JP2007333329A - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP2007333329A
JP2007333329A JP2006167196A JP2006167196A JP2007333329A JP 2007333329 A JP2007333329 A JP 2007333329A JP 2006167196 A JP2006167196 A JP 2006167196A JP 2006167196 A JP2006167196 A JP 2006167196A JP 2007333329 A JP2007333329 A JP 2007333329A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
supercooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167196A
Other languages
Japanese (ja)
Inventor
Motohiro Suzuki
基啓 鈴木
Takehiro Maruyama
剛広 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006167196A priority Critical patent/JP2007333329A/en
Publication of JP2007333329A publication Critical patent/JP2007333329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the heat stored in a heat storage part can not be used at high efficiency, when the heat at predetermined temperature (for example, 42°C) or higher is tapped for hot water supply usage. <P>SOLUTION: This heat storage device is provided with a heat storage part laminating a plurality of heat storage vessels 1 filled with heat storage material of main component of latent heat heat storage material, a first heat exchange part 4 of a heat storage part and a heating medium heating the heat storage part, and a second heat exchange part 5 of a heat storage part and a heat absorbing medium absorbing heat from the heat storage part. Temperature of the heat storage material of the heat storage vessel 1 close to an inlet part of heat absorbing medium at a time of supercooling is lower than temperature of the heat storage material of the heat storage vessel 1 close to an outlet part of heat absorbing medium at a time of supercooling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蓄熱部に貯蔵された熱を高い効率で利用できる蓄熱装置に関する。   The present invention relates to a heat storage device that can use heat stored in a heat storage unit with high efficiency.

従来から、例えば特許文献1に開示されているように、熱源部の熱を蓄熱部に一旦蓄熱し、この蓄熱部の熱を熱媒体により利用側に供給する蓄熱装置が知られている。この蓄熱装置は、蓄熱材が充填された蓄熱部に熱交換部を設け、この熱交換部の伝熱管に熱媒体としての水を通し、熱媒体により加熱された水を利用側に供給する給湯器等に利用されている。また、蓄熱部の蓄熱材としては、蓄熱量を多く確保するため、潜熱蓄熱材を利用したものが良く検討されている。さらに、給湯用の潜熱蓄熱材としては、酢酸ナトリウム・3水和物が良く検討されている。   2. Description of the Related Art Conventionally, as disclosed in Patent Document 1, for example, a heat storage device is known in which heat of a heat source unit is temporarily stored in a heat storage unit and the heat of the heat storage unit is supplied to a user side by a heat medium. This heat storage device is provided with a heat exchanging part in a heat accumulating part filled with a heat accumulating material, passing water as a heat medium through a heat transfer tube of the heat exchanging part, and supplying water heated by the heat medium to the use side It is used for vessels. Moreover, as a heat storage material of the heat storage unit, in order to secure a large amount of heat storage, a material using a latent heat storage material has been well studied. Furthermore, sodium acetate trihydrate has been well studied as a latent heat storage material for hot water supply.

また、酢酸ナトリウム・3水和物を用いる場合、例えば特許文献2に開示されているように、炭酸ナトリウム・1水和物、ピロリン酸ナトリウム・10水和物、臭素酸バリウム・1水和物、硫酸カルシウム・2水和物、ピロリン酸2水素ナトリウム・6水和物、酢酸第2鉄、塩化第1鉄、塩化第2鉄、塩化カルシウム、臭化カルシウム、塩化第2銅、酒石酸カルシウム、燐酸水素2ナトリウム・12水和塩、燐酸3ナトリウム・12水和塩、フッ化物等の過冷却防止剤を添加するのが一般的である。
特開2001−207163号公報 特開平8−60141号公報
When sodium acetate trihydrate is used, for example, as disclosed in Patent Document 2, sodium carbonate monohydrate, sodium pyrophosphate decahydrate, barium bromate monohydrate , Calcium sulfate dihydrate, sodium dihydrogen pyrophosphate hexahydrate, ferric acetate, ferrous chloride, ferric chloride, calcium chloride, calcium bromide, cupric chloride, calcium tartrate, It is common to add an anti-cooling agent such as disodium hydrogen phosphate / 12 hydrate, trisodium phosphate / 12 hydrate, and fluoride.
JP 2001-207163 A JP-A-8-60141

しかしながら、給湯用途で所定温度(例えば、42℃)以上の熱を取出す場合に、蓄熱部の上部に多くの熱量が残るため、取出し熱量が減少し、蓄熱部に貯蔵された熱を高い効率で利用できないという課題があった。   However, when extracting heat at a predetermined temperature (for example, 42 ° C.) or more in hot water supply applications, a large amount of heat remains in the upper part of the heat storage unit, so the amount of heat extracted decreases and the heat stored in the heat storage unit is highly efficient. There was a problem that it could not be used.

