JP2007332036A - Method for purifying glyceryl ether - Google Patents

Method for purifying glyceryl ether Download PDF

Info

Publication number
JP2007332036A
JP2007332036A JP2006161952A JP2006161952A JP2007332036A JP 2007332036 A JP2007332036 A JP 2007332036A JP 2006161952 A JP2006161952 A JP 2006161952A JP 2006161952 A JP2006161952 A JP 2006161952A JP 2007332036 A JP2007332036 A JP 2007332036A
Authority
JP
Japan
Prior art keywords
glyceryl ether
distillation
column
group
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006161952A
Other languages
Japanese (ja)
Other versions
JP4769642B2 (en
Inventor
Kengo Shibata
賢吾 柴田
Hakuko Nishimura
博貢 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006161952A priority Critical patent/JP4769642B2/en
Publication of JP2007332036A publication Critical patent/JP2007332036A/en
Application granted granted Critical
Publication of JP4769642B2 publication Critical patent/JP4769642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/141Fractional distillation or use of a fractionation or rectification column where at least one distillation column contains at least one dividing wall

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for purification by which a sufficiently deodorized glyceryl ether can efficiently be obtained. <P>SOLUTION: The method for purifying the glyceryl ether is a method for purification comprising using a distillation column having a structure in which the central part of the column is divided into two distillation parts. The method for purification is carried out as follows. The crude glyceryl ether containing the specific glyceryl ether and a lower-boiling component and a high-boiling component having a different boiling point from that of the glyceryl ether as impurities is fed to one of the divided distillation parts in the central part of the column and separated into a fraction (a) containing the low-boiling component, a fraction (b) containing the high-boiling component and the purified glyceryl ether. Furthermore, the purified glyceryl ether is separated from the other divided distillation part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はグリセリルエーテルの精製方法に関し、詳しくは、粗グリセリルエーテルから、充分に脱臭された精製グリセリルエーテルを効率的に得ることができる精製方法に関する。   The present invention relates to a purification method of glyceryl ether, and more particularly to a purification method capable of efficiently obtaining a sufficiently deodorized purified glyceryl ether from crude glyceryl ether.

グリセリルエーテルは、化粧品、香粧品、化成品、農薬、医薬品等の分野で有用な化合物である。グリセリルエーテルは、特にW/O型乳化特性を有する非イオン界面活性剤として極めて優れた性能を有しており、乳化剤、可溶化剤、潤滑剤等として化粧品基材等への幅広い応用がなされている。
グリセリルエーテルは、グリシジルエーテルを加水分解して開環することにより得ることができ、その加水分解法として種々の提案がなされている。例えば、グリシジルエーテルをカルボン酸と反応させてグリセロールモノエステルを生成させた後、酸触媒下で加水分解する方法(特許文献1)、グリシジルエーテルとカルボニル化合物とを反応させて1,3−ジオキソラン化合物を生成させた後、酸触媒下で加水分解する方法(特許文献2)、カルボン酸及びアルカリの共存下に加水分解する方法(特許文献3)、亜臨界状態下において無触媒で加水分解する方法(特許文献4)等が知られている。
Glyceryl ether is a useful compound in the fields of cosmetics, cosmetics, chemicals, agricultural chemicals, pharmaceuticals and the like. Glyceryl ether has particularly excellent performance as a nonionic surfactant having W / O type emulsification characteristics, and has been widely applied to cosmetic base materials as emulsifiers, solubilizers, lubricants and the like. Yes.
Glyceryl ether can be obtained by hydrolyzing glycidyl ether and opening the ring, and various proposals have been made as hydrolysis methods thereof. For example, a method in which glycidyl ether is reacted with a carboxylic acid to produce a glycerol monoester and then hydrolyzed under an acid catalyst (Patent Document 1), a glycidyl ether and a carbonyl compound are reacted, and a 1,3-dioxolane compound And then hydrolyzing in the presence of an acid catalyst (Patent Document 2), hydrolyzing in the presence of carboxylic acid and alkali (Patent Document 3), and non-catalytic hydrolysis in a subcritical state (Patent Document 4) and the like are known.

一方、化粧品、香粧品等の分野で使用される界面活性剤は、製品調合時の調香を重視する観点から、臭い成分の含有量を極力低減させることが望まれている。そこで、粗グリセリルエーテルについても、水蒸気、窒素、不活性ガスと接触させ脱臭処理する方法(特許文献5)が知られている。しかしながら、グリセリルエーテルは高沸点であるため、臭い成分が低沸点でない場合には、グリセリルエーテルの熱安定性や化学安定性の問題から充分な精製ができない場合が多い。また、蒸留操作中に粗グリセリルエーテル中の高沸点不純物の熱分解が起こり、新たな臭い成分が生じることもある。
また、塔中間部が2つの蒸留部に区分された構造を有する蒸留塔を用いる蒸留方法(特許文献6)が提案されているが、具体的な化合物の精製方法は開示されていない。
On the other hand, surfactants used in the fields of cosmetics, cosmetics and the like are desired to reduce the content of odorous components as much as possible from the viewpoint of emphasizing fragrance during product preparation. Therefore, a method of deodorizing the crude glyceryl ether by bringing it into contact with water vapor, nitrogen, or an inert gas is known (Patent Document 5). However, since glyceryl ether has a high boiling point, when the odor component is not low boiling point, there are many cases where sufficient purification cannot be performed due to problems of thermal stability and chemical stability of glyceryl ether. Further, during the distillation operation, thermal decomposition of high boiling impurities in the crude glyceryl ether may occur, and a new odor component may be generated.
Moreover, although the distillation method (patent document 6) using the distillation column which has a structure where the column intermediate part was divided into two distillation parts is proposed, the concrete purification method of the compound is not disclosed.

特公平1−55263号公報Japanese Patent Publication No. 1-55263 特公昭61−26997号公報Japanese Examined Patent Publication No. 61-26997 特開2002−114727号公報JP 2002-114727 A 特開2002−88000号公報JP 2002-88000 A 特開平6−80600号公報JP-A-6-80600 特開2004−230251号公報JP 2004-230251 A

本発明は、充分に脱臭されたグリセリルエーテルを効率的に得ることができる精製方法を提供することを課題とする。   An object of the present invention is to provide a purification method capable of efficiently obtaining a sufficiently deodorized glyceryl ether.

