) Fixing structure of optical element
JP4744631B2 (en) Lens fixing device and optical pickup device
EP1887574B1 (en) Method of manufacturing an objective lens actuator and an optical pickup device
JP2006338811A (en) Optical pickup and its adjusting device
JP4046666B2 (en) Optical head device and method of manufacturing optical head device
JP2007334951A (en) Optical pickup and optical disk device
JP3552046B2 (en) Mounting method of sensor in pickup head and pickup head
JP4934645B2 (en) Optical pickup device and manufacturing method thereof
JP2009146523A (en) Light receiving unit and its manufacturing method, optical pickup device, and electronic apparatus
JP2009283021A (en) Optical apparatus
JP2008097771A (en) Optical pickup device
US7274633B2 (en) Optical pickup
CN101751948B (en) Optical pickup device and method for manufacturing the same
JP2006099875A (en) Positioning fixed structure for beam shaping prism
US9076494B2 (en) Optical pick up including protrusion portion to position optical element
JP4458009B2 (en) Optical unit manufacturing method and optical unit
JP4697173B2 (en) Optical pickup
JP2014002817A (en) Adhesion structure of optical element, adhesion method and optical pickup device
JP2005044398A (en) Optical head device and manufacturing method therefor
JP2007264160A (en) Method for adjusting tilt of optical component, and optical unit manufacturing method
JP2010097666A (en) Optical pickup
JP2011003234A (en) Optical pickup and holder for optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091201