JP2007332407A - Vapor deposition material for optical thin film - Google Patents

Vapor deposition material for optical thin film Download PDF

Info

Publication number
JP2007332407A
JP2007332407A JP2006163423A JP2006163423A JP2007332407A JP 2007332407 A JP2007332407 A JP 2007332407A JP 2006163423 A JP2006163423 A JP 2006163423A JP 2006163423 A JP2006163423 A JP 2006163423A JP 2007332407 A JP2007332407 A JP 2007332407A
Authority
JP
Japan
Prior art keywords
powder
oxide
vapor deposition
tungsten oxide
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006163423A
Other languages
Japanese (ja)
Other versions
JP2007332407A5 (en
Inventor
Tokiko Hashimoto
時子 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Optron Inc
Original Assignee
Canon Optron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Optron Inc filed Critical Canon Optron Inc
Priority to JP2006163423A priority Critical patent/JP2007332407A/en
Publication of JP2007332407A publication Critical patent/JP2007332407A/en
Publication of JP2007332407A5 publication Critical patent/JP2007332407A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for vapor deposition or a material for ion-plating capable of obtaining a transparent conductive film of high density, high transparency and low resistance through the high-speed film deposition without any fluctuation in the composition during a sintering process or without generation of any nodule, deformation of a target, or damages such as cracks during the film deposition. <P>SOLUTION: A vapor deposition material for an optical thin film consists of a compound or a mixture of indium oxide (In<SB>2</SB>O<SB>3</SB>), tungsten oxide (WO<SB>3</SB>), and magnesium oxide (MgO). Alternatively, the vapor deposition material for the optical thin film consists of a compound or a mixture of indium oxide (In<SB>2</SB>O<SB>3</SB>), tungsten oxide (WO<SB>3</SB>), and magnesium oxide (MgO), and is formed of a sintered body thereof sintered in a high-temperature oxygen atmosphere or in a high-temperature air atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は蒸着用あるいはイオンプレーティング用の光学薄膜用蒸着材料に関するものである。   The present invention relates to a vapor deposition material for an optical thin film for vapor deposition or ion plating.

液晶ディスプレー、カラーフィルター、薄膜トランジスタ、太陽電池等に優れた透明導電膜として、インジウム・スズ酸化物(ITO)膜やインジウム・亜鉛酸化物(IZO)膜が使用されている。ITO膜は酸化インジウム(In2O3)と酸化スズ(SnO2)からなるITO焼結体を蒸発源あるいはターゲットとし、IZO膜は酸化インジウム(In2O3))と酸化亜鉛(ZnO)からなるIZO焼結体を蒸発源あるいはターゲットとする。これらの焼結体材料を使用して真空蒸着法やイオンプレーティング法によって成膜される。 Indium tin oxide (ITO) films and indium zinc oxide (IZO) films are used as transparent conductive films excellent in liquid crystal displays, color filters, thin film transistors, solar cells, and the like. ITO film an ITO sintered body consisting of tin oxide and indium oxide (In 2 O 3) (SnO 2) and the evaporation source or the target, the IZO film of indium oxide (In 2 O 3)) and zinc oxide (ZnO) This IZO sintered body is used as an evaporation source or target. A film is formed by vacuum deposition or ion plating using these sintered body materials.

これらの焼結体材料はいずれの成膜方法においても高密度であることが要求されるため、高温雰囲気における焼結が不可欠となる。高密度焼結体においては、低密度焼結体に比べ製造工程時や成膜時において材料の割れが発生しやすくなるという問題がみられる。さらにこれらの焼結体材料は成膜が進むにつれて浸食部にノジュールと呼ばれる針立ちが起こり、局所的な成膜効率の低下や異常放電の発生の原因となり膜特性の劣化を起こすことも問題となっている。   Since these sintered body materials are required to have a high density in any film forming method, sintering in a high temperature atmosphere is indispensable. In the high-density sintered body, there is a problem that cracking of the material is likely to occur during the manufacturing process and the film formation as compared with the low-density sintered body. Furthermore, with these sintered materials, needle deposition called nodules occurs in the erosion part as the film formation progresses, which causes a problem of local deterioration in film formation efficiency and abnormal film discharge. It has become.

このような問題を解決するために、様々な技術が開発されている。例えばITO焼結体では、第3物質として酸化マグネシウム(MgO)を添加することにより製造工程中のクラックの発生を防止している(特許文献1参照)。また、例えばIZO焼結体では、第3物質として酸化マグネシウム(MgO)を添加することによりノジュールの発生を防止している(特許文献2参照)。
特開2003-55759号公報 特開2005-307269号公報
Various techniques have been developed to solve such problems. For example, in the ITO sintered body, the generation of cracks during the manufacturing process is prevented by adding magnesium oxide (MgO) as the third material (see Patent Document 1). Further, for example, in an IZO sintered body, generation of nodules is prevented by adding magnesium oxide (MgO) as a third substance (see Patent Document 2).
JP 2003-55759 A JP 2005-307269 A

近年、特に太陽電池用に適した透明導電膜として、より広い波長領域において透明性を有するインジウム・タングステン酸化物膜が注目されている。   In recent years, an indium / tungsten oxide film having transparency in a wider wavelength region has attracted attention as a transparent conductive film particularly suitable for solar cells.

インジウム・タングステン酸化物膜は酸化インジウム(In2O3)と酸化タングステン(WO3)からなる焼結体を蒸発源あるいはターゲットとし、真空蒸着法やイオンプレーティング法によって成膜される。 The indium / tungsten oxide film is formed by vacuum deposition or ion plating using a sintered body made of indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ) as an evaporation source or target.

この焼結体材料はいずれの成膜方法においても高密度であることが要求されるため、高温雰囲気における焼結が不可欠となる。酸化インジウム(In2O3)と酸化タングステン(WO3)からなる焼結体の場合、酸化タングステンの蒸発温度が低いため(単体の場合850℃程度で昇華が開始)高温焼成を行うと焼結前よりも酸化タングステン濃度が小さくなって目的の組成の焼結体が得られないという問題がある。 Since this sintered body material is required to have a high density in any film forming method, sintering in a high temperature atmosphere is indispensable. In the case of a sintered body made of indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ), since the evaporation temperature of tungsten oxide is low (sublimation starts at about 850 ° C in the case of a single substance), sintering is performed at high temperature. There is a problem that the tungsten oxide concentration becomes smaller than before, and a sintered body having a target composition cannot be obtained.

しかしながら特許文献1、2には酸化タングステンのような低温蒸発物質の蒸発を抑制し、高温焼成を可能にする技術は開示されていない。   However, Patent Documents 1 and 2 do not disclose a technique that suppresses evaporation of a low-temperature evaporating substance such as tungsten oxide and enables high-temperature firing.

また、酸化インジウム(In2O3)と酸化タングステン(WO3)からなる高密度焼結体においても、製造工程時や成膜時における材料の割れの発生や、成膜中のノジュールの発生が問題となっているが、ITO焼結体やIZO焼結体と異なり、これまで第3物質の添加は検討されていない。 In addition, even in high-density sintered bodies made of indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ), material cracking during the manufacturing process and film formation, and nodules during film formation occur. Although it is a problem, unlike the ITO sintered body and the IZO sintered body, the addition of the third substance has not been studied so far.

本発明は、上記課題を解決するためになされたものであり、その目的は、酸化インジウム(In2O3)と酸化タングステン(WO3)からなる焼結体において高温焼成によっても組成が変化せず安定した膜特性が得られる、蒸着用あるいはイオンプレーティング用の光学薄膜用蒸着材料を提供することである。また、本発明の他の目的は、高密度焼結体であっても材料の割れが発生せず、成膜中にノジュールが発生しない、蒸着用あるいはイオンプレーティング用の光学薄膜用蒸着材料を提供することである。 The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to change the composition of a sintered body made of indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ) even by high-temperature firing. It is an object of the present invention to provide a vapor deposition material for an optical thin film for vapor deposition or ion plating that can provide stable film characteristics. Another object of the present invention is to provide a vapor deposition material for an optical thin film for vapor deposition or ion plating, in which no cracking of the material occurs even in a high-density sintered body and no nodules are generated during film formation. Is to provide.

そこで本発明では酸化インジウム(In2O3)と酸化タングステン(WO3)からなる焼結体において、第3物質の添加による材料の改良を検討し、酸化マグネシウム(MgO)の添加によりこの材料特有の問題である酸化タングステンの低温蒸発が抑えられ、高温焼結による高密度材料を得ることが可能となることを見出した。またこの方法により得られた高密度材料は材料の割れが起こらないこと、ノジュールの発生が抑えられることも見出した。 Therefore, in the present invention, in the sintered body made of indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ), the improvement of the material by adding the third substance is studied, and the addition of magnesium oxide (MgO) makes this material unique. It was found that the low temperature evaporation of tungsten oxide, which is a problem of the above, can be suppressed, and a high density material can be obtained by high temperature sintering. It was also found that the high-density material obtained by this method does not cause cracking of the material and suppresses the generation of nodules.

すなわち、本発明は、酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)の化合物又は混合物であることを特徴とする光学薄膜用蒸着材料である。 That is, the present invention is a vapor deposition material for an optical thin film characterized by being a compound or a mixture of indium oxide (In 2 O 3 ), tungsten oxide (WO 3 ), and magnesium oxide (MgO).

また、本発明は、酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)を主たる成分とする化合物又は混合物であり、Mgの含有量が0.05wt%から1.00wt%の組成であることを特徴とする光学薄膜用蒸着材料である。 Further, the present invention is a compound or mixture comprising indium oxide (In 2 O 3 ), tungsten oxide (WO 3 ) and magnesium oxide (MgO) as main components, and the Mg content is 0.05 wt% to 1.00 wt%. A vapor deposition material for an optical thin film characterized by having the following composition.

また、本発明は、酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)の化合物又は混合物であって、高温酸素雰囲気あるいは高温大気雰囲気中において焼結させた焼結体であることを特徴とする光学薄膜用蒸着材料である。 The present invention also relates to a compound or mixture of indium oxide (In 2 O 3 ), tungsten oxide (WO 3 ), and magnesium oxide (MgO), which is sintered in a high-temperature oxygen atmosphere or a high-temperature air atmosphere. It is a vapor deposition material for optical thin films characterized by being a body.

本発明の光学薄膜用蒸着材料は高温雰囲気においても組成の変化が起こらず、高温焼成による高密度化が可能であり、蒸着時の電子線照射時の熱衝撃による割れが発生せず、成膜時にノジュールをほとんど発生しないため膜中に欠陥が生じない。   The vapor deposition material for optical thin film of the present invention does not change its composition even in a high temperature atmosphere, can be densified by high temperature firing, does not generate cracks due to thermal shock during electron beam irradiation during deposition, and forms a film. Occasionally, nodules are hardly generated, so that no defects occur in the film.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の光学薄膜用蒸着材料は、具体的には酸化インジウム(In2O3)粉末及び酸化タングステン(WO3)粉末と酸化マグネシウム(MgO)粉末とを混合し、この混合物を成形した後、焼結して得られる焼結体、あるいはこの焼結体を粉砕して粉末状にし、これをさらに成形し焼成することで得られる、酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)からなるものである。 The vapor deposition material for optical thin film of the present invention specifically mixes indium oxide (In 2 O 3 ) powder and tungsten oxide (WO 3 ) powder and magnesium oxide (MgO) powder, and after molding this mixture, Indium oxide (In 2 O 3 ) and tungsten oxide (WO 3 ) obtained by sintering the sintered body, or by pulverizing this sintered body into a powder, further molding and firing the powder And magnesium oxide (MgO).

本発明において使用する酸化インジウム(In2O3)粉末と酸化タングステン(WO3)粉末と酸化マグネシウム(MgO)粉末、およびこれらを成形し焼成した化合物又は混合物の粉砕粉には特に制限はなく、いずれのものでも使用できるが、混合及び焼結しやすいように適度の粒度の粉末状のものが望ましい。これらの平均粒径としては1mm以下であることが好ましい。 The indium oxide (In 2 O 3 ) powder, tungsten oxide (WO 3 ) powder and magnesium oxide (MgO) powder used in the present invention, and a pulverized powder of a compound or mixture obtained by molding and firing are not particularly limited, Any of them can be used, but a powder having an appropriate particle size is desirable so that it can be easily mixed and sintered. Their average particle size is preferably 1 mm or less.

これにより粒子間の空孔が最適値となるため、成形密度が高められ、さらに焼成による焼結が促されるため高密度の焼結体を得ることが可能となる。   Thereby, since the void | hole between particle | grains becomes an optimal value, since a shaping | molding density is raised and also sintering by baking is promoted, it becomes possible to obtain a high-density sintered compact.

焼成は高温酸素雰囲気あるいは高温大気雰囲気中で行い、1400℃以上が好ましく、さらに1500℃以上が好ましい。これにより粉末原料の焼結が促され高密度の焼結体を得ることが可能となる。   Firing is performed in a high-temperature oxygen atmosphere or a high-temperature air atmosphere, preferably 1400 ° C. or higher, and more preferably 1500 ° C. or higher. Thereby, sintering of the powder raw material is promoted, and a high-density sintered body can be obtained.

Mgの含有量は0.05wt%から1.00wt%の組成であることが好ましい。   The Mg content is preferably 0.05 to 1.00 wt%.

これよりも少ない添加量では充分な添加効果が得られず、高温焼成時に酸化タングステン(WO3)の蒸発が起こり組成が変化してしまう。またこれ以上添加した場合では、焼結体の密度が低下してしまうからである。 If the addition amount is less than this, a sufficient addition effect cannot be obtained, and tungsten oxide (WO 3 ) evaporates during high-temperature firing, resulting in a change in composition. Moreover, it is because the density of a sintered compact will fall when it adds more than this.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
重量比で95.417wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で0.083wt%の酸化マグネシウム(MgO)粉末(Mg含有量で0.05wt%)を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って密度3.89g/cm3の蒸着材の錠剤を得た。
Example 1
95.417 wt% indium oxide (In 2 O 3 ) powder by weight ratio, 4.5 wt% tungsten oxide (WO 3 ) powder by weight ratio, and 0.083 wt% magnesium oxide (MgO) powder (by Mg content) 0.05wt%) was mixed, powdered using a molding die with a diameter of 40mm at a press pressure of 78.4MPa (800kgf / cm 2 ), and then sintered at 1500 ° C for 5 hours in an air atmosphere to obtain a density of 3.89 A tablet with a deposition material of g / cm 3 was obtained.

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

(実施例2)
重量比で93.84wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で1.66wt%の酸化マグネシウム(MgO)粉末(Mg含有量で1.00wt%)を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って密度3.81g/cm3の蒸着材の錠剤を得た。
(Example 2)
93.84 wt% indium oxide (In 2 O 3 ) powder by weight ratio, 4.5 wt% tungsten oxide (WO 3 ) powder by weight ratio, and 1.66 wt% magnesium oxide (MgO) powder (by Mg content) 1.00wt%) was mixed and powder-molded at a press pressure of 78.4MPa (800kgf / cm 2 ) using a mold with a diameter of 40mm, and then sintered at 1500 ° C for 5 hours in an air atmosphere to obtain a density of 3.81 to give tablets evaporation materials of g / cm 3.

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

(実施例3)
重量比で95.458wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で0.042wt%の酸化マグネシウム(MgO)粉末(Mg含有量で0.025wt%)を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って密度3.92g/cm3の蒸着材の錠剤を得た。
(Example 3)
95.458 wt% indium oxide (In 2 O 3 ) powder by weight ratio, 4.5 wt% tungsten oxide (WO 3 ) powder by weight ratio, and 0.042 wt% magnesium oxide (MgO) powder (by Mg content) 0.025wt%) was mixed, powdered with a pressing mold of 78.4MPa (800kgf / cm 2 ) using a molding die with a diameter of 40mm, and then sintered at 1500 ° C for 5 hours in an air atmosphere to obtain a density of 3.92 A tablet with a deposition material of g / cm 3 was obtained.

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度の減少が見られた。 When this tablet was subjected to X-ray fluorescence analysis, a decrease in the concentration of tungsten oxide (WO 3 ) was observed.

(実施例4)
重量比で92.18wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で3.32wt%の酸化マグネシウム(MgO)粉末(Mg含有量で2.00wt%)を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って蒸着材の錠剤を得た。この錠剤の密度は3.68g/cm3であり、実施例1、2、3の錠剤よりも小さい値であった。
Example 4
In 92.18Wt% indium oxide (In 2 O 3) powder and ratio of tungsten oxide (WO 3) of 4.5 wt% in a weight ratio powder and 3.32Wt% magnesium oxide (MgO) powder at a ratio of (Mg content ratio by weight 2.00wt%), powder-molded using a molding die with a diameter of 40mm at a press pressure of 78.4MPa (800kgf / cm 2 ), and then sintered at 1500 ° C for 5 hours in an air atmosphere to deposit the material. Pills were obtained. The density of this tablet was 3.68 g / cm 3 , which was smaller than those of Examples 1, 2, and 3 .

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

(実施例5)
重量比で95.38wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で0.12wt%の酸化マグネシウム(MgO)粉末を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って錠剤を得た。
(Example 5)
Mixing 95.38 wt% indium oxide (In 2 O 3 ) powder by weight, 4.5 wt% tungsten oxide (WO 3 ) powder by weight, and 0.12 wt% magnesium oxide (MgO) powder by weight, The powder was molded using a 40 mm mold at a press pressure of 78.4 MPa (800 kgf / cm 2 ) and then sintered at 1500 ° C. for 5 hours in an air atmosphere to obtain a tablet.

この焼結体を直径1.00mm以下の細粒状に粉砕して調整粉を作成した。さらにこの調整粉を70wt%と酸化インジウム(In2O3)粉末が30wt%となるように混合し(材料全体としてのMg含有量は0.05wt%)、この混合粉を直径25mmの成形用型を用い49MPa(500kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1400℃で5時間焼結を行って蒸着材の錠剤を得た。 This sintered body was pulverized into fine particles having a diameter of 1.00 mm or less to prepare adjusted powder. Furthermore, this adjusted powder was mixed to 70 wt% and indium oxide (In 2 O 3 ) powder to 30 wt% (Mg content of the whole material was 0.05 wt%), and this mixed powder was molded into a mold with a diameter of 25 mm. Was used to form a powder at a press pressure of 49 MPa (500 kgf / cm 2 ) and then sintered at 1400 ° C. for 5 hours in an air atmosphere to obtain a tablet as a vapor deposition material.

この錠剤の密度は4.05g/cm3であった。 The density of this tablet was 4.05 g / cm 3 .

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

次いでこの錠剤を蒸着装置に配置された電子銃に装填し、真空度1×10-3Paになるまで排気後、基板温度300℃でO2ガスを2×l0-2Paの圧力になるように保ちながら導入し、石英基板に成膜速度0.7Å/secで膜厚が200nmになるまで蒸着した。この錠剤はノジュールおよび割れの発生もなく容易に蒸着を行うことが可能であった。 Next, this tablet is loaded into an electron gun placed in a vapor deposition device, evacuated to a vacuum of 1 × 10 −3 Pa, and O 2 gas is brought to a pressure of 2 × 10 −2 Pa at a substrate temperature of 300 ° C. The film was introduced into the quartz substrate at a film formation rate of 0.7 mm / sec until the film thickness reached 200 nm. This tablet could be easily deposited without generation of nodules and cracks.

(実施例6)
重量比で93.13wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で2.37wt%の酸化マグネシウム(MgO)粉末を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って蒸着材の錠剤を得た。
(Example 6)
93.13Wt% of indium oxide (In 2 O 3) 4.5wt% of tungsten oxide powder in a weight ratio (WO 3) powder in a weight ratio mixture of 2.37Wt% of magnesium oxide (MgO) powder at a ratio of diameter Powder molding was performed at a press pressure of 78.4 MPa (800 kgf / cm 2 ) using a 40 mm molding die, followed by sintering at 1500 ° C. for 5 hours in an air atmosphere to obtain a vapor deposition material tablet.

この焼結体を直径1.00mm以下の細粒状に粉砕して調整粉を作成した。さらにこの調整粉を70wt%と酸化インジウム(In2O3)粉末が30wt%となるように混合し(材料全体としてのMg含有量は1.00wt%)、この混合粉を直径25mmの成形用型を用い49MPa(500kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1400℃で5時間焼結を行って蒸着材の錠剤を得た。 This sintered body was pulverized into fine particles having a diameter of 1.00 mm or less to prepare adjusted powder. Furthermore, this adjusted powder was mixed so that 70 wt% and indium oxide (In 2 O 3 ) powder would be 30 wt% (Mg content as a whole material was 1.00 wt%), and this mixed powder was molded into a mold with a diameter of 25 mm. Was used to form a powder at a press pressure of 49 MPa (500 kgf / cm 2 ) and then sintered at 1400 ° C. for 5 hours in an air atmosphere to obtain a tablet as a vapor deposition material.

この錠剤の密度は4.42g/cm3であった。 The density of this tablet was 4.42 g / cm 3 .

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

次いでこの錠剤を蒸着装置に配置された電子銃に装填し、真空度1×10-3Paになるまで排気後、基板温度300℃でO2ガスを2×l0-2Paの圧力になるように保ちながら導入し、石英基板に成膜速度0.7Å/secで膜厚が200nmになるまで蒸着した。この錠剤はノジュールおよび割れの発生もなく容易に蒸着を行うことが可能であった。 Next, this tablet is loaded into an electron gun placed in a vapor deposition device, evacuated to a vacuum of 1 × 10 −3 Pa, and O 2 gas is brought to a pressure of 2 × 10 −2 Pa at a substrate temperature of 300 ° C. The film was introduced into the quartz substrate at a film formation rate of 0.7 mm / sec until the film thickness reached 200 nm. This tablet could be easily deposited without generation of nodules and cracks.

(実施例7)
重量比で95.443wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で0.057wt%の酸化マグネシウム(MgO)粉末を混合し、直径40mmの成形用型を用い49MPa(500kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って蒸着材の錠剤を得た。
(Example 7)
95.443Wt% of indium oxide (In 2 O 3) 4.5wt% of tungsten oxide powder in a weight ratio (WO 3) powder in a weight ratio mixture of 0.057Wt% magnesium oxide (MgO) powder at a ratio of diameter Powder molding was performed using a 40 mm molding die at a pressing pressure of 49 MPa (500 kgf / cm 2 ), and then sintered in an air atmosphere at 1500 ° C. for 5 hours to obtain a vapor deposition material tablet.

この焼結体を直径1.00mm以下の細粒状に粉砕して調整粉を作成した。さらにこの調整粉を70wt%と酸化インジウム(In2O3)粉末が30wt%となるように混合し(材料全体としてのMg含有量は0.025wt%)、この混合粉を直径25mmの成形用型を用い49MPa(500kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1400℃で5時間焼結を行って蒸着材の錠剤を得た。 This sintered body was pulverized into fine particles having a diameter of 1.00 mm or less to prepare adjusted powder. Furthermore, this adjusted powder was mixed so that 70 wt% and indium oxide (In 2 O 3 ) powder would be 30 wt% (Mg content as a whole material was 0.025 wt%), and this mixed powder was molded into a mold with a diameter of 25 mm. Was used to form a powder at a press pressure of 49 MPa (500 kgf / cm 2 ) and then sintered at 1400 ° C. for 5 hours in an air atmosphere to obtain a tablet as a vapor deposition material.

この錠剤の密度は4.01g/cm3であった。 The density of this tablet was 4.01 g / cm 3 .

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度の減少が見られた。 When this tablet was subjected to X-ray fluorescence analysis, a decrease in the concentration of tungsten oxide (WO 3 ) was observed.

次いでこの錠剤を蒸着装置に配置された電子銃に装填し、真空度1×10-3Paになるまで排気後、基板温度300℃でO2ガスを2×l0-2Paの圧力になるように保ちながら導入し、蒸着を行おうとしたが、錠剤は割れてしまい蒸着を行うことが不可能であった。 Next, this tablet is loaded into an electron gun placed in a vapor deposition device, evacuated to a vacuum of 1 × 10 −3 Pa, and O 2 gas is brought to a pressure of 2 × 10 −2 Pa at a substrate temperature of 300 ° C. However, the tablet was cracked and could not be deposited.

(実施例8)
重量比で90.76wt%の酸化インジウム(In2O3)粉末と重量比で4.5wt%の酸化タングステン(WO3)粉末と重量比で4.74wt%の酸化マグネシウム(MgO)粉末を混合し、直径40mmの成形用型を用い78.4MPa(800kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1500℃で5時間焼結を行って蒸着材の錠剤を得た。
(Example 8)
90.76 wt% indium oxide (In 2 O 3 ) powder by weight ratio, 4.5 wt% tungsten oxide (WO 3 ) powder by weight ratio, and 4.74 wt% magnesium oxide (MgO) powder by weight ratio are mixed, and the diameter after powder molding at a press pressure of 78.4MPa (800kgf / cm 2) using a mold of 40 mm, to give tablets deposition material for 5 hours and sintered at 1500 ° C. in air atmosphere.

この焼結体を直径1.00mm以下の細粒状に粉砕して調整粉を作成した。さらにこの調整粉を70wt%と酸化インジウム(In2O3)粉末が30wt%となるように混合し(材料全体としてのMg含有量は2.00wt%)、この混合粉を直径25mmの成形用型を用い49MPa(500kgf/cm2)のプレス圧で粉末成形した後、大気雰囲気中にて1400℃で5時間焼結を行って蒸着材の錠剤を得た。 This sintered body was pulverized into fine particles having a diameter of 1.00 mm or less to prepare adjusted powder. Furthermore 70 wt% and indium oxide this adjustment powder (In 2 O 3) were mixed so powder is 30 wt% (Mg content of the overall material 2.00 wt%), the mold of the mixed powder diameter 25mm Was used to form a powder at a press pressure of 49 MPa (500 kgf / cm 2 ) and then sintered at 1400 ° C. for 5 hours in an air atmosphere to obtain a tablet as a vapor deposition material.

この錠剤の密度は3.96g/cm3であり、実施例5、6、7の錠剤よりも小さい値であった。 The density of this tablet was 3.96 g / cm 3 , which was smaller than the tablets of Examples 5, 6, and 7.

この錠剤について蛍光X線分析を行ったところ、酸化タングステン(WO3)の濃度に変化は見られなかった。 When this tablet was subjected to X-ray fluorescence analysis, no change was observed in the concentration of tungsten oxide (WO 3 ).

次いでこの錠剤を蒸着装置に配置された電子銃に装填し、真空度1×10-3Paになるまで排気後、基板温度300℃でO2ガスを2×l0-2Paの圧力になるように保ちながら導入し、石英基板に成膜速度0.7Å/secで膜厚が200nmになるまで蒸着した。この錠剤はノジュールおよび割れの発生もなく容易に蒸着を行うことが可能であった。 Next, this tablet is loaded into an electron gun placed in a vapor deposition device, evacuated to a vacuum of 1 × 10 −3 Pa, and O 2 gas is brought to a pressure of 2 × 10 −2 Pa at a substrate temperature of 300 ° C. The film was introduced into the quartz substrate at a film formation rate of 0.7 mm / sec until the film thickness reached 200 nm. This tablet could be easily deposited without generation of nodules and cracks.

Claims (3)

酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)の化合物又は混合物であることを特徴とする光学薄膜用蒸着材料。 A vapor deposition material for an optical thin film, which is a compound or a mixture of indium oxide (In 2 O 3 ), tungsten oxide (WO 3 ), and magnesium oxide (MgO). 酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)を主たる成分とする化合物又は混合物であり、Mgの含有量が0.05wt%から1.00wt%の組成であることを特徴とする光学薄膜用蒸着材料。 It is a compound or mixture containing indium oxide (In 2 O 3 ), tungsten oxide (WO 3 ) and magnesium oxide (MgO) as main components, and the Mg content is 0.05 wt% to 1.00 wt%. Vapor deposition material for optical thin film characterized. 酸化インジウム(In2O3)と酸化タングステン(WO3)と酸化マグネシウム(MgO)の化合物又は混合物であって、高温酸素雰囲気あるいは高温大気雰囲気中において焼結させた焼結体であることを特徴とする光学薄膜用蒸着材料。 Characterized in that a compound or a mixture of indium oxide (In 2 O 3) and ratio of tungsten oxide (WO 3) and magnesium oxide (MgO), a sintered body obtained by sintering at a high temperature oxygen atmosphere or in a high-temperature air atmosphere An optical thin film deposition material.
JP2006163423A 2006-06-13 2006-06-13 Vapor deposition material for optical thin film Pending JP2007332407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163423A JP2007332407A (en) 2006-06-13 2006-06-13 Vapor deposition material for optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163423A JP2007332407A (en) 2006-06-13 2006-06-13 Vapor deposition material for optical thin film

Publications (2)

Publication Number Publication Date
JP2007332407A true JP2007332407A (en) 2007-12-27
JP2007332407A5 JP2007332407A5 (en) 2008-07-10

Family

ID=38932159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163423A Pending JP2007332407A (en) 2006-06-13 2006-06-13 Vapor deposition material for optical thin film

Country Status (1)

Country Link
JP (1) JP2007332407A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219357A (en) * 2005-02-14 2006-08-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, sputtering target and transparent electroconductive membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219357A (en) * 2005-02-14 2006-08-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, sputtering target and transparent electroconductive membrane

Similar Documents

Publication Publication Date Title
JP4760154B2 (en) Oxide sintered body, oxide transparent conductive film, and production method thereof
KR100787635B1 (en) Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same
JP5339100B2 (en) Zn-Si-O-based oxide sintered body, method for producing the same, sputtering target, and tablet for vapor deposition
JP5764828B2 (en) Oxide sintered body and tablet processed the same
WO2017158928A1 (en) Oxide sintered compact
JP2007246318A (en) Oxide sintered compact, method for manufacturing the same, method for manufacturing oxide transparent conductive film, and oxide transparent conductive film
JP4575035B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JP4508079B2 (en) Manufacturing method of sputtering target
JP4813182B2 (en) ITO sputtering target
WO2007058318A1 (en) Fired material and process for producing the same
JP5320761B2 (en) Zinc oxide-based sintered tablet and method for producing the same
JP2007277039A (en) Oxide sintered compact and method for producing oxide transparent electroconductive film using the same
JP2007138198A (en) Magnesium oxide sintered compact for vapor deposition
JP2007332407A (en) Vapor deposition material for optical thin film
JP2007332407A5 (en)
JP2006069811A (en) Single crystal magnesium oxide sintered compact and protective film for plasma display panel
JP4955916B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
WO2014021374A1 (en) Oxide sintered body and tablet obtained by processing same
JP2014097922A (en) Method for producing zinc oxide-based sintered compact and target
JP2014080312A (en) Method for producing zinc oxide-based sintered body and target
JP2010269984A (en) METHOD FOR MANUFACTURING ZnO-BASED SINTERED COMPACT CONTAINING BORON
JP2010143798A (en) Sintered magnesium oxide and method for producing the same
JP2014097920A (en) Zinc oxide-based powder and method for producing zinc oxide-based sintered compact
JP6014451B2 (en) Method for producing zinc oxide-based sintered body
JP5532102B2 (en) Method for producing ZnO vapor deposition material and method for forming ZnO film using the ZnO vapor deposition material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025