本発明者らは、熱分解性の高沸点成分を含むグリセリルエーテルを精製するに際し、塔中央部が2つの蒸留部に区分された構造を有する蒸留塔を用いて低沸点成分、高沸点成分及び精製グリセリルエーテルを同時に分離することにより、上記課題を解決しうることを見出した。
すなわち、本発明は、塔中央部が2つの蒸留部に区分された構造を有する蒸留塔を用いる精製方法であって、下記一般式(1)で表されるグリセリルエーテル、及び不純物として該グリセリルエーテルと沸点の異なる低沸点成分と高沸点成分を含む粗グリセリルエーテルを、該塔中央部の区分された一方の蒸留部に供給して、低沸点成分を含む留分(a)、高沸点成分を含む留分(b)、及び精製グリセリルエーテルに分離し、区分された他方の蒸留部から精製グリセリルエーテルを抜き出す、グリセリルエーテルの精製方法を提供する。
When purifying glyceryl ether containing a thermally decomposable high-boiling component, the present inventors used a distillation column having a structure in which the central portion of the column is divided into two distillation portions, and used a low-boiling component, a high-boiling component, and It has been found that the above-mentioned problems can be solved by simultaneously separating purified glyceryl ether.
That is, the present invention is a purification method using a distillation column having a structure in which the central part of the column is divided into two distillation units, and includes glyceryl ether represented by the following general formula (1) and the glyceryl ether as an impurity. The crude glyceryl ether containing a low-boiling component and a high-boiling component having different boiling points is supplied to one of the separated distillation sections in the center of the column, and the fraction (a) containing the low-boiling component is mixed with the high-boiling component. There is provided a method for purifying glyceryl ether, which is separated into a fraction (b) containing, and purified glyceryl ether, and the purified glyceryl ether is extracted from the other distillation section.

Figure 2007332036
Figure 2007332036

(式中、Rは置換又は無置換の飽和又は不飽和の炭素数1〜20の炭化水素基を示し、OAは炭素数2〜4のオキシアルカンジイル基を示し、pは平均付加モル数を示し0〜20の数であり、pが2以上のときOAは同一でも異なっていてもよい。) (In the formula, R represents a substituted or unsubstituted saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, OA represents an oxyalkanediyl group having 2 to 4 carbon atoms, and p represents an average added mole number. The number is 0 to 20, and when p is 2 or more, OA may be the same or different.)

本発明方法によれば、高沸点成分が熱分解して発生する低沸点の臭い成分が精製品に混入しないため、充分に脱臭されたグリセリルエーテルを容易に得ることができる。   According to the method of the present invention, since a low-boiling odor component generated by thermal decomposition of a high-boiling component does not enter into a refined product, a sufficiently deodorized glyceryl ether can be easily obtained.

(グリセリルエーテル)
本発明方法において精製の対象となるのは、下記一般式(1)で表されるグリセリルエーテル(以下、単に「グリセリルエーテル」ということがある)を主成分として含む粗グリセリルエーテルである。グリセリルエーテルは、下記一般式(2)で表されるグリシジルエーテル(以下、単に「グリシジルエーテル」ということがある)を加水分解して得ることができる。
(Glyceryl ether)
The subject of purification in the method of the present invention is a crude glyceryl ether containing as a main component a glyceryl ether represented by the following general formula (1) (hereinafter sometimes simply referred to as “glyceryl ether”). Glyceryl ether can be obtained by hydrolyzing glycidyl ether represented by the following general formula (2) (hereinafter sometimes simply referred to as “glycidyl ether”).

Figure 2007332036
Figure 2007332036

(式中、Rは置換又は無置換の飽和又は不飽和の炭素数1〜20の炭化水素基を示し、OAは炭素数2〜4のオキシアルカンジイル基を示し、pは平均付加モル数を示し0〜20の数であり、pが2以上のときOAは同一でも異なっていてもよい。) (In the formula, R represents a substituted or unsubstituted saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, OA represents an oxyalkanediyl group having 2 to 4 carbon atoms, and p represents an average added mole number. The number is 0 to 20, and when p is 2 or more, OA may be the same or different.)

Figure 2007332036
(式中、R、OA、及びpは、前記と同じである。)
Figure 2007332036
(In the formula, R, OA, and p are the same as described above.)

一般式(1)において、Rで示される炭素数1〜20の炭化水素基としては、置換又は無置換の飽和又は不飽和の炭化水素基が挙げられる。例えば、炭素数1〜20の直鎖又は分岐鎖のアルキル基、炭素数2〜20の直鎖又は分岐鎖のアルケニル基、炭素数6〜14のアリール基等が挙げられる。かかる炭化水素基は、その水素原子の一部又は全部がフッ素原子で置換されていてもよい。フッ素原子で置換されている場合の置換度及び置換位置は特に限定されない。   In the general formula (1), examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R include a substituted or unsubstituted saturated or unsaturated hydrocarbon group. For example, a C1-C20 linear or branched alkyl group, a C2-C20 linear or branched alkenyl group, a C6-C14 aryl group, etc. are mentioned. In such hydrocarbon groups, some or all of the hydrogen atoms may be substituted with fluorine atoms. The substitution degree and substitution position in the case of substitution with a fluorine atom are not particularly limited.

Rの具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、イソデシル基、n−テトラデシル基、n−ヘキサデシル基、n−オクタデシル基、n−エイコシル基、2−プロピル基、2−ブチル基、2−メチル−2−プロピル基、2−ペンチル基、3−ペンチル基、2−ヘキシル基、3−ヘキシル基、2−オクチル基、2−メチルオクチル基、2−エチルヘキシル基、イソオクタデシル基、フェニル基、ベンジル基等が挙げられる。
また、Rの水素原子がフッ素原子で置換された炭化水素基の具体例としては、ナノフルオロヘキシル基、ヘキサフルオロヘキシル基、トリデカフルオロオクチル基、ヘプタデカフルオロオクチル基、ヘプタデカフルオロデシル基等のパーフルオロアルキル基等が挙げられる。
OAで示される炭素数2〜4のオキシアルカンジイル基の具体例としては、オキシエチレン基、オキシトリメチレン基、オキシプロパン−1,2−ジイル基、オキシテトラメチレン基等が挙げられる。
Specific examples of R include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Decyl group, n-dodecyl group, isodecyl group, n-tetradecyl group, n-hexadecyl group, n-octadecyl group, n-eicosyl group, 2-propyl group, 2-butyl group, 2-methyl-2-propyl group, Examples include 2-pentyl group, 3-pentyl group, 2-hexyl group, 3-hexyl group, 2-octyl group, 2-methyloctyl group, 2-ethylhexyl group, isooctadecyl group, phenyl group, benzyl group and the like.
Specific examples of the hydrocarbon group in which the hydrogen atom of R is substituted with a fluorine atom include a nanofluorohexyl group, a hexafluorohexyl group, a tridecafluorooctyl group, a heptadecafluorooctyl group, a heptadecafluorodecyl group, etc. Perfluoroalkyl group and the like.
Specific examples of the oxyalkanediyl group having 2 to 4 carbon atoms represented by OA include an oxyethylene group, an oxytrimethylene group, an oxypropane-1,2-diyl group, and an oxytetramethylene group.

グリセリルエーテルの原料であるグリシジルエーテルの具体例としては、n−ブチルグリシジルエーテル、2−メチル−プロピルグリシジルエーテル、n−ペンチルグリシジルエーテル、2−メチル−ブチルグリシジルエーテル、2−メチル−ペンチルグリシジルエーテル、n−ヘキシルグリシジルエーテル、2−エチル−ヘキシルグリシジルエーテル、n−オクチルグリシジルエーテル、2−メチルオクチルグリシジルエーテル、イソデシルグリシジルエーテル、イソオクタデシルグリシジルエーテル、n−ステアリルグリシジルエーテル、フェニルグリシジルエーテル等が挙げられる。
また、グリセリルエーテルの具体例としては、上記の具体例で示されたグリシジルエーテルを加水分解して得られるグリセリルエーテルが挙げられる。
上記の一般式(1)で表されるグリセリルエーテルの中では、反応性及び反応選択性を向上させる観点から、Rは炭素数1〜12の炭化水素基が好ましく、OAはオキシエチレン基、オキシトリメチレン基、オキシプロパン−1,2−ジイル基、オキシテトラメチレン基から選ばれる1種以上の基が好ましく、pは0〜5が好ましく、0がより好ましい。
Specific examples of glycidyl ether that is a raw material of glyceryl ether include n-butyl glycidyl ether, 2-methyl-propyl glycidyl ether, n-pentyl glycidyl ether, 2-methyl-butyl glycidyl ether, 2-methyl-pentyl glycidyl ether, Examples include n-hexyl glycidyl ether, 2-ethyl-hexyl glycidyl ether, n-octyl glycidyl ether, 2-methyloctyl glycidyl ether, isodecyl glycidyl ether, isooctadecyl glycidyl ether, n-stearyl glycidyl ether, and phenyl glycidyl ether. .
Specific examples of glyceryl ether include glyceryl ether obtained by hydrolyzing glycidyl ether shown in the above specific examples.
Among the glyceryl ethers represented by the general formula (1), R is preferably a hydrocarbon group having 1 to 12 carbon atoms, and OA is an oxyethylene group, an oxy group from the viewpoint of improving reactivity and reaction selectivity. One or more groups selected from a trimethylene group, an oxypropane-1,2-diyl group, and an oxytetramethylene group are preferred, and p is preferably 0 to 5, and more preferably 0.

(グリシジルエーテルの加水分解)
グリシジルエーテルの加水分解法は特に限定されず、公知の方法を採用することができる。例えば、(i)アルコールにエピハロヒドリンを付加させてアルキルグリシジルエーテルとし、これを酸触媒含有水溶液でエポキシ環を加水分解してアルキルグリセリルエーテルを得る方法、(ii)グリシジルエーテルをカルボン酸と反応させてグリセロールモノエステルを生成させた後、酸触媒下で加水分解する方法(特公平1−55263号参照)、(iii)カルボン酸及びアルカリの共存下にグリシジルエーテルを加水分解する方法(特開2002−114727号参照)、(iv)亜臨界状態下で無触媒で加水分解する方法(特開2002−88000号参照)等を挙げることができる。
(Hydrolysis of glycidyl ether)
The hydrolysis method of glycidyl ether is not specifically limited, A well-known method is employable. For example, (i) a method in which an epihalohydrin is added to an alcohol to obtain an alkyl glycidyl ether, and this is hydrolyzed with an acid catalyst-containing aqueous solution to obtain an alkyl glyceryl ether. (Ii) a glycidyl ether is reacted with a carboxylic acid. A method in which glycerol monoester is produced and then hydrolyzed in the presence of an acid catalyst (see Japanese Patent Publication No. 1-55263), (iii) a method in which glycidyl ether is hydrolyzed in the presence of a carboxylic acid and an alkali (Japanese Patent Laid-Open No. 2002-2002) 114727), (iv) a non-catalytic hydrolysis method under subcritical conditions (see JP-A No. 2002-88000), and the like.

上記の加水分解法の中では、高収率で、かつ含触媒排水の処理が不要な(iv)亜臨界状態下において無触媒で加水分解する方法(以下、「亜臨界法」ということがある)が特に好ましい。亜臨界法においては、亜臨界状態の水(亜臨界水)の存在下、具体的には、温度250〜350℃で飽和蒸気圧を超える圧力(4〜16.5MPa)の状態にある水の存在下で、無触媒でグリシジルエーテルの加水分解を行う。温度は、より好ましくは270〜330℃であり、圧力は、より好ましくは6〜13MPaである。
亜臨界水は誘電率が大きく減少しているため、常温の水に対しては不溶性であるグリシジルエーテルも、亜臨界水に対しては溶解しやすく、反応系が均一化するため、反応性が向上し、無触媒でも反応が進行して高収率でグリセリルエーテルを得ることができる。また、加水分解時に、炭化水素鎖等の主鎖の分解まで起きることの少ない安定性の高いグリシジルエーテル系では、亜臨界状態を超え超臨界状態(374℃以上、22MPa以上)で加水分解を行うこともできる。
Among the above hydrolysis methods, high yield and no need for treatment of catalyst-containing wastewater (iv) Non-catalytic hydrolysis under subcritical conditions (hereinafter referred to as “subcritical method”) Is particularly preferred. In the subcritical method, in the presence of water in a subcritical state (subcritical water), specifically, water at a temperature exceeding a saturated vapor pressure at a temperature of 250 to 350 ° C. (4 to 16.5 MPa). Hydrolysis of glycidyl ether is carried out in the presence without catalyst. The temperature is more preferably 270 to 330 ° C., and the pressure is more preferably 6 to 13 MPa.
Since the dielectric constant of subcritical water is greatly reduced, glycidyl ether, which is insoluble in water at room temperature, is easily dissolved in subcritical water and the reaction system becomes uniform, so that the reactivity is high. The reaction proceeds even without catalyst and glyceryl ether can be obtained in high yield. In addition, in a highly stable glycidyl ether system that hardly occurs until the main chain such as a hydrocarbon chain is decomposed during hydrolysis, hydrolysis is performed in a supercritical state (374 ° C. or higher, 22 MPa or higher) exceeding the subcritical state. You can also.

亜臨界水とグリシジルエーテルの仕込み比(亜臨界水/グリシジルエーテル)は、20〜500モル倍が好ましく、40〜200モル倍がより好ましい。
亜臨界状態下での加水分解は無触媒で進行するが、原料グリシジルエーテルに混入する可能性のある微量の塩化物の影響を避けるため、アルカリを添加することもできる。用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましい。アルカリの添加量は、塩化物の塩素含有量に相当するモル量が好ましい。
また、亜臨界法においては必ずしも溶媒を必要としないが、原料グリシジルエーテルの性状、亜臨界水への溶解度に応じて、溶媒を用いることもできる。この場合、亜臨界状態下で反応性の低い溶媒を用いるのが好ましい。反応形態はバッチ式でも連続式でもよい。
The charging ratio of subcritical water and glycidyl ether (subcritical water / glycidyl ether) is preferably 20 to 500 mol times, and more preferably 40 to 200 mol times.
Hydrolysis under subcritical conditions proceeds without a catalyst, but an alkali can be added in order to avoid the influence of a small amount of chloride that may be mixed in the raw material glycidyl ether. The alkali used is preferably an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. The amount of alkali added is preferably a molar amount corresponding to the chlorine content of the chloride.
In the subcritical method, a solvent is not necessarily required, but a solvent can be used according to the properties of the raw material glycidyl ether and the solubility in subcritical water. In this case, it is preferable to use a solvent having low reactivity under subcritical conditions. The reaction form may be batch or continuous.

