JP2007328960A - Dye-sensitized solar cell and its manufacturing method - Google Patents

Dye-sensitized solar cell and its manufacturing method Download PDF

Info

Publication number
JP2007328960A
JP2007328960A JP2006157746A JP2006157746A JP2007328960A JP 2007328960 A JP2007328960 A JP 2007328960A JP 2006157746 A JP2006157746 A JP 2006157746A JP 2006157746 A JP2006157746 A JP 2006157746A JP 2007328960 A JP2007328960 A JP 2007328960A
Authority
JP
Japan
Prior art keywords
dye
positive electrode
solar cell
sensitized solar
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157746A
Other languages
Japanese (ja)
Inventor
Masayoshi Watanabe
正芳 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsumo KK
Original Assignee
Tatsumo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsumo KK filed Critical Tatsumo KK
Priority to JP2006157746A priority Critical patent/JP2007328960A/en
Publication of JP2007328960A publication Critical patent/JP2007328960A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell capable of keeping non-short-circuited state between positive and negative electrodes even when they are bent, while ensuring superior productivity and photoelectric conversion efficiency. <P>SOLUTION: A planar-formed positive electrode-side substrate 2, a positive electrode 21, an electrolyte solution 4, a metal oxide 34, a transparent electrode 33, an auxiliary electrode 32, a negative electrode 31, bulkheads 30, and a negative electrode-side substrate 3, are configured to be layered in such an order. The bulkheads 30 are connected at a predetermined interval between the positive electrode-side substrate 2 and negative electrode-side substrate 3 for partitioning the electrolyte solution 4 into many cells. The bulkheads 30 are arranged in line in the direction parallel to the planar face of a dye-sensitized solar cell 1, wherein the bulkheads 30 are formed in such a pattern that a wide portion 35 with larger interval width and a narrow portion 37 with smaller interval width are alternately repeated. Injection of the electrolyte solution 4 is carried out through the holes opened for each region formed with the bulkheads 30 at the end of the positive electrode-side substrate 2 located at the end of the dye-sensitized solar cell 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、色素増感型太陽電池の構造および製造方法に関する。   The present invention relates to a structure and manufacturing method of a dye-sensitized solar cell.

グレッツェルらによって発表された色素増感型太陽電池は、薄く、柔軟性があり、低コストで容易に製造できることから、従来のp−n型太陽電池に代わるものとして注目されている。この色素増感型太陽電池は、一般的に、2枚の透明板にそれぞれ設けられた透明電極の間に、酸化物のペーストの粒子膜の層と電解液の層が密閉されている。そして、色素増感型太陽電池は、色素の荷電子が太陽光等の光により励起され、金属酸化物半導体(一般的には二酸化チタン)を通じて透明電極に流れ、色素に残ったホールは、電解質溶液を酸化し、酸化された電解質溶液は、透明電極と負荷を介して、接続された対極から電子を受けて還元されることにより光電変換を行なう。   The dye-sensitized solar cell announced by Gretzell et al. Has attracted attention as an alternative to conventional pn-type solar cells because it is thin, flexible, and can be easily manufactured at low cost. In the dye-sensitized solar cell, generally, a particle film layer of an oxide paste and an electrolyte layer are sealed between transparent electrodes respectively provided on two transparent plates. In the dye-sensitized solar cell, the valence electrons of the dye are excited by light such as sunlight and flow to the transparent electrode through the metal oxide semiconductor (generally titanium dioxide), and the holes remaining in the dye are electrolytes. The solution is oxidized, and the oxidized electrolyte solution undergoes photoelectric conversion by receiving electrons from the connected counter electrode through a transparent electrode and a load and being reduced.

色素増感型太陽電池は、注入する電解液の取り扱いが難しいことや、この電解液の流動性によって、少しの外力が加えられると、この電解質をはさむ負極と正極が短絡しやすいことや、破損時に漏れ出すなど、実用化するには多くの問題があり、種々の提案がなされている(特許文献1〜4参照)。   Dye-sensitized solar cells are difficult to handle the electrolyte to be injected, and when a little external force is applied due to the fluidity of this electrolyte, the negative electrode and the positive electrode sandwiching this electrolyte can easily be short-circuited or damaged. There are many problems in putting it into practical use, such as leakage, and various proposals have been made (see Patent Documents 1 to 4).

特許文献1には、短冊状の色素増感型太陽電池が開示されている。また、これを並べて構成したものが開発されている(ペクセル・テクノロジーズ株式会社の試作品等)。特許文献2には、作用電極と、対極の間に入れる電解液を多孔性半導体膜で支持することにより、作用電極と対極との短絡を防ぐ構成が開示されている。特許文献3には、電解質溶液を擬固体化する構成が開示されている。特許文献4には、負極、正極間を隔離し、電解質を密閉するためのスペーサの構成が開示されている。
特開2006−49082号公報 特開2005−268107号公報 特開2006−32308号公報 特開2006−19072号公報
Patent Document 1 discloses a strip-shaped dye-sensitized solar cell. In addition, products that are arranged side by side have been developed (prototypes from Pexel Technologies Inc.). Patent Document 2 discloses a configuration that prevents the working electrode and the counter electrode from being short-circuited by supporting a working electrode and an electrolytic solution placed between the counter electrode with a porous semiconductor film. Patent Document 3 discloses a configuration for quasi-solidifying an electrolyte solution. Patent Document 4 discloses a configuration of a spacer for isolating the negative electrode and the positive electrode and sealing the electrolyte.
JP 2006-49082 A JP-A-2005-268107 JP 2006-32308 A JP 2006-19072 A

しかしながら、従来の構成では、光電変換効率、生産性を維持しつつ、可撓性を有する(撓ませることができる)色素増感型太陽電池を構成することが困難であった。   However, in the conventional configuration, it has been difficult to configure a dye-sensitized solar cell that has flexibility (can be bent) while maintaining photoelectric conversion efficiency and productivity.

例えば、特許文献1等、短冊状に構成した色素増感型太陽電池では、短冊間の隙間により、短冊の短軸方向には撓ませることができるが、長軸方向に撓ませると、正極、負極が短絡する恐れがあった。
特許文献2の構成では、多孔質膜への電解液の浸透が十分でない場合には、光電変換効率が低下する恐れがあった。また、この構成では、十分に浸透させるためには時間がかかり、生産効率がよくない問題があった。
また、特許文献3の構成では、固体状態では、電解質の性質(電子移動度)および多孔性の金属酸化物半導体に対する浸透性の面で液体状態に劣り、結果として、光電変換効率が低下する問題があった。
特許文献4には、色素増感型太陽電池を撓ませた場合に、正極、負極間が短絡しないような構成については開示されていない。
For example, in a dye-sensitized solar cell configured in a strip shape, such as Patent Document 1, it can be bent in the minor axis direction of the strip due to a gap between the strips. There was a risk that the negative electrode would short circuit.
In the configuration of Patent Document 2, when the penetration of the electrolytic solution into the porous membrane is not sufficient, the photoelectric conversion efficiency may be reduced. In addition, with this configuration, there is a problem that it takes time to sufficiently penetrate and the production efficiency is not good.
Moreover, in the structure of patent document 3, in a solid state, it is inferior to a liquid state in terms of the property (electron mobility) of electrolyte, and the permeability with respect to a porous metal oxide semiconductor, As a result, the problem which photoelectric conversion efficiency falls was there.
Patent Document 4 does not disclose a configuration in which the positive electrode and the negative electrode are not short-circuited when the dye-sensitized solar cell is bent.

そこで、この発明は、撓ませても、正極、負極間が短絡しないよう保持でき、かつ生産性が良く、かつ光電変換効率がよい色素増感型太陽電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a dye-sensitized solar cell that can be held so as not to be short-circuited between the positive electrode and the negative electrode even when bent, has high productivity, and has high photoelectric conversion efficiency.

(1)本発明は、
平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池において、
正極側基板と負極側基板の間の領域を仕切るよう、正極側基板と負極側基板との間に絶縁体の隔壁を設けたことを特徴とする色素増感型太陽電池である。
(1) The present invention
In a dye-sensitized solar cell in which a flexible positive electrode substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode substrate are layered in this order. ,
In the dye-sensitized solar cell, an insulating partition is provided between the positive electrode substrate and the negative electrode substrate so as to partition a region between the positive electrode substrate and the negative electrode substrate.

この発明では、可撓性を有する正極側基板、負極側基板を撓ませたとしても、正極側基板と負極側基板の間に設けた隔壁が正極側基板と負極側基板の間を保持するので、従来のようにセル単位で閉領域を構成してつなぎ合わせなくとも、負極、正極間の短絡を防止することができる。その結果、撓ませた状態で、光電変換効率が劣化するのを防ぐことができる。また、このように負極、正極間の短絡を防止することができるので、セル状のものを構成してつなぎ合わせるのではなく、大面積のものを一度に製造できるので生産性を向上させることができる。   In this invention, even if the positive electrode substrate and the negative electrode substrate having flexibility are bent, the partition provided between the positive electrode substrate and the negative electrode substrate holds the gap between the positive electrode substrate and the negative electrode substrate. The short circuit between the negative electrode and the positive electrode can be prevented without forming a closed region in cell units and connecting them as in the prior art. As a result, it is possible to prevent the photoelectric conversion efficiency from deteriorating in the bent state. In addition, since a short circuit between the negative electrode and the positive electrode can be prevented in this way, it is possible to manufacture a large area at a time instead of configuring and joining the cell-like ones, so that productivity can be improved. it can.

また、この発明では、隔壁がない部分には、金属酸化物半導体を塗布することができるので、短冊状に色素増感型太陽電池を構成したものに比べて、同一モジュール面積内で発電しない部分の面積を減らすことができる。したがって、この短冊状のものに比べて、同一面積における起電力を向上させることができる。さらに、隔壁で隔てられた各領域は、擬似的な閉空間を形成するので色素増感型太陽電池の一部が破損した場合でも、他の領域については、電解液の漏洩を少なくすることができる。   Further, in the present invention, since the metal oxide semiconductor can be applied to the portion having no partition wall, the portion that does not generate power within the same module area as compared with the strip-shaped dye-sensitized solar cell. Can be reduced. Therefore, the electromotive force in the same area can be improved as compared with the strip-shaped one. Furthermore, since each region separated by the partition forms a pseudo closed space, even if a part of the dye-sensitized solar cell is damaged, the leakage of the electrolyte solution can be reduced in other regions. it can.

(2)本発明は、
平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池において、
前記正極と金属酸化物半導体との間の領域を仕切るよう、前記正極と前記金属酸化物半導体との間に絶縁体の隔壁を設けたことを特徴とする色素増感型太陽電池である。
(2) The present invention
In a dye-sensitized solar cell in which a flexible positive electrode substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode substrate are layered in this order. ,
In the dye-sensitized solar cell, an insulating partition is provided between the positive electrode and the metal oxide semiconductor so as to partition a region between the positive electrode and the metal oxide semiconductor.

この発明でも(1)で説明した効果を奏する。また、この発明では、金属酸化物半導体上を覆うように網目のように構成されているので、色素増感型太陽電池に外力が加わった場合に、負極上に塗布されている金属酸化物半導体が剥がれることを防止できる。   This invention also has the effect described in (1). In the present invention, the metal oxide semiconductor is coated on the negative electrode when an external force is applied to the dye-sensitized solar cell because the metal oxide semiconductor is configured to cover the metal oxide semiconductor. Can be prevented from peeling off.

(3)本発明は、
前記隔壁は、複数本並べて配置され、
前記隔壁は、その互いの間隔の幅が広い幅広部と、幅が狭い幅狭部とが交互に繰り返し形成されるよう設けたことを特徴とする。
(3) The present invention
The partition walls are arranged side by side,
The partition wall is characterized in that a wide portion having a wide interval and a narrow portion having a narrow width are alternately and repeatedly formed.

この発明では、隔壁は、その互いの間隔の幅が広い幅広部と、幅が狭い幅狭部とが交互に繰り返し形成されるよう設けたので、幅広部周囲に取り囲まれる局所的な領域では、正極側基板、負極側基板がいずれの方向に撓んだとしても、隔壁が正極、負極間を所定間隔に保持することができる。この幅広部、幅狭部は連続しているから、色素増感型太陽電池のいずれの位置でも正極、負極間を所定間隔に保持することができる。
また、このように構成して正極、負極を隔てているので、モジュール面積を大きくするためには基板面積を大きくすれば良く、従来のようにセル単位でマトリクス状(平面内の2方向)につなぎ合わせる必要がない。本発明では、隔壁で形成される領域毎に電解液を注入すれば、一度に電解液を注入できるので、容易に製造できる。
さらに、隔壁は、複数本並べて配置されているので、その隔壁で隔てられた各領域は、それぞれ擬似的な閉空間を形成するので、色素増感型太陽電池の一部が破損した場合でも、電解液の漏洩を少なくすることができる。
In the present invention, since the partition wall is provided so that the wide part having a wide interval and the narrow part having a narrow width are alternately formed, in a local region surrounded by the wide part, Even if the positive electrode side substrate and the negative electrode side substrate are bent in any direction, the partition can hold the positive electrode and the negative electrode at a predetermined interval. Since the wide part and the narrow part are continuous, the positive electrode and the negative electrode can be held at a predetermined interval at any position of the dye-sensitized solar cell.
In addition, since the positive electrode and the negative electrode are separated from each other in this way, the substrate area may be increased in order to increase the module area, and in a matrix form (two directions in the plane) in units of cells as in the past. There is no need to connect them together. In the present invention, if the electrolytic solution is injected into each region formed by the partition walls, the electrolytic solution can be injected at a time, and therefore it can be easily manufactured.
Furthermore, since a plurality of partition walls are arranged side by side, each region separated by the partition walls forms a pseudo closed space, so even when a part of the dye-sensitized solar cell is damaged, Electrolyte leakage can be reduced.

(4)本発明は、
前記隔壁は、ウェーブ状の滑らかな曲線となるよう設けられていることを特徴とする。
(4) The present invention
The partition wall is provided so as to have a wave-like smooth curve.

この発明では、前記隔壁は、ウェーブ状の滑らかな曲線で接続されているので、幅広部と幅狭部があっても、その幅広部と幅狭部との間の段差が少なく、電解液を注入するときに電解液を滞りなく均等に行き渡らせることができる。   In the present invention, since the partition walls are connected by a wave-like smooth curve, even if there are a wide part and a narrow part, there are few steps between the wide part and the narrow part, When injecting, the electrolyte can be distributed evenly without any delay.

(5)本発明は、
前記隔壁は、その断面が「V」の字状、または、その断面の両側が膨出した形状に形成されていることを特徴とする。
(5) The present invention
The partition wall is characterized in that the cross section is formed in a letter “V” shape or a shape in which both sides of the cross section bulge out.

この発明では、その断面が「V」の字状、または、その断面の両側が膨出した形状に形成されているので、正極側基板、負極側基板の面に垂直な方向に圧縮する負荷に対する強度を向上させることができる。   In the present invention, the cross section is formed in a “V” shape or a shape in which both sides of the cross section bulge out, so that the load is compressed in a direction perpendicular to the surface of the positive side substrate and the negative side substrate. Strength can be improved.

(6)本発明は、
前記隔壁は、接着性のある樹脂で構成されていることを特徴とする。
(6) The present invention
The partition wall is made of an adhesive resin.

この発明では、隔壁が接着性のある樹脂で構成されているので、正極側基板、負極側基板を隔壁で張り合わせたときに、密着性がよくなるから、対候性が向上する。   In this invention, since the partition walls are made of an adhesive resin, the adhesion is improved when the positive electrode side substrate and the negative electrode side substrate are bonded to each other with the partition walls, thereby improving weather resistance.

(7)本発明は、
平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池の製造方法において、
前記正極側基板に前記正極を形成した第1の部品を製造する工程と、
前記負極側基板に前記負極を形成した第2の部品を製造する工程と、
前記第1の部品または第2の部品のいずれかに対し、前記正極と負極との間を接続して前記電解質を複数の長軸状の領域に仕切る絶縁体の隔壁を、複数本並べて形成する隔壁形成工程と、
前記第1の部品と前記第2の部品とを、前記隔壁形成工程後に接合する接合工程と、
前記接合工程で接合したものに対し、前記隔壁で形成される領域毎に電解液を注入する工程と、を行う色素増感型太陽電池の製造方法である。
(7) The present invention
A dye-sensitized solar cell in which a flexible positive electrode side substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode side substrate are layered in this order. In the manufacturing method,
Producing a first component having the positive electrode formed on the positive substrate;
Producing a second component having the negative electrode formed on the negative substrate;
For either the first component or the second component, a plurality of insulating partition walls are formed side by side to connect the positive electrode and the negative electrode to partition the electrolyte into a plurality of long-axis regions. A partition formation step;
A bonding step of bonding the first component and the second component after the partition formation step;
A method for producing a dye-sensitized solar cell, comprising: injecting an electrolytic solution into each region formed by the partition walls with respect to those bonded in the bonding step.

この発明では、隔壁形成工程で、隔壁を複数本並べて形成しているので、セル毎に閉空間を構成して結合する必要がない。また、本発明は、接合工程で接合した色素増感型太陽電池に対し、前記隔壁で形成される領域毎に電解液を注入する工程を行うので、従来のように、正極と負極との短絡させないために小さなセル単位でマトリクス状につなぎ合わせなくともよい。前記隔壁で形成される長軸状の領域毎に電解液を注入することにより、列毎に一度に電解液を注入できるので容易に大きな面積に電解液を注入でき、色素増感型太陽電池の製造を容易にすることができる。   In the present invention, since a plurality of partition walls are formed side by side in the partition wall forming step, it is not necessary to form and connect a closed space for each cell. In addition, since the present invention performs a step of injecting an electrolyte solution for each region formed by the partition walls with respect to the dye-sensitized solar cell bonded in the bonding step, as in the conventional case, a short circuit between the positive electrode and the negative electrode Therefore, it is not necessary to connect them in a matrix form in units of small cells. By injecting the electrolytic solution into each long-axis region formed by the partition walls, the electrolytic solution can be injected at a time for each column, so that the electrolytic solution can be easily injected into a large area, and the dye-sensitized solar cell Manufacturing can be facilitated.

この発明によれば、正極側基板、負極側基板を撓ませても、隔壁により正極、負極間が短絡することを防止できるので、光電変換効率が劣化することを防ぐことができる。また、セルをつなぐ必要がないから、容易に製造できる。さらに、隔壁以外の部分には、金属酸化物半導体を塗布できるから、正極、負極間の短絡を防止しながら、発電しない領域を最小限に抑えることができ、単位面積当たりの起電力を向上させることができる。   According to this invention, even if the positive electrode side substrate and the negative electrode side substrate are bent, it is possible to prevent the positive electrode and the negative electrode from being short-circuited by the partition walls, and thus it is possible to prevent the photoelectric conversion efficiency from being deteriorated. Moreover, since it is not necessary to connect cells, it can be manufactured easily. Furthermore, since a metal oxide semiconductor can be applied to portions other than the partition walls, a region where no power is generated can be minimized while preventing a short circuit between the positive electrode and the negative electrode, and electromotive force per unit area is improved. be able to.

図1を用いて、第1の実施形態の色素増感型太陽電池の構成について説明する。図1(A)は、色素増感型太陽電池1(以下「電池1」と略す。)の平面図、図1(B)は、そのA−A断面図である。なお、図示の容易のため、図1(A)では、半透明の正極21を透かして示しており、図1(B)は、厚さ方向に拡大して示している。   The configuration of the dye-sensitized solar cell according to the first embodiment will be described with reference to FIG. FIG. 1A is a plan view of a dye-sensitized solar cell 1 (hereinafter abbreviated as “battery 1”), and FIG. 1B is a cross-sectional view taken along the line AA. For ease of illustration, FIG. 1 (A) shows the translucent positive electrode 21 in a transparent manner, and FIG. 1 (B) shows an enlarged view in the thickness direction.

図1(A)に示すように、電池1は、正極側基板2と、正極側基板2に形成された正極21と、正極側基板2と負極側基板3との間に形成された絶縁体の隔壁30(隔壁301、隔壁302)を備える。また、図1(B)に示す負極31(補助電極32(補助電極321、補助電極322)、透明電極33、金属酸化物34を有する。)、電解液4を備える。   As shown in FIG. 1A, a battery 1 includes a positive electrode substrate 2, a positive electrode 21 formed on the positive electrode substrate 2, and an insulator formed between the positive electrode substrate 2 and the negative electrode substrate 3. Partition wall 30 (partition wall 301, partition wall 302). Moreover, the negative electrode 31 (it has the auxiliary electrode 32 (the auxiliary electrode 321 and the auxiliary electrode 322), the transparent electrode 33, and the metal oxide 34) shown in FIG.

正極側基板2は、可撓性を有する透明板で構成する。例えば、PET、PENなどのプラスティックフィルムで構成できる。
正極21は、正極側基板2にプラチナ(以下「pt」という。)を蒸着して形成する。
The positive electrode side substrate 2 is composed of a flexible transparent plate. For example, it can be composed of a plastic film such as PET or PEN.
The positive electrode 21 is formed by depositing platinum (hereinafter referred to as “pt”) on the positive electrode side substrate 2.

負極側基板3は、正極側基板2と同様の素材で構成する。ただし、電池1は、負極側に光を当てて発電するので、負極側基板3は透明である必要がある。基板2、3は、可撓性を有するので、この電池1は、取り付け面に合わせて撓ませることができる。   The negative electrode side substrate 3 is made of the same material as the positive electrode side substrate 2. However, since the battery 1 generates power by applying light to the negative electrode side, the negative electrode side substrate 3 needs to be transparent. Since the substrates 2 and 3 have flexibility, the battery 1 can be bent in accordance with the mounting surface.

図1(B)に示すように、隔壁30は、正極21と負極との間の短絡を防止するものである。図1(A)に示すように、隔壁30は、ウェーブ状にうねらせた隔壁301、隔壁302を1つの単位としてx方向一列に複数並べられている。以下では、これら隔壁301、302等を総称して隔壁30という。   As shown in FIG. 1B, the partition wall 30 prevents a short circuit between the positive electrode 21 and the negative electrode. As shown in FIG. 1A, a plurality of partition walls 30 are arranged in a row in the x direction with a partition wall 301 and a partition wall 302 undulated in a wave shape as one unit. Hereinafter, the partition walls 301 and 302 are collectively referred to as the partition wall 30.

隔壁30は、正極21と負極31を絶縁するため、絶縁体とする。隔壁30の材質は、例えば、エチレン酢酸ビニル共重合物、塩化ビニルアルコール系、ポリウレタンなどのホットメルト接着剤などを用いることができる。また、隔壁30(後述の実施形態の30A〜Fも同様)の材質としては、透明である方が光の透過性がよく、より好ましいが、図1(A)の平面図から見た隔壁30の幅が細ければ問題ない。   The partition wall 30 is an insulator for insulating the positive electrode 21 and the negative electrode 31. As the material of the partition wall 30, for example, an ethylene vinyl acetate copolymer, a vinyl chloride alcohol type, a hot melt adhesive such as polyurethane, or the like can be used. Moreover, as a material of the partition wall 30 (the same applies to 30A to F in embodiments described later), it is more preferable that the material is transparent, but the partition wall 30 viewed from the plan view of FIG. If the width of is narrow, there is no problem.

また、隔壁30は、前述の通りウェーブ状に滑らかな曲線で構成される隔壁301と隔壁302を1つの単位として連続している。これにより、隔壁301と隔壁302の幅が広い領域である幅広部35と幅が狭い領域である幅狭部37が交互に連続的に形成されている。また、隔壁302と、その隣の隔壁303との間には、幅広部35の隣に幅狭部38の領域が形成され、幅狭部37の隣に、幅広部39が形成されている。   In addition, the partition wall 30 is continuous with the partition wall 301 and the partition wall 302 configured by a wave-like smooth curve as described above as one unit. Thereby, the wide part 35 which is a wide area | region of the partition 301 and the partition 302, and the narrow part 37 which is a narrow area | region are alternately formed continuously. Further, between the partition wall 302 and the adjacent partition wall 303, a narrow portion 38 region is formed next to the wide portion 35, and a wide portion 39 is formed next to the narrow portion 37.

隔壁30は、正極側基板2、負極側基板3間を保持しているので、電池1を撓ませたときに、正極21、負極31間が短絡するのを防ぎ、光電変換効率が劣化するのを防ぐことができる。また、隔壁30は、ウェーブ状に形成されているので、x方向(紙面の左右方向)に撓ませた場合には、隔壁30のうち、幅広部35と幅狭部37の境目付近の部分3011x、3012x、3021x、3022xが支持する。また、y方向(紙面の上下方向)に撓ませた場合には、幅広部35の隔壁30の部分301y、302yが支持する。したがって、x,yいずれの方向に撓ませても、正極21と負極31間を保持することができ、正極21、負極31間が短絡するのを防ぐことができる。   Since the partition wall 30 holds between the positive electrode side substrate 2 and the negative electrode side substrate 3, when the battery 1 is bent, the positive electrode 21 and the negative electrode 31 are prevented from being short-circuited, and the photoelectric conversion efficiency is deteriorated. Can be prevented. In addition, since the partition wall 30 is formed in a wave shape, when the partition wall 30 is bent in the x direction (left and right direction on the paper surface), a portion 3011x near the boundary between the wide portion 35 and the narrow portion 37 of the partition wall 30. , 3012x, 3021x, 3022x. Further, when bent in the y direction (up and down direction of the paper surface), the portions 301y and 302y of the partition wall 30 of the wide portion 35 are supported. Therefore, the positive electrode 21 and the negative electrode 31 can be held even when bent in either the x or y direction, and a short circuit between the positive electrode 21 and the negative electrode 31 can be prevented.

図1(B)に示すように、負極31は、補助電極32、透明電極33、金属酸化物34を有し、この順に負極側基板3に重ねて形成されている。   As shown in FIG. 1B, the negative electrode 31 includes an auxiliary electrode 32, a transparent electrode 33, and a metal oxide 34, and is formed on the negative electrode side substrate 3 in this order.

図1(A)に示すように、補助電極32は、補助電極321、補助電極322等、同様の形状の補助電極が並べて配置されている。以下では、これら補助電極321等を総称して補助電極32という。補助電極32は、例えばptを蒸着等した棒状の電極である。補助電極32は、負極の一部である透明電極33の電気抵抗を下げるために設けられており、これにより損失を減らすことができ、電解液4で発電した電力を補助電極32まで最大限導電させる。また、図1(A)のように、透明電極33を互いに分離しておく場合には、補助電極32は、分離された透明電極33の電子を集める働きを有する。   As shown in FIG. 1A, the auxiliary electrode 32 has auxiliary electrodes of the same shape such as the auxiliary electrode 321 and the auxiliary electrode 322 arranged side by side. Hereinafter, these auxiliary electrodes 321 and the like are collectively referred to as auxiliary electrodes 32. The auxiliary electrode 32 is a rod-like electrode obtained by evaporating pt, for example. The auxiliary electrode 32 is provided in order to reduce the electric resistance of the transparent electrode 33 that is a part of the negative electrode. This can reduce the loss, and the electric power generated by the electrolyte 4 can be conducted to the auxiliary electrode 32 as much as possible. Let As shown in FIG. 1A, when the transparent electrodes 33 are separated from each other, the auxiliary electrode 32 has a function of collecting electrons of the separated transparent electrodes 33.

図1(A)に示すように、透明電極33は、幅広部35にそれぞれ設けられている。透明電極33は、電解液4に光を通すよう、透明の電導体で構成する。例えばITO膜で構成できる。透明電極33は、隔壁30の間隔が広い幅広部35に形成する。この実施形態では、透明電極33の透明電極33に送られた電子は、補助電極32を通って、運ばれる。   As shown in FIG. 1A, the transparent electrodes 33 are provided in the wide portions 35, respectively. The transparent electrode 33 is made of a transparent conductor so that light can pass through the electrolytic solution 4. For example, an ITO film can be used. The transparent electrode 33 is formed in the wide portion 35 where the interval between the partition walls 30 is wide. In this embodiment, the electrons sent to the transparent electrode 33 of the transparent electrode 33 are carried through the auxiliary electrode 32.

図1(B)に示すように、金属酸化物34は、透明電極33と同様に負極の一部であり、金属酸化物半導体(一般的には二酸化チタンで構成される。)を拡散したペーストを負極側基板3または透明電極33の上から塗布して形成する。金属酸化物34の厚さを20[μm]程度とすると、半透明になり、電解液4に光を通すことができる。また、金属酸化物34の上には、図示しない色素溶液を塗布して乾燥させ色素を担持させる。色素は、太陽光を効率よく吸収できるものであれば、特に限定されない。   As shown in FIG. 1B, the metal oxide 34 is a part of the negative electrode similarly to the transparent electrode 33, and is a paste in which a metal oxide semiconductor (generally composed of titanium dioxide) is diffused. Is applied from the negative electrode side substrate 3 or the transparent electrode 33. When the thickness of the metal oxide 34 is about 20 [μm], the metal oxide 34 becomes translucent and allows light to pass through the electrolytic solution 4. On the metal oxide 34, a dye solution (not shown) is applied and dried to carry the dye. The dye is not particularly limited as long as it can efficiently absorb sunlight.

電解液4は、この負極31の一部である金属酸化物34と正極21の間に注入されている。電解液4の材料としては、一般的にヨウ素溶液を使用することができる。また、電解液4の材料としては、酸化還元反応により電子伝達が可能な媒介物であれば、特に限定されない。また、必ずしも液体である必要はない。   The electrolytic solution 4 is injected between the metal oxide 34 that is a part of the negative electrode 31 and the positive electrode 21. As a material for the electrolytic solution 4, an iodine solution can be generally used. In addition, the material of the electrolytic solution 4 is not particularly limited as long as it is a mediator capable of transferring electrons by an oxidation-reduction reaction. Moreover, it does not necessarily need to be a liquid.

以上の電池1の構成により、負極側基板3に太陽光等の光を当てると、透明の負極側基板3と透明電極33、半透明の金属酸化物34を介して、電解液4のヨウ素に光が当たる。電池1は、電解液4のヨウ素の荷電子がこの光により励起され、金属酸化物34を通じて流れることにより発電する。   With the configuration of the battery 1 described above, when light such as sunlight is applied to the negative electrode side substrate 3, the iodine of the electrolyte solution 4 is passed through the transparent negative electrode side substrate 3, the transparent electrode 33, and the translucent metal oxide 34. Light hits. In the battery 1, iodine valence electrons in the electrolytic solution 4 are excited by this light and flow through the metal oxide 34 to generate electricity.

図2を用いて、色素増感型太陽電池の構成について、さらに詳細に説明する。図2(A)は、正極21側の部品P1の平面図を表しており、図2(B)は、負極31側の部品P2の図を鳥瞰図で表している。電池1は、これら部品P1,P2を隔壁30の粘着力で張り合わせたものに電解液4を注入したものである。   The configuration of the dye-sensitized solar cell will be described in more detail with reference to FIG. 2A shows a plan view of the component P1 on the positive electrode 21 side, and FIG. 2B shows a view of the component P2 on the negative electrode 31 side in a bird's eye view. The battery 1 is obtained by injecting the electrolytic solution 4 into the parts P1 and P2 bonded together with the adhesive force of the partition walls 30.

図2(A)に示す正極側基板2には、蒸着、スパッタリング、CVD製法などにより、正極21を形成する。ウェーブ状に形成された部分22は、隔壁30に合わせて接合する部分である。部分22には、負極側基板3側から照射する光が隔壁30に遮られて透過しにくいから、発電効果が薄いのでコストダウンの観点から正極21を形成しない。その他の部分については、正極21を形成する。また、部品P1には、電解液4を注入するための孔231〜23Nと、注入時に排出される空気を吸い出すための孔241〜24Nが開いている(後述の図4に注入方法を記載している。)。なお、図1ではこれらの孔を省略している。   A positive electrode 21 is formed on the positive substrate 2 shown in FIG. 2A by vapor deposition, sputtering, CVD, or the like. A portion 22 formed in a wave shape is a portion to be joined to the partition wall 30. In the portion 22, the light irradiated from the negative electrode side substrate 3 side is not easily transmitted because it is blocked by the partition wall 30, and therefore the power generation effect is thin, so the positive electrode 21 is not formed from the viewpoint of cost reduction. The positive electrode 21 is formed for the other parts. Further, the part P1 has holes 231 to 23N for injecting the electrolyte solution 4 and holes 241 to 24N for sucking out air discharged during the injection (the injection method is described in FIG. 4 described later). ing.). In FIG. 1, these holes are omitted.

図2(B)に示すように、負極側基板3の上に、隔壁30、補助電極32が形成されており、隔壁30は、金属酸化物34より高い位置まで、負極側基板3から直立した壁が形成されている。透明電極33は、補助電極32に電気が導通するように幅広部35の位置に形成する。金属酸化物34は、負極側基板3、補助電極32、透明電極33の上から、隔壁30以外の部分に全面に塗布されている。   As shown in FIG. 2B, a partition wall 30 and an auxiliary electrode 32 are formed on the negative electrode side substrate 3, and the partition wall 30 stands upright from the negative electrode side substrate 3 to a position higher than the metal oxide 34. A wall is formed. The transparent electrode 33 is formed at the position of the wide portion 35 so that electricity is conducted to the auxiliary electrode 32. The metal oxide 34 is applied on the entire surface of the negative electrode side substrate 3, the auxiliary electrode 32, and the transparent electrode 33 to the portion other than the partition wall 30.

以上、図2(A)、(B)で示した部品P1、P2を、ウェーブ状に形成された正極21を形成しない部分22と、隔壁30の形状が合うように位置合わせして、加熱、加圧することで隔壁自体が接着剤となり正極側基板2、負極側基板3間がシールされる。   2A and 2B, the parts P1 and P2 shown in FIGS. 2A and 2B are aligned so that the portion 22 where the positive electrode 21 formed in a wave shape is not formed and the shape of the partition wall 30 are matched, and heating, By applying pressure, the partition wall itself becomes an adhesive, and the space between the positive electrode side substrate 2 and the negative electrode side substrate 3 is sealed.

図3を用いて、図2(B)で示した負極31側の部品P2の製造方法について説明する。   A method for manufacturing the component P2 on the negative electrode 31 side illustrated in FIG. 2B will be described with reference to FIG.

<ST1:隔壁の形成>図3(A)で示すように、負極側基板3に隔壁30をディスペンス方式や印刷法により形成する。   <ST1: Formation of Partition Wall> As shown in FIG. 3A, the partition wall 30 is formed on the negative substrate 3 by a dispensing method or a printing method.

<ST2:補助電極の形成>図3(B)に示すように、蒸着、スパッタリング、CVD製法などにより、負極側基板3に直線状の補助電極32(例えばプラチナ製とする)を隔壁30の間の位置に来るように一定間隔で形成する。
<ST3:透明電極の形成>図3(C)に示すように、ST2で形成したものの上から、透明電極33(例えば、ITO)を幅広部35に合わせて形成する。
<ST4:金属酸化物の塗布>図3(D)に示すように、ST3で形成したものの上から、金属酸化物34(金属酸化物半導体を拡散したペースト)を塗布する。ただし、隔壁30の上には塗布しない。この塗布の方法として、印刷法、ドクターブレード法、スロットダイ法、スプレー法などが適用できる。ここで、金属酸化物半導体の粒子径は、10〜30[nm]とする。
<ST5:金属酸化物の乾燥>次に、塗布した金属酸化物34を乾燥炉などにより乾燥させる。乾燥の条件は、120〜180[℃]前後の温度で、約30[秒]〜30[分]とする。このように乾燥させたとき、乾燥後の金属酸化物34の膜厚は約10〜30[μm]とする。
<ST6:色素溶液の塗布・乾燥・担持>ST5で形成したものに色素溶液を塗布して、乾燥させ、色素を担持させる。乾燥条件はST5と同じである。
<ST2: Formation of Auxiliary Electrode> As shown in FIG. 3B, a linear auxiliary electrode 32 (for example, made of platinum) is provided between the partition walls 30 on the negative electrode side substrate 3 by vapor deposition, sputtering, CVD, or the like. It is formed at regular intervals so as to come to the position.
<ST3: Formation of Transparent Electrode> As shown in FIG. 3C, a transparent electrode 33 (for example, ITO) is formed on the wide portion 35 from the top formed in ST2.
<ST4: Application of Metal Oxide> As shown in FIG. 3D, a metal oxide 34 (a paste in which a metal oxide semiconductor is diffused) is applied from the top formed in ST3. However, it is not applied on the partition wall 30. As a coating method, a printing method, a doctor blade method, a slot die method, a spray method, or the like can be applied. Here, the particle diameter of the metal oxide semiconductor is 10 to 30 [nm].
<ST5: Drying of Metal Oxide> Next, the applied metal oxide 34 is dried by a drying furnace or the like. The drying conditions are about 30 [seconds] to 30 [minutes] at a temperature around 120 to 180 [° C.]. When dried in this way, the thickness of the dried metal oxide 34 is about 10 to 30 [μm].
<ST6: Application / Drying / Supporting of Dye Solution> The dye solution is applied to the one formed in ST5 and dried to support the dye. Drying conditions are the same as ST5.

図4を用いて、電解液4の注入方法について説明する。電池1は、図3で形成した部品P1と部品P2を張り合わせた電池10に、電解液4を注入して構成する。この電解液4の注入には、電解液注入器5と、注入した液体が漏れないよう押さえる押さえ板61、62を用いる。   A method for injecting the electrolytic solution 4 will be described with reference to FIG. The battery 1 is configured by injecting the electrolytic solution 4 into the battery 10 in which the parts P1 and P2 formed in FIG. For the injection of the electrolyte solution 4, an electrolyte solution injector 5 and holding plates 61 and 62 that hold the injected liquid so as not to leak are used.

電解液注入器5は、効率よく電解液4を注入できるよう、注入器50のみならず吸引器55を備える。注入器50は、内部が空洞で注入口52と管531〜53Nがつながっている容器51と、管状の注入口52と、部品Aの孔231〜23N(図2(A)参照)に合わせてそれぞれ容器51に注入した電解液4を通す管531〜53Nとを備える。吸引器55は、容器51と同様の容器56と、注入口52と同様の吸引口57と、部品Aの孔241〜24N(図2(A)参照)に合わせて、それぞれ容器56から空気を吸い出す管581〜58Nとを備える。   The electrolyte solution injector 5 includes not only the injector 50 but also a suction device 55 so that the electrolyte solution 4 can be injected efficiently. The injector 50 is adapted to the container 51 in which the inside is hollow and the inlet 52 and the pipes 531 to 53N are connected, the tubular inlet 52, and the holes 231 to 23N of the part A (see FIG. 2A). Tubes 531 to 53N through which the electrolytic solution 4 injected into the container 51 is passed. The aspirator 55 supplies air from the container 56 in accordance with the container 56 similar to the container 51, the suction port 57 similar to the injection port 52, and the holes 241 to 24N of the part A (see FIG. 2A). And pipes 581-58N to be sucked out.

以上、図4で示した電解液注入器5により、電池10の両端のみの位置に設けた注入器50、吸引器55で、電池10内に電解液4を満たすことができ、従来のようにセル毎にマトリクス状に電解液4を注入する必要はない。例えば、容器51の長手方向に電池10を巻き取る構成により順次移動させながら、電解液注入器5を用いて注入することができる。このように電池1を製造すれば、セルをつなぐ必要がなく、連続的に継ぎ目なく色素増感型太陽電池1のロールを製造でき、コストダウンに寄与する。   As described above, the electrolyte solution injector 5 shown in FIG. 4 allows the electrolyte solution 4 to be filled in the battery 10 with the injector 50 and the suction device 55 provided only at both ends of the battery 10, as in the conventional case. It is not necessary to inject the electrolyte solution 4 in a matrix for each cell. For example, it is possible to inject using the electrolyte injector 5 while sequentially moving the battery 10 in the longitudinal direction of the container 51 by the configuration in which the battery 10 is wound up. If the battery 1 is manufactured in this way, it is not necessary to connect cells, and a roll of the dye-sensitized solar cell 1 can be manufactured continuously and contributes to cost reduction.

なお、図2で示した透明電極33は、互いに分離して複数枚で構成しているが、隔壁30以外の部分の全体に塗布しても良い。一方、図2で示したように部分的にのみ透明電極33を塗布していても、負極31の一部である金属酸化物34は、負極側基板3の全面(ただし、隔壁30以外)に塗布しているので、金属酸化物34が電子を収集する役割を果たすから、電池1の光電変換効率には影響しない。
また、孔231〜23N、孔241〜24Nがある両端について隔壁を閉じて、隔壁で囲まれる領域をそれぞれ密封する構成も可能である。この場合には、押さえ板61、62がなくても良い場合がある。
The transparent electrode 33 shown in FIG. 2 is composed of a plurality of pieces separated from each other, but may be applied to the entire portion other than the partition wall 30. On the other hand, even if the transparent electrode 33 is applied only partially as shown in FIG. 2, the metal oxide 34 that is a part of the negative electrode 31 is formed on the entire surface of the negative substrate 3 (except for the partition wall 30). Since it is applied, the metal oxide 34 plays a role of collecting electrons, so that the photoelectric conversion efficiency of the battery 1 is not affected.
Moreover, the structure which closes a partition about the both ends with the holes 231-23N and the holes 241-24N and seals the area | region enclosed with a partition is also possible, respectively. In this case, the press plates 61 and 62 may not be required.

次に、図5を用いて、第1の実施形態の色素増感型太陽電池の応用に係る第2の実施形態の色素増感型太陽電池(1Aで図示、以下、「電池1A」という)について説明する。図5は第2の実施形態の電池1Aを図1のA−A断面図に相当する図で表している。この電池1Aは、その隔壁30Aの断面が第1の実施形態の隔壁30と異なっており、隔壁30Aは、正極21から金属酸化物34まで形成されており、この間を所定間隔に保持することができる。その他の点は、第1の実施形態の色素増感型太陽電池と同様であり、以上の説明を準用し、同じ符号を用いる。また、隔壁30Aは、第1実施形態の隔壁30と対応しており、材質も隔壁30と同様であり、隔壁30Aの平面配置も図1(A)と同様とすることができる。   Next, referring to FIG. 5, the dye-sensitized solar cell of the second embodiment according to the application of the dye-sensitized solar cell of the first embodiment (illustrated as 1A, hereinafter referred to as “battery 1A”). Will be described. FIG. 5 shows a battery 1A of the second embodiment corresponding to the AA cross-sectional view of FIG. In this battery 1A, the cross section of the partition wall 30A is different from that of the partition wall 30 of the first embodiment, and the partition wall 30A is formed from the positive electrode 21 to the metal oxide 34, and this space can be maintained at a predetermined interval. it can. Other points are the same as those of the dye-sensitized solar cell of the first embodiment, and the above description is applied mutatis mutandis and the same reference numerals are used. Further, the partition wall 30A corresponds to the partition wall 30 of the first embodiment, and the material is the same as that of the partition wall 30, and the planar arrangement of the partition wall 30A can be the same as that in FIG.

この構成では、隔壁30Aが金属酸化物34の上を覆うようにメッシュ状に構成されているから、金属酸化物34に加わった外力によって基板から剥がれ落ちることを抑制することができる。   In this configuration, since the partition wall 30 </ b> A is configured in a mesh shape so as to cover the metal oxide 34, it can be prevented from being peeled off from the substrate by an external force applied to the metal oxide 34.

図6を用いて、第2の実施形態の色素増感型太陽電池の製造方法について説明する。この実施形態では、図2(A)で示した正極21と、その製造方法と図4で示した注入方法は同じであるが、部品P2の製造の順序が図3で示したものと異なる。第1の実施形態の電池1について、図3で示したST2〜ST6は、この実施形態の部品Yの製造方法のST11〜ST15に対応しており、ST1は、ST16に対応している。   The manufacturing method of the dye-sensitized solar cell of 2nd Embodiment is demonstrated using FIG. In this embodiment, the positive electrode 21 shown in FIG. 2A, the manufacturing method thereof, and the injection method shown in FIG. 4 are the same, but the manufacturing order of the component P2 is different from that shown in FIG. Regarding the battery 1 of the first embodiment, ST2 to ST6 shown in FIG. 3 correspond to ST11 to ST15 of the manufacturing method of the component Y of this embodiment, and ST1 corresponds to ST16.

<ST11:補助電極の形成>図6(A)に示すように、蒸着、スパッタリング、CVD製法などにより、負極側基板3に直線状の補助電極32(例えばプラチナ製とする)を一定間隔で形成する。
<ST12:透明電極の形成>図6(B)に示すように、透明電極33(例えば、ITO)を補助電極32に合わせて形成する。
<ST13:金属酸化物の塗布>図6(C)に示すように、図6(B)で形成したものの上から、金属酸化物34(金属酸化物半導体を拡散したペースト)を塗布する。この塗布の方法として、印刷法、ドクターブレード法、スロットダイ法、スプレー法などが適用できる。ここで、金属酸化物半導体の粒子径は、10〜30[nm]とする。
<ST14:金属酸化物の乾燥>次に、塗布した金属酸化物34を乾燥炉などにより乾燥させる。乾燥の条件は、120〜180[℃]前後の温度で、約30[秒]〜30[分]とする。このように乾燥させたとき、乾燥後の金属酸化物34の膜厚は約10〜30[μm]とする。
<ST15:色素溶液の塗布・乾燥・担持>ST14で形成したものに色素溶液を塗布して、乾燥させ、色素を担持させる。乾燥条件はST14と同じである。
<ST11: Formation of Auxiliary Electrode> As shown in FIG. 6A, linear auxiliary electrodes 32 (for example, made of platinum) are formed at regular intervals on the negative substrate 3 by vapor deposition, sputtering, CVD, or the like. To do.
<ST12: Formation of Transparent Electrode> As shown in FIG. 6B, a transparent electrode 33 (for example, ITO) is formed in alignment with the auxiliary electrode 32.
<ST13: Application of Metal Oxide> As shown in FIG. 6C, a metal oxide 34 (a paste in which a metal oxide semiconductor is diffused) is applied from the top of what is formed in FIG. 6B. As a coating method, a printing method, a doctor blade method, a slot die method, a spray method, or the like can be applied. Here, the particle diameter of the metal oxide semiconductor is 10 to 30 [nm].
<ST14: Drying of Metal Oxide> Next, the coated metal oxide 34 is dried by a drying furnace or the like. The drying conditions are about 30 [seconds] to 30 [minutes] at a temperature around 120 to 180 [° C.]. When dried in this way, the thickness of the dried metal oxide 34 is about 10 to 30 [μm].
<ST15: Application / Drying / Supporting of Dye Solution> The dye solution is applied to the one formed in ST14 and dried to support the dye. Drying conditions are the same as ST14.

<ST16:隔壁の形成>図6(D)で示すように、ST15で形成したものの上から隔壁30を透明電極33に合わせてディスペンス方式や印刷法により形成する。   <ST16: Formation of Partition Wall> As shown in FIG. 6D, the partition wall 30 is formed on the transparent electrode 33 from the top formed in ST15 by a dispensing method or a printing method.

なお、この第2の実施形態の電池1Aでは、図3(A)を用いて説明した<ST1:隔壁の形成>と異なり、ST16で形成すべき隔壁30Aの高さは、金属酸化物34と正極21の間の間隔に調整する必要がある。   In the battery 1A of the second embodiment, unlike <ST1: formation of the partition wall> described with reference to FIG. 3A, the height of the partition wall 30A to be formed in ST16 is the same as that of the metal oxide 34. It is necessary to adjust the interval between the positive electrodes 21.

また、この実施形態では、隔壁30Aを最後に形成するので、必ずしも補助電極32の間に隔壁30Aを入れる必要はなく、向きが異なっていても良い。例えば、補助電極32と隔壁30Aのなす角を90度とすることができる。さらに、この実施形態では、透明電極33を全面に塗布していても問題ない。この実施形態の色素増感型太陽電池は、後述する第3、第5の実施形態のものに応用できるが、以上の点については同様である。   In this embodiment, since the partition wall 30A is formed last, it is not always necessary to insert the partition wall 30A between the auxiliary electrodes 32, and the directions may be different. For example, the angle formed by the auxiliary electrode 32 and the partition wall 30A can be 90 degrees. Furthermore, in this embodiment, there is no problem even if the transparent electrode 33 is applied to the entire surface. The dye-sensitized solar cell of this embodiment can be applied to the third and fifth embodiments described later, but the same applies to the above points.

次に、図7を用いて、第1、第2の実施形態の応用に係る第3の実施形態の色素増感型太陽電池(色素増感型太陽電池1Cで図示。以下「電池1C」という。)の構成について説明する。図7は、電池1Cの平面図であり、位置関係は、図1(A)に対応している。この実施形態は、以上で示した第1、第2の実施形態とは、隔壁30の配置と、透明電極33の平面形状のみが異なり、他の点については、以上の説明を準用する。図7に示すように、この実施形態の隔壁30Cは、隔壁301C、隔壁302Cを1つの単位として連続しており、第1の実施形態と同様、幅広部35Cと、幅狭部37Cが交互に連続している。また幅広部35Cの隣には、隔壁302Cに隣接する隔壁303Cとの間に幅狭部38Cが形成されている。そして、透明電極33Cは、この幅広部35Cに合わせて8角形に形成されている。このように構成しても、図4で示した電解液4の注入方法により、電解液4を注入して電池1Cを製造できる。また、この実施形態でも、図7で示した幅広部35Cの回りの点線部により、3011x、3012x、3021x、3022xと同様に、x,yいずれの方向に撓ませても、負極21、正極31間を所定間隔に保持することができ、負極21、正極31間の短絡を防止できる。
なお、この第3の実施形態でも、第1の実施形態と同様、透明電極33Cを互いに分離せず、隔壁30C以外の部分の全体に塗布しても良い。
Next, referring to FIG. 7, the dye-sensitized solar cell of the third embodiment according to the application of the first and second embodiments (illustrated as a dye-sensitized solar cell 1C, hereinafter referred to as “battery 1C”). .) Will be described. FIG. 7 is a plan view of the battery 1C, and the positional relationship corresponds to FIG. This embodiment differs from the first and second embodiments described above only in the arrangement of the partition walls 30 and the planar shape of the transparent electrode 33, and the above description applies mutatis mutandis for other points. As shown in FIG. 7, the partition wall 30C of this embodiment is continuous with the partition wall 301C and the partition wall 302C as one unit, and as in the first embodiment, the wide portions 35C and the narrow portions 37C are alternately arranged. It is continuous. Next to the wide portion 35C, a narrow portion 38C is formed between the partition wall 303C adjacent to the partition wall 302C. The transparent electrode 33C is formed in an octagon shape in accordance with the wide portion 35C. Even with this configuration, the battery 1C can be manufactured by injecting the electrolyte solution 4 by the method of injecting the electrolyte solution 4 shown in FIG. Also in this embodiment, the negative electrode 21 and the positive electrode 31 can be bent by the dotted line portion around the wide portion 35C shown in FIG. 7 in the x and y directions, similarly to 3011x, 3012x, 3021x, and 3022x. The gap can be maintained at a predetermined interval, and a short circuit between the negative electrode 21 and the positive electrode 31 can be prevented.
In the third embodiment, similarly to the first embodiment, the transparent electrodes 33C may be applied to the entire portion other than the partition walls 30C without being separated from each other.

次に、図8を用いて、第1、第3の実施形態の色素増感型太陽電池の応用に係る第4の実施形態の装置について説明する。図8は、第4の実施形態の色素増感型太陽電池の断面図を示しており、図1(B)の断面図と位置関係が対応している。以上の第1、第3の実施形態と異なる点は、隔壁30の断面(A)と、この断面の形状の相違に伴って周囲の形状が異なる点のみであり、それ以外の説明は、同じ符号を用いて、以上の説明を準用する。   Next, the apparatus of 4th Embodiment which concerns on the application of the dye-sensitized solar cell of 1st, 3rd embodiment is demonstrated using FIG. FIG. 8 shows a cross-sectional view of the dye-sensitized solar cell of the fourth embodiment, and the positional relationship corresponds to the cross-sectional view of FIG. The difference from the first and third embodiments described above is only that the cross section (A) of the partition wall 30 is different from the surrounding shape in accordance with the difference in the shape of the cross section, and the other description is the same. The above description is applied mutatis mutandis using reference numerals.

図8(A)の例では、隔壁30Dは、隔壁301D、隔壁302Dを1つの単位として並べられて構成されており、隔壁301D、隔壁302Dは、断面の中央部が正極側基板2、負極側基板3の位置に比べて膨出した形状となっている。図8(B)の例では、隔壁30Eは、隔壁301E、隔壁302Eを1つの単位として並べられて形成されており、隔壁301E、隔壁302Eは、断面の中央部が「V」の字に屈曲した形状をしている。   In the example of FIG. 8A, the partition wall 30D is formed by arranging the partition wall 301D and the partition wall 302D as one unit. Compared to the position of the substrate 3, it has a bulging shape. In the example of FIG. 8B, the partition wall 30E is formed by arranging the partition wall 301E and the partition wall 302E as one unit, and the partition wall 301E and the partition wall 302E are bent in a “V” shape at the center of the cross section. It has a shape.

図8で示した隔壁30D、Eのいずれの実施例でも、基板に対して、上下方向からの力をそれ自体がひずみながら吸収するので、負荷荷重に対する強度を向上させることができる。   In any of the embodiments of the partition walls 30D and 30E shown in FIG. 8, since the force from the vertical direction is absorbed by the substrate while being distorted, the strength against the load can be improved.

図9を用いて、第3の実施形態の色素増感型太陽電池の応用に係る第5の実施形態の装置について説明する。この実施形態の電池1Fの隔壁30Fは、透明電極33Fの周囲に301F〜304Fを1つの単位として並べて構成され、図7で示した301C〜302Cの隔壁の一部が分断された形状となっている。このように構成すると、この単位の大きさ、材料を同一として比較した場合、図7で示した第3実施形態の電池1Cに対して、正極21、金属酸化物34との間を支持する力が弱まるが、図9の実施形態では、隔壁30が並んでいるx方向にも、電解液4が流れるから、図4のように多数の管531〜53Nを設ける必要がない。   The apparatus of 5th Embodiment which concerns on the application of the dye-sensitized solar cell of 3rd Embodiment is demonstrated using FIG. The partition wall 30F of the battery 1F according to this embodiment is configured by arranging 301F to 304F as one unit around the transparent electrode 33F, and a part of the partition walls 301C to 302C shown in FIG. 7 is divided. Yes. If comprised in this way, when the magnitude | size of this unit and a material are compared as the same, the force which supports between the positive electrode 21 and the metal oxide 34 with respect to the battery 1C of 3rd Embodiment shown in FIG. However, in the embodiment of FIG. 9, since the electrolyte solution 4 also flows in the x direction in which the partition walls 30 are arranged, it is not necessary to provide a large number of tubes 531 to 53N as shown in FIG.

なお、第3、第5の実施形態の他にも、幅広部35、幅狭部37が形成されるような隔壁30の配置方法は可能である。例えば、8角形に限らず、曲線、円弧、多角形で幅広部35、幅狭部37を構成できる。ただし、図4で示した電解液4の注入方法により、電解液4を注入する観点からは、幅広部35、幅狭部37の間の段差が少なく、滑らかに接続されている方が電解液4を行き渡らせ、電解液4を電池1の内部全体で均質化させる上で望ましい。   In addition to the third and fifth embodiments, it is possible to arrange the partition walls 30 so that the wide portion 35 and the narrow portion 37 are formed. For example, the wide portion 35 and the narrow portion 37 are not limited to octagons, but can be configured by curves, arcs, and polygons. However, from the viewpoint of injecting the electrolyte solution 4 by the method of injecting the electrolyte solution 4 shown in FIG. 4, there are few steps between the wide portion 35 and the narrow portion 37, and the electrolyte solution is more smoothly connected. 4 is desirable to make the electrolyte solution 4 uniform throughout the battery 1.

また、幅広部35、35Cと幅狭部37、37Cが形成されるよう隔壁30Cをうねらせているのは、いろいろな方向に撓ませても、正極21と負極31の間を保持し短絡を防ぐためであるから、この特性を満たすことができれば、隔壁30Cのように隔壁が一筆書きで連続している必要は必ずしもなく、図9の例のように、一部が分断されていても良い。ただし、図4で示した電解液4の注入、および空気の吸引の効率を考えると、流路がある方が望ましい。   In addition, the partition 30C is swelled so that the wide portions 35 and 35C and the narrow portions 37 and 37C are formed. Even if the partition 30C is bent in various directions, the positive electrode 21 and the negative electrode 31 are held and short-circuited. Therefore, as long as this characteristic can be satisfied, it is not always necessary for the partition walls to be continuous with a single stroke as in the partition wall 30C, and a part thereof may be divided as in the example of FIG. . However, considering the efficiency of the injection of the electrolytic solution 4 and the suction of air shown in FIG.

さらに、第1実施形態の図1(A)の例や、図7の例で、幅広部35、35Cを局所的な領域(隔壁30で仕切られた領域の一部)であるセルとすれば、幅狭部37、37C、37Fは、セルとセルをつなぐ通路とみることもできる。図1(A)の例や、図7、図9の例のように、隔壁で囲まれたセルの一部が開いて隣接する部分で、電解液4が移動可能に互いにつながっているので、隣のセルにも電解液4を行き渡らせることができる。従来のようにセルそれぞれの表面に孔を開けて電解液4を注入したり、セルをつなぎ合わせる必要がない。したがって、図4の方法により色素増感型太陽電池を製造でき、生産性向上に寄与する。また、このそれぞれのセルでは、隔壁で囲まれており、いろいろな方向の撓みに対しても、正極と負極(第1実施形態の21、31に相当する)の間の短絡を防止することができる。なお、いろいろな方向の撓みに対して、正極と負極(第1実施形態の21、31に相当する)の間の短絡を防止するための強度を有するためには、それぞれのセルを取り囲む隔壁の長さの合計よりも通路の合計幅の方が狭いことが望ましい。   Further, in the example of FIG. 1A of the first embodiment and the example of FIG. 7, if the wide portions 35 and 35C are cells that are local regions (part of regions partitioned by the partition walls 30). The narrow portions 37, 37C, and 37F can also be regarded as passages that connect the cells. As in the example of FIG. 1 (A) and the examples of FIGS. 7 and 9, the electrolyte solution 4 is movably connected to each other in a portion where the part of the cell surrounded by the partition wall is open and adjacent. The electrolyte solution 4 can be distributed to adjacent cells. There is no need to perforate the surface of each cell to inject the electrolyte solution 4 or to connect the cells as in the prior art. Therefore, a dye-sensitized solar cell can be manufactured by the method of FIG. 4 and contributes to productivity improvement. In addition, each of these cells is surrounded by a partition wall, and it is possible to prevent a short circuit between the positive electrode and the negative electrode (corresponding to 21 and 31 in the first embodiment) against bending in various directions. it can. In order to have a strength for preventing a short circuit between the positive electrode and the negative electrode (corresponding to 21 and 31 in the first embodiment) against bending in various directions, the partition wall surrounding each cell It is desirable that the total width of the passage is narrower than the total length.

以上の実施形態では、隔壁30(30A〜Fを含む。以下同じ。)を粘着性の樹脂としたが、必ずしも粘着性の樹脂でなくとも、この隔壁30の両面を接着できる他の構成があればよい。ただし、隔壁30をこのような粘着性の樹脂とすると、部品P1、P2の張り合わせ時に、基板の耐熱温度未満の150[℃]程度に加熱することにより密着性がよくなり、対候性を向上できるので、隔壁30をこの粘着性の樹脂とするのが望ましい。   In the above embodiment, the partition wall 30 (including 30A to F. The same applies hereinafter) is made of an adhesive resin, but there are other configurations that can adhere both surfaces of the partition wall 30 without necessarily being an adhesive resin. That's fine. However, when the partition wall 30 is made of such an adhesive resin, when the parts P1 and P2 are bonded together, the adhesion is improved by heating to about 150 [° C.], which is lower than the heat resistance temperature of the substrate, and weather resistance is improved. Therefore, it is desirable that the partition wall 30 be made of this adhesive resin.

また、電解液4は、必ずしも液体でなくとも良く、固体であっても良い。ただし、一般には電解液4が液体である方が、電子移動度がよく、発電効率がよいとされている。また、以上の実施形態の色素増感型太陽電池では、電解液4が液体であっても正極と負極を、外力がかかった場合でも、一定の間隔に保持できる。
また、次の発明も考えられる。
Further, the electrolytic solution 4 is not necessarily a liquid and may be a solid. However, it is generally said that the liquid electrolyte 4 has better electron mobility and better power generation efficiency. Moreover, in the dye-sensitized solar cell of the above embodiment, even if the electrolyte solution 4 is liquid, the positive electrode and the negative electrode can be held at a constant interval even when an external force is applied.
The following invention is also conceivable.

(A)前記正極と負極の間の領域は、前記隔壁により仕切られて、周囲が凸多角形または円形の領域のセルが連続して形成されており、前記セルの一部は、他のセルと電解質が移動可能に前記隔壁が開いている請求項1、2のいずれかに記載の色素増感型太陽電池。   (A) A region between the positive electrode and the negative electrode is partitioned by the partition wall, and a cell having a convex polygonal or circular region is continuously formed. A part of the cell may be another cell. The dye-sensitized solar cell according to claim 1, wherein the partition wall is open so that the electrolyte can move.

このように、セルの周囲が凸で形成されているので、いずれの方向の撓みに対しても正極と負極の間を支持し、正極側と負極側の短絡を防止することができる。他のセルと電解質が移動可能に隔壁が開いているから、セルを複数製造してマトリクス状に張り合わせる必要がなく、各セルに電解質を注入しなくとも、他のセルに電解質を行き渡らせることができる。したがって、撓ませても負極、正極間が短絡しないよう保持でき、かつ生産性が良い色素増感型太陽電池を構成できる。   Thus, since the periphery of the cell is formed in a convex shape, it is possible to support between the positive electrode and the negative electrode against bending in any direction, and to prevent a short circuit between the positive electrode side and the negative electrode side. Since the partition walls are open so that the electrolyte can move between other cells, there is no need to manufacture multiple cells and paste them together in a matrix, and the electrolyte can be distributed to other cells without injecting electrolyte into each cell. Can do. Accordingly, a dye-sensitized solar cell that can be held so as not to be short-circuited between the negative electrode and the positive electrode even when bent is formed, and has high productivity.

第1の実施形態の色素増感型太陽電池の構成図Configuration of dye-sensitized solar cell according to the first embodiment 第1の実施形態の色素増感型太陽電池の正極側、負極側の部品図Parts diagram of the positive electrode side and the negative electrode side of the dye-sensitized solar cell of the first embodiment 第1の実施形態の色素増感型太陽電池の負極側の部品の製造方法を表す図The figure showing the manufacturing method of the components by the side of the negative electrode of the dye-sensitized solar cell of 1st Embodiment 第1の実施形態の色素増感型太陽電池の電解液の注入方法を表す図The figure showing the injection | pouring method of the electrolyte solution of the dye-sensitized solar cell of 1st Embodiment 第2の実施形態の色素増感型太陽電池の構成図(断面図)Configuration diagram (cross-sectional view) of dye-sensitized solar cell of second embodiment 第2の実施形態の色素増感型太陽電池の負極側の部品の製造方法を表す図The figure showing the manufacturing method of the components by the side of the negative electrode of the dye-sensitized solar cell of 2nd Embodiment 第3の実施形態の色素増感型太陽電池の構成図(平面図)Configuration diagram (plan view) of dye-sensitized solar cell of third embodiment 第4の実施形態の色素増感型太陽電池の断面図の例Example of sectional view of dye-sensitized solar cell of fourth embodiment 第5の実施形態の色素増感型太陽電池の構成図(平面図)Configuration diagram (plan view) of dye-sensitized solar cell of fifth embodiment

符号の説明Explanation of symbols

1−色素増感型太陽電池、 2−正極側基板
21−正極、 211−正極、 212−正極、 22−部分
孔−231〜23N、 孔−241〜24N
3−負極側基板、 30−隔壁、 301−隔壁、 302−隔壁、 303−隔壁
31−負極、 32−補助電極、 321−補助電極、 322−補助電極
33−透明電極、 331−ITO膜、 332−ITO膜、 34−金属酸化物
35−幅広部、 37−幅狭部、 38−幅狭部、 4−電解液、 5−電解液注入器
50−注入器、 51−容器、 52−注入口、 531〜53N−管、
55−吸引器、 56−容器、 57−吸引口、 581〜58N−管
61−押さえ板、 62−押さえ板
1-dye-sensitized solar cell, 2-positive electrode side substrate 21-positive electrode, 211-positive electrode, 212-positive electrode, 22-part hole-231 to 23N, hole-241 to 24N
3-negative electrode side substrate, 30-partition, 301-partition, 302-partition, 303-partition 31-negative, 32-auxiliary electrode, 321-auxiliary electrode, 322-auxiliary electrode 33-transparent electrode, 331-ITO film, 332 -ITO film, 34-metal oxide 35-wide part, 37-narrow part, 38-narrow part, 4-electrolyte, 5-electrolyte injector 50-injector, 51-container, 52-inlet , 531-53N-tube,
55-suction machine, 56-container, 57-suction port, 581-58N-tube 61-pressing plate, 62-pressing plate

Claims (7)

平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池において、
正極側基板と負極側基板の間の領域を仕切るよう、正極側基板と負極側基板との間に絶縁体の隔壁を設けたことを特徴とする色素増感型太陽電池。
In a dye-sensitized solar cell in which a flexible positive electrode substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode substrate are layered in this order. ,
A dye-sensitized solar cell, wherein an insulating partition is provided between a positive electrode substrate and a negative electrode substrate so as to partition a region between the positive electrode substrate and the negative electrode substrate.
平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池において、
前記正極と金属酸化物半導体との間の領域を仕切るよう、前記正極と前記金属酸化物半導体との間に絶縁体の隔壁を設けたことを特徴とする色素増感型太陽電池。
In a dye-sensitized solar cell in which a flexible positive electrode substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode substrate are layered in this order. ,
A dye-sensitized solar cell, wherein an insulating partition is provided between the positive electrode and the metal oxide semiconductor so as to partition a region between the positive electrode and the metal oxide semiconductor.
前記隔壁は、複数本並べて配置され、
前記隔壁は、その互いの間隔の幅が広い幅広部と、幅が狭い幅狭部とが交互に繰り返し形成されるよう設けた請求項1〜2のいずれかに記載の色素増感型太陽電池。
The partition walls are arranged side by side,
The dye-sensitized solar cell according to any one of claims 1 to 2, wherein the partition wall is provided so that a wide portion with a wide interval and a narrow portion with a narrow width are alternately and repeatedly formed. .
前記隔壁は、ウェーブ状の滑らかな曲線となるよう設けられている請求項3に記載の色素増感型太陽電池。   The dye-sensitized solar cell according to claim 3, wherein the partition wall is provided to have a wave-like smooth curve. 前記隔壁は、その断面が「V」の字状、または、その断面の両側が膨出した形状に形成されている請求項1〜4のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 4, wherein the partition wall is formed in a V-shaped cross section or a shape in which both sides of the cross section bulge. 前記隔壁は、接着性のある樹脂で構成されている請求項1〜5のいずれかに記載の色素増感型太陽電池。   The dye-sensitized solar cell according to any one of claims 1 to 5, wherein the partition wall is made of an adhesive resin. 平面状に形成された可撓性を有する正極側基板、正極、電解質、金属酸化物半導体を含む負極、可撓性を有する負極側基板がこの順に層状に構成された色素増感型太陽電池の製造方法において、
前記正極側基板に前記正極を形成した第1の部品を製造する工程と、
前記負極側基板に前記負極を形成した第2の部品を製造する工程と、
前記第1の部品または第2の部品のいずれかに対し、前記正極と負極との間を接続して前記電解質を複数の長軸状の領域に仕切る絶縁体の隔壁を、複数本並べて形成する隔壁形成工程と、
前記第1の部品と前記第2の部品とを、前記隔壁形成工程後に接合する接合工程と、
前記接合工程で接合したものに対し、前記隔壁で形成される領域毎に電解液を注入する工程と、を行う色素増感型太陽電池の製造方法。
A dye-sensitized solar cell in which a flexible positive electrode side substrate formed in a plane, a positive electrode, an electrolyte, a negative electrode including a metal oxide semiconductor, and a flexible negative electrode side substrate are layered in this order. In the manufacturing method,
Producing a first component having the positive electrode formed on the positive substrate;
Producing a second component having the negative electrode formed on the negative substrate;
For either the first component or the second component, a plurality of insulating partition walls are formed side by side to connect the positive electrode and the negative electrode to partition the electrolyte into a plurality of long-axis regions. A partition formation step;
A bonding step of bonding the first component and the second component after the partition formation step;
A method for producing a dye-sensitized solar cell, comprising: performing a step of injecting an electrolytic solution for each region formed by the partition walls with respect to those bonded in the bonding step.
JP2006157746A 2006-06-06 2006-06-06 Dye-sensitized solar cell and its manufacturing method Pending JP2007328960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157746A JP2007328960A (en) 2006-06-06 2006-06-06 Dye-sensitized solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157746A JP2007328960A (en) 2006-06-06 2006-06-06 Dye-sensitized solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007328960A true JP2007328960A (en) 2007-12-20

Family

ID=38929289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157746A Pending JP2007328960A (en) 2006-06-06 2006-06-06 Dye-sensitized solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007328960A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218394A (en) * 2008-03-11 2009-09-24 Seiko Epson Corp Solar cell and its manufacturing method
WO2012137948A1 (en) * 2011-04-07 2012-10-11 大日本印刷株式会社 Method for manufacturing organic solar cell element module
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
JP2014067650A (en) * 2012-09-27 2014-04-17 Hitachi Zosen Corp Dye-sensitized solar cell manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218394A (en) * 2008-03-11 2009-09-24 Seiko Epson Corp Solar cell and its manufacturing method
US8669468B2 (en) 2010-01-19 2014-03-11 Samsung Sdi Co., Ltd. Photoelectric conversion module
WO2012137948A1 (en) * 2011-04-07 2012-10-11 大日本印刷株式会社 Method for manufacturing organic solar cell element module
JP2012221702A (en) * 2011-04-07 2012-11-12 Dainippon Printing Co Ltd Method for manufacturing organic solar battery device module
US8809103B2 (en) 2011-04-07 2014-08-19 Dai Nippon Printing Co., Ltd. Method for manufacturing organic solar cell module
JP2014067650A (en) * 2012-09-27 2014-04-17 Hitachi Zosen Corp Dye-sensitized solar cell manufacturing method

Similar Documents

Publication Publication Date Title
JP5555163B2 (en) Method for manufacturing a solar cell
CN103904365B (en) Co-extrusion print head for multi-layer cell structure
WO2008093117A3 (en) Apparatus for manufacturing flexible photovoltaic array
EP2991143B1 (en) Cell structure for fuel cell stack
JP2011508384A5 (en)
WO2008149811A1 (en) Dye-sensitized solar battery module and method for manufacturing the same
EP1906417A3 (en) Dye-sensitized solar cell and method of manufacturing the same
JP2007328960A (en) Dye-sensitized solar cell and its manufacturing method
US9991058B2 (en) Method for manufacturing solar cell
JP6352268B2 (en) Method for manufacturing photoelectric conversion element
TW201808461A (en) Die coater and method of manufacturing dye-sensitized solar cell
JP6918521B2 (en) Electric module and manufacturing method of electric module
JP2003331935A (en) Photoelectric conversion element
JP2010277999A (en) Dye-sensitized solar cell and its manufacturing method
JP5778601B2 (en) Manufacturing method of electric module
JP4779370B2 (en) Solar cell and manufacturing method thereof
JP2006310273A (en) Respective manufacturing method of semiconductor particle laminate film, dye-sensitized solar cell, electrochemical light-emitting element, and electron emission element, and dye-sensitized solar cell
CN201984962U (en) Dye-sensitized solar cell
JP6166752B2 (en) Electric module manufacturing components
EP2359406B1 (en) Photovoltaic devices
CN101692499A (en) Rolled microbial fuel cell
JP5677920B2 (en) Solar cell
CN105453203A (en) Plastic solar dye cells
TWI511310B (en) Manufacturing method of dye sensitized solar cell
JP2013073856A (en) Manufacturing method of electric module and electric module