本発明は、上述の課題を解決する蓄熱装置を提供することを目的としている。   An object of the present invention is to provide a heat storage device that solves the above-described problems.

上述した課題を解決するため、本発明の蓄熱装置では、潜熱蓄熱材を含む複数の蓄熱容器を有する蓄熱部と、
前記蓄熱材を加熱する加熱媒体と前記蓄熱材とが熱交換するように、前記加熱媒体が流通する第1の熱交換部と、
前記蓄熱材から吸熱する吸熱媒体と前記蓄熱材とが熱交換するように、前記吸熱媒体が流通し、前記吸熱媒体の入口部と出口部を有する第2の熱交換部とを備え、
前記吸熱媒体の入口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度が、前記吸熱媒体の出口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度より低い。
In order to solve the problems described above, in the heat storage device of the present invention, a heat storage unit having a plurality of heat storage containers including a latent heat storage material,
A first heat exchanging portion through which the heating medium flows so that the heating medium for heating the heat storage material and the heat storage material exchange heat;
The heat absorption medium circulates so that the heat absorption medium that absorbs heat from the heat storage material and the heat storage material exchange heat, and includes a second heat exchange section having an inlet portion and an outlet portion of the heat absorption medium,
The temperature at the time of supercooling of the heat storage material of the heat storage container near the inlet portion of the heat absorption medium is lower than the temperature at the time of supercooling of the heat storage material of the heat storage container near the outlet portion of the heat absorption medium.

より望ましい構成においては、前記吸熱媒体の入口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度が、20℃以下である。   In a more desirable configuration, the temperature at the time of supercooling the heat storage material of the heat storage container close to the inlet portion of the heat absorbing medium is 20 ° C. or less.

また、本発明の別の蓄熱装置においては、潜熱蓄熱材と過冷却防止剤を含む複数の蓄熱容器を有する蓄熱部と、
前記蓄熱材を加熱する加熱媒体と前記蓄熱材とが熱交換するように、前記加熱媒体が流通する第1の熱交換部と、
前記蓄熱材から吸熱する吸熱媒体と前記蓄熱材とが熱交換するように、前記吸熱媒体が
流通し、前記吸熱媒体の入口部と出口部を有する第2の熱交換部とを備え、
前記吸熱媒体の入口部に近い前記蓄熱容器の過冷却防止剤の濃度が、前記吸熱媒体の出口部に近い前記蓄熱容器の過冷却防止剤の濃度より低い。
Moreover, in another heat storage device of the present invention, a heat storage unit having a plurality of heat storage containers including a latent heat storage material and a supercooling inhibitor,
A first heat exchanging portion through which the heating medium flows so that the heating medium for heating the heat storage material and the heat storage material exchange heat;
The heat absorption medium circulates so that the heat absorption medium that absorbs heat from the heat storage material and the heat storage material exchange heat, and includes a second heat exchange section having an inlet portion and an outlet portion of the heat absorption medium,
The concentration of the supercooling inhibitor in the heat storage container near the inlet portion of the heat absorbing medium is lower than the concentration of the supercooling inhibitor in the heat storage container near the outlet portion of the heat absorbing medium.

より望ましくは、前記吸熱媒体が給湯用の水であり、前記蓄熱材中の潜熱蓄熱材が酢酸ナトリウム・3水和物である。   More preferably, the heat absorbing medium is water for hot water supply, and the latent heat storage material in the heat storage material is sodium acetate trihydrate.

本発明の蓄熱装置は、給湯用途で所定温度(例えば、42℃)以上の熱を取出す場合に、上部に配置した蓄熱材から取出し熱量を増加することができるため、蓄熱部に貯蔵された熱を高い効率で利用できる。   Since the heat storage device of the present invention can increase the amount of heat extracted from the heat storage material arranged at the top when taking out heat at a predetermined temperature (for example, 42 ° C.) or more for hot water supply, the heat stored in the heat storage unit Can be used with high efficiency.

以下、本発明の実施の形態について、図面を参照しながら説明する。ただし、従来から広く採用されている公知の手段については、詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, detailed descriptions of known means that have been widely employed are omitted.

(実施の形態1)
図1は、本実施の形態1にかかる蓄熱装置の構成図である。蓄熱容器1は、6箇所に蓄熱材を充填できる構成となっており、上から5箇所には第1の蓄熱材2、1番下には第2の蓄熱材3を充填している。また、蓄熱容器1の壁を介して、一方には加熱媒体と蓄熱材との熱交換を行う第1の熱交換部4、他方には吸熱媒体と蓄熱材との熱交換を行う第2の熱交換部5を設けている。さらに、加熱媒体を加熱する熱源部として、圧縮機6、放熱器7、膨張弁8、蒸発器9から構成されるヒートポンプサイクルを設けている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat storage device according to the first embodiment. The heat storage container 1 is configured to be able to be filled with a heat storage material at six locations. The first heat storage material 2 is filled at five locations from the top, and the second heat storage material 3 is filled at the bottom. Further, through the wall of the heat storage container 1, the first heat exchange unit 4 that performs heat exchange between the heating medium and the heat storage material is performed on one side, and the second that performs heat exchange between the heat absorption medium and the heat storage material on the other side. A heat exchange unit 5 is provided. Further, a heat pump cycle including a compressor 6, a radiator 7, an expansion valve 8, and an evaporator 9 is provided as a heat source unit for heating the heating medium.

なお、蓄熱容器1の材質は銅であり、蓄熱材を充填する側の面にはスズめっきが施されている。また、第1の熱交換部4、第2の熱交換部5ともに銅板で囲まれた箱型の構造である。また、吸熱媒体としては給湯用の水を用いている。また、ヒートポンプサイクルの冷媒として、給湯用途に適した二酸化炭素を用いている。また、第1の蓄熱材2、第2の蓄熱材3とも、主成分は酢酸ナトリウム・3水和物であり、過冷却防止剤とし、燐酸3ナトリウム・12水和物を含んでいる。第1の蓄熱材2中の過冷却防止剤の濃度が、第2の蓄熱材3中の過冷却防止剤の濃度より低くなっている。   The material of the heat storage container 1 is copper, and the surface on the side where the heat storage material is filled is plated with tin. The first heat exchange unit 4 and the second heat exchange unit 5 are both box-shaped structures surrounded by copper plates. Moreover, water for hot water supply is used as the heat absorption medium. In addition, carbon dioxide suitable for hot water supply is used as a refrigerant for the heat pump cycle. Moreover, the main component of both the first heat storage material 2 and the second heat storage material 3 is sodium acetate trihydrate, which is a supercooling inhibitor and contains trisodium phosphate 12 hydrate. The concentration of the supercooling inhibitor in the first heat storage material 2 is lower than the concentration of the supercooling inhibitor in the second heat storage material 3.

次に、本実施の形態1にかかる蓄熱装置の動作について説明する。蓄熱時には、加熱媒体は実線の矢印Aで示す方向に流動する。放熱器7において、高温、高圧となった冷媒と加熱媒体との間で熱交換が行われ、加熱された加熱媒体は第1の熱交換部4の上側から流入し、第1の蓄熱材2、第2の蓄熱材3の順に加熱した後、下側から流出し、再び冷媒との熱交換を行うサイクルとして流動する。また、放熱時には、吸熱媒体は破線の矢印Bで示す方向に流動し、吸熱媒体が第2の熱交換部5の下側から流入し、第2の蓄熱材3、第1の蓄熱材2の順に吸熱した後、上側から流出し、給湯等の用途に供せられる。   Next, operation | movement of the thermal storage apparatus concerning this Embodiment 1 is demonstrated. During heat storage, the heating medium flows in the direction indicated by the solid arrow A. In the radiator 7, heat exchange is performed between the high-temperature and high-pressure refrigerant and the heating medium, and the heated heating medium flows in from the upper side of the first heat exchange unit 4, and the first heat storage material 2. Then, after heating in the order of the second heat storage material 3, it flows out from the lower side and flows as a cycle in which heat exchange with the refrigerant is performed again. Further, at the time of heat dissipation, the heat absorption medium flows in the direction indicated by the broken-line arrow B, the heat absorption medium flows in from the lower side of the second heat exchange unit 5, and the second heat storage material 3 and the first heat storage material 2 After absorbing heat sequentially, it flows out from the upper side and is used for applications such as hot water supply.

図2に、潜熱蓄熱材に添加した過冷却防止剤の重量濃度による過冷却解除温度に対する影響を示す。これは、潜熱蓄熱材として硫酸ナトリウム・10水和物、過冷却防止剤として四ホウ酸ナトリウム・10水和物を用い、過冷却防止剤の濃度を変化させた場合の結果である。図2では、過冷却防止剤の重量濃度が0.22%以上においては、過冷却解除温度は約25℃とほぼ一定であり、過冷却防止剤の重量濃度が0.1%以下では、過冷却解除温度が急速に低下している。過冷却防止剤の重量濃度と過冷却解除温度の関係は、蓄熱容器の大きさ等の諸条件により変わるため、定量的な議論は困難であるが、発核が過冷却防止剤を起点として、温度の関数とするある確率で発生するため、定性的には、このように過冷却防止剤の重量濃度が低いと過冷却解除温度が低くなる傾向があることは明確である。この傾向は、酢酸ナトリウム・3水和物でも同様である
図3に、第1の蓄熱材2、第2の蓄熱材3に酢酸ナトリウム・3水和物を用い、過冷却防止剤の濃度を等しくした比較例における放熱時の各部温度の時間変化(解析結果)を示す。ここで、条件は、第1の蓄熱材2、第2の蓄熱材3の厚み:6mm、第2の熱交換部5の厚み:2mm、吸熱媒体の流速:0.006m/sec、蓄熱装置の高さ:900mm、放熱開始時の温度:80℃、吸熱媒体の第2の熱交換部への入口温度:9℃としている。図に示すように、下部に配置した第2の蓄熱材3から吸熱媒体に放熱して温度が低下していき、次第に上部に配置した第1の蓄熱材2も同様に吸熱媒体に放熱して温度が低下していく。このとき、第1の蓄熱材2、第2の蓄熱材3ともに過冷却を生じることなく、凝固を開始する。
In FIG. 2, the influence with respect to the supercooling cancellation | release temperature by the weight concentration of the supercooling inhibitor added to the latent heat storage material is shown. This is the result of changing the concentration of the supercooling inhibitor using sodium sulfate decahydrate as the latent heat storage material and sodium tetraborate decahydrate as the supercooling inhibitor. In FIG. 2, when the weight concentration of the supercooling inhibitor is 0.22% or more, the supercooling release temperature is substantially constant at about 25 ° C., and when the weight concentration of the supercooling inhibitor is 0.1% or less, The cooling release temperature is rapidly decreasing. Since the relationship between the weight concentration of the supercooling inhibitor and the supercooling release temperature varies depending on various conditions such as the size of the heat storage container, quantitative discussion is difficult, but nucleation starts from the supercooling inhibitor. Since it occurs with a certain probability as a function of temperature, qualitatively, it is clear that when the weight concentration of the supercooling inhibitor is low, the supercooling release temperature tends to be low. This tendency is the same for sodium acetate trihydrate. In FIG. 3, sodium acetate trihydrate is used for the first heat storage material 2 and the second heat storage material 3, and the concentration of the supercooling inhibitor is increased. The time change (analysis result) of each part temperature at the time of heat dissipation in the comparative example made equal is shown. Here, the conditions are: the thickness of the first heat storage material 2 and the second heat storage material 3: 6 mm, the thickness of the second heat exchange part 5: 2 mm, the flow rate of the heat absorption medium: 0.006 m / sec, The height is 900 mm, the temperature at the start of heat radiation is 80 ° C., and the inlet temperature of the heat absorbing medium to the second heat exchange part is 9 ° C. As shown in the figure, the temperature is lowered by radiating heat from the second heat storage material 3 arranged at the lower part to the heat absorption medium, and the first heat storage material 2 arranged at the upper part gradually radiates heat to the heat absorption medium as well. The temperature decreases. At this time, the first heat storage material 2 and the second heat storage material 3 start to solidify without causing overcooling.

図4に、本発明の実施の形態1における放熱時の各部温度の時間変化(解析結果)を示す。ここで、条件は図3と同様である。図4に示すように、下部に配置した第2の蓄熱材3から吸熱媒体に放熱して温度が低下していき、次第に上部に配置した第1の蓄熱材2も同様に吸熱媒体に放熱して温度が低下していく。このとき、第2の蓄熱材3は58℃の融点から約40℃過冷却した後、凝固を開始する。   FIG. 4 shows a time change (analysis result) of each part temperature at the time of heat dissipation in Embodiment 1 of the present invention. Here, the conditions are the same as in FIG. As shown in FIG. 4, the temperature of the second heat storage material 3 disposed in the lower part is radiated to the heat absorption medium and the temperature is lowered, and the first heat storage material 2 disposed in the upper part gradually radiates to the heat absorption medium as well. Temperature decreases. At this time, the second heat storage material 3 starts to solidify after being supercooled by about 40 ° C. from the melting point of 58 ° C.

比較例に対する本発明の実施の形態1の効果を明確にするため、図5に本発明の実施の形態1における過冷却時の温度による給湯温度42℃以上での出湯時間に対する影響(第1の蓄熱材2の過冷却なし、解析結果)を示す。図5は、第1の蓄熱材2と第2の蓄熱材3の過冷却防止剤の濃度を等しくした比較例(いずれも過冷却なし)を基準として、第2の蓄熱材3の過冷却防止材の濃度を低くし、第2の蓄熱材3のみ過冷却する場合について、出湯時間の伸び率を第2の蓄熱材3に対して表している。ここで、第1の蓄熱材2と第2の蓄熱材3のいずれもが過冷却しない場合の出湯効率(=出湯熱量/第1の蓄熱材2と第2の蓄熱材3の最大熱容量)は85%である。このように、第2の蓄熱材3の過冷却時の温度が低くなると、出湯時間の伸び率は大きくなる傾向を示しており、特に第2の蓄熱材3の過冷却時の温度20℃以下でこの傾向が顕著となる。   In order to clarify the effect of the first embodiment of the present invention on the comparative example, FIG. 5 shows the influence on the hot water discharge time at the hot water supply temperature of 42 ° C. or higher due to the temperature at the time of supercooling in the first embodiment of the present invention. No overcooling of the heat storage material 2, analysis results). FIG. 5 shows the prevention of overcooling of the second heat storage material 3 on the basis of a comparative example in which the concentrations of the supercooling prevention agents of the first heat storage material 2 and the second heat storage material 3 are equal (both are not overcooled). In the case where the concentration of the material is lowered and only the second heat storage material 3 is supercooled, the elongating rate of the tapping time is expressed with respect to the second heat storage material 3. Here, the hot water efficiency when both the first heat storage material 2 and the second heat storage material 3 are not supercooled (= the amount of discharged heat / the maximum heat capacity of the first heat storage material 2 and the second heat storage material 3) is as follows. 85%. Thus, when the temperature at the time of supercooling of the 2nd heat storage material 3 becomes low, the elongation rate of the tapping time tends to become large, and the temperature at the time of supercooling of the 2nd heat storage material 3 is 20 degrees C or less especially. This tendency becomes remarkable.

この理由を明確にするため、図6に、比較例(第1の蓄熱材2と第2の蓄熱材3のいずれも過冷却なし)と本発明の実施の形態1(過冷却度40deg.)における放熱時に給湯温度(吸熱媒体の取出し温度)が42℃まで低下した時点での第1の蓄熱材2、第2の蓄熱材3の保有熱量(解析結果)を示す。このように、本発明の実施の形態1では、比較例と比較して、上部に配置した第1の蓄熱材2の保有熱量が低下しており、取出し熱量が増加し、蓄熱装置に貯蔵した熱を高い効率で利用することができる。これは、第2の蓄熱材3において過冷却が生じている間に第1の蓄熱材2から吸熱媒体がより多くの熱量を吸熱しているためであると考えられる。   In order to clarify the reason, FIG. 6 shows a comparative example (both the first heat storage material 2 and the second heat storage material 3 are not supercooled) and the first embodiment of the present invention (supercooling degree 40 deg.). The amount of heat retained by the first heat storage material 2 and the second heat storage material 3 (analysis result) when the hot water supply temperature (the temperature at which the endothermic medium is taken out) is reduced to 42 ° C. during heat dissipation in FIG. Thus, in Embodiment 1 of this invention, compared with a comparative example, the heat storage amount of the 1st heat storage material 2 arrange | positioned at the upper part has fallen, the taking-out heat amount increased, and it stored in the heat storage apparatus. Heat can be used with high efficiency. This is considered to be because the heat absorbing medium absorbs a larger amount of heat from the first heat storage material 2 while the second heat storage material 3 is undercooling.

図7に本発明の実施の形態1における過冷却時の温度による給湯温度42℃以上での出湯時間に対する影響(第1の蓄熱材2の過冷却あり、解析結果)を示す。図7は、第1の蓄熱材2と第2の蓄熱材3の過冷却防止剤の濃度を等しくした比較例(いずれも過冷却あり)を基準として、第2の蓄熱材3の過冷却防止材の濃度を低くし、第2の蓄熱材3の過冷却度を大きくする場合について、出湯時間の伸び率を比較例に対して表している。図5および図7から、第1の蓄熱材2の過冷却時の温度が出湯温度より高い場合に、第2の蓄熱材3の過冷却防止剤の濃度を第1の蓄熱材2より高くしたことによる出湯時間の伸びが現れている。また、第1の蓄熱材2の過冷却時の温度が出湯温度以上であれば、いずれも第2の蓄熱材3の過冷却時の温度20℃以下でこの傾向が顕著となる。   FIG. 7 shows the influence of the temperature at the time of supercooling in the first embodiment of the present invention on the hot water discharge time at a hot water supply temperature of 42 ° C. or higher (the first heat storage material 2 is supercooled and the analysis result). FIG. 7 shows the prevention of overcooling of the second heat storage material 3 on the basis of a comparative example in which the concentrations of the anticooling agents of the first heat storage material 2 and the second heat storage material 3 are equal (both are overcooled). About the case where the density | concentration of material is made low and the supercooling degree of the 2nd thermal storage material 3 is enlarged, the elongation rate of the hot water discharge time is represented with respect to the comparative example. From FIG. 5 and FIG. 7, when the temperature at the time of supercooling of the 1st heat storage material 2 is higher than a tapping temperature, the density | concentration of the supercooling inhibitor of the 2nd heat storage material 3 was made higher than the 1st heat storage material 2. There is an increase in the hot spring time. In addition, if the temperature at the time of supercooling of the first heat storage material 2 is equal to or higher than the tapping temperature, this tendency becomes significant at a temperature of 20 ° C. or less at the time of supercooling the second heat storage material 3.

なお、本発明の実施の形態1では、蓄熱容器1、第1の熱交換部4、第2の熱交換部5を各々1つずつ配置しているが、図7に示すように、複数の蓄熱容器1、第1の熱交換部4、第2の熱交換部5を水平方向に積層した構成としても良く、図1の構成と同様の効果が得られる。   In addition, in Embodiment 1 of this invention, although the heat storage container 1, the 1st heat exchange part 4, and the 2nd heat exchange part 5 are each arrange | positioned one each, as shown in FIG. It is good also as a structure which laminated | stacked the thermal storage container 1, the 1st heat exchange part 4, and the 2nd heat exchange part 5 in the horizontal direction, and the effect similar to the structure of FIG. 1 is acquired.

また、蓄熱時にヒートポンプサイクルの凝縮器7で冷媒との熱交換を行った加熱媒体を第1の熱交換部4に流入させたが、図8に示すように、凝縮器7と第1の熱交換部4を共用し、第1の熱交換部4に直接冷媒を流入させて、第1の蓄熱材2、第2の蓄熱材3を加熱する構成としても良く、図1の構成と同様の効果が得られる。   Moreover, although the heating medium which heat-exchanged with the refrigerant | coolant with the condenser 7 of the heat pump cycle was flowed into the 1st heat exchange part 4 at the time of heat storage, as shown in FIG. It is good also as a structure which shares the exchange part 4, makes a refrigerant | coolant flow directly into the 1st heat exchange part 4, and heats the 1st heat storage material 2 and the 2nd heat storage material 3, and is the same as the structure of FIG. An effect is obtained.

また、本実施の形態1では、加熱媒体、蓄熱媒体の流動方向を鉛直方向としているが、図9に示すように、仕切り板11を設けて、流動方向を水平方向としても良く、図1の構成と同様の効果が得られる。   In the first embodiment, the flow direction of the heating medium and the heat storage medium is the vertical direction. However, as shown in FIG. 9, the partition plate 11 may be provided and the flow direction may be the horizontal direction. The same effect as the configuration can be obtained.

また、第1の蓄熱材2、第2の蓄熱材3ともに、酢酸ナトリウム・3水和物に燐酸3ナトリウム・12水和物を添加している。しかし、暖房等の用途に利用する場合には、潜熱蓄熱材の融点は58℃より低くても十分である。   Further, in both the first heat storage material 2 and the second heat storage material 3, trisodium phosphate dodecahydrate is added to sodium acetate trihydrate. However, when used for applications such as heating, it is sufficient that the melting point of the latent heat storage material is lower than 58 ° C.

また、過冷却防止剤としては、燐酸3ナトリウム・12水和物を用いているが、炭酸ナトリウム・1水和物、ピロリン酸ナトリウム・10水和物、臭素酸バリウム・1水和物、硫酸カルシウム・2水和物、ピロリン酸2水素ナトリウム・6水和物、酢酸第2鉄、塩化第1鉄、塩化第2鉄、塩化カルシウム、臭化カルシウム、塩化第2銅、酒石酸カルシウム、燐酸水素2ナトリウム・12水和物、フッ化リチウム等のフッ化物、四ホウ酸ナトリウム・水和物、塩化ナトリウム、硫酸ナトリウム物等を用いても良い。さらに、潜熱蓄熱材と過冷却防止剤以外にも増粘剤を添加しても良い。   As the supercooling preventive agent, trisodium phosphate 12 hydrate is used, but sodium carbonate monohydrate, sodium pyrophosphate decahydrate, barium bromate monohydrate, sulfuric acid Calcium dihydrate, sodium dihydrogen pyrophosphate hexahydrate, ferric acetate, ferrous chloride, ferric chloride, calcium chloride, calcium bromide, cupric chloride, calcium tartrate, hydrogen phosphate Fluoride such as disodium · 12 hydrate and lithium fluoride, sodium tetraborate · hydrate, sodium chloride, sodium sulfate and the like may be used. Further, a thickener may be added in addition to the latent heat storage material and the supercooling preventive agent.

さらに、蓄熱容器1に6箇所蓄熱材を充填できる構成とし、過冷却防止剤の重量濃度が低い第2の蓄熱材3をそのうち1箇所に充填しているが、吸熱媒体の流速、第1の蓄熱材2、第2の蓄熱材3の厚み、第2の熱交換部5の厚み、蓄熱装置の高さ等の条件により変わるため、この構成に限定されるものではなく、最適な性能を得るように任意に選定することができる。また、過冷却防止剤の重量濃度も2種類だけでなくても良く、下部に配置した蓄熱材中の過冷却防止剤の重量濃度と上部に配置した蓄熱材中の過冷却防止剤の重量濃度との間に勾配をつけておいても良い。   Furthermore, it is set as the structure which can be filled with the heat storage container 1 in six places, and the 2nd heat storage material 3 with low weight concentration of a supercooling prevention agent is filled in one place among them, but the flow rate of a heat absorption medium, the 1st Since it changes with conditions, such as the thickness of the thermal storage material 2 and the 2nd thermal storage material 3, the thickness of the 2nd heat exchange part 5, the height of a thermal storage apparatus, it is not limited to this structure and obtains optimal performance. As such, it can be arbitrarily selected. Moreover, the weight concentration of the supercooling preventive agent is not limited to two types. The weight concentration of the supercooling preventive agent in the heat storage material arranged at the lower portion and the weight concentration of the supercooling preventive agent in the heat storage material arranged at the upper portion. You may leave a gradient between

本発明にかかる蓄熱装置およびこれを用いた蓄熱装置は家庭用の給湯機用途に展開できるが、必ずしもこれに限定されるものではなく、家庭用の暖房用途や産業用の排熱の貯蔵等にも展開することができる。   The heat storage device according to the present invention and the heat storage device using the heat storage device can be developed for household water heater applications, but are not necessarily limited to this, for household heating applications, industrial waste heat storage, etc. Can also be deployed.

本発明の実施の形態1における蓄熱装置の構成図Configuration diagram of heat storage device in Embodiment 1 of the present invention 潜熱蓄熱材に添加した過冷却防止剤の重量濃度による過冷却解除温度に対する影響を表す図The figure showing the influence on the supercooling release temperature by the weight concentration of the supercooling inhibitor added to the latent heat storage material 第1の蓄熱材2、第2の蓄熱材3に酢酸ナトリウム・3水和物を用いた比較例における放熱時の各部温度の時間変化(解析結果)を表す図The figure showing the time change (analysis result) of each part temperature at the time of heat dissipation in the comparative example which used sodium acetate trihydrate for the 1st heat storage material 2 and the 2nd heat storage material 3. 本発明の実施の形態1における放熱時の各部温度の時間変化(解析結果)を表す図The figure showing the time change (analysis result) of each part temperature at the time of heat dissipation in Embodiment 1 of this invention 本発明の実施の形態1における過冷却時の温度による給湯温度42℃以上での出湯時間に対する影響(第1の蓄熱材2の過冷却なし、解析結果)を表す図The figure showing the influence (no overcooling of the 1st heat storage material 2, an analysis result) with respect to the hot water time in the hot water supply temperature of 42 degreeC or more by the temperature at the time of supercooling in Embodiment 1 of this invention 比較例と本発明の実施の形態1(過冷却度40deg.)における放熱時に給湯温度が42℃まで低下した時点での第1の蓄熱材2、第2の蓄熱材3の保有熱量(解析結果)を表す図Heat quantity (analysis result) of the first heat storage material 2 and the second heat storage material 3 at the time when the hot water supply temperature is reduced to 42 ° C. during heat radiation in the comparative example and Embodiment 1 of the present invention (supercooling degree 40 deg.) ) 本発明の実施の形態1における過冷却時の温度による給湯温度42℃以上での出湯時間に対する影響(第1の蓄熱材2の過冷却あり、解析結果)を表す図The figure showing the influence (with the 1st heat storage material 2 being overcooled and an analysis result) with respect to the hot water discharge time in the hot water supply temperature of 42 degreeC or more by the temperature at the time of supercooling in Embodiment 1 of this invention 本発明の実施の形態1を改良した蓄熱装置の構成図Configuration diagram of heat storage device improved from Embodiment 1 of the present invention 本発明の実施の形態1を改良した蓄熱装置の構成図Configuration diagram of heat storage device improved from Embodiment 1 of the present invention

符号の説明Explanation of symbols

1 蓄熱容器
2 第1の蓄熱材
3 第2の蓄熱材
4 第1の熱交換部
5 第2の熱交換部
6 圧縮機
7 放熱器
8 膨張弁
9 蒸発器
10 共用熱交換部
11 仕切り板
DESCRIPTION OF SYMBOLS 1 Heat storage container 2 1st heat storage material 3 2nd heat storage material 4 1st heat exchange part 5 2nd heat exchange part 6 Compressor 7 Radiator 8 Expansion valve 9 Evaporator 10 Common heat exchange part 11 Partition plate

Claims (4)

潜熱蓄熱材を含む複数の蓄熱容器を有する蓄熱部と、
前記蓄熱材を加熱する加熱媒体と前記蓄熱材とが熱交換するように、前記加熱媒体が流通する第1の熱交換部と、
前記蓄熱材から吸熱する吸熱媒体と前記蓄熱材とが熱交換するように、前記吸熱媒体が流通し、前記吸熱媒体の入口部と出口部を有する第2の熱交換部とを備え、
前記吸熱媒体の入口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度が、前記吸熱媒体の出口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度より低い蓄熱装置。
A heat storage section having a plurality of heat storage containers including a latent heat storage material;
A first heat exchanging portion through which the heating medium flows so that the heating medium for heating the heat storage material and the heat storage material exchange heat;
The heat absorption medium circulates so that the heat absorption medium that absorbs heat from the heat storage material and the heat storage material exchange heat, and includes a second heat exchange section having an inlet portion and an outlet portion of the heat absorption medium,
The heat storage device in which the temperature at the time of supercooling of the heat storage material of the heat storage container near the inlet portion of the heat absorption medium is lower than the temperature at the time of supercooling of the heat storage material of the heat storage container near the outlet portion of the heat absorption medium.
潜熱蓄熱材と過冷却防止剤を含む複数の蓄熱容器を有する蓄熱部と、
前記蓄熱材を加熱する加熱媒体と前記蓄熱材とが熱交換するように、前記加熱媒体が流通する第1の熱交換部と、
前記蓄熱材から吸熱する吸熱媒体と前記蓄熱材とが熱交換するように、前記吸熱媒体が流通し、前記吸熱媒体の入口部と出口部を有する第2の熱交換部とを備え、
前記吸熱媒体の入口部に近い前記蓄熱容器の過冷却防止剤の濃度が、前記吸熱媒体の出口部に近い前記蓄熱容器の過冷却防止剤の濃度より低い蓄熱装置。
A heat storage section having a plurality of heat storage containers including a latent heat storage material and a supercooling inhibitor;
A first heat exchanging portion through which the heating medium flows so that the heating medium for heating the heat storage material and the heat storage material exchange heat;
The heat absorption medium circulates so that the heat absorption medium that absorbs heat from the heat storage material and the heat storage material exchange heat, and includes a second heat exchange section having an inlet portion and an outlet portion of the heat absorption medium,
A heat storage device in which the concentration of the supercooling inhibitor in the heat storage container near the inlet portion of the heat absorbing medium is lower than the concentration of the supercooling inhibitor in the heat storage container near the outlet portion of the heat absorbing medium.
前記吸熱媒体が水であり、前記蓄熱材中の潜熱蓄熱材が酢酸ナトリウム・3水和物である請求項1または2に記載の蓄熱装置。   The heat storage device according to claim 1 or 2, wherein the heat absorption medium is water, and the latent heat storage material in the heat storage material is sodium acetate trihydrate. 前記吸熱媒体の入口部に近い前記蓄熱容器の蓄熱材の過冷却時の温度が、20℃以下である請求項1に記載の蓄熱装置。 2. The heat storage device according to claim 1, wherein the temperature of the heat storage material in the heat storage container close to the inlet portion of the heat absorption medium is 20 ° C. or less during supercooling.
JP2006167196A 2006-06-16 2006-06-16 Heat storage device Pending JP2007333329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167196A JP2007333329A (en) 2006-06-16 2006-06-16 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167196A JP2007333329A (en) 2006-06-16 2006-06-16 Heat storage device

Publications (1)

Publication Number Publication Date
JP2007333329A true JP2007333329A (en) 2007-12-27

Family

ID=38932961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167196A Pending JP2007333329A (en) 2006-06-16 2006-06-16 Heat storage device

Country Status (1)

Country Link
JP (1) JP2007333329A (en)

Similar Documents

Publication Publication Date Title
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
JP2008020177A (en) Heat storage system
JP4377963B2 (en) Chemical heat storage device
JP6099461B2 (en) Waste heat storage air-conditioning heat source system using chemical heat storage
WO2001038802A1 (en) Absorption refrigerating machine
JP5531334B2 (en) Chemical heat pump container
EP3837484A1 (en) Thermal accumulator containing a pcm, and refrigerated container equiped with said thermal accumulator
JP2010223537A (en) Heat pump hot water supply system
JP2008190738A (en) Heat storage device
JP2003232563A (en) Thermal storage hot water supply apparatus
JP2007254697A (en) Latent heat accumulation material
JP2007333329A (en) Heat storage device
JP4752618B2 (en) Heat storage system
CN207702782U (en) Refrigerant heating device and air conditioner
JP2003232595A (en) Thermal storage device
JPH08152162A (en) Internally melting type ice heat storage tank
GB2498850A (en) Heat exchanger
CN106973553A (en) A kind of pressure-oil tank with liquid cooling heat-exchanger
JP2004108761A (en) Heat storage tank, heat storage system and heating or cooling method
US11466189B2 (en) Absorption cycle apparatus and related method
JP2010025364A (en) Heat storage device and heat storage unit
JP2930917B2 (en) Cold water supply device
JP2014119209A (en) Absorption type freezer and refrigeration system
JP2007101168A (en) Heat exchanger device
JP2012167892A (en) Heat storage method and system