本発明の精製方法は、塔中央部が2つの蒸留部に区分された構造を有する蒸留塔を用いる精製方法であって、下記一般式(1)で表されるグリセリルエーテル、及び不純物として該グリセリルエーテルと沸点の異なる低沸点成分と高沸点成分を含む粗グリセリルエーテル(以下、単に「粗グリセリルエーテル」という)を、該塔中央部の区分された一方の蒸留部に供給して、低沸点成分を含む留分(a)、高沸点成分を含む留分(b)、及び精製グリセリルエーテルに分離し、区分された他方の蒸留部から精製グリセリルエーテルを抜き出すことを特徴とする。   The purification method of the present invention is a purification method using a distillation column having a structure in which the central part of the column is divided into two distillation parts, and the glyceryl ether represented by the following general formula (1) and the glyceryl as impurities. A crude glyceryl ether containing a low-boiling component and a high-boiling component having a boiling point different from that of ether (hereinafter, simply referred to as “crude glyceryl ether”) is supplied to one of the separated distillation sections in the center of the column to produce a low-boiling component. The glyceryl ether is separated from the fraction (a) containing high-boiling components, the fraction (b) containing high-boiling components, and the purified glyceryl ether, and the purified glyceryl ether is extracted from the other distillation section.

粗グリセリルエーテルとしては、グリシジルエーテルを前記の亜臨界法により加水分解して得られたものが好ましい。この粗グリセリルエーテルは、主成分としてグリセリルエーテルを80質量%以上、好ましくは95質量%以上含有し、その他に、不純物として未反応のグリシジルエーテル、低沸点成分、熱分解性の高沸点成分等を20質量%未満、好ましくは5質量%未満含有する。
ここで、低沸点成分とは、グリセリルエーテルよりも高い蒸気圧をもつ低沸点物を意味し、具体的には、エタノール、イソプロピルアルコール、ブタノール、2−エチルヘキサノール等のアルコール、アセトアルデヒド、プロパナール、ブタナール等のアルデヒド、グリシジルエーテル等が挙げられる。また、高沸点成分とは、グリセリルエーテルよりも低い蒸気圧をもつ高沸点物を意味し、具体的には、1,3−ジアルキルグリセリルエーテル、グリセリルエーテルの2量体や逆付加体等が挙げられる。
As the crude glyceryl ether, those obtained by hydrolyzing glycidyl ether by the above-mentioned subcritical method are preferable. This crude glyceryl ether contains glyceryl ether as a main component in an amount of 80% by mass or more, preferably 95% by mass or more. In addition, unreacted glycidyl ether, a low-boiling component, a thermally decomposable high-boiling component, etc. It contains less than 20% by mass, preferably less than 5% by mass.
Here, the low boiling point component means a low boiling point product having a higher vapor pressure than glyceryl ether, specifically, alcohols such as ethanol, isopropyl alcohol, butanol, 2-ethylhexanol, acetaldehyde, propanal, Examples include aldehydes such as butanal, glycidyl ether, and the like. The high boiling point component means a high boiling point substance having a vapor pressure lower than that of glyceryl ether, and specifically includes 1,3-dialkyl glyceryl ether, dimer of glyceryl ether, reverse adduct, and the like. It is done.

(蒸留塔)
本発明においては、塔中央部が2つの蒸留部に区分された構造を有する蒸留塔(以下、「分割塔」ということがある)が用いられる。蒸留塔内の蒸留部の区分は、仕切り板や円筒管を蒸留塔の中央部(中段部)に設置することにより行うことができる。
図1は、内部仕切り板を用いて塔中央部を区分した蒸留塔の一例を示す図である。この蒸留塔(分割塔)1の塔中央部は、内部仕切り板2により、2つの蒸留部(A、A’)及び(B、B’)に区分されている。蒸留塔1の上部(C)及び下部(D)は、通常の蒸留塔の構造と同じである。
また、留分の抜き出し口の数や位置も特に限定されない。
分割塔としては多成分分離が可能なものであれば特に制限はないが、「カラムインカラム」(住重プラントエンジニアリング株式会社、登録商標)等の蒸留塔が好ましく用いられる。
(Distillation tower)
In the present invention, a distillation column having a structure in which the central portion of the column is divided into two distillation units (hereinafter sometimes referred to as “dividing column”) is used. The distillation section in the distillation column can be divided by installing a partition plate or a cylindrical tube in the central portion (middle stage) of the distillation column.
FIG. 1 is a diagram showing an example of a distillation column in which a central portion of the column is divided using an internal partition plate. The central portion of the distillation column (dividing column) 1 is divided into two distillation portions (A, A ′) and (B, B ′) by an internal partition plate 2. The upper part (C) and the lower part (D) of the distillation column 1 are the same as the structure of a normal distillation column.
Further, the number and position of the fraction outlet are not particularly limited.
The dividing column is not particularly limited as long as multi-component separation is possible, but a distillation column such as “column in column” (Sumiju Plant Engineering Co., Ltd., registered trademark) is preferably used.

蒸留塔1内の蒸留部(気液接触部;A、A'、B、B'、C、及びD)には、棚段、充填層のいずれも使用可能である。
棚段に用いるトレイとしては、バルブトレイ、泡鐘トレイ、多孔板トレイ、リフトトレイ、フレキシトレイ、ナッターフロートバルブトレイ等が挙げられる。
充填層に用いられる充填物としては、ラシヒリング、ポールリング等のリング型充填物、ベルサドル、インターロックサドル等のサドル(馬の鞍の形)型充填物の他、マクマホンパッキング、キャノンパッキング、ディクソンパッキング、テラレット、スプレーパック、パナパック、インターパック、グッドローパッキング、ステッドマンパッキング、SFLOW(住重プラントエンジニアリング株式会社製)などがある。これらの中では、充填塔高さあたりの蒸留段数が多く、製品への熱負荷を下げる観点から、圧力損失の少ないSFLOW(住重プラントエンジニアリング株式会社製)等の規則充填物を用いることが好ましい。
For the distillation section (gas-liquid contact section; A, A ′, B, B ′, C, and D) in the distillation column 1, any of a shelf and a packed bed can be used.
Examples of trays used for the shelves include valve trays, bubble bell trays, perforated plate trays, lift trays, flexi trays, and nutter float valve trays.
The packing used in the packed bed includes ring-type packings such as Raschig rings and pole rings, saddle (horse-shoe-shaped) packings such as bell saddles and interlock saddles, as well as McMahon packing, Canon packing and Dixon packing. , Terralet, Spray Pack, Pana Pack, Interpack, Good Low Packing, Stedman Packing, SFLOW (manufactured by Sumiju Plant Engineering Co., Ltd.), and the like. Among these, it is preferable to use a regular packing such as SFLOW (manufactured by Sumiju Plant Engineering Co., Ltd.) having a small pressure loss from the viewpoint of reducing the thermal load on the product because the number of distillation stages per packed column height is large. .

蒸留原料(粗グリセリルエーテル)は、原料供給口3から蒸留塔1の中央部(中段部)に供給される。原料供給側の蒸留部(A、A’)には、原料供給口3の上下両側に棚段や充填層があってもよく、また上下どちらか一方にのみ棚段や充填層があってもよい。
蒸留塔1の塔頂には、低沸点成分を含む留分(a)の留出口4が設けられ、塔中段部には精製品留出口5が設けられ、塔底には高沸点成分を含む留分(b)の抜出口6が設けられている。塔中段部の精製品留出口5は、内部仕切り板2により区分された一方の蒸留部(原料供給側の蒸留部;A、A’)に隣接する他方の蒸留部(B、B’)に設けられる。
塔頂の留出口4からの低沸点成分を含む留分(a)は蒸気のまま塔外へ排出し、凝縮器7で冷却後、一部を留出液として取出し、一部を還流として塔頂に返してもよく、又は塔頂に設けた内部凝縮器(図示せず)で凝縮液すべてを内部で還流して、一部を留出液として取り出してもよい。
The distillation raw material (crude glyceryl ether) is supplied from the raw material supply port 3 to the central part (middle part) of the distillation column 1. In the distillation section (A, A ′) on the raw material supply side, there may be a shelf or a packed bed on both the upper and lower sides of the raw material supply port 3, and there may be a shelf or a packed bed on only one of the upper and lower sides. Good.
A distillation outlet 4 for a fraction (a) containing a low-boiling component is provided at the top of the distillation column 1, a purified product outlet 5 is provided at the middle stage of the tower, and a high-boiling component is contained at the bottom of the tower. An outlet 6 for the fraction (b) is provided. The refined product outlet 5 in the middle stage of the column is connected to the other distillation section (B, B ′) adjacent to one distillation section (distillation section on the raw material supply side; A, A ′) divided by the internal partition plate 2. Provided.
The fraction (a) containing the low-boiling components from the distillation outlet 4 at the top of the tower is discharged out of the tower as vapor, cooled by the condenser 7, and then partly taken out as a distillate and partly refluxed. It may be returned to the top, or all the condensate may be refluxed with an internal condenser (not shown) provided at the top of the column, and a part thereof may be taken out as a distillate.

塔底の留出口6からの高沸点成分を含む留分(b)は、その一部が加熱器8により加熱されて塔底に循環され、一部は留出液として取出される。
加熱器8の形式は特に制限はなく、自然循環式(サーモサイホン型)、外部循環型、内挿型、溢流管束型(ケトル型)等を用いることができる。中でも、高沸点成分を含む留分(b)の熱履歴による劣化防止の観点から外部循環型とすることが好ましい。熱媒体としては、熱油や高圧水蒸気等を用いることができる。
本発明においては、分割塔を用いて蒸留操作を行う限り、蒸留方法は特に限定されず、公知の方法を採用することができる。蒸留操作としては、回分式又は連続式いずれでもよく、加熱滞留時間の短い連続式蒸留がより好ましい。また蒸留の形式としては、例えば、精留、分子蒸留、水蒸気蒸留、共沸蒸留等が挙げられる。これらは単独で又は2種以上を組み合わせて行うことができる。
A part of the fraction (b) containing the high-boiling components from the distillation outlet 6 at the bottom of the tower is heated by the heater 8 and circulated to the bottom of the tower, and a part thereof is taken out as a distillate.
The type of the heater 8 is not particularly limited, and a natural circulation type (thermo siphon type), an external circulation type, an insertion type, an overflow tube bundle type (kettle type), or the like can be used. Especially, it is preferable to use an external circulation type from a viewpoint of the deterioration prevention by the heat history of the fraction (b) containing a high boiling point component. As the heat medium, hot oil, high-pressure steam, or the like can be used.
In the present invention, the distillation method is not particularly limited as long as the distillation operation is performed using a dividing column, and a known method can be employed. The distillation operation may be either batch or continuous, and continuous distillation with a short heating residence time is more preferable. Examples of the distillation format include rectification, molecular distillation, steam distillation, and azeotropic distillation. These can be performed alone or in combination of two or more.

(分割塔を用いた蒸留精製)
分割塔を用いた蒸留においては、粗グリセリルエーテルを供給することにより、塔頂から低沸点成分を含む留分(a)を抜き出し、塔底から高沸点成分を含む留分(b)を抜き出し、塔中段部から精製グリセリルエーテルを含む留分をそれぞれ同時に抜き出す。
粗グリセリルエーテル中には、熱負荷がかかることにより臭気を発生する物質が存在し、また、グリセリルエーテル自体も熱負荷により臭気物質の発生を伴うため、蒸留操作はグリセリルエーテル及びその他の熱分解性物質の熱分解を抑えるために、なるべく熱負荷の低い条件下におくことが好ましい。
そこで、分割塔内の塔底液温は、好ましくは100〜300℃、より好ましくは120〜200℃、分割塔内の塔底圧力は、好ましくは0.1〜20kPa、より好ましくは0.1〜5kPaとして蒸留を行う。なお、分割塔内の液温は、高沸点成分の分離を妨げない範囲で低くすることが好ましい。また、分割塔内の底部から高圧水蒸気や不活性ガスを吹込む方法やフラッシュ蒸発させる方法なども採用可能である。
蒸留塔(器)の還流比及び理論段数は、原料中の各種成分の物性値から、蒸留シミュレーターにより算出した値を利用することができる。蒸留塔(器)の段数は、通常2〜50段、好ましくは4〜40段、より好ましくは5〜30段程度である。
(Distillation purification using a dividing tower)
In distillation using a dividing column, by supplying crude glyceryl ether, a fraction (a) containing a low-boiling component is extracted from the top of the column, and a fraction (b) containing a high-boiling component is extracted from the bottom of the column, Fractions containing purified glyceryl ether are withdrawn simultaneously from the middle stage of the column.
In crude glyceryl ether, there are substances that generate odors when heat load is applied, and glyceryl ether itself is accompanied by generation of odor substances due to heat load, so the distillation operation is glyceryl ether and other pyrolytic properties. In order to suppress thermal decomposition of the substance, it is preferable that the heat load be as low as possible.
Therefore, the column bottom liquid temperature in the dividing column is preferably 100 to 300 ° C., more preferably 120 to 200 ° C., and the column bottom pressure in the dividing column is preferably 0.1 to 20 kPa, more preferably 0.1. Distillation is performed at ˜5 kPa. In addition, it is preferable to make low the liquid temperature in a division tower in the range which does not prevent the separation of a high boiling point component. Further, a method of blowing high-pressure steam or inert gas from the bottom of the dividing tower or a method of flash evaporation can be employed.
As the reflux ratio and the theoretical plate number of the distillation column (vessel), values calculated by a distillation simulator from the physical property values of various components in the raw material can be used. The number of stages of the distillation column (vessel) is usually 2 to 50, preferably 4 to 40, more preferably about 5 to 30.

粗グリセリルエーテル中の前記高沸点成分は、熱分解性の成分を含むため、蒸留時に、その熱分解性の高沸点成分が低沸点の臭い成分と比較的安定な成分に分解される。このため、高沸点成分を含む留分(b)は比較的安定であるが、低沸点成分を含む留分(a)には、グリセリルエーテルと、当初の粗グリセリルエーテル中に存在していた低沸点の臭い成分、及び蒸留時に高沸点成分の一部が熱分解して生成した低沸点の臭い成分が含まれている。
本発明における分割塔を用いると、粗グリセリルエーテル中に存在していた低沸点の臭い成分、及び蒸留時に高沸点成分の一部が熱分解して生成した低沸点の臭い成分の殆どは、低沸点成分を含む留分(a)として留出される。その結果、塔中段から留出する精製グリセリルエーテルとの混入が回避され、異臭の充分低減された精製グリセリルエーテルを得ることができる。
分離した精製グリセリルエーテルは、高温による臭いの劣化を抑制するために、速やかに冷却することが好ましく、冷却後の温度は50℃以下が好ましい。
Since the high boiling point component in the crude glyceryl ether contains a thermally decomposable component, the thermally decomposable high boiling point component is decomposed into a low boiling point odor component and a relatively stable component during distillation. For this reason, the fraction (b) containing the high-boiling component is relatively stable, but the fraction (a) containing the low-boiling component contains the glyceryl ether and the low amount present in the original crude glyceryl ether. A boiling-point odor component and a low-boiling point odor component generated by thermal decomposition of a part of the high-boiling component during distillation are included.
When the dividing tower in the present invention is used, most of the low-boiling odor components present in the crude glyceryl ether and the low-boiling odor components generated by thermal decomposition of a part of the high-boiling components during distillation are low. It is distilled as a fraction (a) containing a boiling component. As a result, contamination with purified glyceryl ether distilled from the middle column of the column is avoided, and purified glyceryl ether with sufficiently reduced off-flavor can be obtained.
The separated purified glyceryl ether is preferably cooled quickly in order to suppress odor degradation due to high temperature, and the temperature after cooling is preferably 50 ° C. or lower.

本発明は、上記のように、高沸点成分除去と低沸点成分除去という2種類の分離操作を分割塔を用いて同時に行うことが特徴であるが、2つの蒸留塔を用いて、低沸点成分除去−高沸点成分除去の順に行うと、本発明の課題は達成できない。すなわち、第1塔目の蒸留塔において、低沸点成分を蒸留器頂部から排出し、蒸留器底部から抜き出したグリセリルエーテルと高沸点成分を含む留分を第2塔目の蒸留塔に供給し、第2塔目の蒸留塔底部から高沸点成分を排出し、第2塔目の蒸留塔頂部からグリセリルエーテルを抜き出しても、第2塔目の蒸留塔で高沸点成分の一部が熱分解して生成する低沸点の臭い成分は第2塔目の蒸留塔頂部から抜き出されてグリセリルエーテル中に混入するため、製品中の臭いを低減することができない。   As described above, the present invention is characterized in that two types of separation operations, high-boiling component removal and low-boiling component removal, are simultaneously performed using a dividing column. If the removal-high boiling point component removal is performed in this order, the object of the present invention cannot be achieved. That is, in the first distillation column, low-boiling components are discharged from the top of the still, and a fraction containing glyceryl ether and high-boiling components extracted from the bottom of the still is supplied to the second distillation column, Even if high-boiling components are discharged from the bottom of the second distillation column and glyceryl ether is extracted from the top of the second distillation column, some of the high-boiling components are thermally decomposed in the second distillation column. The low-boiling odor component produced in this way is extracted from the top of the second distillation column and mixed in glyceryl ether, so that the odor in the product cannot be reduced.

かくして得られた精製グリセリルエーテルは、そのまま製品として使用することができるが、所望により、更に公知の精製操作、例えば洗浄、再結晶、カラムクロマトグラフィー等による精製操作や、脱色操作等を行うこともできる。
精製グリセリルエーテル中のグリセリルエーテルの含有量としては、好ましくは80重量%以上、より好ましくは90重量%以上、更に好ましくは95重量%以上である。
The purified glyceryl ether thus obtained can be used as a product as it is, but if desired, further known purification operations, for example, purification operations such as washing, recrystallization and column chromatography, and decolorization operations may be performed. it can.
The content of glyceryl ether in the purified glyceryl ether is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.

製造例1(グリセリルエーテルの製造例)
連続管型反応装置を用いて粗グリセリルエーテルを合成した。原料油である2−エチルヘキシルグリシジルエーテル(ガスクロマトグラフィー純度99%以上)74.1g/min(83.3cc/min)及び280℃に加熱したイオン交換水716.7g/minを連続的に管型反応器に供給した。反応温度を280℃、反応圧力を背圧弁で8MPaに保持した。反応管内部の滞留時間は3min、原料油1モルに対する水のモル比は100倍となるように流量を設定した。反応終了品を脱水処理したものを粗グリセリルエーテルとし、蒸留原料として使用した。
Production Example 1 (Production example of glyceryl ether)
Crude glyceryl ether was synthesized using a continuous tube reactor. 2-ethylhexyl glycidyl ether (gas chromatography purity 99% or more) 74.1 g / min (83.3 cc / min) and 716.7 g / min of ion-exchanged water heated to 280 ° C. are continuously tubular. Feeded to the reactor. The reaction temperature was maintained at 280 ° C., and the reaction pressure was maintained at 8 MPa with a back pressure valve. The flow rate was set so that the residence time inside the reaction tube was 3 min and the molar ratio of water to 1 mol of feedstock was 100 times. The dehydrated product of the reaction product was used as crude glyceryl ether and used as a raw material for distillation.

実施例1
2−エチルヘキシルグリセリルエーテルを、図1に示す「カラムインカラム」精留塔(住重プラントエンジニアリング株式会社製、理論段数20段(図1中の各蒸留部A、A'、B、B'、C、及びDはそれぞれ5段)、規則充填物SFLOW700G)を用いて、原料供給口3から10kg/hで連続供給し、塔底液温180℃、塔底圧力0.67kPa、低沸点成分カット率5.0%(質量基準)、塔頂還流比31で精留した。塔頂からの低沸点成分を含む留分(a)の外部への抜出量0.5kg/h、塔中段からの精製品の抜出量9.0kg/h、塔底からの高沸点成分を含む留分(b)の外部への抜出量0.5kg/hで定常運転を行った。
最終的に得られた冷却した精製品を容量が110mlのガラス製広口規格ビンに50ml入れ、20〜40才代計7人のパネラーに臭いを嗅いでもらい、下記の表1に示す官能評価基準に従って採点を行い、その平均値の少数第一位を四捨五入して臭いスコアとした。
その結果、塔中段からの精製品の臭いスコアは2(ほとんど臭いを感じない)で、充分に脱臭されており、化粧品・香粧品に好適に利用できることが判った。結果を表2にまとめて示す。
Example 1
2-ethylhexyl glyceryl ether was converted into a “column-in-column” rectification column (manufactured by Sumiju Plant Engineering Co., Ltd., theoretical plate number 20) (each distillation section A, A ′, B, B ′ in FIG. C and D are 5 stages each), and regular packing SFLOW700G) is used and continuously supplied at 10 kg / h from the raw material supply port 3, the bottom liquid temperature is 180 ° C., the bottom pressure is 0.67 kPa, and low boiling point components are cut. The rectification was performed at a rate of 5.0% (mass basis) and a column reflux ratio of 31. Extraction rate of fraction (a) containing low-boiling components from the top of the column to the outside is 0.5 kg / h, extraction amount of purified products from the middle stage of the column is 9.0 kg / h, high-boiling components from the bottom of the column Steady operation was performed at a discharge rate of 0.5 kg / h to the outside of the fraction (b) containing.
Finally, put 50 ml of the cooled purified product into a glass wide-mouth standard bottle with a capacity of 110 ml, and ask the panelists of 20 to 40-year-olds to smell the odors, and the sensory evaluation criteria shown in Table 1 below The grading score was calculated by rounding off the first decimal place.
As a result, it was found that the odor score of the refined product from the middle stage of the tower was 2 (almost no odor was felt) and it was sufficiently deodorized and could be suitably used for cosmetics and cosmetics. The results are summarized in Table 2.

Figure 2007332036
Figure 2007332036

比較例1
図2に示す2塔式蒸留装置10を用いて、粗グリセリルエーテルを精製した。
2−エチルヘキシルグリセリルエーテルを、スルザーラボパッキングDX(スルザーケムテック社製、実施例1のSFLOW700Gと分離性能は同等)が充填された、理論段数10段(図2中の蒸留部11、12はそれぞれ5段)の精留塔(塔径50mm)に7.5g/minで連続供給し、塔底液温150℃、塔底圧力1.2kPa、低沸点成分カット率4.3%(質量基準)、還流比10で連続供給した後、その缶出液を理論段数10段(図2中の蒸留部13、14はそれぞれ5段)の精留塔(塔径50mm)に7g/minで連続供給し、塔底液温132℃、塔底圧力0.3kPa、高沸点成分カット率6.2%(質量基準)で定常運転を行った。
冷却したサンプルを用いて実施例1と同様の官能評価を行った結果、臭いスコアは5(臭いを感じる)であり、化粧品・香粧品には利用できなかった。結果を表2にまとめて示す。
Comparative Example 1
Crude glyceryl ether was purified using a two-column distillation apparatus 10 shown in FIG.
2-ethylhexyl glyceryl ether was packed with Sulzer Lab Packing DX (manufactured by Sulzer Chemtech Co., Ltd., with the same separation performance as SFLOW 700G of Example 1). The number of theoretical plates was 10 (the distillation units 11 and 12 in FIG. (Five stages) rectification column (column diameter 50 mm) continuously fed at 7.5 g / min, column bottom liquid temperature 150 ° C., column bottom pressure 1.2 kPa, low boiling point component cut rate 4.3% (mass basis) Then, after continuously supplying at a reflux ratio of 10, the bottoms were continuously supplied at a rate of 7 g / min to a rectification column (column diameter 50 mm) having a theoretical plate number of 10 (5 distillation units 13 and 14 in FIG. 2). Then, steady operation was performed at a tower bottom liquid temperature of 132 ° C., a tower bottom pressure of 0.3 kPa, and a high boiling point component cut rate of 6.2% (mass basis).
As a result of sensory evaluation similar to that of Example 1 using the cooled sample, the odor score was 5 (feeling odor) and could not be used for cosmetics and cosmetics. The results are summarized in Table 2.

Figure 2007332036
Figure 2007332036

内部仕切り板を用いて塔中央部を区分した蒸留塔の一例を示す図である。It is a figure which shows an example of the distillation tower which divided the tower center part using the internal partition plate. 比較例1で用いた2塔式蒸留装置を示す図である。2 is a diagram showing a two-column distillation apparatus used in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 蒸留塔(分割塔)
2 内部仕切り板
3 原料供給口
4 低沸点成分を含む留分の留出口
5 精製品留出口
6 高沸点成分を含む留分の抜出口
7 塔頂の凝縮器
8 塔底の加熱器
10 2塔式蒸留装置
1 Distillation tower (split tower)
2 Internal partition plate 3 Raw material supply port 4 Distillate outlet containing low-boiling components 5 Refined product outlet 6 Distillate outlet containing high-boiling components 7 Condenser at the top of the tower 8 Heater at the bottom of the tower 10 2 towers Distillation equipment

Claims (5)

塔中央部が2つの蒸留部に区分された構造を有する蒸留塔を用いる精製方法であって、下記一般式(1)で表されるグリセリルエーテル、及び不純物として該グリセリルエーテルと沸点の異なる低沸点成分と高沸点成分を含む粗グリセリルエーテルを、該塔中央部の区分された一方の蒸留部に供給して、低沸点成分を含む留分(a)、高沸点成分を含む留分(b)、及び精製グリセリルエーテルに分離し、区分された他方の蒸留部から精製グリセリルエーテルを抜き出す、グリセリルエーテルの精製方法。
Figure 2007332036
(式中、Rは置換又は無置換の飽和又は不飽和の炭素数1〜20の炭化水素基を示し、OAは炭素数2〜4のオキシアルカンジイル基を示し、pは平均付加モル数を示し0〜20の数であり、pが2以上のときOAは同一でも異なっていてもよい。)
A purification method using a distillation column having a structure in which the central part of the column is divided into two distillation parts, and a glyceryl ether represented by the following general formula (1) and a low boiling point different from the glyceryl ether as an impurity A crude glyceryl ether containing a component and a high-boiling component is supplied to one of the separated distillation sections at the center of the column, and a fraction containing a low-boiling component (a) and a fraction containing a high-boiling component (b) And a method for purifying glyceryl ether, which is separated into purified glyceryl ether, and the purified glyceryl ether is extracted from the other distillation section.
Figure 2007332036
(In the formula, R represents a substituted or unsubstituted saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, OA represents an oxyalkanediyl group having 2 to 4 carbon atoms, and p represents an average added mole number. The number is 0 to 20, and when p is 2 or more, OA may be the same or different.)
グリセリルエーテルが、下記一般式(2)で表されるグリシジルエーテルを加水分解して得られるものである、請求項1に記載のグリセリルエーテルの精製方法。
Figure 2007332036
(式中、R、OA、及びpは、前記と同じである。)
The method for purifying glyceryl ether according to claim 1, wherein the glyceryl ether is obtained by hydrolysis of glycidyl ether represented by the following general formula (2).
Figure 2007332036
(In the formula, R, OA, and p are the same as described above.)
粗グリセリルエーテルが、グリセリルエーテルを80質量%以上含有するものである、請求項1又は2に記載のグリセリルエーテルの精製方法。   The method for purifying glyceryl ether according to claim 1 or 2, wherein the crude glyceryl ether contains 80% by mass or more of glyceryl ether. 蒸留が連続蒸留である請求項1〜3のいずれかに記載のグリセリルエーテルの精製方法。   The method for purifying glyceryl ether according to any one of claims 1 to 3, wherein the distillation is continuous distillation. 蒸留塔が規則充填物を充填したものである、請求項1〜4のいずれかに記載のグリセリルエーテルの精製方法。   The method for purifying glyceryl ether according to any one of claims 1 to 4, wherein the distillation column is packed with a regular packing.
JP2006161952A 2006-06-12 2006-06-12 Purification method of glyceryl ether Expired - Fee Related JP4769642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161952A JP4769642B2 (en) 2006-06-12 2006-06-12 Purification method of glyceryl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161952A JP4769642B2 (en) 2006-06-12 2006-06-12 Purification method of glyceryl ether

Publications (2)

Publication Number Publication Date
JP2007332036A true JP2007332036A (en) 2007-12-27
JP4769642B2 JP4769642B2 (en) 2011-09-07

Family

ID=38931846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161952A Expired - Fee Related JP4769642B2 (en) 2006-06-12 2006-06-12 Purification method of glyceryl ether

Country Status (1)

Country Link
JP (1) JP4769642B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817436A (en) * 2015-05-13 2015-08-05 陕西省石油化工研究设计院 Method for preparing high-purity ethylhexylglycerin
CN111138250A (en) * 2019-12-30 2020-05-12 陕西省石油化工研究设计院 Refining method of chlorphenesin
CN112770719A (en) * 2018-09-25 2021-05-07 株式会社Adeka Method for producing glycerin ether-containing composition and glycerin ether-containing composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299702A (en) * 1996-05-16 1997-11-25 Kyowa Yuka Kk Distillation method
JPH11315051A (en) * 1998-05-06 1999-11-16 Kyowa Yuka Kk Distiller for 2,2,4-trimethyl-1,3-pentanediol isobutyrates and their distillation
JP2001011002A (en) * 1999-06-25 2001-01-16 Kao Corp Production of glyceryl ether
JP2002338511A (en) * 2001-05-16 2002-11-27 Kyowa Yuka Co Ltd Distillation apparatus for propylene glycol monoalkyl ether and method for distilling the same
JP2005120036A (en) * 2003-10-17 2005-05-12 Kao Corp Method for producing glyceryl ether

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299702A (en) * 1996-05-16 1997-11-25 Kyowa Yuka Kk Distillation method
JPH11315051A (en) * 1998-05-06 1999-11-16 Kyowa Yuka Kk Distiller for 2,2,4-trimethyl-1,3-pentanediol isobutyrates and their distillation
JP2001011002A (en) * 1999-06-25 2001-01-16 Kao Corp Production of glyceryl ether
JP2002338511A (en) * 2001-05-16 2002-11-27 Kyowa Yuka Co Ltd Distillation apparatus for propylene glycol monoalkyl ether and method for distilling the same
JP2005120036A (en) * 2003-10-17 2005-05-12 Kao Corp Method for producing glyceryl ether

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104817436A (en) * 2015-05-13 2015-08-05 陕西省石油化工研究设计院 Method for preparing high-purity ethylhexylglycerin
CN112770719A (en) * 2018-09-25 2021-05-07 株式会社Adeka Method for producing glycerin ether-containing composition and glycerin ether-containing composition
CN111138250A (en) * 2019-12-30 2020-05-12 陕西省石油化工研究设计院 Refining method of chlorphenesin
CN111138250B (en) * 2019-12-30 2022-07-01 陕西化工研究院有限公司 Refining method of chlorphenesin

Also Published As

Publication number Publication date
JP4769642B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US5883288A (en) Continuous preparation of alkyl esters of (meth)acrylic acid
US4370491A (en) Continuous preparation of acetic acid esters
JP6965244B6 (en) Method for preparing a compound having a 16-oxabicyclo [10.3.1] pentadecene skeleton and its subsequent products.
TWI432407B (en) Multi-stage process and apparatus for recovering dichlorohydrins
EA012957B1 (en) Method for producing dichloropropanol, epichlorohydrin and epoxy resins
CZ30997A3 (en) Continuous preparation of (meth)acrylic acid alkyl esters
JP5837749B2 (en) Propylene glycol monoalkyl ether production
MXPA97000897A (en) Continuous preparation of alkyl sters of the met acid (acrili
MXPA97000896A (en) Continuous preparation of acid alkyl sters (met) acril
TWI490193B (en) Process and apparatus for azeotropic recovery of dichlorohydrins
JP6284933B2 (en) Method for producing methylbutynol
JP4769642B2 (en) Purification method of glyceryl ether
TWI426066B (en) Process and appratus for recovery of dichlorohydrins via codistillation
EP3008046B1 (en) Process for the manufacture of epoxy-monomers and epoxides
US9006495B2 (en) Process for the catalytic aldol condensation of aldehydes
US8298500B2 (en) Process and apparatus for producing and purifying epichlorohydrins
JP2018021011A (en) Method for producing Guerbet alcohol
TW574212B (en) Process for producing isobutylene and methanol
JP4769626B2 (en) Purification method of glyceryl ether
EP1381586B1 (en) Process for the purification of fluoromethyl hexafluoroisopropyl ether
CN110958999B (en) Method for producing formic acid using high-boiling formic acid ester
JP7380181B2 (en) Method for producing paraaldol
JPS62106060A (en) Production of pure chlorine free cyclopropoane-carboxylic ester
JP2019516742A (en) Process for recovering by-products from MMA
JP4769633B2 (en) Purification method of hydrophobic nonionic surfactant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees