JP2007327787A - Method of testing metal corrosiveness of insulating material - Google Patents

Method of testing metal corrosiveness of insulating material Download PDF

Info

Publication number
JP2007327787A
JP2007327787A JP2006157688A JP2006157688A JP2007327787A JP 2007327787 A JP2007327787 A JP 2007327787A JP 2006157688 A JP2006157688 A JP 2006157688A JP 2006157688 A JP2006157688 A JP 2006157688A JP 2007327787 A JP2007327787 A JP 2007327787A
Authority
JP
Japan
Prior art keywords
metal
insulating material
extract
pure water
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157688A
Other languages
Japanese (ja)
Other versions
JP4844243B2 (en
Inventor
Yuko Hida
祐子 肥田
Yukiko Wakino
有希子 脇野
Daisuke Mizutani
大輔 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006157688A priority Critical patent/JP4844243B2/en
Publication of JP2007327787A publication Critical patent/JP2007327787A/en
Application granted granted Critical
Publication of JP4844243B2 publication Critical patent/JP4844243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively and quickly test metal corrosiveness for a large number of insulating materials, in research for developing a novel insulating material. <P>SOLUTION: The insulating material 1 is immersed into pure water 2 to prepare an extract 1a, and the metal corrosiveness of the insulating material 1 is evaluated based on a metal dissolution rate into the extracts 1a. The metal dissolution rate is evaluated based on a potential difference between a metal electrode 5 comprising evaluation objective metal and a reference electrode 6, by immersing the electrodes 5, 6 into the extract 1a and reference pure water 4. Alternatively, the extract 1a is divided into two, the metal is immersed/dissolved into one thereof, and a metal dissolved amount is quantitatively determined thereafter by adding a color reaction reagent to the both the extracts to comparing coloring thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、絶縁材料の金属に対する腐蝕性の評価方法に関し、とくに絶縁材料と共に使用される金属材料に対するその絶縁材料の腐蝕特性を迅速に評価するための絶縁材料の腐蝕性試験方法に関する。   The present invention relates to a method for evaluating the corrosiveness of an insulating material to a metal, and more particularly to a method for testing the corrosiveness of an insulating material for quickly evaluating the corrosion characteristics of the insulating material with respect to a metal material used together with the insulating material.

電子機器の絶縁材料として難燃性の絶縁樹脂材料が広く用いられている。例えば、トランジスタ、ダイオード又は集積回路の封止用樹脂、プリント基板の絶縁樹脂、コネクタ等の電子部品を構成する絶縁樹脂あるいはケーブル被覆材を構成する絶縁樹脂である。これらの樹脂は、難燃性を付与するためにBr等のハロゲン元素やSbを含むハロゲン系難燃剤、或いは柔軟性及び安定性を保持するために鉛を含む柔軟剤及び安定剤が添加されている。   Flame retardant insulating resin materials are widely used as insulating materials for electronic devices. For example, a resin for sealing a transistor, a diode or an integrated circuit, an insulating resin for a printed circuit board, an insulating resin constituting an electronic component such as a connector, or an insulating resin constituting a cable covering material. These resins are added with halogen-based flame retardants containing halogen elements such as Br and Sb to impart flame retardancy, or softeners and stabilizers containing lead to maintain flexibility and stability. Yes.

しかし、かかるハロゲン元素、Sb又は鉛を含む材料の電子機器への使用は、環境汚染を防止する目的から、例えばヨーロッパのRoHS(特定危険物質の使用禁止規定)指令等において禁止されつつある。このため、難燃性絶縁樹脂やケーブル被覆材等の絶縁材料についても、RoHS指令等に対応したハロゲンフリー、Sbフリー及びPbフリーの新絶縁材料の開発が進められている。   However, the use of materials containing such halogen elements, Sb, or lead in electronic devices is being prohibited, for example, in the European RoHS (Prohibition on Use of Specific Hazardous Substances) Directive for the purpose of preventing environmental pollution. For this reason, development of halogen-free, Sb-free, and Pb-free new insulating materials corresponding to the RoHS directive and the like is being promoted for insulating materials such as flame-retardant insulating resins and cable covering materials.

かかる新絶縁材料の開発では、新絶縁材料の金属に対する腐蝕性が小さいことが重要である。電子機器の小型化に伴い、電子機器に用いられる金属部分、例えば集積回路及び回路基板の配線、あるいは集積回路のリードフレームやコネクタの接点等も、ますます微細化している。かかる電子機器の微細な金属部分は、絶縁材料あるいは絶縁材料から溶出した各種成分に接触すると、電蝕、マイグレーションによる不良を引き起こすことがある。このような電蝕及びマイグレーションは電子機器の信頼性を損なう。従って、新絶縁材料は、単に添加される難燃剤、柔軟剤及び安定剤がハロゲンフリー、Pbフリーであるのみならず、新絶縁材料が電子機器に使用された場合に、その電子機器に使用されている金属材料に対する腐蝕性が小さいことが重要視される。   In the development of such a new insulating material, it is important that the new insulating material is less corrosive to metals. Along with the miniaturization of electronic devices, metal parts used in electronic devices, for example, wiring of integrated circuits and circuit boards, or contact points of lead frames and connectors of integrated circuits, are becoming increasingly finer. When a fine metal portion of such an electronic device comes into contact with an insulating material or various components eluted from the insulating material, a defect due to electrolytic corrosion or migration may occur. Such electrolytic corrosion and migration impair the reliability of electronic equipment. Therefore, the new insulating material is not only used for the flame retardant, softener and stabilizer added to be halogen-free and Pb-free. It is important that the corrosiveness to the metal material is small.

従来のBrを含むハロゲン系難燃剤を含有する絶縁材料(例えば、封止用絶縁樹脂)又はPbを含む柔軟剤若しくはPbを含む安定剤を含有する絶縁材料(例えば、ケーブル被覆用絶縁樹脂)(以下、「ハロゲン等を含む絶縁材料」という。)について、電蝕及びマイグレーションの評価又は試験が行なわれてきた。そして、その評価に基づき、優れた耐電蝕性と優れた難燃性、柔軟性又は安定性を有する絶縁性材料が開発され、実用に提供されている。   Insulating material (for example, insulating resin for sealing) containing halogen-based flame retardant containing conventional Br or insulating material (for example, insulating resin for cable coating) containing softening agent containing Pb or stabilizer containing Pb In the following, "corrosion and migration" have been evaluated or tested for "insulating material containing halogen". Based on the evaluation, an insulating material having excellent electric corrosion resistance and excellent flame retardancy, flexibility or stability has been developed and provided practically.

これらハロゲン等を含む絶縁材料の電蝕性の評価は、評価すべき絶縁材料を用いてダミーの電子機器を製造し、このダミーの電子機器の信頼性試験を行い、この試験中に発生しする電気的な短絡を観察することでなされていた。この信頼性試験は、高温高湿、高温高圧、高電圧ストレス条件等の多様な環境下で500〜1000時間という長時間の放置試験である。   The evaluation of the electro-corrosion properties of these insulating materials containing halogen, etc. occurs during the test by manufacturing a dummy electronic device using the insulating material to be evaluated and conducting a reliability test of the dummy electronic device. It was done by observing an electrical short circuit. This reliability test is a long-term leaving test of 500 to 1000 hours under various environments such as high temperature and high humidity, high temperature and pressure, and high voltage stress conditions.

しかし、新絶縁材料の開発、とくに有望な材料を発見するためのスクリーニング工程では、候補に選定された多くの絶縁材料について信頼性を評価しなければならない。かかる多数の絶縁材料に対して、長時間の信頼性試験を行なうことは実用的ではない。また、高温高湿環境を維持する高価な信頼性試験装置を要するため、開発コストが高くなる。そこで、簡便な装置で短時間に評価できる試験方法として、絶縁材料から溶出する腐食性イオンを評価する方法が考案され、実用化されている。   However, in the development of new insulating materials, especially in the screening process for finding promising materials, the reliability of many insulating materials selected as candidates must be evaluated. It is not practical to perform a long-term reliability test on such a large number of insulating materials. In addition, since an expensive reliability test apparatus that maintains a high-temperature and high-humidity environment is required, the development cost increases. Therefore, as a test method that can be evaluated in a short time with a simple apparatus, a method for evaluating corrosive ions eluted from an insulating material has been devised and put into practical use.

この方法は、絶縁材料から溶出する物質中に含まれる、一般に腐食性が認められているイオン、例えば塩化物イオン等の塩素系イオン及び硫酸イオン等の硫黄系イオン、の量を評価する。これら塩素系イオン及び硫酸系イオンの金属腐蝕特性は良く知られており、これらのイオン量から絶縁材料の金属腐蝕性を評価することができる。(例えば、特許文献1及び特許文献2参照)。   This method evaluates the amount of ions that are generally recognized as corrosive, for example, chlorine ions such as chloride ions and sulfur ions such as sulfate ions, contained in the substance eluted from the insulating material. The metal corrosion characteristics of these chlorine ions and sulfate ions are well known, and the metal corrosion property of the insulating material can be evaluated from the amount of these ions. (For example, refer to Patent Document 1 and Patent Document 2).

上述の溶出イオンを評価する方法は、従来のハロゲン等を含む絶縁材料には良い評価結果を与えることが知られている。しかし、新絶縁材料、例えば水酸化アルミニウム又は水酸化カルシウム等の金属水酸化物を用いた水酸化金属系難燃剤、ホウ素化合物を用いたホウ素系難燃剤あるいはシリカフィラーを用いたフィラー系難燃剤が添加された新絶縁材料が有望とされ開発が進められているが、これらの新絶縁材料の評価方法としての適否は十分には解明されていない。即ち、これらの新絶縁材料から溶出するイオンには、上述した塩素系イオン及び硫黄系イオンの他に、多様なイオンが含まれることが多い。例えば、イオンクロマトグラフによる分析では、酢酸イオン、蟻酸イオン、しゅう酸イオン又は燐酸イオンが検出されることが多く、さらには同定されていない不明なイオンのピークが観測されることも多い。   It is known that the above-described method for evaluating eluted ions gives a good evaluation result to a conventional insulating material containing halogen or the like. However, there are new insulating materials such as metal hydroxide flame retardants using metal hydroxides such as aluminum hydroxide or calcium hydroxide, boron flame retardants using boron compounds or filler flame retardants using silica fillers. Newly added insulating materials are promising and are being developed, but their applicability as evaluation methods for these new insulating materials has not been fully elucidated. In other words, the ions eluted from these new insulating materials often contain various ions in addition to the above-described chlorine ions and sulfur ions. For example, in analysis by ion chromatography, acetate ions, formate ions, oxalate ions, or phosphate ions are often detected, and unidentified ion peaks are often observed.

現在、これらのイオンの金属腐蝕性は十分には解明されておらず、また、これらのイオンが同時に存在する溶液の金属腐蝕性も解明されていない。このため、これらのイオン量から絶縁材料の金属腐蝕性を評価する従来の評価方法は、必ずしも正当な評価結果をあたえるとは限らない。例えば、金属腐蝕性が大きい塩素系及び硫黄系イオンを僅かしか含まなくても、大きな金属腐蝕性、例えばマイグレーションを引き起こす新絶縁材料も知られている。   At present, the metal corrosivity of these ions has not been fully elucidated, and the metal corrosivity of a solution in which these ions are present simultaneously has not been elucidated. For this reason, the conventional evaluation method which evaluates the metal corrosion property of an insulating material from these ion amounts does not necessarily give a valid evaluation result. For example, a new insulating material that causes a large metal corrosion property, for example, migration, even if containing only a small amount of chlorine and sulfur ions having a high metal corrosion property is also known.

このため、絶縁材料から溶出する未知の物質を含む全ての物質が同時に存在する溶液について、金属腐蝕性を評価する方法が考案された。(例えば、特許文献3参照)。   For this reason, a method has been devised for evaluating the metal corrosivity of a solution in which all substances including unknown substances eluted from the insulating material are present simultaneously. (For example, refer to Patent Document 3).

図3は従来の絶縁材料の金属腐蝕性の試験方法の工程図であり、絶縁材料から溶出する全ての物質が同時に存在する溶液について金属腐蝕性を評価する方法の工程を表している。   FIG. 3 is a process diagram of a conventional method for testing the metal corrosion property of an insulating material, and shows the steps of a method for evaluating the metal corrosion property of a solution in which all substances eluted from the insulating material are present simultaneously.

この方法では、図3(a)を参照して、まず、容器3内に、純水2と粉砕された絶縁材料1を入れ、高温、高圧下に放置し、純水1中に絶縁材料1の成分を溶出させた抽出液1aを作製する。   In this method, referring to FIG. 3A, first, pure water 2 and pulverized insulating material 1 are placed in a container 3 and left under high temperature and high pressure. An extract 1a eluting the above components is prepared.

次いで、図3(b)及び図3(c)を参照して、主面に2本の配線32、33を近接して配置した配線パターンが形成された回路基板31を、抽出液1a中に浸漬する。そして、配線32と配線33の間に電源34から定電圧を印加し、電流の時間変化を測定する。浸漬時間が長くなり配線32、33の腐蝕が進行するとともに、配線32、33間を流れる電流が増加するので、配線の腐蝕量を評価することができる。なお、配線32、33は評価すべき金属材料から作られる。   Next, referring to FIG. 3B and FIG. 3C, the circuit board 31 on which the wiring pattern in which the two wirings 32 and 33 are arranged close to each other on the main surface is formed in the extract 1a. Immerse. Then, a constant voltage is applied from the power source 34 between the wiring 32 and the wiring 33, and the time change of the current is measured. Since the immersion time is increased and the corrosion of the wirings 32 and 33 proceeds, and the current flowing between the wirings 32 and 33 increases, the amount of corrosion of the wiring can be evaluated. The wirings 32 and 33 are made of a metal material to be evaluated.

しかし、この方法では、配線32、33、即ち金属材料の腐蝕特性を定量的に評価することは難しい。なぜなら、配線32、33の腐蝕は、配線32、33の全体が一様に進行するのではなく、局所的に集中して進行する。その結果、配線32、33の一部に局所的に腐蝕生成物が形成され、配線32、33間の隙間を局所的に狭くする。配線32、33間に流れる電流のかなりの部分は、この局所的に狭くされた隙間を流れる電流からなる。この隙間の狭窄の程度及び個数は偶発的要因に依存しており、従って電流の時間変化も偶発的要因に大きく影響されるので、これから腐蝕の程度を定量的に評価することは難しいからである。   However, with this method, it is difficult to quantitatively evaluate the corrosion characteristics of the wirings 32 and 33, that is, the metal material. This is because the corrosion of the wirings 32 and 33 does not proceed uniformly in the entire wirings 32 and 33 but locally concentrates. As a result, a corrosion product is locally formed in a part of the wirings 32 and 33, and the gap between the wirings 32 and 33 is locally narrowed. A considerable portion of the current flowing between the wirings 32 and 33 is composed of a current flowing through the locally narrowed gap. This is because the degree and number of the narrowing of the gap depends on the accidental factor, and therefore the time change of the current is greatly influenced by the accidental factor, so that it is difficult to quantitatively evaluate the degree of corrosion from now on. .

このため、この方法では、同様の測定を金属腐蝕特性が知られている絶縁材料についてもおこない、その結果と評価対象である新絶縁材料の評価結果とを比較することで、金属腐蝕性を相対的に評価している。
特開平7−63721号公報 特開平9−297116号公報 特開昭63−284828号公報
For this reason, in this method, the same measurement is performed on an insulating material with known metal corrosion characteristics, and the result is compared with the evaluation result of the new insulating material to be evaluated. Is evaluated.
Japanese Patent Laid-Open No. 7-63721 Japanese Patent Laid-Open No. 9-297116 JP-A 63-284828

上述したように、新絶縁材料の開発には多種類の絶縁材料の金属腐蝕性を評価する必要があるが、評価すべき金属材料及び評価すべき絶縁材料を組み合わせて製造された多数のダミーの電子機器を信頼性試験する従来の方法では、試験時間が長くなり実用に適さない。   As described above, the development of new insulating materials requires the evaluation of the metal corrosion properties of many types of insulating materials. However, a number of dummy materials manufactured by combining the metal materials to be evaluated and the insulating materials to be evaluated are used. The conventional method for reliability testing of electronic devices is not suitable for practical use because of the long test time.

また、絶縁材料の抽出液から特定イオンのみを定量し、これに基づき金属腐蝕性を評価する方法は、各種の物質が溶出するハロゲンフリーあるいはPbフリーの新絶縁材料を適切に評価できない場合がある。また、抽出液中の全てのイオンを定量するのは長い時間と多大な手間を必要とし、開発コストが高くなる。   In addition, the method of quantifying only specific ions from the extract of insulating material and evaluating the metal corrosivity based on the quantified amount may not be able to properly evaluate a new halogen-free or Pb-free insulating material from which various substances are eluted. . In addition, quantifying all the ions in the extract requires a long time and a lot of labor, and the development cost increases.

さらに、絶縁材料の成分を純水中に抽出して、その中に電圧が印加された近接する配線が形成された回路基板を浸漬し、電流の時間変化から配線金属の腐蝕性を評価する方法では、偶発的要因が電流の時間変化に寄与するため、金属の腐蝕の程度を定量的に評価することが難しいという問題がある。このため、腐蝕特性が知られた絶縁材料を基準として比較し評価しているが、これでは、基準となる腐蝕特性が知られた絶縁材料を準備しなければならず、かかる基準となる絶縁材料を準備できない新絶縁材料についてはこの方法を適用することは難しい。   Further, a method of extracting a component of an insulating material in pure water, immersing a circuit board on which a nearby wiring to which a voltage is applied is formed therein, and evaluating the corrosiveness of the wiring metal from a change in current over time Then, since an accidental factor contributes to the time change of an electric current, there exists a problem that it is difficult to evaluate the degree of metal corrosion quantitatively. For this reason, the insulation material with known corrosion characteristics is compared and evaluated, but in this case, an insulation material with known corrosion characteristics must be prepared. It is difficult to apply this method to new insulating materials that cannot be prepared.

本発明は、新絶縁材料に対しても、基準となる絶縁材料を用いず、簡便な装置で迅速にかつ定量的に金属腐蝕性を評価することができる絶縁材料の金属腐蝕性試験方法を提供することを目的としている。   The present invention provides a metal corrosion test method for insulating materials, which can evaluate metal corrosion properties quickly and quantitatively with a simple apparatus without using standard insulating materials even for new insulating materials. The purpose is to do.

上記課題を解決するための本発明の第1構成は、絶縁材料の成分を純水中に抽出した抽出液中に金属を浸漬して、その金属の溶解速度を測定する。そして、測定された溶解速度に基づき絶縁材料のその金属に対する腐蝕性を評価する絶縁材料の金属腐蝕性評価方法として構成する。   In the first configuration of the present invention for solving the above problems, a metal is immersed in an extract obtained by extracting the components of the insulating material in pure water, and the dissolution rate of the metal is measured. And it comprises as a metal-corrosion evaluation method of the insulating material which evaluates the corrosion property with respect to the metal of an insulating material based on the measured melt | dissolution rate.

上記本発明の第1構成では、抽出液中に評価すべき金属を浸漬し、金属の溶解速度を測定する。そして、その溶解速度から抽出液の腐食性を評価する。   In the first configuration of the present invention, the metal to be evaluated is immersed in the extract, and the dissolution rate of the metal is measured. And the corrosivity of an extract is evaluated from the dissolution rate.

金属の溶解速度は、定量的にかつ迅速に測定することができる。さらに、参照用の絶縁材料からの抽出液を必要としない。また、金属の腐食性、例えば腐食速度あるいは腐食の可否及び進行速度は、溶解速度から定量的に推定することができる。従って、参照用の絶縁材料を用いることなく、迅速に定量的な絶縁材料の金属腐食性を評価することができる。   The metal dissolution rate can be measured quantitatively and rapidly. Furthermore, no extract from the reference insulating material is required. Further, the corrosiveness of the metal, for example, the corrosion rate or the possibility and progress of corrosion can be quantitatively estimated from the dissolution rate. Therefore, quantitative metal corrosion of the insulating material can be quickly evaluated without using a reference insulating material.

本発明の第2構成は、上記第1構成の金属の溶解速度の測定を、評価すべき金属からなる金属電極を抽出液中及び参照用純水中にそれぞれ浸漬し、これらの金属電極間の電極電位差から推定する。金属電極の電極電位は、金属の抽出液中への溶解の可否及び溶解速度を示している。従って、電極電位から抽出液の腐食性を定量的に推定することができる。この電極電位は、例えば電位差計のような簡便な測定器を用いて、しかも迅速に測定することができる。   In the second configuration of the present invention, the measurement of the dissolution rate of the metal of the first configuration is performed by immersing the metal electrodes made of the metal to be evaluated in the extract and pure water for reference, respectively. Estimated from electrode potential difference. The electrode potential of the metal electrode indicates whether or not the metal can be dissolved in the extract and the dissolution rate. Therefore, the corrosivity of the extract can be quantitatively estimated from the electrode potential. This electrode potential can be measured quickly using a simple measuring instrument such as a potentiometer.

上記第2構成では、抽出液の電極電位を、参照用純水の電極を参照電極として測定する。さらに、参照用純水中に基準電極、例えばPt電極やその他の標準電極を浸漬し、これを参照用電極として用いることもできる。   In the second configuration, the electrode potential of the extract is measured using the reference pure water electrode as a reference electrode. Furthermore, a reference electrode, for example, a Pt electrode or other standard electrode can be immersed in reference pure water and used as a reference electrode.

本発明の第3構成は、上記第1構成の金属の溶解速度の測定を、抽出液を2分し、その一方に金属を浸漬して金属の成分を前記抽出液に溶解させたのち、両方に呈色反応試薬を加え、金属を溶解した抽出液の呈色を他方の抽出液(金属を浸漬していない抽出液)を参照用として測定する。   In the third configuration of the present invention, the dissolution rate of the metal of the first configuration is measured by dividing the extract into two parts, immersing the metal in one of them, and dissolving the metal components in the extract. The color reaction reagent is added to the extract, and the color of the extract in which the metal is dissolved is measured using the other extract (the extract not immersed in the metal) as a reference.

本第3構成では、予め知られている金属について、その成分の溶出量を測定するのみで絶縁材料の金属腐食性を評価することができる。従って、従来の評価方法のように、抽出液中に含まれる多くの物質を同定し定量する方法に比べて、非常に簡便である。また、金属の成分ごとの溶出量、即ち溶出速度を測定することができる。このため、金属材料の選定にも適用することができる。   In the third configuration, the metal corrosivity of the insulating material can be evaluated only by measuring the elution amount of the component of a known metal. Therefore, it is very simple compared to a method for identifying and quantifying many substances contained in an extract as in the conventional evaluation method. Moreover, the elution amount for each metal component, that is, the elution rate can be measured. For this reason, it is applicable also to selection of a metal material.

本発明によれば、抽出液中への金属の溶出速度を測定するのみで、絶縁材料の金属腐食性を評価することができる。このため、簡便な装置を用いて、迅速に定量的な絶縁材料の金属腐食性試験を行うことができる。   According to the present invention, the metal corrosivity of the insulating material can be evaluated only by measuring the elution rate of the metal into the extract. For this reason, it is possible to quickly perform a quantitative metal corrosion test of an insulating material using a simple apparatus.

図1は本発明の第1実施形態の試験方法を説明する断面工程図である。本発明の第1実施形態は、電極電位を測定して絶縁材料の金属腐食性を評価する試験方法に関する。   FIG. 1 is a sectional process diagram illustrating a test method according to a first embodiment of the present invention. 1st Embodiment of this invention is related with the test method which measures an electrode potential and evaluates the metal corrosivity of an insulating material.

図1(a)を参照して、本発明の第1実施形態では、まず、純水2を入れた蒸留装置の容器3を準備する。次いで、評価すべき絶縁材料を粉砕して、この粉砕された絶縁材料1を容器内3の純水2中に浸漬する。さらに純水2を100℃で10〜20時間煮沸して、絶縁材料1を抽出した抽出液1aを作製した。なお、蒸留装置は、純水2の蒸気を冷却凝結させて再び純水2中に還流する。さらに、密閉型の蒸留装置を用い、純水2を、例えば120℃〜130℃の高温高圧に保持して抽出を早くすることもできる。   With reference to Fig.1 (a), in 1st Embodiment of this invention, the container 3 of the distillation apparatus which put the pure water 2 first is prepared. Next, the insulating material to be evaluated is pulverized, and the pulverized insulating material 1 is immersed in pure water 2 in the container 3. Further, pure water 2 was boiled at 100 ° C. for 10 to 20 hours to produce an extract 1a from which the insulating material 1 was extracted. The distillation apparatus cools and condenses the vapor of the pure water 2 and recirculates it into the pure water 2 again. Furthermore, using a closed distillation apparatus, the pure water 2 can be kept at a high temperature and high pressure of, for example, 120 ° C. to 130 ° C. to speed up the extraction.

次いで、図1(b)を参照して、抽出液1a中に評価すべき金属からなる金属電極5及びPt電極7を浸漬する。さらに、参照用純水4を準備し、この参照用純水4中に評価すべき金属からなる金属電極(参照用電極6)及び、Pt電極7を浸漬する。そして、抽出液1a中に浸漬されたPt電極7と参照用純水4中に浸漬されたPt電極7とを電気的に接続し、金属電極5と参照用電極6間の電位差を電位差計8で測定した。   Next, referring to FIG. 1B, the metal electrode 5 and the Pt electrode 7 made of metal to be evaluated are immersed in the extract 1a. Furthermore, the reference pure water 4 is prepared, and the metal electrode (reference electrode 6) made of a metal to be evaluated and the Pt electrode 7 are immersed in the reference pure water 4. Then, the Pt electrode 7 immersed in the extract 1a and the Pt electrode 7 immersed in the reference pure water 4 are electrically connected, and the potential difference between the metal electrode 5 and the reference electrode 6 is determined by a potentiometer 8. Measured with

この金属電極5と参照用電極6間の電位差は、評価すべき金属に対する抽出液1aと参照用純水4との活動度の相違に対応している。参照用純水に対する金属の腐食性はよく知られているから、この電位差に基づき抽出液1aの金属腐食性を定量的に評価することができる。   This potential difference between the metal electrode 5 and the reference electrode 6 corresponds to the difference in activity between the extract 1a and the reference pure water 4 for the metal to be evaluated. Since the corrosiveness of the metal to the pure water for reference is well known, the metal corrosiveness of the extract 1a can be quantitatively evaluated based on this potential difference.

このPt電極7は、基準電極として機能し、抽出液1aと参照用純水4間の電位差を電気化学的に定まる値に保持する。必要ならば、予めこの電位差を測定しておき、この値を用いて電位差計の測定値を補正することもできる。また、Pt電極7を用いず、抽出液1aと参照用純水4とを電気的に接触させてもよい。   The Pt electrode 7 functions as a reference electrode and holds the potential difference between the extract 1a and the reference pure water 4 at a value determined electrochemically. If necessary, this potential difference can be measured in advance, and the measured value of the potentiometer can be corrected using this value. Alternatively, the extract 1a and the reference pure water 4 may be brought into electrical contact without using the Pt electrode 7.

さらに、参照用電極6を基準電極、例えばPt電極とすることもできる。このとき、参照用電極6は、抽出液1aに対する基準電極として機能する。また、参照用純水4を用いず、抽出液1a中のPt電極7を基準電極として金属電極5の電極電位を測定することもできる。このとき、Pt電極7に代えて標準電極を用いることで、より精密に電極電位を測定することもできる。   Further, the reference electrode 6 can be a reference electrode, for example, a Pt electrode. At this time, the reference electrode 6 functions as a reference electrode for the extract 1a. Further, the electrode potential of the metal electrode 5 can be measured using the Pt electrode 7 in the extract 1a as a reference electrode without using the pure water 4 for reference. At this time, the electrode potential can be measured more precisely by using a standard electrode instead of the Pt electrode 7.

また、電位差計8の代わりに、分極測定装置を用いて腐食電圧及び腐食電流を測定し、これらに基づいて金属腐食性を評価してもよい。分極測定法を用いることで、電極の形状等の影響を少なくすることができる。   Further, instead of the potentiometer 8, the corrosion voltage and the corrosion current may be measured using a polarization measuring device, and the metal corrosivity may be evaluated based on these. By using the polarization measurement method, the influence of the electrode shape and the like can be reduced.

図2は本発明の第2実施形態の試験方法を説明する断面工程図である。本発明の第2実施形態は、抽出液中に溶解した金属量を比色分析により測定して絶縁材料の金属腐食性を評価する試験方法に関する。   FIG. 2 is a sectional process diagram illustrating a test method according to the second embodiment of the present invention. The second embodiment of the present invention relates to a test method for evaluating the metal corrosivity of an insulating material by measuring the amount of metal dissolved in an extract by colorimetric analysis.

図2(a)を参照して、本発明の第1実施形態では、まず、純水2を入れた蒸留装置の容器3中に評価すべき絶縁材料1を粉砕して高温高圧下で煮沸し、純水2中に絶縁材料1の成分が溶けだした抽出液1aを作製する。この工程は、既述の第1実施形態の抽出液作製工程と同じである。   Referring to FIG. 2 (a), in the first embodiment of the present invention, first, an insulating material 1 to be evaluated is pulverized in a vessel 3 of a distillation apparatus containing pure water 2 and boiled under high temperature and high pressure. Then, an extract 1 a in which the components of the insulating material 1 are dissolved in the pure water 2 is prepared. This step is the same as the extract preparation step of the first embodiment described above.

次いで、図2(b)を参照して、抽出液1aを2分し、それぞれ容器10a及び容器10bに収納する。そして、容器10a内に収納された抽出液1a中に評価すべき金属からなる金属片11を、例えば半日〜1日浸漬する。必要ならば、容器10aをその金属が用いられる電子機器の環境温度あるいは高温に保持する。この浸漬により、容器10a内の抽出液1a中に金属片11の成分が溶解する。   Next, referring to FIG. 2 (b), the extract 1a is divided into two and stored in the container 10a and the container 10b, respectively. And the metal piece 11 which consists of the metal which should be evaluated in the extract 1a accommodated in the container 10a is immersed for a half day-1 day, for example. If necessary, the container 10a is maintained at the environmental temperature or high temperature of the electronic device in which the metal is used. By this immersion, the components of the metal piece 11 are dissolved in the extract 1a in the container 10a.

次いで、容器10a及び容器10b中に、金属片11の評価すべき成分の金属イオンに対して呈色反応する呈色反応試薬を添加する。この呈色反応試薬は、例えば、評価すべき成分Cuイオンに対してPAR(4−(2−Pyridylazo)resorcinol)、クプリゾン又はビシンコニンが、評価すべき成分Feイオンに対してピピリジル又は1.10フェナントロリンが、評価すべき成分Niイオンに対してジメチルグリオキシムが用いられる。また、金属片11の評価すべき成分は、その金属に含まれる成分の中で最も腐食可能性が高くかつ多量に含有されるものを選択することが好ましい。例えば、Cu又はCu合金を配線に使用する用途ではCuイオンを、42アロイをリードフレームに使用する用途ではFeイオン又はNiイオンを選択することができる。   Next, a color reaction reagent that performs a color reaction on the metal ions of the components to be evaluated of the metal piece 11 is added to the container 10a and the container 10b. This color reaction reagent is, for example, PAR (4- (2-Pyridylazo) resorcinol), cuprizone or bicinchoninin for the component Cu ion to be evaluated, piperidyl or 1.10 phenanthroline for the component Fe ion to be evaluated. However, dimethylglyoxime is used for the component Ni ions to be evaluated. Moreover, it is preferable to select the component to be evaluated of the metal piece 11 that has the highest possibility of corrosion among the components contained in the metal and is contained in a large amount. For example, Cu ions can be selected for applications using Cu or Cu alloy for wiring, and Fe ions or Ni ions can be selected for applications using 42 alloy for lead frames.

次いで、図2(c)を参照して、容器10a中の抽出液1a及び容器10b中の抽出液10bをそれぞれ、分光光度計の試料セル9a及び参照用セル9bに収容し、試料セル9a中の抽出液1aの吸光度を参照用セル9b中の抽出液1bの光吸収を参照して測定する。この吸光度の測定結果から、試料セル9a中の抽出液1aに溶解している金属成分を定量する。この定量された溶解量に基づき、抽出液1a中へのその金属成分の溶解速度、即ち腐食速度を算出し、この溶解速度を絶縁材料1の金属腐食性の評価基準とした。   Next, referring to FIG. 2 (c), the extract 1a in the container 10a and the extract 10b in the container 10b are accommodated in the sample cell 9a and the reference cell 9b of the spectrophotometer, respectively, and in the sample cell 9a. The absorbance of the extract 1a is measured with reference to the light absorption of the extract 1b in the reference cell 9b. From the measurement result of the absorbance, the metal component dissolved in the extract 1a in the sample cell 9a is quantified. Based on the quantified dissolution amount, the dissolution rate of the metal component in the extract 1a, that is, the corrosion rate was calculated, and this dissolution rate was used as an evaluation standard for the metal corrosivity of the insulating material 1.

本第2実施形態では、実際の溶解量を測定する。この溶解量の呈色による試験(比色試験)は、電極電位の測定に比べて安定な定量測定である。また、第1実施形態のような比較対照としての純水も不要であり、誤差の発生機会が少ない。このため、第2実施形態では、金属腐食性の評価を安定して行うことができる。   In the second embodiment, the actual dissolution amount is measured. This test by coloration of the dissolved amount (colorimetric test) is a stable quantitative measurement as compared with the measurement of the electrode potential. Further, pure water as a comparative control as in the first embodiment is also unnecessary, and there are few chances for errors. For this reason, in 2nd Embodiment, metal corrosive evaluation can be performed stably.

本第2実施形態の呈色の測定は、分光光度計による吸光度の測定でなされた。この呈色の測定は、他の周知の比色分析、例えば目視による比色試験で行うこともできる。   The color measurement of the second embodiment was performed by measuring the absorbance with a spectrophotometer. This color measurement can also be performed by other known colorimetric analysis, for example, a visual colorimetric test.

表1は第1及び第2実施形態による試験結果であり、絶縁材料の金属腐食性試験の結果を表している。なお、表1中の電位差は第1実施形態で測定された電極電位差を、表1中の吸光度は第2実施形態で測定された吸光度を表している。   Table 1 shows the test results according to the first and second embodiments, and shows the results of the metal corrosion test of the insulating material. The potential difference in Table 1 represents the electrode potential difference measured in the first embodiment, and the absorbance in Table 1 represents the absorbance measured in the second embodiment.

Figure 2007327787
表1を参照して、絶縁材料として、水酸化金属難燃剤を含有するエポキシ樹脂A、勇気燐難燃剤を含有するエポキシ樹脂B、鉛フリーのケーブル被覆材C及び鉛安定剤を含有するケーブル被覆材を評価した。なお、評価される金属として銅配線材料を選択した。また、比較例として従来広く使用されているBr系難燃剤を含有するエポキシ樹脂を比較例として評価した。さらに、抽出液との比較のために、純水に対する金属腐食性試験の結果を示した。
Figure 2007327787
Referring to Table 1, as insulation materials, epoxy resin A containing metal hydroxide flame retardant, epoxy resin B containing courageous phosphorus flame retardant, lead-free cable coating material C, and cable coating containing lead stabilizer The material was evaluated. A copper wiring material was selected as the metal to be evaluated. Moreover, the epoxy resin containing the Br type flame retardant widely used conventionally as a comparative example was evaluated as a comparative example. Furthermore, the result of the metal corrosion test with respect to pure water was shown for comparison with the extract.

絶縁材料のエポキシ樹脂A〜エポキシ樹脂Eの順で、電位差は大きくなり、吸光度は逆に小さくなっている。これは、この順序で抽出液1a中の活動度が高く金属が溶解しやすいこと、及び、この順序で抽出液中に溶解した金属成分が多いことを示している。即ち、この順で、絶縁材料のCuに対する金属腐食性が大きいことを表している。これらの、電位差及び吸光度から算出される活動度又は溶解量は、金属の溶解の難易を定量的に表すから、これら電位差又は吸光度を、抽出液、即ち絶縁材料の金属腐食性を定量的に示す指標とすることができる。   In the order of the insulating materials, epoxy resin A to epoxy resin E, the potential difference increases and the absorbance decreases on the contrary. This indicates that the activity in the extract 1a is high in this order and the metal is easily dissolved, and that there are many metal components dissolved in the extract in this order. That is, in this order, the metal corrosivity with respect to Cu of an insulating material is large. Since the activity or amount of dissolution calculated from the potential difference and absorbance quantitatively represents the difficulty of metal dissolution, the potential difference or absorbance quantitatively indicates the metal corrosivity of the extract, that is, the insulating material. It can be an indicator.

ケーブル被覆材Dは、電位差140mV、吸光度0.10であり、比較例のエポキシ樹脂Eの電位差150mV、吸光度0.08に非常に近い。これは、ケーブル被覆材Dは比較例のエポキシ樹脂Eに近い(ないし、僅かに大きな)銅腐食性を有することを表している。純水は240mVの電位差と0.01以下の吸光度を有し、腐食性が極めて小さいことを表している。なお、純水に対する金属電極との電位差は、標準電極の電位を参照して測定した。   The cable coating material D has a potential difference of 140 mV and an absorbance of 0.10, which is very close to the potential difference of 150 mV and the absorbance of 0.08 of the epoxy resin E of the comparative example. This indicates that the cable covering material D has a copper corrosivity close to (or slightly larger than) the epoxy resin E of the comparative example. Pure water has a potential difference of 240 mV and an absorbance of 0.01 or less, indicating that it is extremely corrosive. The potential difference between the metal electrode and pure water was measured with reference to the potential of the standard electrode.

他方、エポキシ樹脂B及びケーブル被覆材Cは、それぞれ電位差70mV及び50mV、吸光度0.38及び0.40であり、比較例のエポキシ樹脂Eに比べてCu腐食性が大きなことを表している。さらに、エポキシ樹脂Aの電位差は37mV、吸光度は1.56であり、最も腐食性が大きい。なお、比較例のエポキシ樹脂Eの吸光度0.08で規格化したケーブル被覆材D〜エポキシ樹脂Aの吸光度の比は、この順で1.25、4.75、5、0、19、5である。   On the other hand, the epoxy resin B and the cable covering material C have a potential difference of 70 mV and 50 mV, and absorbances of 0.38 and 0.40, respectively, indicating that the Cu corrosivity is larger than that of the epoxy resin E of the comparative example. Further, the epoxy resin A has a potential difference of 37 mV and an absorbance of 1.56, which is the most corrosive. In addition, the ratio of the absorbance of the cable coating material D to the epoxy resin A normalized by the absorbance 0.08 of the epoxy resin E of the comparative example is 1.25, 4.75, 5, 0, 19, 5 in this order. is there.

表1には、抽出液1aに含まれるCuイオンをICP−MS法(高周波誘導結合プラズマ質量分析法)により測定した結果をCu溶出量として表示している。このICP−MS法で測定されたCu溶出量は、比較例のエポキシ樹脂Eで規格化した溶出量で比較すると、吸光度の測定結果とよく一致している。このことは、第2実施形態で測定される吸光度が、Cuの溶出量、即ちCuの腐食速度を定量的に表していることを裏づけている。   In Table 1, the result of measuring Cu ions contained in the extract 1a by the ICP-MS method (high frequency inductively coupled plasma mass spectrometry) is displayed as the Cu elution amount. The Cu elution amount measured by the ICP-MS method is in good agreement with the measurement result of absorbance when compared with the elution amount normalized by the epoxy resin E of the comparative example. This confirms that the absorbance measured in the second embodiment quantitatively represents the elution amount of Cu, that is, the corrosion rate of Cu.

さらに表1には、ダミー電子機器を温度85℃、湿度85%RHの下で500時間の信頼性試験を行った結果を示した。この試験では、電位差及び吸光度により最も腐食性が大きいと評価されたエポキシ樹脂Aのみが不良(NG)と判定された。この結論は、本発明の金属腐食性試験が電子機器の信頼性を正しく評価していること、さらにより精密に信頼性を予測することを示している。   Further, Table 1 shows the results of a 500-hour reliability test of the dummy electronic device under a temperature of 85 ° C. and a humidity of 85% RH. In this test, only the epoxy resin A evaluated as having the highest corrosivity due to the potential difference and the absorbance was determined to be defective (NG). This conclusion shows that the metal corrosivity test of the present invention correctly evaluates the reliability of electronic equipment, and more accurately predicts the reliability.

上記本明細書には以下の付記記載の発明が開示されている。
(付記1)絶縁材料を純水に浸漬して、前記絶縁材料の成分が前記純水中に抽出された抽出液を作製する工程と、
前記抽出液中に金属を浸漬して、前記金属の溶解速度を測定する工程とを有し、
前記溶解速度に基づき前記絶縁材料の前記金属に対する腐蝕性を評価する絶縁材料の金属腐蝕性試験方法。
(付記2)前記溶解速度の測定は、前記抽出液中及び参照用純水中にそれぞれ浸漬された前記金属からなる金属電極間の電極電位差に基づいて前記溶解速度を測定することを特徴とする付記1記載の絶縁材料の金属腐食性試験方法。
(付記3)前記参照用純水中に浸漬された前記金属電極に代えて、前記参照用純水中に浸漬された基準電極を用いることを特徴とする付記2記載の絶縁材料の金属腐食性試験方法。
(付記4)前記金属電極間の電極電位差の測定は、前記抽出液及び前記参照用純水を電気的に接続してなされることを特徴とする付記2又は3記載の絶縁材料の金属腐食性試験方法。
(付記5)前記抽出液及び前記参照用純水の電気的な接続は、前記抽出液中及び参照用純水中にそれぞれ浸漬された基準電極を配線で接続してなされることを特徴とする付記4記載の絶縁材料の金属腐食性試験方法。
(付記6)前記抽出液を2分し、一方に前記金属を浸漬して、前記金属の成分を前記抽出液に溶解させる工程と、
次いで、2分した前記抽出液の一方及び他方に前記成分の呈色反応試薬を加え、前記抽出液の一方と前記抽出液の他方との呈色を比較して前記腐蝕速度を測定することを特徴とする付記1記載の絶縁材料の金属腐蝕性試験方法。
(付記7)前記呈色の比較は、比色試験によりなされることを特徴とする付記6記載の絶縁材料の金属腐蝕性試験方法。
(付記8)前記呈色の比較は、吸光度の比較によりなされることを特徴とする付記6記載の絶縁材料の金属腐蝕性試験方法。
(付記9)前記抽出液の作製は、前記絶縁材料を高温又は高温・高圧の前記抽出用純水に浸漬して行なうことを特徴とする付記1〜8のいずれかに記載された絶縁材料の金属腐蝕性試験方法。
The invention described in the following supplementary notes is disclosed in the present specification.
(Appendix 1) A step of immersing an insulating material in pure water to produce an extract in which the components of the insulating material are extracted in the pure water;
Immersing a metal in the extract and measuring the dissolution rate of the metal,
A method for testing a metal corrosion property of an insulating material, wherein the corrosion property of the insulating material with respect to the metal is evaluated based on the dissolution rate.
(Additional remark 2) The measurement of the said dissolution rate measures the said dissolution rate based on the electrode potential difference between the metal electrodes which consist of the said metal respectively immersed in the said extract and the pure water for reference. The metal corrosivity test method for the insulating material according to appendix 1.
(Additional remark 3) It replaces with the said metal electrode immersed in the said pure water for reference, The reference electrode immersed in the said pure water for reference is used, The metal corrosivity of the insulating material of Additional remark 2 characterized by the above-mentioned Test method.
(Additional remark 4) The measurement of the electrode potential difference between the said metal electrodes is made by electrically connecting the said extract and the said pure water for a reference, The metal corrosivity of the insulating material of Additional remark 2 or 3 characterized by the above-mentioned Test method.
(Supplementary Note 5) The electrical connection between the extract and the pure water for reference is made by connecting a reference electrode immersed in the extract and the pure water for reference with wiring. The metal corrosivity test method for the insulating material according to appendix 4.
(Additional remark 6) The process which divides the said extract into 2 parts, immerses the said metal in one, and dissolves the component of the said metal in the said extract,
Next, the coloring reaction reagent of the component is added to one and the other of the extracted liquid divided into two, and the corrosion rate is measured by comparing the coloration of one of the extracted liquid and the other of the extracted liquid. The method for testing a metal corrosion property of an insulating material according to appendix 1, which is characterized by the above.
(Additional remark 7) The said coloring comparison is made by a colorimetric test, The metal-corrosion test method of the insulating material of Additional remark 6 characterized by the above-mentioned.
(Additional remark 8) The said coloring comparison is made by the comparison of a light absorbency, The metal-corrosion test method of the insulating material of Additional remark 6 characterized by the above-mentioned.
(Additional remark 9) Preparation of the said extract is carried out by immersing the said insulating material in the said pure water for extraction of high temperature or high temperature, and high pressure of the insulating material in any one of Additional remark 1-8 characterized by the above-mentioned. Metal corrosion test method.

本発明は、多数の絶縁材料を迅速に評価する必要がある新絶縁材料の開発において、とくにスクリーニングに適用することで、簡便かつ迅速、定量的に新絶縁材料の金属腐食性を評価するために適用することができる。   In the development of a new insulating material that needs to quickly evaluate a large number of insulating materials, the present invention is applied to screening, in particular, to evaluate the metal corrosivity of the new insulating material simply, quickly and quantitatively. Can be applied.

本発明の第1実施形態の試験方法を説明する断面工程図Sectional process drawing explaining the test method of 1st Embodiment of this invention 本発明の第2実施形態の試験方法を説明する断面工程図Sectional process drawing explaining the test method of 2nd Embodiment of this invention 従来の絶縁材料の金属腐蝕性の試験方法の工程図Process diagram of conventional methods for testing metal corrosion of insulating materials

符号の説明Explanation of symbols

1 絶縁材料
1a 抽出液
2 純水
3、10a、10b 容器
4 参照用純水
5 金属電極
6 参照用電極
7 Pt電極(基準電極)
8 電位差計
9a 資料セル
9b 参照用セル
11 金属片
DESCRIPTION OF SYMBOLS 1 Insulation material 1a Extract 2 Pure water 3, 10a, 10b Container 4 Reference pure water 5 Metal electrode 6 Reference electrode 7 Pt electrode (reference electrode)
8 Potentiometer 9a Data cell 9b Reference cell 11 Metal piece

Claims (5)

絶縁材料を純水に浸漬して、前記絶縁材料の成分が前記純水中に抽出された抽出液を作製する工程と、
前記抽出液中に金属を浸漬して、前記金属の溶解速度を測定する工程とを有し、
前記溶解速度に基づき前記絶縁材料の前記金属に対する腐蝕性を評価する絶縁材料の金属腐蝕性試験方法。
Immersing the insulating material in pure water to produce an extract in which the components of the insulating material are extracted in the pure water;
Immersing a metal in the extract and measuring the dissolution rate of the metal,
A method for testing a metal corrosion property of an insulating material, wherein the corrosion property of the insulating material with respect to the metal is evaluated based on the dissolution rate.
前記溶解速度の測定は、前記抽出液中及び参照用純水中にそれぞれ浸漬された前記金属からなる金属電極間の電極電位差に基づいて前記溶解速度を測定することを特徴とする請求項1記載の絶縁材料の金属腐食性試験方法。 2. The dissolution rate is measured by measuring the dissolution rate based on an electrode potential difference between the metal electrodes made of the metal soaked in the extract and pure water for reference, respectively. Metal corrosion test method for insulating materials. 前記参照用純水中に浸漬された前記金属電極に代えて、前記参照用純水中に浸漬された基準電極を用いることを特徴とする請求項2記載の絶縁材料の金属腐食性試験方法。 3. The metal corrosivity test method for an insulating material according to claim 2, wherein a reference electrode immersed in the reference pure water is used instead of the metal electrode immersed in the reference pure water. 前記抽出液を2分し、一方に前記金属を浸漬して、前記金属の成分を前記抽出液に溶解させる工程と、
次いで、2分した前記抽出液の一方及び他方に前記成分の呈色反応試薬を加え、前記抽出液の一方と前記抽出液の他方との呈色を比較して前記腐蝕速度を測定することを特徴とする請求項1記載の絶縁材料の金属腐蝕性試験方法。
Immersing the extract in 2 minutes, immersing the metal in one, and dissolving the metal components in the extract;
Next, the coloring reaction reagent of the component is added to one and the other of the extracted liquid divided into two, and the corrosion rate is measured by comparing the coloration of one of the extracted liquid and the other of the extracted liquid. The method for testing a metal corrosion property of an insulating material according to claim 1.
前記抽出液の作製は、前記絶縁材料を高温又は高温・高圧の前記抽出用純水に浸漬して行なうことを特徴とする請求項1乃至4のいずれかに記載の絶縁材料の金属腐蝕性試験方法。 The metal extract of the insulating material according to any one of claims 1 to 4, wherein the extract is prepared by immersing the insulating material in pure water for extraction at high temperature or high temperature and pressure. Method.
JP2006157688A 2006-06-06 2006-06-06 Metal corrosion test method for insulating materials Expired - Fee Related JP4844243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157688A JP4844243B2 (en) 2006-06-06 2006-06-06 Metal corrosion test method for insulating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157688A JP4844243B2 (en) 2006-06-06 2006-06-06 Metal corrosion test method for insulating materials

Publications (2)

Publication Number Publication Date
JP2007327787A true JP2007327787A (en) 2007-12-20
JP4844243B2 JP4844243B2 (en) 2011-12-28

Family

ID=38928358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157688A Expired - Fee Related JP4844243B2 (en) 2006-06-06 2006-06-06 Metal corrosion test method for insulating materials

Country Status (1)

Country Link
JP (1) JP4844243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266285A (en) * 2009-05-13 2010-11-25 Mitsubishi Heavy Ind Ltd Simulation test device and simulation test method
WO2023058126A1 (en) * 2021-10-05 2023-04-13 三菱電機株式会社 Method for manufacturing substrate and method for manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284828A (en) * 1987-05-15 1988-11-22 Fujitsu Ltd Method of evaluating corrosiveness of sealing resin
JPH09297116A (en) * 1996-04-30 1997-11-18 Mitsubishi Chem Corp Corrosion measuring device for metallic material
JP2003253092A (en) * 2002-03-01 2003-09-10 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284828A (en) * 1987-05-15 1988-11-22 Fujitsu Ltd Method of evaluating corrosiveness of sealing resin
JPH09297116A (en) * 1996-04-30 1997-11-18 Mitsubishi Chem Corp Corrosion measuring device for metallic material
JP2003253092A (en) * 2002-03-01 2003-09-10 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266285A (en) * 2009-05-13 2010-11-25 Mitsubishi Heavy Ind Ltd Simulation test device and simulation test method
WO2023058126A1 (en) * 2021-10-05 2023-04-13 三菱電機株式会社 Method for manufacturing substrate and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4844243B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Verdingovas et al. Influence of sodium chloride and weak organic acids (flux residues) on electrochemical migration of tin on surface mount chip components
JP4844243B2 (en) Metal corrosion test method for insulating materials
Tegehall Impact of humidity and contamination on surface insulation resistance and electrochemical migration
Amaro et al. X-ray fluorescence as a condition monitoring tool for copper and corrosive sulphur species in insulating oil
Huang et al. Nafion modification of thermal-oxidized IrOx electrode
Reid et al. The corrosion of electronic resistors
JP5305498B2 (en) Quantitative analysis method for nickel or nickel alloy plating layer
Cullen et al. Implementation of immersion silver PCB surface finish in compliance with Underwriters Laboratories
Jellesen et al. Relation between PCBA cleanliness and climatic reliability
Happonen et al. Quality assurance for rotary screen printed wiring backplanes with automated roll-to-roll electrical test equipment
JP7056498B2 (en) Method for quantifying amide sulfuric acid
Bixenman et al. ION chromatography component specific cleanliness testing for process acceptability
Xue et al. Prediction of the electrochemical migration induced failure on power PCBs under humidity condition—A case study
Jaworski et al. Detection and Diagnosis of Various Contaminants in an Electroplating Bath by a Voltammetric Sensor: a Case Study
Lee et al. Evaluation of the anti-corrosion capacity for various electronics by way of accelerated corrosion testing platform
Zou et al. A new approach to investigate conductive anodic filament (CAF) formation
Ready et al. A comparison of hourly versus daily testing methods for evaluating the reliability of water soluble fluxes
Lee et al. Bromine induces corrosion in reliability test
Fowler et al. Challenges of Interpreting and Applying New IPC-J-STD-001 Cleanliness Standards in High-Reliability Applications.
US11125731B2 (en) Detection of a suspect counterfeit part by chromatography
McMeen et al. Electronic assembly warranties challenge the industry to improve risk mitigation test methods
Sandy-Smith Investigating test methods for electrochemical consistency in PCB assembly processes
Yingjie et al. A Study of the Content of Ionizable Surface Contaminants and Corrosion of PCB
CN116359309A (en) Method and device for detecting chloride ion content
Capen et al. Challenges of Interpreting and Applying New IPC-J-STD-001 Cleanliness Standards in High-Reliability Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees