JP2007329172A - Light-emitting element, manufacturing method thereof, and light-emitting device - Google Patents

Light-emitting element, manufacturing method thereof, and light-emitting device Download PDF

Info

Publication number
JP2007329172A
JP2007329172A JP2006157360A JP2006157360A JP2007329172A JP 2007329172 A JP2007329172 A JP 2007329172A JP 2006157360 A JP2006157360 A JP 2006157360A JP 2006157360 A JP2006157360 A JP 2006157360A JP 2007329172 A JP2007329172 A JP 2007329172A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting layer
emitting element
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006157360A
Other languages
Japanese (ja)
Inventor
Naoki Wada
直樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2006157360A priority Critical patent/JP2007329172A/en
Publication of JP2007329172A publication Critical patent/JP2007329172A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting element for radiating a mixed color light having a high yield and small variation in characteristics. <P>SOLUTION: A GaN-based light-emitting layer 3 is formed on an MGC 2 (melt growth composite) consisting of a Y<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>single crystal phase 21 and an Al<SB>2</SB>O<SB>3</SB>single crystal phase 22, and Ce<SP>3+</SP>ions are doped in the Y<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>single crystal phase 21. In this way, a blue light radiated from the light-emitting layer 3 is transmitted through the Al<SB>2</SB>O<SB>3</SB>single crystal phase 22, passes through the Y<SB>3</SB>Al<SB>5</SB>O<SB>12</SB>single crystal phase 21, and excites the Ce<SP>3+</SP>ions to radiate a yellow light. The blue and yellow lights are mixed, thereby obtaining a white light. Also, the characteristics of the light-emitting element can be controlled by adjusting the thickness of the MGC 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、2色の光を混色して白色光を放射する発光素子の技術に関する。   The present invention relates to a technology of a light emitting device that emits white light by mixing two colors of light.

近年、発光ダイオードが照明として用いられている。照明には白色光が最適であることから、白色発光ダイオードの研究開発が盛んに行われている。照明に用いられる発光ダイオードとして特許文献1や特許文献2に記載のものが知られている。   In recent years, light emitting diodes have been used as illumination. Since white light is optimal for illumination, research and development of white light-emitting diodes has been actively conducted. As light-emitting diodes used for illumination, those described in Patent Document 1 and Patent Document 2 are known.

従来の白色発光ダイオードは、図7(a)に示すように、青色光を放射する発光素子71を蛍光体を含有させた樹脂72で囲んだ構造をしている。発光素子71から放射された青色光によって蛍光体が励起されて黄色光を発光する。その結果、青色光と黄色光が混色して白色光を発光する白色発光ダイオードが得られる。なお、発光素子71の発光色と樹脂72に含有された蛍光体の発光色を変えれば、各種の発光色の発光ダイオードを作製することができる。また、図7(b)に示すように、発光素子71を蛍光体を含有させた樹脂72で囲い、さらに、透明な樹脂モールド73で覆っているものも知られている。   As shown in FIG. 7A, a conventional white light emitting diode has a structure in which a light emitting element 71 that emits blue light is surrounded by a resin 72 containing a phosphor. The phosphor is excited by the blue light emitted from the light emitting element 71 to emit yellow light. As a result, a white light emitting diode that emits white light by mixing blue light and yellow light is obtained. Note that light emitting diodes of various light emitting colors can be manufactured by changing the light emitting color of the light emitting element 71 and the light emitting color of the phosphor contained in the resin 72. Further, as shown in FIG. 7B, it is also known that the light emitting element 71 is surrounded by a resin 72 containing a phosphor and covered with a transparent resin mold 73.

一方、高温構造材料の分野で、曲げ強さや、熱安定性、耐クリープ性に優れた材料として、MGC(Melt Growth Composite:融液成長複合材料)が知られている(特許文献3、非特許文献1、非特許文献2参照)。MGCは、例えば、Al23の単結晶とY3Al512の単結晶が単結晶を維持したまま、連続的かつ3次元的に相互に絡み合って形成された境界部分にアモルファス層のないセラミックス複合材料である。 On the other hand, in the field of high-temperature structural materials, MGC (Melt Growth Composite) is known as a material excellent in bending strength, thermal stability, and creep resistance (Patent Document 3, non-patent document). Reference 1 and Non-Patent Document 2). For example, the MGC has an amorphous layer formed at the boundary portion formed by continuously and three-dimensionally intertwining a single crystal of Al 2 O 3 and a single crystal of Y 3 Al 5 O 12 while maintaining the single crystal. There is no ceramic composite material.

MGCのY3Al512の単結晶内にCe3+イオンをドーピングすれば光変換素子として利用できる。例えば、図8に示すように、板状に加工したMGC80に青色発光ダイオード83の青色光を照射すると、MGC80のAl23単結晶82内では青色光84はそのまま透過するが、MGC80のY3Al512単結晶81内を通過した光はCe3+イオンを励起して黄色光85を放射する。また、それぞれの結晶の屈折率は、Al23が1.76、Y3Al512が1.82であってわずかに異なっており、各結晶は連続的かつ3次元的につながっているためMGC80内で青色光84と黄色光85が混色しながら散乱、拡散されるので、より均一で効率のよい白色光86が得られる。なお、光変換素子としてMGCを用いた発光ダイオードとして特許文献4に記載のものが知られている。
特許第3724490号公報 特許第3724498号公報 特許第3216683号公報 特開2006−49410号公報 Nature、Vol. 389、No. 6646、p.49-52 Journal of the Europian Ceramic Society、25(2005)、p.1441-1445
If Ce 3+ ions are doped into a single crystal of MGC Y 3 Al 5 O 12 , it can be used as a light conversion element. For example, as shown in FIG. 8, is irradiated with blue light of the blue light emitting diode 83 to MGC80 processed into a plate shape, although it transmitted the blue light 84 is in the Al 2 O 3 single crystal 82 of MGC80, MGC80 of Y The light that has passed through the 3 Al 5 O 12 single crystal 81 excites Ce 3+ ions to emit yellow light 85. In addition, the refractive indexes of each crystal are 1.76 for Al 2 O 3 and 1.82 for Y 3 Al 5 O 12 , which are slightly different, and each crystal is connected continuously and three-dimensionally. Therefore, since the blue light 84 and the yellow light 85 are scattered and diffused in the MGC 80 while being mixed, a more uniform and efficient white light 86 can be obtained. In addition, the thing of patent document 4 is known as a light emitting diode using MGC as a light conversion element.
Japanese Patent No. 3724490 Japanese Patent No. 3724498 Japanese Patent No. 3216683 JP 200649410 A Nature, Vol. 389, No. 6646, p.49-52 Journal of the Europian Ceramic Society, 25 (2005), p.1441-1445

しかしながら、図7のように蛍光体を含有させた樹脂72を発光素子71の周囲に被覆した従来の構造では、蛍光体の濃度が高くなる、あるいは、樹脂72の厚みが厚くなることにより、蛍光体による吸収が増えて青色透過光が減少するために混色された色は黄色が強くなってしまう。このため、発光ダイオードの発光強度と色度、空間分布が発光体の濃度や樹脂ポッティングの状態に敏感に影響を受けて変化するので、製品特性の広いばらつきや低い歩留まりの原因となる。   However, in the conventional structure in which the phosphor 72-containing resin 72 is coated around the light emitting element 71 as shown in FIG. 7, the phosphor concentration increases or the resin 72 increases in thickness. Since the absorption by the body increases and the blue transmitted light decreases, the mixed color becomes yellow. For this reason, the light emission intensity, chromaticity, and spatial distribution of the light emitting diode change sensitively depending on the concentration of the light emitter and the state of resin potting, which causes wide variations in product characteristics and low yield.

本発明は、上記に鑑みてなされたものであり、その課題とするところは、高い歩留まりで、発光強度と色度、空間分布などの特性のばらつきが少なく、混色光を放射する発光素子を低コストで提供することにある。   The present invention has been made in view of the above, and it is an object of the present invention to reduce a light emitting element that emits mixed color light with high yield, little variation in characteristics such as light emission intensity, chromaticity, and spatial distribution. To provide at a cost.

第1の本発明に係る発光素子は、1種類以上の単一金属酸化物の単結晶と1種類以上の複合金属酸化物の単結晶が連続的かつ立体的に相互に絡み合って形成され、各金属酸化物の少なくとも1種類以上に発光体がドーピングされているセラミック複合体と、セラミック複合体上に形成された発光層と、を有することを特徴とする。   The light-emitting device according to the first aspect of the present invention is formed by one and more single metal oxide single crystals and one or more composite metal oxide single crystals entangled with each other continuously and three-dimensionally. It has a ceramic composite in which at least one kind of metal oxide is doped with a light emitter, and a light emitting layer formed on the ceramic composite.

本発明にあっては、1種類以上の単一金属酸化物と1種類以上の複合金属酸化物が連続的かつ立体的に相互に絡み合って形成されたセラミック複合体上に発光層を備え、金属酸化物に発光体をドーピングすることによって、発光層において放射した光が発光体をドーピングした金属酸化物を通過する際に発光体を励起して別の波長の光を放射するので、発光層において放射した光と発光体を励起して放射した光が混色された混色光を得ることができる。また、樹脂に発光体を含有させた場合に比べて、金属酸化物にドーピングした発光体の濃度は全領域でより均一であるので、セラミック複合体の厚みを調節するだけで、発光強度、色度、空間分布を制御することができる。   In the present invention, a light emitting layer is provided on a ceramic composite formed by continuously and sterically intermingling one or more kinds of single metal oxides and one or more kinds of composite metal oxides. By doping the emitter with a light emitter, the light emitted from the light emitting layer excites the light emitter and emits light of another wavelength when passing through the metal oxide doped with the light emitter. It is possible to obtain mixed color light in which the emitted light and the light emitted by exciting the light emitter are mixed. In addition, compared to the case where the phosphor is included in the resin, the concentration of the phosphor that is doped in the metal oxide is more uniform in the entire region. Therefore, by adjusting the thickness of the ceramic composite, the emission intensity, color, The degree and spatial distribution can be controlled.

ここで、単一金属酸化物はAl23であり、複合金属酸化物はY3Al512であることが、発光素子の基板としてセラミック複合体を使用するうえで望ましい。 Here, it is desirable that the single metal oxide is Al 2 O 3 and the composite metal oxide is Y 3 Al 5 O 12 in order to use the ceramic composite as the substrate of the light emitting element.

また、Al23の単結晶が<1−100>方向に並び、発光層を形成する前記セラミック複合体表面のAl23の結晶面が{0001}であることが、発光層を良好に成長させるうえで望ましい。 Further, it is preferable that the Al 2 O 3 single crystals are arranged in the <1-100> direction and the Al 2 O 3 crystal plane of the ceramic composite surface forming the light emitting layer is {0001}. It is desirable for growth.

上記発光素子において、発光層はGaN系の発光層であって、発光体はCe3+であることを特徴とする。 In the light-emitting element, the light-emitting layer is a GaN-based light-emitting layer, and the light emitter is Ce 3+ .

本発明にあっては、GaN系の発光層において放射された青色光が、金属酸化物にドーピングされたCe3+を励起して黄色光を放射することにより、青色光と黄色光が混色されて白色光を得ることができる。 In the present invention, the blue light emitted from the GaN-based light emitting layer excites Ce 3+ doped in the metal oxide to emit yellow light, thereby mixing the blue light and the yellow light. White light can be obtained.

また、金属酸化物の単結晶が周期的に現れる距離の平均が1〜200μmであることが、発光層を平らに成長させるうえで望ましい。   In addition, it is desirable that the average distance at which metal oxide single crystals appear periodically is 1 to 200 μm in order to grow the light emitting layer flatly.

上記発光素子において、セラミック複合体の発光層を形成する面は、1種類以上の金属酸化物が凸形状に形成されていることを特徴とする。   In the light-emitting element, the surface on which the light-emitting layer of the ceramic composite is formed has one or more kinds of metal oxides formed in a convex shape.

本発明にあっては、発光層を形成するセラミック複合体の表面をエッチングして金属酸化物を凸形状にすることにより、凸形状の金属酸化物から発光層がラテラル成長するので、平らな発光層を形成することができる。   In the present invention, the surface of the ceramic composite forming the light emitting layer is etched to make the metal oxide convex, so that the light emitting layer grows laterally from the convex metal oxide, so that the flat light emission A layer can be formed.

また、凸形状に形成される金属酸化物は、Al23であることが、結晶性の良い発光層をラテラル成長させるうえで望ましい。 Moreover, it is desirable that the metal oxide formed in a convex shape is Al 2 O 3 in order to laterally grow a light-emitting layer with good crystallinity.

さらに、凸形状の高さが1μmより高く10μm以内であることが、発光層を平らに形成するうえで望ましい。   Further, it is desirable that the height of the convex shape is higher than 1 μm and within 10 μm in order to form the light emitting layer flat.

第2の本発明に係る発光素子の製造方法は、1種類以上の単一金属酸化物と1種類以上の複合金属酸化物が連続的かつ立体的に相互に絡み合って形成され、各金属酸化物の少なくとも1種類以上に発光体がドーピングされているセラミック複合体から切り出されたウェハー上に発光層をエピタキシャル成長させる工程と、発光層を形成した当該ウェハーから発光素子を切り出す工程と、を有することを特徴とする。   According to a second aspect of the present invention, there is provided a method for manufacturing a light emitting device, wherein one or more kinds of single metal oxides and one or more kinds of composite metal oxides are formed in a continuous and sterically entangled manner, And a step of epitaxially growing a light emitting layer on a wafer cut from a ceramic composite doped with a light emitter in at least one of the above, and a step of cutting a light emitting element from the wafer on which the light emitting layer is formed. Features.

本発明にあっては、セラミック複合体のウェハ−上に直接発光層を成長させることにより、従来の発光素子の製造方法と同様なプロセスで混色光を放射する発光素子を製造することができる。   In the present invention, a light emitting element that emits mixed color light can be manufactured by growing a light emitting layer directly on a ceramic composite wafer by a process similar to the conventional method of manufacturing a light emitting element.

上記発光素子の製造方法において、セラミック複合体から切り出されたウェハーの一方の表面をエッチングすることにより1種類以上の金属酸化物を凸形状に形成する工程をさらに有し、発光層を成長させる工程は、当該凸形状が形成された表面に発光層を成長させることを特徴とする。   The method for producing a light emitting device, further comprising the step of forming one or more kinds of metal oxides into a convex shape by etching one surface of a wafer cut out from the ceramic composite, and growing the light emitting layer Is characterized in that a light emitting layer is grown on the surface on which the convex shape is formed.

第3の本発明に係る発光装置は、第1の本発明に係る発光素子を透明樹脂あるいはガラスで封じたことを特徴とする。   A light emitting device according to a third aspect of the present invention is characterized in that the light emitting element according to the first aspect of the present invention is sealed with a transparent resin or glass.

本発明にあっては、発光素子を透明樹脂あるいはガラスで封じることにより、透明樹脂・ガラス内で十分混色されるので、より均一な混色光を得ることができる。   In the present invention, since the light emitting element is sealed with a transparent resin or glass, the color is sufficiently mixed in the transparent resin / glass, so that more uniform mixed color light can be obtained.

上記発光装置において、第1の本発明に係る発光素子を発光層を下向きにしてフリップチップ実装したことを特徴とする。   In the above light emitting device, the light emitting element according to the first aspect of the present invention is flip-chip mounted with the light emitting layer facing downward.

本発明にあっては、発光素子をフリップチップ実装することにより、発光層で放射した光が上部のセラミック複合体を通過して放射されるので、より均一な混色光を得ることができる。   In the present invention, the light emitted from the light emitting layer is emitted through the upper ceramic composite by flip chip mounting the light emitting element, so that more uniform color mixing light can be obtained.

また、透明樹脂およびガラスの屈折率は1.4〜1.8であることが、光を十分混色して高い光取り出し効率を得るうえで望ましい。   Further, the refractive index of the transparent resin and the glass is preferably 1.4 to 1.8 in order to obtain a high light extraction efficiency by sufficiently mixing light.

本発明によれば、高い歩留まりで、発光強度と色度、空間分布などの特性のばらつきが少なく、混色光を放射する発光素子を低コストで提供することができる。   According to the present invention, it is possible to provide a light-emitting element that emits mixed color light at low cost with high yield, little variation in characteristics such as light emission intensity, chromaticity, and spatial distribution.

[第1の実施の形態]
図1は、本実施の形態における発光素子の構造を示す断面図である。同図に示すように、発光素子1は、Y3Al512単結晶相21とAl23単結晶相22からなるMGC2とMGC2上に形成されたGaN系の発光層3により構成される。発光層3は、電流を流すことにより波長が400〜500nmの青色光を放射する。また、Y3Al512単結晶相21には発光体としてCe3+イオンがドーピングされている。
[First Embodiment]
FIG. 1 is a cross-sectional view illustrating the structure of the light-emitting element in this embodiment. As shown in the figure, the light-emitting element 1 is composed of an MGC 2 composed of a Y 3 Al 5 O 12 single crystal phase 21 and an Al 2 O 3 single crystal phase 22 and a GaN-based light emitting layer 3 formed on the MGC 2. The The light emitting layer 3 emits blue light having a wavelength of 400 to 500 nm by passing an electric current. Further, the Y 3 Al 5 O 12 single crystal phase 21 Ce 3+ ions are doped as an emitter.

発光層3から放射した青色の可視光はMGC2に入射する。Al23単結晶相22の透過率が高いためMGC2内の平均的透過率は30%以上もあり、入射した青色の可視光の30%以上はそのまま透過する。Y3Al512単結晶相21を通過する光はCe3+イオンを励起して黄色の可視光を放射する。この青色と黄色の可視光が混色することにより白色光を得ることができる。 Blue visible light emitted from the light emitting layer 3 is incident on the MGC 2. Since the transmittance of the Al 2 O 3 single crystal phase 22 is high, the average transmittance in the MGC 2 is 30% or more, and 30% or more of the incident blue visible light is transmitted as it is. The light passing through the Y 3 Al 5 O 12 single crystal phase 21 excites Ce 3+ ions and emits yellow visible light. White light can be obtained by mixing the blue and yellow visible light.

図2に示すように、MGC2は、Al23単結晶相22とY3Al512単結晶相21が均質に連続かつ3次元的に相互に絡み合った形状をしている。これら各相の大きさは凝固方法によって制御できるが、MGC2上に発光層3をエピタキシャル成長するうえで、Al23単結晶相22とY3Al512単結晶相21が周期的に現れる距離の平均(平均周期距離)は、1〜200μm、特に1〜50μmが望ましい。 As shown in FIG. 2, the MGC 2 has a shape in which the Al 2 O 3 single crystal phase 22 and the Y 3 Al 5 O 12 single crystal phase 21 are intertwined uniformly and continuously in three dimensions. The size of each of these phases can be controlled by a solidification method, but when the light emitting layer 3 is epitaxially grown on the MGC 2 , the Al 2 O 3 single crystal phase 22 and the Y 3 Al 5 O 12 single crystal phase 21 appear periodically. The average distance (average periodic distance) is preferably 1 to 200 μm, particularly 1 to 50 μm.

また、発光層3を形成するMGC2の表面のAl23単結晶相22の結晶面はミラー指数{0001}であり、Al23単結晶相22が並んでいる方向は<1−100>方向となっている。これにより、MGC2上に発光層3を成長させて形成する際に、Al23単結晶相22上に成長した発光層3の<11−20>方向へのラテラル成長の速度が速くなり、Y3Al512単結晶相21上を短時間で覆うので、良好に発光層3を形成することができる。 The crystal plane Al 2 O 3 single crystal phase 22 of the surface of the MGC2 forming the light-emitting layer 3 is Miller index {0001}, the direction in which side by side Al 2 O 3 single crystal phase 22 <1-100 > Direction. Thereby, when the light emitting layer 3 is grown and formed on the MGC 2, the rate of lateral growth in the <11-20> direction of the light emitting layer 3 grown on the Al 2 O 3 single crystal phase 22 is increased. Since the Y 3 Al 5 O 12 single crystal phase 21 is covered in a short time, the light emitting layer 3 can be formed satisfactorily.

なお、Al23単結晶相22とY3Al512単結晶相21との平均周期距離4が長くなると、Y3Al512単結晶相21上への発光層3の成長がAl23単結晶相22上への成長よりも遅いことから、図3に示すように、MGC2上に形成された発光層3の表面に凹凸ができ、鏡面が得られない。十分時間をかければ平均周期距離4が100μm以上であっても発光層3の表面は平らになるが、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)によって10時間以内の比較的短時間で発光層3を形成するためには、平均周期距離4は50μm以下であるのが現実的である。 When the average periodic distance 4 between the Al 2 O 3 single crystal phase 22 and the Y 3 Al 5 O 12 single crystal phase 21 is increased, the light emitting layer 3 grows on the Y 3 Al 5 O 12 single crystal phase 21. Since it is slower than the growth on the Al 2 O 3 single crystal phase 22, the surface of the light emitting layer 3 formed on the MGC 2 is uneven as shown in FIG. 3, and a mirror surface cannot be obtained. If sufficient time is taken, the surface of the light emitting layer 3 becomes flat even if the average periodic distance 4 is 100 μm or more, but it is a relatively short time within 10 hours by MOCVD (Metal Organic Chemical Vapor Deposition). In order to form the light emitting layer 3, the average periodic distance 4 is practically 50 μm or less.

図4は、Y3Al512単結晶相21をエッチングしたMGC2の構造を示す断面図である。同図に示すMGC2は、りん硫酸系エッチング液を用いて、選択的にY3Al512単結晶相21をエッチングし、Al23単結晶相22を凸形状に残したものである。エッチング処理を施した面にGaN系の発光層3をエピタキシャル成長することによってAl23単結晶相22から発光層3がラテラル成長するので、図5に示すように平らな表面を有する発光層3を得ることができる。 FIG. 4 is a cross-sectional view showing the structure of MGC 2 obtained by etching the Y 3 Al 5 O 12 single crystal phase 21. The MGC 2 shown in the figure is obtained by selectively etching the Y 3 Al 5 O 12 single crystal phase 21 using a phosphoric acid-based etching solution, leaving the Al 2 O 3 single crystal phase 22 in a convex shape. . Since the light emitting layer 3 is laterally grown from the Al 2 O 3 single crystal phase 22 by epitaxially growing the GaN-based light emitting layer 3 on the etched surface, the light emitting layer 3 having a flat surface as shown in FIG. Can be obtained.

なお、Y3Al512単結晶相21のエッチングの深さ(凸形状の高さ)は1μmより深く10μm以内とする。MGC2の平均周期距離4にもよるが、エッチングの深さが1μm以内であると凹部底面のY3Al512単結晶相21に成長したGaN結晶層5がAl23単結晶相22からラテラル成長した発光層3に結合する恐れがある。平均周期距離4が50μmの場合、エッチング深さが10μmあれば、Y3Al512単結晶相21に成長したGaN結晶層5が発光層3に結合することはない。また、発光層3の転位密度は通常より1桁程度減少する。 Note that the etching depth (convex height) of the Y 3 Al 5 O 12 single crystal phase 21 is set to be deeper than 1 μm and within 10 μm. Although depending on the average periodic distance 4 of the MGC 2, if the etching depth is within 1 μm, the GaN crystal layer 5 grown on the Y 3 Al 5 O 12 single crystal phase 21 at the bottom of the recess becomes the Al 2 O 3 single crystal phase 22. There is a risk of bonding to the laterally grown light emitting layer 3. When the average periodic distance 4 is 50 μm and the etching depth is 10 μm, the GaN crystal layer 5 grown on the Y 3 Al 5 O 12 single crystal phase 21 is not bonded to the light emitting layer 3. Further, the dislocation density of the light emitting layer 3 is reduced by about one digit from the usual.

したがって、本実施の形態によれば、Ce3+イオンをドーピングしたY3Al512単結晶相21とAl23単結晶相22からなるMGC2の上にGaN系の発光層3を形成することにより、発光層3において発光した青色光は、Al23単結晶相22を透過するとともに、Y3Al512単結晶相21においてCe3+を励起して黄色光を放射し、青色光と黄色光が混色することにより白色光を得ることができる。また、Ce3+イオンの濃度は全領域でほぼ均一であることから、MGC2の厚みを調節することで発光強度と色度、空間分布を制御することができる。 Therefore, according to the present embodiment, the GaN-based light emitting layer 3 is formed on the MGC 2 composed of the Y 3 Al 5 O 12 single crystal phase 21 and the Al 2 O 3 single crystal phase 22 doped with Ce 3+ ions. By doing so, the blue light emitted from the light emitting layer 3 is transmitted through the Al 2 O 3 single crystal phase 22 and radiates yellow light by exciting Ce 3+ in the Y 3 Al 5 O 12 single crystal phase 21. White light can be obtained by mixing blue light and yellow light. Further, since the concentration of Ce 3+ ions is substantially uniform in the entire region, the emission intensity, chromaticity, and spatial distribution can be controlled by adjusting the thickness of MGC2.

本実施の形態によれば、Al23単結晶相22とY3Al512単結晶相21との平均周期距離4を調整することにより、平らに形成された発光層3を有する発光素子を得ることができる。 According to the present embodiment, by adjusting the average periodic distance 4 between the Al 2 O 3 single crystal phase 22 and the Y 3 Al 5 O 12 single crystal phase 21, light emission having the light emitting layer 3 formed flat. An element can be obtained.

本実施の形態によれば、Y3Al512単結晶相21をエッチングし、Al23単結晶相22を凸形状に残した面に発光層3をエピタキシャル成長することにより、平らに形成された発光層3を有する発光素子を得ることができる。 According to the present embodiment, the Y 3 Al 5 O 12 single crystal phase 21 is etched, and the light emitting layer 3 is epitaxially grown on the surface where the Al 2 O 3 single crystal phase 22 is left in a convex shape, thereby forming a flat surface. A light emitting element having the light emitting layer 3 formed can be obtained.

なお、MGCに2種類以上の単一金属酸化物や、2種類以上の複合金属酸化物が含まれていてもよい。MGCを構成する単一金属酸化物および複合金属酸化物の他の例は、特許文献4に記載されている。   The MGC may contain two or more types of single metal oxides or two or more types of composite metal oxides. Other examples of the single metal oxide and the composite metal oxide constituting the MGC are described in Patent Document 4.

[第2の実施の形態]
第2の実施の形態では、Al23単結晶とY3Al512単結晶からなるMGC上に青色発光層が形成された発光素子を製造するための製造方法について説明する。
[Second Embodiment]
In the second embodiment, a manufacturing method for manufacturing a light emitting element in which a blue light emitting layer is formed on an MGC composed of an Al 2 O 3 single crystal and a Y 3 Al 5 O 12 single crystal will be described.

凝固方向が<1−100>方向でAl23単結晶相とY3Al512単結晶相からなり、平均周期距離が10μmのMGCからAl23単結晶相が<1−100>方向に並び、面方位が{0001}である基板を切り出し、鏡面研磨を行って、直径2インチ(約5cm)、厚さ0.35mmのMGCウェハーを作製する。 Solidification direction is from <1-100> Al 2 O 3 in the direction monocrystalline phase and Y 3 Al 5 O 12 single crystal phase, the average period length is 10μm MGC Al 2 O 3 single crystal phase from the <1-100 > A substrate with a {0001} plane orientation is cut out and mirror-polished to produce an MGC wafer having a diameter of 2 inches (about 5 cm) and a thickness of 0.35 mm.

続いて、このMGCウェハーをMOCVD装置のサセプターに設置し、キャリアガスに水素を、原料ガスにTMG(トリメチルガリウム)とアンモニアを用い、2段階成長の低温バッファ層を500℃で20nm成長させる。   Subsequently, this MGC wafer is set on a susceptor of an MOCVD apparatus, and hydrogen is used as a carrier gas, TMG (trimethylgallium) and ammonia are used as source gases, and a two-step growth low temperature buffer layer is grown at 500 ° C. to 20 nm.

その後、TMGを止め、1080℃まで上昇させてから再度TMGを流してノンドープGaN層を20μm成長させ、最後に所定の構造の発光ピーク波長470nmの青色発光層をMGCウェハー上に形成する。青色発光層を形成したMGCウェハーは通常のプロセスにてチップに加工する。   Thereafter, the TMG is stopped, the temperature is raised to 1080 ° C., and then the TMG is flowed again to grow a non-doped GaN layer by 20 μm. Finally, a blue light emitting layer having a predetermined peak emission wavelength of 470 nm is formed on the MGC wafer. The MGC wafer on which the blue light emitting layer is formed is processed into chips by a normal process.

このように、青色発光層の基板としてMGCウェハーを利用することにより、通常の青色発光素子を作製するのと同様のプロセスで白色発光素子を作製することができる。   As described above, by using the MGC wafer as the substrate of the blue light emitting layer, a white light emitting element can be manufactured in the same process as that for manufacturing a normal blue light emitting element.

なお、格子定数や結晶系が異なる異種結晶間のエピタキシャル成長では、歪エネルギーと表面エネルギーが安定化するように結晶が成長するので、MGC上で発光層3をエピタキシャル成長させる場合には、結晶型が同じで格子定数差の小さいAl23単結晶上がより安定であるために、Y3Al512単結晶上よりも優先的に成長する。したがって、MOCVDを行う場合には、結晶成長時の圧力とV/III比を下げて、表面マイグレーションを増進させ、主にAl23単結晶上に青色発光層を成長させると、青色発光層がラテラル成長し、平らな青色発光層を得ることができる。 In addition, in epitaxial growth between different types of crystals having different lattice constants and crystal systems, crystals grow so that strain energy and surface energy are stabilized. Therefore, when the light emitting layer 3 is epitaxially grown on MGC, the crystal type is the same. Therefore, the Al 2 O 3 single crystal having a small difference in lattice constant is more stable, so that it grows preferentially over the Y 3 Al 5 O 12 single crystal. Therefore, when MOCVD is performed, the pressure at the time of crystal growth and the V / III ratio are lowered to increase the surface migration, and the blue light emitting layer is grown mainly on the Al 2 O 3 single crystal. Can be laterally grown to obtain a flat blue light emitting layer.

また、青色発光層をエピタキシャル成長させる前に、MGCウェハーをりん硫酸系エッチング液にてY3Al512単結晶相を5μmエッチングする工程を行ってもよい。これにより、Al23単結晶相から青色発光層がラテラル成長し、鏡面を有する平らな青色発光層を得ることができる。 Further, prior to epitaxial growth of a blue light-emitting layer may be performed a step of 5μm etching the Y 3 Al 5 O 12 single crystal phase at the MGC wafer phosphoric acid based etchant. Thereby, the blue light emitting layer is laterally grown from the Al 2 O 3 single crystal phase, and a flat blue light emitting layer having a mirror surface can be obtained.

したがって、本実施の形態によれば、MGCウェハー上に直接青色発光層をエピタキシャル成長させることで、通常の青色発光素子を作製するのと同様のプロセスで白色発光素子を作製することができる。   Therefore, according to the present embodiment, a white light emitting element can be manufactured by the same process as that for manufacturing a normal blue light emitting element by epitaxially growing a blue light emitting layer directly on an MGC wafer.

本実施の形態によれば、青色発光層を形成する前に、MGCウェハーのY3Al512単結晶相をエッチングすることにより、Al23単結晶相から青色発光層がラテラル成長するので、鏡面を有する平らな青色発光層を得ることができる。 According to the present embodiment, the blue light emitting layer is laterally grown from the Al 2 O 3 single crystal phase by etching the Y 3 Al 5 O 12 single crystal phase of the MGC wafer before forming the blue light emitting layer. Therefore, a flat blue light emitting layer having a mirror surface can be obtained.

なお、本発明の実施の形態では、MGCを一方向凝固法により作製する。凝固方向に従ってAl23単結晶相とY3Al512単結晶相の結晶方位を制御することができる。結晶方位は凝固方向に沿ってAl23単結晶相は<1120>、Y3Al512単結晶相は<110>、または、Al23単結晶相は<0110>、Y3Al512単結晶相は<110>である。また、それらの方向に垂直にAl23単結晶相には<0001>、Y3Al512単結晶相には<112>の結晶方位が存在する。 In the embodiment of the present invention, MGC is produced by a unidirectional solidification method. According solidification direction can be controlled crystal orientation Al 2 O 3 single crystal phase and Y 3 Al 5 O 12 single crystal phase. Crystal orientation along the solidification direction Al 2 O 3 single crystal phase <1120>, Y 3 Al 5 O 12 single crystal phase <110>, or, Al 2 O 3 single crystal phase <0110>, Y 3 The Al 5 O 12 single crystal phase is <110>. In addition, the Al 2 O 3 single crystal phase has a <0001> crystal orientation and the Y 3 Al 5 O 12 single crystal phase has a <112> crystal orientation perpendicular to these directions.

[第3の実施の形態]
第3の実施の形態では、MGC上に発光層を形成した発光素子をパッケージに実装した発光装置について説明する。図6(a)、(b)は、MGC上に発光層を形成した発光素子を実装した発光装置の断面の一部を示す断面図である。図6(a)に示す発光装置は、発光素子を配置するための凹部を有し、凹部の底面に設置されたダイアタッチ材9上に発光層3を上にして発光素子を配置し、発光層3に設けられた電極とリードフレーム(図示せず)とをワイヤ8で接続し、屈折率1.4〜1.8の透明樹脂7で発光素子を封じたものである。透明樹脂7で発光素子を封じることにより、発光素子上部にある発光層3から放射される青色光と発光素子下部のMGC2を通過して放射される黄色光が透明樹脂7内で十分に混色され白色光となり放射される。
[Third Embodiment]
In the third embodiment, a light-emitting device in which a light-emitting element in which a light-emitting layer is formed on an MGC is mounted on a package will be described. FIGS. 6A and 6B are cross-sectional views illustrating a part of a cross section of a light emitting device in which a light emitting element having a light emitting layer formed on MGC is mounted. The light emitting device shown in FIG. 6A has a concave portion for arranging the light emitting element, and the light emitting element is arranged on the die attach material 9 placed on the bottom surface of the concave portion with the light emitting layer 3 facing upward to emit light. An electrode provided on the layer 3 and a lead frame (not shown) are connected by a wire 8 and the light emitting element is sealed with a transparent resin 7 having a refractive index of 1.4 to 1.8. By sealing the light emitting element with the transparent resin 7, the blue light emitted from the light emitting layer 3 above the light emitting element and the yellow light emitted through the MGC 2 below the light emitting element are sufficiently mixed in the transparent resin 7. It is emitted as white light.

図6(b)に示す発光装置は、発光素子を配置するための凹部を有し、凹部の底面に設けられた金バンプ10に発光層3を下にして発光素子をフリップチップ実装したものである。これにより、発光層3から放射される光はMGC2を通過し、上部方向から白色光が出射される。同図に示す発光装置は、図6(a)に示すように上面に電極を備えたものに比べて、6500K程度の均一な色温度の配向特性が得られる。さらに、透明樹脂7で発光素子を封じることにより十分混色されたより均一な白色光が得られる。なお、どちらの実施の形態においても、透明樹脂7に換えてガラスで発光素子を封じてもよい。   The light-emitting device shown in FIG. 6B has a recess for arranging the light-emitting element, and the light-emitting element is flip-chip mounted on the gold bump 10 provided on the bottom surface of the recess with the light-emitting layer 3 facing down. is there. Thereby, the light radiated | emitted from the light emitting layer 3 passes MGC2, and white light is radiate | emitted from upper direction. The light-emitting device shown in FIG. 6 has a uniform color temperature orientation characteristic of about 6500 K, as compared with the case where an electrode is provided on the upper surface as shown in FIG. Further, by sealing the light emitting element with the transparent resin 7, more uniform white light that is sufficiently mixed in color can be obtained. In any of the embodiments, the light emitting element may be sealed with glass instead of the transparent resin 7.

したがって、本実施の形態によれば、MGC2上に発光層3を形成した発光素子を発光装置の上部に設けられた凹部の底面に配置し、凹部を透明樹脂7で封じることにより、発光素子上部にある発光層3から放射される青色光と発光素子下部のMGC2を通過して放射される黄色光が透明樹脂7内で十分に混色されるので、より均一な白色光を得ることができる。   Therefore, according to the present embodiment, the light emitting element in which the light emitting layer 3 is formed on the MGC 2 is arranged on the bottom surface of the concave portion provided in the upper part of the light emitting device, and the concave portion is sealed with the transparent resin 7, thereby The blue light emitted from the light emitting layer 3 and the yellow light emitted through the MGC 2 below the light emitting element are sufficiently mixed in the transparent resin 7, so that more uniform white light can be obtained.

本実施の形態によれば、MGC2上に発光層3を形成した発光素子を発光装置の上部に設けられた凹部の底面に発光層3を下にしてフリップチップ実装することにより、発光層3から放射される光はMGC2を通過し、MGC2内で青色光と黄色光が混色され上部方向から白色光を得ることができる。また、凹部を透明樹脂7で封じることにより、透明樹脂7内で十分に混色されるので、より均一な白色光を得ることができる。   According to the present embodiment, the light-emitting element in which the light-emitting layer 3 is formed on the MGC 2 is flip-chip mounted on the bottom surface of the recess provided in the upper portion of the light-emitting device with the light-emitting layer 3 facing down. The emitted light passes through the MGC 2, and blue light and yellow light are mixed in the MGC 2 to obtain white light from the upper direction. Moreover, since the color is sufficiently mixed in the transparent resin 7 by sealing the recesses with the transparent resin 7, more uniform white light can be obtained.

第1の実施の形態における発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light emitting element in 1st Embodiment. 図1の発光素子に用いられるMGCの構成を示す斜視図である。It is a perspective view which shows the structure of MGC used for the light emitting element of FIG. MGCの平均周期距離が大きい場合の発光層の成長の様子を示す断面図である。It is sectional drawing which shows the mode of the growth of the light emitting layer in case the average period distance of MGC is large. MGCのY3Al512単結晶相をエッチングした様子を示す断面図である。The Y 3 Al 5 O 12 single crystal phase MGC is a sectional view showing a state in which etching. 図4のMGC上に発光層を形成した様子を示す断面図である。It is sectional drawing which shows a mode that the light emitting layer was formed on MGC of FIG. 第1の実施の形態における発光素子を実装した発光装置の構成を示す断面図であり、(a)は発光層を上にして実装し、(b)は発光層を下にしてフリップチップ実装した様子を示す。It is sectional drawing which shows the structure of the light-emitting device which mounted the light emitting element in 1st Embodiment, (a) was mounted with the light emitting layer up, (b) was flip-chip mounted with the light emitting layer down. Show the state. 従来の白色発光ダイオードの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional white light emitting diode. MGCを光変換素子として利用して従来の青色発光ダイオードの放射光を白色に変換する様子を示す模式図である。It is a schematic diagram which shows a mode that the emitted light of the conventional blue light emitting diode is converted into white using MGC as a light conversion element.

符号の説明Explanation of symbols

1…発光素子
2…MGC
21…Y3Al512単結晶相
22…Al23単結晶相
3…発光層
4…平均周期距離
5…GaN結晶層
7…透明樹脂
8…ワイヤ
9…ダイアタッチ材
10…金バンプ
71…発光素子
72…樹脂
73…樹脂モールド
80…MGC
81…Y3Al512単結晶相
82…Al23単結晶相
83…青色発光ダイオード
84…青色光
85…黄色光
86…白色光
DESCRIPTION OF SYMBOLS 1 ... Light emitting element 2 ... MGC
21 ... Y 3 Al 5 O 12 single crystal phase 22 ... Al 2 O 3 single crystal phase 3 ... luminescent layer 4 ... average period length 5 ... GaN crystal layer 7 ... transparent resin 8 ... wire 9 ... die attach material 10 ... gold bumps 71 ... Light-emitting element 72 ... Resin 73 ... Resin mold 80 ... MGC
81 ... Y 3 Al 5 O 12 single crystal phase 82 ... Al 2 O 3 single crystal phase 83 ... blue light-emitting diode 84 ... blue light 85 ... yellow light 86 ... white light

Claims (14)

1種類以上の単一金属酸化物の単結晶と1種類以上の複合金属酸化物の単結晶が連続的かつ立体的に相互に絡み合って形成され、前記各金属酸化物の少なくとも1種類以上に発光体がドーピングされているセラミック複合体と、
前記セラミック複合体上に形成された発光層と、
を有することを特徴とする発光素子。
One or more kinds of single metal oxide single crystals and one or more kinds of composite metal oxide single crystals are formed in a continuous and sterically entangled manner and emit light to at least one of the metal oxides. A ceramic composite in which the body is doped;
A light emitting layer formed on the ceramic composite;
A light-emitting element including:
前記単一金属酸化物はAl23であり、前記複合金属酸化物はY3Al512であることを特徴とする請求項1に記載の発光素子。 The single metal oxide is Al 2 O 3, the light emitting device of claim 1, wherein the composite metal oxide is Y 3 Al 5 O 12. Al23の単結晶が<1−100>方向に並び、前記発光層を形成する前記セラミック複合体表面のAl23の結晶面が{0001}であることを特徴とする請求項2に記載の発光素子。 The single crystal of Al 2 O 3 is aligned in the <1-100> direction, and the crystal plane of Al 2 O 3 on the surface of the ceramic composite forming the light emitting layer is {0001}. The light emitting element as described in. 前記発光層はGaN系の発光層であって、前記発光体はCe3+であることを特徴とする請求項1乃至3のいずれかに記載の発光素子。 The light emitting device according to claim 1, wherein the light emitting layer is a GaN-based light emitting layer, and the light emitter is Ce 3+ . 前記金属酸化物の単結晶が周期的に現れる距離の平均が1〜200μmであることを特徴とする請求項1乃至4のいずれかに記載の発光素子。   5. The light-emitting element according to claim 1, wherein an average distance at which the single crystal of the metal oxide appears periodically is 1 to 200 μm. 前記セラミック複合体の前記発光層を形成する面は、1種類以上の前記金属酸化物が凸形状に形成されていることを特徴とする請求項1乃至5のいずれかに記載の発光素子。   The light emitting element according to any one of claims 1 to 5, wherein the surface on which the light emitting layer of the ceramic composite is formed has one or more types of the metal oxide formed in a convex shape. 前記凸形状に形成される前記金属酸化物は、Al23であることを特徴とする請求項6に記載の発光素子。 The light emitting device according to claim 6, wherein the metal oxide formed in the convex shape is Al 2 O 3 . 前記凸形状の高さが1μmより高く10μm以内であることを特徴とする請求項6又は7に記載の発光素子。   The light emitting device according to claim 6 or 7, wherein the height of the convex shape is higher than 1 µm and within 10 µm. 1種類以上の単一金属酸化物と1種類以上の複合金属酸化物が連続的かつ立体的に相互に絡み合って形成され、前記各金属酸化物の少なくとも1種類以上に発光体がドーピングされているセラミック複合体から切り出されたウェハー上に発光層をエピタキシャル成長させる工程と、
前記発光層を形成した当該ウェハーから発光素子を切り出す工程と、
を有することを特徴とする発光素子の製造方法。
One or more kinds of single metal oxides and one or more kinds of complex metal oxides are continuously and sterically entangled with each other, and at least one kind of each metal oxide is doped with a light emitter. Epitaxially growing a light emitting layer on a wafer cut from the ceramic composite;
Cutting out a light emitting element from the wafer on which the light emitting layer is formed;
A method for manufacturing a light-emitting element, comprising:
前記セラミック複合体から切り出されたウェハーの一方の表面をエッチングすることにより1種類以上の前記金属酸化物を凸形状に形成する工程をさらに有し、
前記発光層を成長させる工程は、当該凸形状が形成された表面に発光層を成長させることを特徴とする請求項9に記載の発光素子の製造方法。
Further comprising the step of forming one or more types of the metal oxide into a convex shape by etching one surface of a wafer cut from the ceramic composite,
The method of manufacturing a light emitting element according to claim 9, wherein the step of growing the light emitting layer includes growing the light emitting layer on a surface on which the convex shape is formed.
請求項1乃至8のいずれかに記載の発光素子を透明樹脂あるいはガラスで封じたことを特徴とする発光装置。   A light-emitting device, wherein the light-emitting element according to claim 1 is sealed with a transparent resin or glass. 請求項1乃至8のいずれかに記載の発光素子を前記発光層を下向きにしてフリップチップ実装したことを特徴とする発光装置。   9. A light-emitting device, wherein the light-emitting element according to claim 1 is flip-chip mounted with the light-emitting layer facing downward. 前記発光素子を透明樹脂あるいはガラスで封じたことを特徴とする請求項12に記載の発光装置。   The light emitting device according to claim 12, wherein the light emitting element is sealed with a transparent resin or glass. 前記透明樹脂および前記ガラスの屈折率は1.4〜1.8であることを特徴とする請求項11又は13に記載の発光装置。
The light emitting device according to claim 11 or 13, wherein the transparent resin and the glass have a refractive index of 1.4 to 1.8.
JP2006157360A 2006-06-06 2006-06-06 Light-emitting element, manufacturing method thereof, and light-emitting device Abandoned JP2007329172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157360A JP2007329172A (en) 2006-06-06 2006-06-06 Light-emitting element, manufacturing method thereof, and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157360A JP2007329172A (en) 2006-06-06 2006-06-06 Light-emitting element, manufacturing method thereof, and light-emitting device

Publications (1)

Publication Number Publication Date
JP2007329172A true JP2007329172A (en) 2007-12-20

Family

ID=38929461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157360A Abandoned JP2007329172A (en) 2006-06-06 2006-06-06 Light-emitting element, manufacturing method thereof, and light-emitting device

Country Status (1)

Country Link
JP (1) JP2007329172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205933A (en) * 2009-03-03 2010-09-16 Ube Ind Ltd Compound substrate for forming light-emitting element, light-emitting diode, and method of manufacturing substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205933A (en) * 2009-03-03 2010-09-16 Ube Ind Ltd Compound substrate for forming light-emitting element, light-emitting diode, and method of manufacturing substrate

Similar Documents

Publication Publication Date Title
US8330173B2 (en) Nanostructure having a nitride-based quantum well and light emitting diode employing the same
JP4613078B2 (en) Manufacturing method of semiconductor substrate
KR101897481B1 (en) Solid state light emitting devices based on crystallographically relaxed structures
JP5032171B2 (en) Semiconductor light emitting device, method for manufacturing the same, and light emitting device
KR101009651B1 (en) Iii-nitride semiconductor light emitting device
KR101196579B1 (en) Compound semiconductor light emitting element, illuminating apparatus using compound semiconductor light emitting element, and method for manufacturing compound semiconductor light emitting element
JP5130437B2 (en) Semiconductor light emitting device and manufacturing method thereof
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
WO2006099211A2 (en) Solid state light emitting device
CN1473363A (en) Group III nitride light emitting devices with gallium-free layers
JP3397141B2 (en) White LED
TWI262607B (en) Semiconductor light emitting device
JP2000082845A (en) White color led
US11557698B2 (en) Conversion element and radiation-emitting semiconductor device comprising a conversion element of said type
JP5774900B2 (en) Light emitting diode element and method for manufacturing the same
JP3157124U (en) Structure of gallium nitride based light-emitting diode
KR20060121432A (en) Rod type light emitting structure and method for forming the same
CN104425668B (en) A kind of LED chip and preparation method thereof
JP2007329172A (en) Light-emitting element, manufacturing method thereof, and light-emitting device
KR100990226B1 (en) GaN-based Light Emitting Diode having omnidirectional reflector with 3-dimensional structure and method for fabricating the same
JP5543946B2 (en) Semiconductor light emitting element and light emitting device
JP4145108B2 (en) Growth method of GaNP crystal
KR101116904B1 (en) Method for manufacturing nitride semiconductor crystals and light emitting devices
JP2012160540A (en) Manufacturing method of light-emitting element and light-emitting element
JP5310369B2 (en) Epitaxial wafer and light emitting diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110830