JP2007333161A - Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing - Google Patents

Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing Download PDF

Info

Publication number
JP2007333161A
JP2007333161A JP2006167900A JP2006167900A JP2007333161A JP 2007333161 A JP2007333161 A JP 2007333161A JP 2006167900 A JP2006167900 A JP 2006167900A JP 2006167900 A JP2006167900 A JP 2006167900A JP 2007333161 A JP2007333161 A JP 2007333161A
Authority
JP
Japan
Prior art keywords
outer ring
ring raceway
self
spherical
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006167900A
Other languages
Japanese (ja)
Inventor
Sachiko Noji
祥子 野地
Hiroki Mizuno
浩樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006167900A priority Critical patent/JP2007333161A/en
Publication of JP2007333161A publication Critical patent/JP2007333161A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/54Surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which acquires a structure for suppressing sufficiently friction and heat generation by skew of each spherical roller 3, 3. <P>SOLUTION: Processing conditions for forming an outer ring raceway 5 is determined as follows, and the outer ring raceway 5 is formed depending on the processing conditions. First of all, a range of a friction coefficient between the outer ring raceway 5 and the rolling face of each spherical roller 3, 3, capable of suppressing sufficiently friction and heat generation by skew is set. Then, a range of a load surface ratio at the height of an oil film thickness is set from the range of the friction coefficient and the oil film thickness anticipated from operation conditions. A processing condition for acquiring the surface shape having a three-dimensional load curve passing the set range is determined. Hereby, the friction coefficient of the outer ring raceway 5 is set surely within a desired range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明に係る自動調心ころ軸受は、例えばハウジングの内側に回転軸を支承する為に、製紙機械、金属の圧延機等、各種産業機械装置のロール等の回転支持部に組み込んだ状態で使用する。   The self-aligning roller bearing according to the present invention is used in a state where it is incorporated in a rotation support portion of a roll or the like of various industrial machine devices such as a papermaking machine and a metal rolling mill in order to support a rotating shaft inside the housing, for example. To do.

例えば重量の嵩む軸をハウジングの内側に回転自在に支承する為に従来から、例えば特許文献1、2に記載された様な自動調心ころ軸受が使用されている。図1は、この様な自動調心ころ軸受の従来構造の1例を示している。この自動調心ころ軸受は、互いに同心に組み合わされた外輪1と内輪2との間に、複数の球面ころ3、3を転動自在に配列して成る。そして、1対の保持器4、4により、これら複数の球面ころ3、3の分離防止を図っている。これら各保持器4、4は、金属板をプレス成形して成る、所謂プレス保持器である。   For example, in order to rotatably support a heavy shaft on the inside of a housing, a self-aligning roller bearing as described in, for example, Patent Documents 1 and 2 has been used. FIG. 1 shows an example of a conventional structure of such a self-aligning roller bearing. This self-aligning roller bearing is formed by rolling a plurality of spherical rollers 3 and 3 between an outer ring 1 and an inner ring 2 that are concentrically combined with each other. The pair of retainers 4 and 4 prevent separation of the plurality of spherical rollers 3 and 3. Each of these cages 4 and 4 is a so-called press cage formed by press-molding a metal plate.

上記外輪1の内周面には、単一の中心を有する球状凹面である外輪軌道5を形成している。又、内輪2の外周面の幅方向(図1の左右方向)両側には、それぞれが上記外輪軌道5と対向する、1対の内輪軌道6、6を形成している。又、上記複数の球面ころ3、3は、その最大径部が各球面ころ3、3の軸方向長さの中央部にある対称形(ビヤ樽形)或は、最大径部が中央部から軸方向にずれた非対称形で、上記外輪軌道5と上記1対の内輪軌道6、6との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けている。   An outer ring raceway 5 that is a spherical concave surface having a single center is formed on the inner peripheral surface of the outer ring 1. Further, a pair of inner ring raceways 6 and 6 are formed on both sides of the outer peripheral surface of the inner ring 2 in the width direction (left and right direction in FIG. 1). The plurality of spherical rollers 3 and 3 have a symmetric shape (beer barrel shape) in which the maximum diameter portion is in the center portion of the axial length of each spherical roller 3 or 3, or the maximum diameter portion is pivoted from the center portion. Asymmetrically shifted in the direction, the outer ring raceway 5 and the pair of inner ring raceways 6 and 6 are divided into two rows, and a plurality of each row are provided to be freely rollable.

上述の様に構成される自動調心ころ軸受により、例えばハウジングの内側に回転軸を支承する場合、外輪1をハウジングに内嵌固定し、内輪2を回転軸に外嵌固定する。回転軸と共に内輪2が回転する場合には、複数の球面ころ3、3が転動して、この回転を許容する。ハウジングの軸心と回転軸の軸心とが不一致の場合、外輪1の内側で内輪2が調心する(外輪1の中心軸に対し内輪2の中心軸を傾斜させる)事で、この不一致を補償する。この場合に於いて、外輪軌道5は単一球面状に形成されている為、上記複数の球面ころ3、3の転動は、不一致補償後に於いても、円滑に行なわれる。   For example, when the rotating shaft is supported inside the housing by the self-aligning roller bearing configured as described above, the outer ring 1 is fitted and fixed to the housing, and the inner ring 2 is fitted and fixed to the rotating shaft. When the inner ring 2 rotates together with the rotation shaft, the plurality of spherical rollers 3 and 3 roll to allow this rotation. When the shaft center of the housing and the shaft center of the rotating shaft do not match, the inner ring 2 is aligned inside the outer ring 1 (the center axis of the inner ring 2 is inclined with respect to the center axis of the outer ring 1). To compensate. In this case, since the outer ring raceway 5 is formed in a single spherical shape, the rolling of the plurality of spherical rollers 3 and 3 is smoothly performed even after the inconsistency compensation.

上述の様に作用する自動調心ころ軸受の場合、調心時に、外輪軌道5とこれら各球面ころ3、3の転動面との間で、各球面ころ3、3の幅方向(図1の左右方向)の滑りが生じる。又、上記自動調心ころ軸受の場合、これら各球面ころ3、3にスキューが生じ易い。従って、自動調心ころ軸受の場合、これら外輪軌道5と各球面ころ3、3との接触部で発熱や早期剥離が生じ易くなる。この為、例えば特許文献3〜6に記載されている様に、上記外輪軌道5と各球面ころ3、3との接触部で生じる発熱や早期剥離を抑える技術が、従来から知られている。   In the case of the self-aligning roller bearing acting as described above, the width direction of each spherical roller 3, 3 between the outer ring raceway 5 and the rolling surface of each spherical roller 3, 3 during alignment (FIG. 1). Left and right). In the case of the above self-aligning roller bearing, the spherical rollers 3 and 3 are likely to be skewed. Therefore, in the case of the self-aligning roller bearing, heat generation and early separation are likely to occur at the contact portion between the outer ring raceway 5 and the spherical rollers 3 and 3. For this reason, as described in, for example, Patent Documents 3 to 6, techniques for suppressing heat generation and early separation that occur at the contact portion between the outer ring raceway 5 and the spherical rollers 3 and 3 have been conventionally known.

このうちの特許文献3には、外輪軌道又は内輪軌道と各球面ころの転動面との各接触部のそれぞれの摩擦係数を規制し、これら各球面ころのスキューを抑制する技術が記載されている。又、特許文献4には、外輪軌道に互いに交差する網目状の加工目を形成して、この外輪軌道の軸方向と円周方向との表面粗さをほぼ一定とした技術が記載されている。又、特許文献5には、外輪軌道と内輪軌道との中心線粗さを規制する技術が記載されている。更に、特許文献6には、外輪軌道若しくは内輪軌道の軸方向と円周方向との算術平均粗さ(Ra1、Ra2)、及び、これら両算術平均粗さの比(Ra1/Ra2)をそれぞれ規制すると共に、上記外輪軌道若しくは内輪軌道の軸方向と円周方向との表面粗さの突出谷部平均深さ(Rvk1 、Rvk2 )を規制する技術が記載されている。 Of these, Patent Document 3 describes a technique for regulating the respective friction coefficients of the contact portions between the outer ring raceway or the inner ring raceway and the rolling surface of each spherical roller and suppressing the skew of each spherical roller. Yes. Further, Patent Document 4 describes a technique in which a mesh-like processed mesh that intersects the outer ring raceway is formed, and the surface roughness between the axial direction and the circumferential direction of the outer ring raceway is substantially constant. . Patent Document 5 describes a technique for regulating the center line roughness between the outer ring raceway and the inner ring raceway. Further, Patent Document 6 discloses an arithmetic average roughness (R a1 , R a2 ) between the axial direction and the circumferential direction of the outer ring raceway or the inner ring raceway, and a ratio (R a1 / R a2 ) between these arithmetic mean roughnesses. ) As well as the average depth (R vk1 , R vk2 ) of the projecting troughs of the surface roughness between the axial direction and the circumferential direction of the outer ring raceway or the inner ring raceway.

上述した各特許文献のうち、特許文献3〜5に記載された技術は、各球面ころのスキューを抑制して、外輪軌道とこれら各球面ころの転動面との接触部での発熱や早期剥離の発生を抑える。これに対して、上記特許文献6に記載された技術は、外輪軌道若しくは内輪軌道の表面性状を規制する事により、表面に良好な油溜を存在させ、これら外輪軌道若しくは内輪軌道と各球面ころの転動面との接触部の潤滑特性を良好にして、この接触部で発熱や早期剥離が発生する事を抑える。   Among the patent documents described above, the techniques described in Patent Documents 3 to 5 suppress the skew of each spherical roller, and generate heat at the contact portion between the outer ring raceway and the rolling surface of each spherical roller, or early. Reduces the occurrence of peeling. On the other hand, the technique described in Patent Document 6 described above restricts the surface properties of the outer ring raceway or the inner ring raceway so that a good oil reservoir exists on the surface, and these outer ring raceway or inner ring raceway and each spherical roller. The lubrication characteristics of the contact portion with the rolling surface of the roller are improved, and the occurrence of heat generation and early peeling at the contact portion is suppressed.

上述した何れの発明の場合も、軌道面の表面性状を規制する為に二次元のパラメータを考慮している。又、上記各特許文献のうち、特許文献3〜5に記載された発明は、各球面ころのスキューによる摩擦及び発熱を抑制する事を目的としているが、この為には、軌道輪と各球面ころの転動面との間の摩擦係数を考慮する必要がある。特に、上記特許文献3に記載されている様に、外輪軌道と各球面ころの転動面との間の摩擦係数を、内輪軌道とこれら各球面ころの転動面との間の摩擦係数よりも大きくする事が、これら各球面ころのスキューを防止する上で重要となる。但し、上記摩擦係数は、軌道面と各球面ころの転動面との間の発熱が許容値を超えない値とする必要もある。この様に、各球面ころのスキューに重要な影響を及ぼす摩擦係数は、軌道面の表面に存在する山の高さやこの山の割合等の三次元的な性状に依存する。言い換えれば、軌道面と各球面ころの転動面との三次元的な接触状態が、上記摩擦係数に大きな影響を及ぼす。この為、上記各特許文献3〜5に記載された発明の様に、軌道面の表面性状を二次元のパラメータで評価する構造の場合、上記摩擦係数を所定の範囲内に制御できるとは限らない。   In any of the above-described inventions, two-dimensional parameters are considered in order to regulate the surface properties of the raceway surface. In addition, among the above patent documents, the inventions described in Patent Documents 3 to 5 are intended to suppress friction and heat generation due to skew of each spherical roller. It is necessary to consider the coefficient of friction between the rolling surfaces of the rollers. In particular, as described in Patent Document 3, the friction coefficient between the outer ring raceway and the rolling surface of each spherical roller is determined from the friction coefficient between the inner ring raceway and the rolling surface of each spherical roller. Increasing the length is also important for preventing the skew of these spherical rollers. However, the friction coefficient needs to be a value at which the heat generated between the raceway surface and the rolling surface of each spherical roller does not exceed the allowable value. As described above, the friction coefficient that has an important influence on the skew of each spherical roller depends on the three-dimensional properties such as the height of the mountain existing on the surface of the raceway surface and the ratio of the mountain. In other words, the three-dimensional contact state between the raceway surface and the rolling surface of each spherical roller greatly affects the friction coefficient. For this reason, in the case of a structure in which the surface properties of the raceway surface are evaluated with two-dimensional parameters as in the inventions described in the above Patent Documents 3 to 5, the friction coefficient cannot always be controlled within a predetermined range. Absent.

特開平5−157116号公報JP-A-5-157116 特許第3529191号公報Japanese Patent No. 3529191 特公昭57−61933号公報Japanese Patent Publication No.57-61933 特開2005−90615号公報JP-A-2005-90615 特開2005−30425号公報JP 2005-30425 A 特開2004−353743号公報JP 2004-353743 A

本発明は、上述の様な事情に鑑みて、各球面ころのスキューによる摩擦及び発熱を十分に抑制できる構造を得られる製造方法を実現すべく発明したものである。   The present invention has been invented to realize a manufacturing method capable of obtaining a structure capable of sufficiently suppressing friction and heat generation due to skew of each spherical roller in view of the circumstances as described above.

本発明の対象となる自動調心ころ軸受は、前述の図1に示した従来から知られている自動調心ころ軸受と同様に、外輪と、内輪と、複数個の球面ころとを備える。
このうちの外輪は、球状凹面である外輪軌道を、その内周面に形成している。
又、上記内輪は、上記外輪軌道と対向する1対の内輪軌道を、その外周面に形成している。
又、上記各球面ころは、上記外輪軌道と上記両内輪軌道との間に、2列に分けて、両列毎に複数個ずつ、転動自在に設けられている。
The self-aligning roller bearing that is the subject of the present invention includes an outer ring, an inner ring, and a plurality of spherical rollers, similarly to the conventional self-aligning roller bearing shown in FIG.
Among these, the outer ring forms an outer ring raceway having a spherical concave surface on the inner peripheral surface thereof.
Further, the inner ring forms a pair of inner ring raceways opposed to the outer ring raceway on the outer peripheral surface thereof.
Each of the spherical rollers is provided in two rows between the outer ring raceway and the inner ring raceways so as to be freely rotatable in each row.

特に、本発明の自動調心ころ軸受の製造方法は、上記外輪軌道を形成する為の加工条件を以下の順序で定め、その加工条件でこの外輪軌道を形成する。
(1) 上記外輪軌道と上記各球面ころの転動面との間の摩擦係数の下限値を、上記内輪軌道とこれら各球面ころの転動面との間の摩擦係数よりも大きい値に、上限値を、上記外輪軌道とこれら各球面ころの転動面との間の発熱が許容値を超えない値に、それぞれ設定する。尚、「発熱が許容値を超えない値」は、例えば、自動調心ころ軸受を組み込む回転支持部の運転条件を考慮して、早期に焼き付きが生じない様に設定する。
(2) 上記摩擦係数の下限値及び上限値、並びに、運転条件から予想される上記外輪軌道と上記各球面ころの転動面との間の油膜厚さから、この油膜厚さの高さでの負荷面積比の範囲を設定する。上記「運転条件」として、例えば、自動調心ころ軸受を組み込む回転支持部の運転速度、この回転支持部に作用する荷重、潤滑油の種類、供給方法及び供給量等がある。
(3) 上記設定範囲内を通る三次元負荷曲線を有する様な表面性状を得られる加工条件を決定する。
In particular, in the manufacturing method of the self-aligning roller bearing of the present invention, the processing conditions for forming the outer ring raceway are determined in the following order, and the outer ring raceway is formed under the processing conditions.
(1) The lower limit of the friction coefficient between the outer ring raceway and the rolling surface of each spherical roller is set to a value larger than the friction coefficient between the inner ring raceway and the rolling surface of each spherical roller. The upper limit value is set to a value at which the heat generated between the outer ring raceway and the rolling surface of each spherical roller does not exceed the allowable value. Note that the “value at which the heat generation does not exceed the allowable value” is set so that seizure does not occur at an early stage in consideration of, for example, the operating conditions of the rotary support portion incorporating the self-aligning roller bearing.
(2) From the lower limit value and upper limit value of the friction coefficient, and the oil film thickness between the outer ring raceway and the rolling surface of each spherical roller predicted from the operating conditions, Set the range of the load area ratio. The “operating conditions” include, for example, the operating speed of a rotating support portion incorporating a self-aligning roller bearing, the load acting on the rotating support portion, the type of lubricating oil, the supply method and the supply amount.
(3) Determine the processing conditions for obtaining a surface texture that has a three-dimensional load curve that passes through the set range.

尚、上記摩擦係数と油膜厚さの高さでの負荷面積比(=金属接触による荷重支持割合)との関係は、次式の様に推定する。
摩擦係数=(金属接触による荷重支持割合)×(金属接触の摩擦係数)
+(流体潤滑による荷重支持割合)×(流体潤滑の摩擦係数)―――(A)
又、「金属接触による荷重支持割合」と「流体潤滑による荷重支持割合」との関係は、
(流体潤滑による荷重支持割合)=100−(金属接触による荷重支持割合)(%)
―――(B)となる。従って、上記摩擦係数の下限値及び上限値を設定し、「金属接触の摩擦係数」及び「流体潤滑の摩擦係数」の値が分かれば、上記(A)、(B)両式から、上記「金属接触による荷重支持割合」(即ち、油膜厚さの高さでの負荷面積比)の範囲を導き出せる。
The relationship between the friction coefficient and the load area ratio (= load support ratio due to metal contact) at the height of the oil film thickness is estimated as follows.
Friction coefficient = (Load support ratio by metal contact) x (Friction coefficient of metal contact)
+ (Load support ratio by fluid lubrication) x (Friction coefficient of fluid lubrication) --- (A)
In addition, the relationship between "load support ratio due to metal contact" and "load support ratio due to fluid lubrication" is
(Load support ratio by fluid lubrication) = 100− (Load support ratio by metal contact) (%)
――― (B) Therefore, if the lower limit value and the upper limit value of the friction coefficient are set, and the values of “friction coefficient of metal contact” and “friction coefficient of fluid lubrication” are known, both of the above formulas (A) and (B) It is possible to derive the range of the “load support ratio by metal contact” (that is, the load area ratio at the height of the oil film thickness).

又、前記三次元負荷曲線は、日本工業規格(JIS)に明確な定義がない為、次の様に定義する。図2に、国際規格:ISO 13565−2記載の断面曲線による二次元負荷曲線を示す。この二次元負荷曲線を、次の方法により三次元に拡張する。
先ず、測定面上の各点(xi ,yj )での高さz(xi ,yj )をそれぞれ求め、この測定面全体の負荷曲線を求める。この様にして求めた三次元負荷曲線を図3に示す。そして、この図3に示した三次元負荷曲線に基づいて、ISO 13565に規定される二次元負荷曲線のMr1、Mr2(コア部の負荷長さ率)等と同様に、Sr1、Sr2等を算出する。尚、xi はi番目のX方向座標、yj はj番目のy方向座標である。又、図3に示す記号の意味は次の通りである。
k :コア部のレベル差
pk:突出山部の高さ
vk:突出谷部の深さ
r1:山部側のコア部の負荷面積比
r2:谷部側のコア部の負荷面積比
尚、上述の各パラメータは、テーラーホブソン社製解析ソフト「タリマップ」により自動的に算出する事ができる。
The three-dimensional load curve is defined as follows because there is no clear definition in Japanese Industrial Standard (JIS). FIG. 2 shows a two-dimensional load curve based on a cross-sectional curve described in International Standard: ISO 13565-2. This two-dimensional load curve is expanded to three dimensions by the following method.
First, the height z (x i , y j ) at each point (x i , y j ) on the measurement surface is obtained, and the load curve of the entire measurement surface is obtained. The three-dimensional load curve thus obtained is shown in FIG. Then, based on the three-dimensional load curve shown in FIG. 3, S r1 , S r , S r1 , S r , M r1 , M r2 (load length ratio of the core part), etc. of the two-dimensional load curve defined in ISO 13565 Calculate r2 etc. X i is the i-th X-direction coordinate, and y j is the j-th y-direction coordinate. The meanings of the symbols shown in FIG. 3 are as follows.
S k : Level difference of the core part S pk : Height of the protruding peak part S vk : Depth of the protruding valley part S r1 : Load area ratio of the core part on the peak part side S r2 : Load on the core part on the valley part side Area ratio The above-mentioned parameters can be automatically calculated by analysis software “Tarimap” manufactured by Taylor Hobson.

又、本発明を実施する場合に好ましくは、請求項2に記載した様に、三次元負荷曲線と油膜厚さの高さとの交点での負荷面積比を、この三次元負荷曲線の山部側のコア部の負荷面積比(Sr1)以下となるものとする。
又、上述した様な性状を有する外輪軌道を得る為に好ましくは、請求項3に記載した様に、この外輪軌道を、研削後、超仕上により加工する。
又、本発明の具体的な数値として、例えば、請求項4に記載した様に、運転条件から予想される外輪軌道と各球面ころの転動面との間の油膜厚さを0.5μmとし、この油膜厚さの高さでの負荷面積比の範囲を11.8〜21.7%に設定する。
更に、上述の各製造方法により製造された自動調心ころ軸受で、請求項5に記載した様に、外輪軌道の軸方向に関する表面粗さと円周方向に関する表面粗さとを、ほぼ同一とする事が好ましい。
Further, when the present invention is implemented, preferably, as described in claim 2, the load area ratio at the intersection of the three-dimensional load curve and the height of the oil film thickness is set to the peak side of the three-dimensional load curve. It is assumed that the load area ratio (S r1 ) or less of the core portion is less.
In order to obtain an outer ring raceway having the above-described properties, preferably, as described in claim 3, the outer ring raceway is processed by super finishing after grinding.
Further, as specific numerical values of the present invention, for example, as described in claim 4, the oil film thickness between the outer ring raceway and the rolling surface of each spherical roller predicted from the operating conditions is 0.5 μm. The range of the load area ratio at the height of the oil film thickness is set to 11.8 to 21.7%.
Further, in the self-aligning roller bearing manufactured by the above-described manufacturing methods, as described in claim 5, the surface roughness in the axial direction of the outer ring raceway and the surface roughness in the circumferential direction should be substantially the same. Is preferred.

上述の様に構成する本発明の場合には、外輪軌道と各球面ころの転動面との間の摩擦係数を、三次元的な性状を考慮して規制している為、これら各球面ころのスキューによる摩擦及び発熱を十分に抑制できる。
即ち、本発明の場合、前記(A)式から明らかな様に、上記摩擦係数が所定の範囲内となる様に、金属接触による荷重支持割合の範囲を決定し、上記外輪軌道を、この範囲を通る三次元負荷曲線を有する様な表面性状としている。この為、上記摩擦係数を所定の範囲内に確実に規制でき、上記各球面ころのスキューによる摩擦及び発熱を十分に抑制できる。この結果、自動調心ころ軸受の長寿命化を図れる。
In the case of the present invention configured as described above, the friction coefficient between the outer ring raceway and the rolling surface of each spherical roller is regulated in consideration of the three-dimensional properties. Friction and heat generation due to the skew can be sufficiently suppressed.
That is, in the case of the present invention, as apparent from the equation (A), the range of the load support ratio by the metal contact is determined so that the friction coefficient is within a predetermined range, and the outer ring raceway is set within this range. The surface texture has a three-dimensional load curve that passes through. For this reason, the friction coefficient can be reliably regulated within a predetermined range, and friction and heat generation due to skew of the spherical rollers can be sufficiently suppressed. As a result, the life of the self-aligning roller bearing can be extended.

又、請求項2に記載した様に、三次元負荷曲線と油膜厚さの高さとの交点での負荷面積比を、この三次元負荷曲線の山部側のコア部の負荷面積比(Sr1)以下となるものとすれば、油膜厚さが変動しても摩擦係数が変化しにくくなる。即ち、三次元負荷曲線は、一般的に(例えば、研削面や超仕上面の場合)、前述の図3から明らかな様に、負荷面積比がSr1よりも0に近い領域では、等価領域(負荷面積比がSr1〜Sr2)よりも、負荷面積比の変化に対する高さの変化率が大きい事が分かっている。従って、負荷面積比がSr1よりも0に近い領域では、油膜厚さの高さが大きく変化したとしても、所定の負荷面積比の範囲から外れにくい。即ち、摩擦係数が変化しにくい。この為、請求項2に記載した発明の場合、油膜厚さが変動し易い運転条件であっても、スキューによる摩擦や発熱を抑制できる。 Further, as described in claim 2, the load area ratio at the intersection of the three-dimensional load curve and the height of the oil film thickness is defined as the load area ratio (S r1 of the core portion on the mountain side of the three-dimensional load curve. ) If it is as follows, the friction coefficient is less likely to change even if the oil film thickness varies. That is, the three-dimensional load curve is generally (for example, in the case of a ground surface or a superfinished surface), as apparent from FIG. 3 described above, in the region where the load area ratio is closer to 0 than S r1 , It is known that the rate of change in height with respect to the change in the load area ratio is larger than (the load area ratio is S r1 to S r2 ). Therefore, in a region where the load area ratio is closer to 0 than S r1 , even if the height of the oil film thickness changes greatly, it is difficult to deviate from the predetermined load area ratio range. That is, the coefficient of friction is difficult to change. For this reason, in the case of the invention described in claim 2, friction and heat generation due to skew can be suppressed even under operating conditions in which the oil film thickness tends to fluctuate.

更に、上述の各製造方法により製造された自動調心ころ軸受で、請求項5に記載した様に、外輪軌道の軸方向に関する表面粗さと円周方向に関する表面粗さとを、ほぼ同一とすれば、スキュー抑制の効果を高める事ができ、自動調心ころ軸受の長寿命化をより図れる。   Furthermore, in the self-aligning roller bearing manufactured by the above-described manufacturing methods, as described in claim 5, if the surface roughness in the axial direction of the outer ring raceway and the surface roughness in the circumferential direction are substantially the same, Thus, the effect of suppressing skew can be enhanced, and the life of the self-aligning roller bearing can be further extended.

[実施の形態の第1例]
図1、4を参照しつつ、請求項1に対応する、本発明の実施の形態の第1例に就いて説明する。尚、図4及び、後述する図5〜7は、前述の図3に示した三次元負荷曲線の一部(左上部)に相当する部分を抜き出して示したものである。又、本発明の特徴は、外輪軌道5と各球面ころ3、3の転動面との間の摩擦係数を所定の範囲内に確実に規制すべく、この外輪軌道5の表面性状を三次元的に考慮して、この外輪軌道5に加工を施す点にある。自動調心ころ軸受自体の構造及び作用は、前述の図1に示した従来構造と同様である為、重複する説明を省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claim 1 will be described with reference to FIGS. Note that FIG. 4 and FIGS. 5 to 7 described later show a part corresponding to a part (upper left) of the three-dimensional load curve shown in FIG. 3 described above. In addition, the feature of the present invention is that the surface property of the outer ring raceway 5 is three-dimensionally so as to surely regulate the friction coefficient between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 within a predetermined range. In consideration, the outer ring raceway 5 is processed. Since the structure and operation of the self-aligning roller bearing itself are the same as those of the conventional structure shown in FIG. 1 described above, the overlapping description will be omitted or simplified, and the following description will focus on the features of this example.

本例の場合、上記外輪軌道5を形成する為の加工条件を以下の順序で定め、その加工条件でこの外輪軌道5を形成する。
(1) 上記外輪軌道5と上記各球面ころ3、3の転動面との間の摩擦係数の下限値を、内輪軌道6とこれら各球面ころ3、3の転動面との間の摩擦係数よりも大きい値に、上限値を、上記外輪軌道5とこれら各球面ころ3、3の転動面との間の発熱が許容値を超えない値に、それぞれ設定する。
(2) 上記摩擦係数の下限値及び上限値、並びに、運転条件から予想される上記外輪軌道5と上記各球面ころ3、3の転動面との間の油膜厚さから、この油膜厚さの高さ(図4の破線)での負荷面積比の範囲(Srmin〜Srmax)を設定する。
(3) 上記図4に示す様に、この設定範囲内を通る三次元負荷曲線を有する様な表面性状を得られる加工条件を決定する。
In the case of this example, the processing conditions for forming the outer ring raceway 5 are determined in the following order, and the outer ring raceway 5 is formed under the processing conditions.
(1) The lower limit of the friction coefficient between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 is defined as the friction between the inner ring raceway 6 and the rolling surfaces of the spherical rollers 3 and 3. The upper limit value is set to a value larger than the coefficient so that the heat generated between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 does not exceed the allowable value.
(2) From the lower limit value and the upper limit value of the friction coefficient, and the oil film thickness between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 predicted from the operating conditions, The range (S rmin to S rmax ) of the load area ratio at the height (broken line in FIG. 4) is set.
(3) As shown in FIG. 4, the processing conditions for obtaining a surface property having a three-dimensional load curve passing through the set range are determined.

即ち、本例の場合、先ず、目標とする摩擦係数の範囲を定め、この摩擦係数の範囲を満たす、上記図4に実線で示した三次元負荷曲線を得る。そして、この三次元負荷曲線を満たす様な加工条件を、実験等により決定する。例えば、上記外輪軌道5の加工は、研削後、超仕上で行なう事が好ましいが、上記三次元負荷曲線を有する表面性状を得られる様に、砥粒の形状や粒度、外輪の回転速度及び砥石の揺動速度等の加工条件を調整する。例えば、超仕上げ砥石として、CBN砥粒にビトリファイド結合剤を用いたものを使用し、超仕上げ時の外輪の回転速度を、粗加工時の回転速度よりも低速とする加工方法等が挙げられる。そして、この加工条件が定まれば、上記外輪軌道5と上記各球面ころ3、3の転動面との間の摩擦係数を、上述の目標の範囲、即ち、「内輪軌道6とこれら各球面ころ3、3の転動面との間の摩擦係数」よりも大きく、「上記外輪軌道5とこれら各球面ころ3、3の転動面との間の発熱が許容値を超えない値」以下となる範囲に確実に規制できる。この結果、スキューによる摩擦や発熱を抑制できる。尚、上述の加工条件で加工する場合に、上記外輪軌道5の軸方向に関する表面粗さと円周方向に関する表面粗さとを、ほぼ同一とすれば、スキュー抑制の効果を高める事ができ、自動調心ころ軸受の長寿命化をより図れる。   That is, in the case of this example, first, a target friction coefficient range is determined, and a three-dimensional load curve indicated by a solid line in FIG. 4 that satisfies this friction coefficient range is obtained. Then, processing conditions that satisfy this three-dimensional load curve are determined by experiments or the like. For example, the processing of the outer ring raceway 5 is preferably performed by superfinishing after grinding. However, the shape and grain size of the abrasive grains, the rotational speed of the outer ring, and the grindstone are obtained so as to obtain the surface properties having the three-dimensional load curve. Adjust the machining conditions such as the rocking speed. For example, as a super-finishing grindstone, a CBN abrasive grain using a vitrified binder is used, and the rotational speed of the outer ring at the time of super-finishing is lower than the rotational speed at the time of roughing. When the machining conditions are determined, the friction coefficient between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 is set to the above target range, that is, “inner ring raceway 6 and each spherical surface. "Friction coefficient between the rolling surfaces of the rollers 3 and 3" is larger than "a value at which the heat generated between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3 does not exceed the allowable value". Can be reliably regulated to the range. As a result, friction and heat generation due to skew can be suppressed. If the surface roughness in the axial direction of the outer ring raceway 5 and the surface roughness in the circumferential direction are substantially the same when processing under the above-described processing conditions, the effect of suppressing skew can be enhanced, and automatic adjustment is performed. Longer life of the core roller bearing can be achieved.

[実施の形態の第2例]
図1、5を参照しつつ、請求項2に対応する、本発明の実施の形態の第2例に就いて説明する。本例の場合、上述の第1例の条件に加えて、三次元負荷曲線と油膜厚さの高さ(図5の破線)との交点aでの負荷面積比Sraを、この三次元負荷曲線の山部側のコア部の負荷面積比(Sr1)以下とする。即ち、本例の場合、上記Sraが、外輪軌道5と各球面ころ3、3の転動面との間の摩擦係数の下限値と上限値、及び、運転条件から予想される上記外輪軌道5と上記各球面ころ3、3の転動面との間の油膜厚さから設定した、この油膜厚さの高さでの負荷面積比の範囲(Srmin〜Srmax)内であり、上記Sr1よりも小さい。上記外輪軌道5を、この様な条件を満たす三次元負荷曲線を有する表面性状に加工すれば、油膜厚さが変動し易い運転条件であっても、スキューによる摩擦や発熱を抑制できる。
[Second Example of Embodiment]
A second example of an embodiment of the present invention corresponding to claim 2 will be described with reference to FIGS. In the case of this example, in addition to the conditions of the first example described above, the load area ratio S ra at the intersection point a between the three-dimensional load curve and the height of the oil film thickness (broken line in FIG. 5) is expressed as the three-dimensional load. The load area ratio (S r1 ) or less of the core portion on the peak portion side of the curve is set. That is, in the case of this example, the S ra is the outer ring raceway predicted from the lower and upper limits of the friction coefficient between the outer ring raceway 5 and the rolling surfaces of the spherical rollers 3 and 3, and the operating conditions. 5 and within the range (S rmin to S rmax ) of the load area ratio at the height of the oil film thickness set from the oil film thickness between the spherical rollers 3 and the rolling surfaces of the spherical rollers 3 and 3 It is smaller than S r1 . If the outer ring raceway 5 is processed into a surface texture having a three-dimensional load curve that satisfies such conditions, friction and heat generation due to skew can be suppressed even under operating conditions in which the oil film thickness is likely to vary.

即ち、本例の三次元負荷曲線は、図5から明らかな様に、負荷面積比がSr1よりも0に近い領域では、等価領域(負荷面積比がSr1〜Sr2:図3参照)よりも、負荷面積比の変化に対する高さの変化率(傾き)が大きい。従って、上記交点aでの負荷面積比Sraを、傾きが大きい上記Sr1よりも0に近い領域に存在させる事により、上記Srmin〜Srmaxの範囲で、上記交点aが上記図5の上下に比較的大きく変動可能である。この為、油膜厚さの高さ(交点a)が大きく変化したとしても、所定の負荷面積比の範囲(Srmin〜Srmax)から外れにくい(即ち、摩擦係数が変化しにくい)。この為、本例の場合、油膜厚さが変動し易い運転条件であっても、スキューによる摩擦や発熱を抑制できる。
その他の構造及び作用は、上述の実施の形態の第1例と同様である。
That is, the three-dimensional load curve of the present embodiment, as apparent from FIG. 5, the load area ratio is closer to 0 than S r1 area equivalent area (load area ratio S r1 to S r2: see FIG. 3) The change rate (slope) of the height with respect to the change of the load area ratio is larger. Therefore, by making the load area ratio S ra at the intersection point a in a region closer to 0 than S r1 having a large slope, the intersection point a is within the range of S rmin to S rmax as shown in FIG. It is possible to change relatively large up and down. For this reason, even if the height of the oil film thickness (intersection point a) changes greatly, it is difficult to deviate from the predetermined load area ratio range (S rmin to S rmax ) (that is, the friction coefficient is difficult to change). For this reason, in this example, friction and heat generation due to skew can be suppressed even under operating conditions in which the oil film thickness is likely to vary.
Other structures and operations are the same as those of the first example of the above-described embodiment.

請求項1に対応する実施例に就いて説明する。
本実施例の場合、先ず、軌道面と各球面ころとの金属接触の摩擦係数を0.1、流体潤滑の摩擦係数を0.049とする。又、内輪軌道と各球面ころの転動面との間の摩擦係数を0.054以下とする。更に、外輪軌道とこれら各球面ころの転動面との間の発熱の許容値を超えない様な摩擦係数の値を0.06とする。この為、本実施例の場合、目標とする外輪軌道と各球面ころの転動面との間の摩擦係数は、0.055〜0.06とする。又、本実施例の場合、運転条件から予想される油膜厚さを0.5μmとする。
An embodiment corresponding to claim 1 will be described.
In the case of this embodiment, first, the friction coefficient of metal contact between the raceway surface and each spherical roller is set to 0.1, and the friction coefficient of fluid lubrication is set to 0.049. The coefficient of friction between the inner ring raceway and the rolling surface of each spherical roller is set to 0.054 or less. Furthermore, the value of the friction coefficient that does not exceed the allowable value of heat generation between the outer ring raceway and the rolling surfaces of these spherical rollers is set to 0.06. For this reason, in the case of a present Example, the friction coefficient between the target outer ring track and the rolling surface of each spherical roller shall be 0.055-0.06. In the case of this embodiment, the oil film thickness expected from the operating conditions is 0.5 μm.

上記各値を、次式に代入する事により、油膜厚さの高さでの負荷面積比、即ち、金属接触による荷重支持割合xの範囲を求める。
摩擦係数=(金属接触による荷重支持割合)×(金属接触の摩擦係数)
+(流体潤滑による荷重支持割合)×(流体潤滑の摩擦係数)−−−(A) 0.055〜0.06=x×0.1+(1−x)×0.049{前記(B)式より}
x=0.118〜0.217=11.8〜21.7%
この結果、Srminが11.8%、Srmaxが21.7%となる。
この様な範囲を満たす様な三次元負荷曲線として、例えば、図6に示す様な三次元負荷曲線が得られる。
上述の様に求めた三次元負荷曲線(即ち、高さが0.5μmで、負荷面積比が11.8〜21.7%の範囲を通る三次元負荷曲線)を有する様に、外輪軌道を、例えば、研削後、超仕上により仕上げれば、この外輪軌道と各球面ころの転動面との間の摩擦係数を、上述の目標の値である0.055〜0.06の範囲内に確実に規制できる。
By substituting the above values into the following equation, the load area ratio at the height of the oil film thickness, that is, the range of the load support ratio x due to metal contact is obtained.
Friction coefficient = (Load support ratio by metal contact) x (Friction coefficient of metal contact)
+ (Load support ratio by fluid lubrication) × (Friction coefficient of fluid lubrication) −−− (A) 0.055−0.06 = x × 0.1 + (1−x) × 0.049 {(B) From the expression}
x = 0.118 to 0.217 = 11.8 to 21.7%
As a result, S rmin is 11.8% and S rmax is 21.7%.
As a three-dimensional load curve that satisfies such a range, for example, a three-dimensional load curve as shown in FIG. 6 is obtained.
The outer ring raceway has a three-dimensional load curve obtained as described above (that is, a three-dimensional load curve having a height of 0.5 μm and a load area ratio ranging from 11.8 to 21.7%). For example, after grinding and finishing by superfinishing, the friction coefficient between the outer ring raceway and the rolling surface of each spherical roller is within the range of 0.055 to 0.06, which is the above target value. It can be regulated reliably.

請求項2に対応する実施例に就いて説明する。
本実施例の場合、上述の実施例1の条件に加えて、図7に示す様に、三次元負荷曲線と油膜厚さの高さとの交点aでの負荷面積比Sraを、この三次元負荷曲線の山部側のコア部の負荷面積比Sr1以下とする。この様に求めた三次元負荷曲線(即ち、高さが0.5μmで、負荷面積比が11.8〜21.7%の範囲を通り、且つ、三次元負荷曲線と油膜厚さの高さとの交点が、山部側のコア部の負荷面積比以下である三次元負荷曲線)を有する様に、外輪軌道を、例えば、研削後、超仕上により仕上げれば、この外輪軌道と各球面ころの転動面との間の摩擦係数を、上述の目標の値である0.055〜0.06の範囲内に確実に規制できる。又、油膜厚さが変動し易い運転条件であっても、スキューによる摩擦や発熱を抑制できる。
An embodiment corresponding to claim 2 will be described.
In the case of the present embodiment, in addition to the conditions of the first embodiment described above, as shown in FIG. 7, the load area ratio S ra at the intersection point a between the three-dimensional load curve and the height of the oil film thickness is represented by this three-dimensional The load area ratio S r1 or less of the core portion on the peak side of the load curve is set. The three-dimensional load curve thus obtained (that is, the height is 0.5 μm, the load area ratio passes through the range of 11.8 to 21.7%, and the three-dimensional load curve and the height of the oil film thickness are If the outer ring raceway is finished by, for example, superfinishing after grinding, the outer ring raceway and each spherical roller have a three-dimensional load curve that is equal to or less than the load area ratio of the core portion on the mountain side. The coefficient of friction with the rolling surface can be reliably regulated within the range of 0.055 to 0.06, which is the above target value. Further, even under operating conditions in which the oil film thickness is likely to fluctuate, friction and heat generation due to skew can be suppressed.

本発明の対象となる自動調心ころ軸受の1例を示す半部断面図。FIG. 2 is a half sectional view showing an example of a self-aligning roller bearing that is a subject of the present invention. ISO 13565−2記載の断面曲線による二次元負荷曲線を示す図。The figure which shows the two-dimensional load curve by the cross-sectional curve of ISO 13565-2 description. 二次元負荷曲線を三次元に拡張したものを示す図。The figure which shows what expanded the two-dimensional load curve to three dimensions. 請求項1の要件を満たす三次元負荷曲線の一部を示す図。The figure which shows a part of three-dimensional load curve which satisfy | fills the requirements of Claim 1. 請求項2の要件を満たす三次元負荷曲線の一部を示す図。The figure which shows a part of three-dimensional load curve which satisfy | fills the requirements of Claim 2. 請求項1に対応する実施例1の三次元負荷曲線の一部を示す図。The figure which shows a part of three-dimensional load curve of Example 1 corresponding to Claim 1. 請求項2に対応する実施例2の三次元負荷曲線の一部を示す図。The figure which shows a part of three-dimensional load curve of Example 2 corresponding to Claim 2.

符号の説明Explanation of symbols

1 外輪
2 内輪
3 球面ころ
4 保持器
5 外輪軌道
6 内輪軌道
1 Outer ring 2 Inner ring 3 Spherical roller 4 Cage 5 Outer ring raceway 6 Inner ring raceway

Claims (5)

球状凹面である外輪軌道を、その内周面に形成した外輪と、この外輪軌道と対向する1対の内輪軌道を、その外周面に形成した内輪と、これら外輪軌道と内輪軌道との間に、2列に分けて、両列毎に複数個ずつ転動自在に設けられた球面ころとを備えた自動調心ころ軸受の製造方法であって、上記外輪軌道を形成する為の加工条件を以下の順序で定め、その加工条件でこの外輪軌道を形成する自動調心ころ軸受の製造方法。
(1) 上記外輪軌道と上記各球面ころの転動面との間の摩擦係数の下限値を、上記内輪軌道とこれら各球面ころの転動面との間の摩擦係数よりも大きい値に、上限値を、上記外輪軌道とこれら各球面ころの転動面との間の発熱が許容値を超えない値に、それぞれ設定する。
(2) 上記摩擦係数の下限値及び上限値、並びに、運転条件から予想される上記外輪軌道と上記各球面ころの転動面との間の油膜厚さから、この油膜厚さの高さでの負荷面積比の範囲を設定する。
(3) この設定範囲内を通る三次元負荷曲線を有する様な表面性状を得られる加工条件を決定する。
An outer ring raceway which is a spherical concave surface, an outer ring formed on the inner peripheral surface thereof, a pair of inner ring races opposed to the outer ring raceway, an inner ring formed on the outer peripheral surface thereof, and between the outer ring raceway and the inner ring raceway. A method of manufacturing a self-aligning roller bearing having spherical rollers provided so as to be capable of rolling plurally in two rows in two rows, wherein the processing conditions for forming the outer ring raceway are as follows: A method of manufacturing a self-aligning roller bearing in which the outer ring raceway is formed under the processing conditions determined in the following order.
(1) The lower limit of the friction coefficient between the outer ring raceway and the rolling surface of each spherical roller is set to a value larger than the friction coefficient between the inner ring raceway and the rolling surface of each spherical roller. The upper limit value is set to a value at which the heat generated between the outer ring raceway and the rolling surface of each spherical roller does not exceed the allowable value.
(2) From the lower limit value and upper limit value of the friction coefficient, and the oil film thickness between the outer ring raceway and the rolling surface of each spherical roller predicted from the operating conditions, Set the range of the load area ratio.
(3) Determine the processing conditions for obtaining a surface texture that has a three-dimensional load curve that passes through this set range.
三次元負荷曲線と油膜厚さの高さとの交点での負荷面積比を、この三次元負荷曲線の山部側のコア部の負荷面積比以下とする、請求項1に記載した自動調心ころ軸受の製造方法。   The self-aligning roller according to claim 1, wherein the load area ratio at the intersection of the three-dimensional load curve and the height of the oil film thickness is equal to or less than the load area ratio of the core portion on the mountain side of the three-dimensional load curve. Manufacturing method of bearing. 外輪軌道を、研削後、超仕上により加工する、請求項1又は請求項2に記載した自動調心ころ軸受の製造方法。   The method for manufacturing a self-aligning roller bearing according to claim 1 or 2, wherein the outer ring raceway is processed by superfinishing after grinding. 運転条件から予想される外輪軌道と各球面ころの転動面との間の油膜厚さを0.5μmとし、この油膜厚さの高さでの負荷面積比の範囲を11.8〜21.7%に設定する、請求項1〜3のうちの何れか1項に記載した自動調心ころ軸受の製造方法。   The oil film thickness between the outer ring raceway and the rolling surface of each spherical roller predicted from the operating conditions is 0.5 μm, and the range of the load area ratio at the height of this oil film thickness is 11.8 to 21.21. The manufacturing method of the self-aligning roller bearing described in any one of Claims 1-3 set to 7%. 請求項1〜4のうちの何れか1項に記載した自動調心ころ軸受の製造方法により製造される自動調心ころ軸受であって、外輪軌道の軸方向に関する表面粗さと円周方向に関する表面粗さとを、ほぼ同じとした自動調心ころ軸受。
A self-aligning roller bearing manufactured by the method of manufacturing a self-aligning roller bearing according to any one of claims 1 to 4, wherein the surface roughness in the axial direction of the outer ring raceway and the surface in the circumferential direction are obtained. Spherical roller bearings with almost the same roughness.
JP2006167900A 2006-06-16 2006-06-16 Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing Pending JP2007333161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167900A JP2007333161A (en) 2006-06-16 2006-06-16 Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167900A JP2007333161A (en) 2006-06-16 2006-06-16 Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing

Publications (1)

Publication Number Publication Date
JP2007333161A true JP2007333161A (en) 2007-12-27

Family

ID=38932813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167900A Pending JP2007333161A (en) 2006-06-16 2006-06-16 Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP2007333161A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070841A1 (en) 2008-12-15 2010-06-24 Ntn株式会社 Machine component and super-finishing method therefor
CN111709098A (en) * 2020-06-17 2020-09-25 青岛理工大学 Method for reducing friction coefficient of bearing by changing lubricating oil under variable load
EP4141276A4 (en) * 2019-04-26 2024-01-17 NSK Ltd. Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070841A1 (en) 2008-12-15 2010-06-24 Ntn株式会社 Machine component and super-finishing method therefor
US8690450B2 (en) 2008-12-15 2014-04-08 Ntn Corporation Machine component and super-finishing method therefor
EP4141276A4 (en) * 2019-04-26 2024-01-17 NSK Ltd. Method for designing friction between sliding members, method for managing surface roughness, and method for manufacturing sliding mechanism
CN111709098A (en) * 2020-06-17 2020-09-25 青岛理工大学 Method for reducing friction coefficient of bearing by changing lubricating oil under variable load
CN111709098B (en) * 2020-06-17 2022-04-05 青岛理工大学 Method for reducing friction coefficient of bearing by changing lubricating oil under variable load

Similar Documents

Publication Publication Date Title
JP5444642B2 (en) Combination bearing
JP5935520B2 (en) Method of manufacturing rolling bearing race
US20080260313A1 (en) Self-Aligning Roller Bearing with Retainer and Manufacturing Method for Self-Aligning Roller Bearing Retainer
JPH01220720A (en) Rolling bearing and manufacturing method therefor
WO2012099120A1 (en) Roller bearing
JP6512264B2 (en) Cylindrical roller bearing
JP2007120687A (en) Self-aligning roller bearing with retainer
JP2012041940A (en) Retainer of cylindrical roller bearing and cylindrical roller bearing
WO2013080824A1 (en) Roller bearing
JP2007333161A (en) Manufacturing method of self-aligning roller bearing, and self-aligning roller bearing
JP2006009891A (en) Roller bearing
US10041539B2 (en) Double-row spherical roller bearing, manufacturing method and wind turbine bearing arrangement
JP2009275722A (en) Rolling bearing
JP2006349014A (en) Tapered roller bearing
WO2015016345A1 (en) Roller bearing and method for producing roller bearing
JP2004324670A (en) Roller bearing
JP2007333160A (en) Self-aligning roller bearing
WO2021054279A1 (en) Tapered roller bearing
JP2007120540A (en) Tapered roller bearing
JP2007085542A (en) Self-alignment roller bearing with holder and manufacturing method of holder for self-alignment roller bearing
JP2008298171A (en) Flanged cylindrical roller bearing
JP2009168171A (en) Roller bearing
JP4322650B2 (en) Cylindrical roller bearing
JP2008039128A (en) Collared roller bearing
JP6829522B2 (en) Self-aligning roller bearing