JP2007327674A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2007327674A
JP2007327674A JP2006157967A JP2006157967A JP2007327674A JP 2007327674 A JP2007327674 A JP 2007327674A JP 2006157967 A JP2006157967 A JP 2006157967A JP 2006157967 A JP2006157967 A JP 2006157967A JP 2007327674 A JP2007327674 A JP 2007327674A
Authority
JP
Japan
Prior art keywords
heating
steam
water vapor
cooking
heating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006157967A
Other languages
Japanese (ja)
Inventor
Mitsuru Honma
満 本間
Sachi Tanaka
佐知 田中
Hideyuki Kimura
秀行 木村
Sei Ozawa
聖 小沢
Teruyuki Tachikawa
晃之 立川
Yuichi Hasegawa
雄一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006157967A priority Critical patent/JP2007327674A/en
Publication of JP2007327674A publication Critical patent/JP2007327674A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electric Ovens (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating cooker such as an oven range for cooking an object to be cooked while supplying steam to the object to be cooked in a heating chamber, capable of simultaneously achieving quick humidification of the object to be cooked and high-efficiency heating cooking, and easily providing delicious cooked object. <P>SOLUTION: This heating cooker comprises the heating chamber 2 receiving the object to be cooked 4, a heating means 12 heating the heating chamber 2, a steam generating means 13 generating the steam, an air distributing means 10 also acting as a fracturing means for finely fracturing the steam by applying impact shock, and a hot air unit 5 composed of a duct 5a covering the heating means 12 and the air distributing means 10. The steam generating means 13 is disposed outside of the duct 5a, the steam generating means 13 and the heating means 12 are disposed with positional relationship through the air distributing means 10, the steam supplied into the duct 5a from the steam generating means 13 is sprayed toward outflow wind 17 flowing out from the air distributing means 10, the steam is finely fractured by impact shock at that time, and the fine steam 20 mixed with the outflow air 17 is supplied into the heating chamber 2 to cook the heated object 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水蒸気を加熱室内の被調理物に供給して調理するオーブンレンジ等の加熱調理器に関するものである。   The present invention relates to a heating cooker such as a microwave oven for cooking by supplying steam to an object to be cooked in a heating chamber.

従来のこの種の加熱調理器においては、特許文献1に示すように、循環風を発生させるコンベクションファンとコンベクションヒータとを有するコンベクション室と、該コンベクション室と加熱室の境界壁に設けられた吸込口及び吹出口と、加熱室内に供給する蒸気を生成する蒸気生成容器とを備え、該蒸気生成容器を吸込口の近傍に設けたものがある。   In a conventional cooking device of this type, as shown in Patent Document 1, a convection chamber having a convection fan and a convection heater that generate circulating air, and a suction provided in a boundary wall between the convection chamber and the heating chamber Some have a mouth and an outlet and a steam generation container for generating steam to be supplied into the heating chamber, and the steam generation container is provided in the vicinity of the suction port.

また、特許文献2に示すように、加熱室内に電波を照射する高周波発生手段と、蒸気を発生させる蒸発装置と、蒸発装置に水を供給する給水部と、給水を制御する制御手段等を備え、給水部の制御手段に加熱調理毎の必要給水量をあらかじめ設定した高周波及び蒸気によって加熱調理を行う構成としたものもある。   Further, as shown in Patent Document 2, a high-frequency generator that radiates radio waves into the heating chamber, an evaporator that generates steam, a water supply unit that supplies water to the evaporator, a controller that controls water supply, and the like are provided. There is also a configuration in which cooking is performed by high frequency and steam in which a required water supply amount for each cooking is preset in the control means of the water supply unit.

さらに、特許文献3に示すように、赤外線温度センサにより食品の温度を測り、加熱を制御する方式の蒸気発生機能付き高周波加熱装置において、高周波発生部と、加熱室底面に設けられた蒸発皿およびヒータ装置とで構成された蒸気発生部とを備え、ヒータ装置をアルミダイキャストにシーズヒータを埋め込んで構成し、蒸発皿の裏側に直付けしたものもある。   Furthermore, as shown in Patent Document 3, in a high-frequency heating apparatus with a steam generation function that measures the temperature of food by an infrared temperature sensor and controls heating, a high-frequency generator, an evaporating dish provided on the bottom of the heating chamber, and There is also a steam generator configured with a heater device, which is configured by embedding a sheathed heater in an aluminum die cast and directly attached to the back side of the evaporating dish.

特開2004−316999号公報JP 2004-316999 A 特開2004−028578号公報JP 2004-028578 A 特開2004−278853号公報JP 2004-278853 A

上記従来技術において、特許文献1に示すものは、蒸気を発生させる蒸気生成容器をコンベクションファンの空気吸込口、すなわち空気の流入側に設けているため、発生した蒸気とコンベクションファンに流入する空気流の混合がスムーズに行われすぎてしまい、蒸気の大きさに変化を与えることが難しい。   In the above prior art, Patent Document 1 discloses a steam generation container that generates steam at the air suction port of the convection fan, that is, the air inflow side, so that the generated steam and the air flow flowing into the convection fan are provided. It is difficult to change the size of the steam.

また、コンベクションファンによる送風温度が、該コンベクションファンの空気流出側に設けたコンベクションヒータによって加熱されて加熱室内に流入する高温蒸気の温度より低い場合、コンベクションファンに蒸気が結露してしまうことがあり、該結露水が飛散することによってファンモータや電子部品等に悪影響を及ぼすことがある。   In addition, when the air temperature of the convection fan is lower than the temperature of the high-temperature steam that is heated by the convection heater provided on the air outflow side of the convection fan and flows into the heating chamber, the steam may be condensed on the convection fan. The dew condensation water may adversely affect the fan motor, electronic parts, and the like.

さらに、コンベクション室の内側に蒸気生成容器を設けているので、空気流が流れ難くなり、通路抵抗の増大に繋がるとともに、コンベクション室のコンパクト性を阻害する。   Furthermore, since the steam generation container is provided inside the convection chamber, it becomes difficult for the air flow to flow, leading to an increase in passage resistance and inhibiting the compactness of the convection chamber.

また、蒸気生成容器がコンベクションファンの近傍に配置されているため、コンベクションヒータにより加熱される蒸気生成容器の熱がコンベクションファンや空気流に奪われ、蒸気生成容器が温まり難い。   Further, since the steam generation container is disposed in the vicinity of the convection fan, the heat of the steam generation container heated by the convection heater is taken away by the convection fan and the air flow, and the steam generation container is hardly heated.

さらに、過熱状態となった蒸気を被加熱物への与熱効果のみに利用して調理時間の飛躍的向上を目的としているだけであるため、生成された蒸気のその他の利用方法が考慮されていない。   Furthermore, since the steam that has been overheated is only used for the heating effect on the object to be heated, the purpose is to drastically improve the cooking time, so other methods of using the generated steam are considered. Absent.

また、別の問題として蒸気生成容器を加熱室後壁の吸込口近傍に設けているため、蒸気生成容器に食品の残骸等が入り易く、その清掃が大変である。   Further, as another problem, since the steam generation container is provided in the vicinity of the suction port on the rear wall of the heating chamber, food debris and the like easily enter the steam generation container, and cleaning thereof is difficult.

さらに、蒸気生成容器は上部が開放され、その上部から水を滴下する構成であるため、熱風の流れによっては水滴の飛散が考えられ、コンベクション室に硬度成分等の析出によるスケールが付着し易く、また、その清掃性も悪いといった問題が発生する。   Furthermore, since the upper part of the steam generation container is open and water is dripped from the upper part, scattering of water droplets can be considered depending on the flow of hot air, and scales due to precipitation of hardness components etc. are likely to adhere to the convection chamber, Moreover, the problem that the cleaning property is also bad occurs.

また、蒸気生成容器とコンベクションヒータの設置位置が近いため、飛散した水滴や蒸気がコンベクションヒータに付着し易く、ヒータにスケールが付着しやすい。   Further, since the installation positions of the steam generation container and the convection heater are close to each other, scattered water droplets and steam easily adhere to the convection heater, and the scale tends to adhere to the heater.

さらに、蒸気生成容器とコンベクションヒータの位置関係が流れ上流と下流の配置となるため、コンベクションヒータにスケールが付着し易く、ヒータの異常加熱や断線などの原因になり易く、故障しやすい。   Furthermore, since the positional relationship between the steam generation container and the convection heater flows and is arranged upstream and downstream, the scale is likely to adhere to the convection heater, which can easily cause abnormal heating or disconnection of the heater, and easily break down.

次に、特許文献2に示すものは、前記特許文献1と同様に循環ファンを有する部屋の下部に蒸気を発生させる蒸発装置を設け、その蒸発装置によって発生した蒸気を循環ファンの空気流入側に導いているため、蒸気の大きさに変化を与えることが難しい。   Next, what is shown in Patent Document 2 is provided with an evaporator that generates steam in the lower part of a room having a circulation fan, as in Patent Document 1, and the steam generated by the evaporator is placed on the air inflow side of the circulation fan. Because of the guidance, it is difficult to change the size of the steam.

また、循環ファン上での結露による水滴飛散や空気流の通路抵抗増大、循環ファンを組み込む部屋のコンパクト性阻害といった問題等が発生する。   In addition, there are problems such as water droplet scattering due to condensation on the circulation fan, increased passage resistance of the air flow, and obstruction of the compactness of the room incorporating the circulation fan.

さらに、この特許文献2では、食品の種類に応じたいろいろな電波の出力と湿度の組み合わせを半導体メモリーに書き込み、調理するときに必要なメモリーを呼び出して実行させるので、少々複雑な調理内容でも簡単に出来、きめ細かい調理が可能になると述べられているが、食品の種類に応じた電波出力と湿度の組み合わせをメモリーに記憶出来ても、食品の量(例えば、食品質量,何人前)がわからないと、正確に加熱制御が出来ないという問題がある。そして、その対策としては、マニュアル操作で食品の量もしくは加熱時間を利用者が手入力しなければならず、このために利用者は事前に食品の量を秤等により計測しなければならなくなるという問題もある。   Furthermore, in this patent document 2, various combinations of radio wave output and humidity according to the type of food are written in the semiconductor memory, and the necessary memory for cooking is called and executed. Although it is said that fine cooking is possible, even if the combination of radio wave output and humidity according to the type of food can be stored in the memory, the amount of food (eg food mass, how many servings) is not known There is a problem that heating control cannot be performed accurately. As a countermeasure, the user must manually input the amount of food or the heating time by manual operation, and for this purpose, the user must measure the amount of food with a scale or the like in advance. There is also a problem.

また、特許文献3に示すものは、蒸気発生機能付き高周波加熱装置において、前記対策の一つとして、食品の量がわからなくても赤外線温度センサにより食品の温度を測り、加熱を制御する方法である。   Moreover, what is shown in patent document 3 is the method of measuring the temperature of a foodstuff with an infrared temperature sensor, and controlling heating as one of the said measures in the high frequency heating apparatus with a steam generation function, even if it does not know the quantity of foodstuff. is there.

しかし、蒸気が存在する環境での赤外線温度センサによる温度計測は、その明細書中において以下の問題点が指摘されている。   However, the following problems have been pointed out in the specification of temperature measurement using an infrared temperature sensor in an environment where steam exists.

すなわち、蒸気が加熱室内に充満すると、赤外線温度センサは、被加熱物(食品等の被調理物)の温度ではなく、被加熱物との間に存在する蒸気の浮遊粒子の温度を測定するようになる。このため、被加熱物の温度を正確に計ることができなくなる。すると、赤外線温度センサの温度検出結果に基づいてなされる加熱制御が正常に動作しなくなり、例えば加熱不足,加熱過剰等の不具合が発生し、特にシーケンシャルな手順で行う自動調理を行う場合には、加熱不良のまま次のステップに進むことになり、単なる再加熱や放冷等により対処できず、調理が失敗に終わる可能性もある、ということである。   That is, when the steam fills the heating chamber, the infrared temperature sensor measures not the temperature of the object to be heated (the food to be cooked) but the temperature of the suspended particles of the steam existing between the object and the object to be heated. become. For this reason, it becomes impossible to accurately measure the temperature of the object to be heated. Then, the heating control made based on the temperature detection result of the infrared temperature sensor does not operate normally, for example, when problems such as insufficient heating and excessive heating occur, especially when performing automatic cooking performed in a sequential procedure, It means that the process proceeds to the next step with poor heating, which cannot be dealt with by simple reheating, cooling, etc., and cooking may end in failure.

このため、蒸気を利用した加熱調理においては、赤外線温度センサを利用して加熱室内の被調理物の温度を正確に計測することは非常に難しく、赤外線温度センサは加熱制御の手段として使えないという問題点がある。   For this reason, in cooking using steam, it is very difficult to accurately measure the temperature of the cooking object in the heating chamber using an infrared temperature sensor, and the infrared temperature sensor cannot be used as a heating control means. There is a problem.

本発明は、上記課題のうち少なくとも1つを解決することを目的としている。   The present invention aims to solve at least one of the above problems.

上記課題を解決するために、請求項1では、被調理物を収容する加熱室と、該加熱室を加熱する加熱手段と、水蒸気を発生する蒸気発生手段と、水蒸気に衝撃を与えて細かく破砕する破砕手段を兼ね備えた送風手段と、加熱手段と送風手段を覆うダクトで構成される熱風ユニットとを備え、前記蒸気発生手段をダクトの外側に設け、該蒸気発生手段と前記加熱手段を前記送風手段を挟んだ位置関係に配置し、蒸気発生手段からダクト内に供給された水蒸気を送風手段から流出する空気流に向かって吹き付け、その衝撃で水蒸気を細かく破砕し、該水蒸気を前記加熱手段によって過熱して高温の水蒸気とし、該過熱水蒸気を加熱室内に供給するものである。   In order to solve the above-mentioned problem, in claim 1, a heating chamber that accommodates an object to be cooked, a heating unit that heats the heating chamber, a steam generation unit that generates water vapor, and an impact on the water vapor are crushed finely. And a hot air unit comprising a duct covering the heating means and the air blowing means. The steam generating means is provided outside the duct, and the steam generating means and the heating means are provided to the air blowing. The water vapor supplied from the steam generating means into the duct is blown toward the air flow flowing out from the air blowing means, and the water vapor is finely crushed by the impact. It is heated to form high-temperature steam, and the superheated steam is supplied into the heating chamber.

請求項2では、前記加熱手段を送風手段の下方に設け、蒸気発生手段を送風手段の上方に設けたものである。   According to a second aspect of the present invention, the heating means is provided below the blower means, and the steam generating means is provided above the blower means.

請求項3では、前記加熱手段がダクト内を可視光によって明るく照らす高発光熱源であって、該高発光熱源表面の対流熱伝達と熱放射の両方により前記蒸気発生手段から供給された水蒸気を過熱して高温の水蒸気とするものである。   In Claim 3, the heating means is a high emission heat source that brightly illuminates the inside of the duct with visible light, and superheats the water vapor supplied from the vapor generation means by both convective heat transfer and heat radiation on the surface of the high emission heat source. Thus, high-temperature steam is obtained.

請求項4では、空気流と混合した高温の過熱水蒸気は、少なくとも、約1000ナノメートル未満の超微細な水蒸気と、約1マイクロメートル以上の微細な水蒸気の両方を含んでおり、前者の超微細な水蒸気を主に被調理物内に浸透させることで該被調理物を保湿・加湿し、後者の微細な水蒸気を主に被調理物表面に付着・凝縮させることで該被調理物を加熱調理するものである。   In claim 4, the hot superheated steam mixed with the air stream includes at least both ultrafine water vapor of less than about 1000 nanometers and fine water vapor of about 1 micrometer or more, Moisturizing and humidifying the cooked food mainly by permeating it into the cooked food, and cooking the cooked food by attaching and condensing the latter fine water vapor mainly on the cooked food surface To do.

請求項5では、被調理物の質量を検出する質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、質量検出手段の検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給するものである。   In Claim 5, it is provided with the mass detection means which detects the mass of a to-be-cooked object, and the control means which adjusts the water vapor | steam amount supplied in a heating chamber, Based on the detected value of a mass detection means, a control means makes it from a steam generation means. The amount of water vapor supplied is controlled, and an appropriate amount of water vapor according to the cooking content of the cooking object is supplied into the heating chamber.

請求項6では、加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、被調理物の質量を検出する質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、質量検出手段によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給するものである。   According to a sixth aspect of the present invention, a non-rotating table placed on the bottom surface of the heating chamber for placing the food to be cooked, mass detecting means for detecting the mass of the food to be cooked, and control means for adjusting the amount of water vapor supplied into the heating chamber. And detecting the mass of the object to be cooked on the table by the mass detecting means, controlling the amount of water vapor supplied from the steam generating means by the control means based on the detected value, and depending on the cooking contents of the object to be cooked An appropriate amount of water vapor is supplied into the heating chamber.

請求項7では、加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、該テーブルを支持するようにテーブル下面に設置されて被調理物の質量を検出する複数個の質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段を備え、複数個の質量検出手段の総和によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給するものである。   In Claim 7, the non-rotating table installed in the bottom face of a heating chamber and mounting a to-be-cooked object, and several mass installed in the lower surface of a table so that this table may be supported, and detecting the mass of a to-be-cooked object A detection means and a control means for adjusting the amount of water vapor supplied into the heating chamber; the mass of the food to be cooked on the table is detected by the sum of the plurality of mass detection means; and the steam is detected by the control means based on the detected value. The amount of water vapor supplied from the generating means is controlled, and an appropriate amount of water vapor according to the cooking content of the cooking object is supplied into the heating chamber.

請求項8では、加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、加熱室に加熱空気を循環させる加熱手段と送風手段から構成される熱風供給手段と、送風手段からなる破砕手段と、テーブルを支持するように該テーブルの下面に設置されて被調理物の質量を検出する複数個の質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、複数個の質量検出手段の総和によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御すると共に、熱風供給手段を構成する加熱手段と破砕手段によって水蒸気をさらに加熱,破砕し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給するものである。   In claim 8, a non-rotating table placed on the bottom surface of the heating chamber for placing the food to be cooked, a hot air supply means comprising heating means for circulating heated air in the heating chamber and a blowing means, and a blowing means Crushing means, a plurality of mass detection means installed on the lower surface of the table to detect the mass of the food to be cooked so as to support the table, and a control means for adjusting the amount of water vapor supplied into the heating chamber. The mass of the object to be cooked on the table is detected by the sum of the plurality of mass detection means, and the amount of water vapor supplied from the steam generation means is controlled by the control means based on the detected value, and the hot air supply means is configured. The steam is further heated and crushed by the heating means and the crushing means, and an appropriate amount of water vapor according to the cooking content of the cooking object is supplied into the heating chamber.

本発明の請求項1によれば、熱風ユニット内において、送風手段から外周方向に向かって流出する流出風に対して加熱手段と蒸気発生手段がそれぞれ略反対向きの位置関係となるので、蒸気発生手段の吹出口から供給される水蒸気が直接加熱手段に接触しなくなり、これによって、加熱手段の表面にスケールが析出しにくくなり、加熱手段の寿命を延ばし、長期間安定した加熱調理を行うことができる。   According to the first aspect of the present invention, in the hot air unit, the heating means and the steam generation means are in a substantially opposite positional relationship with respect to the outflow air flowing out from the blower means toward the outer peripheral direction. Water vapor supplied from the outlet of the means does not directly contact the heating means, thereby making it difficult for scale to deposit on the surface of the heating means, extending the life of the heating means, and performing stable cooking for a long period of time. it can.

また、ダクトの外側に設けた蒸気発生手段と加熱手段を、送風手段を挟む位置関係に分離して配置したので、熱風ユニットのコンパクト化と低コスト化を図ることができ、特に、加熱調理器本体の奥行き方向の寸法を小さく抑えることが可能となる。   In addition, since the steam generating means and the heating means provided outside the duct are separately arranged in a positional relationship sandwiching the air blowing means, the hot air unit can be made compact and low in cost. It is possible to keep the size of the main body in the depth direction small.

請求項2によれば、蒸気発生手段と加熱手段を送風装置を挟んでダクトの上下方向に配置したので、加熱手段によって過熱された水蒸気は軽量化し、熱風ユニットのダクトの上方に滞留し易くなり、使用後でもダクトの下方に配置した加熱手段の表面で結露などが生じ難くなる。   According to the second aspect, since the steam generating means and the heating means are arranged in the vertical direction of the duct with the air blower interposed therebetween, the water vapor superheated by the heating means is reduced in weight and easily stays above the duct of the hot air unit. Even after use, condensation is unlikely to occur on the surface of the heating means disposed below the duct.

また、加熱室においても、高温空気及び高温水蒸気によりその天井面側の空気温度が高くなり易いため、加熱手段から直接加熱された空気が加熱室の下側から流出する流れを構成して加熱室の温度分布を小さく抑えることができ、被調理物の加熱ムラを少なくすることができる。   Also in the heating chamber, since the air temperature on the ceiling surface side tends to be high due to the high-temperature air and the high-temperature steam, the heating chamber is configured so that the air directly heated from the heating means flows out from the lower side of the heating chamber. The temperature distribution can be kept small, and the unevenness of the cooking object can be reduced.

請求項3によれば、熱風ユニットの加熱手段としてダクト内を可視光によって明るく照らす高発光熱源を用い、この高発光熱源による対流熱伝達と熱放射の両方により、蒸気発生手段から吹き出した水蒸気に効率良く熱を伝えることができるので、熱風供給手段で効率よく微細な水蒸気を生成し、加熱室内に供給することができる。   According to the third aspect, a high light emission heat source that brightly illuminates the inside of the duct with visible light is used as the heating means of the hot air unit, and the steam blown out from the steam generation means by both convective heat transfer and heat radiation by the high light emission heat source. Since heat can be transferred efficiently, fine steam can be efficiently generated by the hot air supply means and supplied into the heating chamber.

請求項4によれば、生成された微細な水蒸気を被調理物の加熱に利用するだけでなく、超微細な水蒸気を被調理物の保湿にも利用することが出来、蒸気発生手段で生成された水蒸気の利用の応用範囲を広げることが出来る。   According to the fourth aspect, not only the generated fine water vapor is used for heating the cooking object, but also the ultra fine water vapor can be used for moisturizing the cooking object, and is generated by the steam generating means. The range of application of the use of water vapor can be expanded.

請求項5によれば、請求項1乃至請求項4記載の構成を被調理物を丸いテーブルに載せて回転調理するオーブンレンジにも適用して被調理物の種類,調理,重さに対応した水蒸気量を供給制御できるので、蒸気を利用した最適な調理が実現できる。もちろん、質量検出手段を利用した調理は、赤外線温度センサの問題点を十分にカバーできる最良の加熱制御を実現できることは言うまでもない。   According to claim 5, the configuration according to claims 1 to 4 is also applied to a microwave oven that rotates and puts the food to be cooked on a round table, corresponding to the type, cooking, and weight of the food to be cooked. Since the supply of water vapor can be controlled, optimal cooking using steam can be realized. Of course, it goes without saying that cooking using the mass detection means can realize the best heating control capable of sufficiently covering the problems of the infrared temperature sensor.

請求項6によれば、請求項1乃至請求項4記載の構成を被調理物を載せたテーブルが回転しないターンテーブルレス式オーブンレンジにも適用でき、前記と同様の効果を得ることが出来る。   According to the sixth aspect, the structure according to the first to fourth aspects can be applied to a turntableless microwave oven in which the table on which the object is to be cooked does not rotate, and the same effect as described above can be obtained.

請求項7及び請求項8によれば、例えば3個の質量検出手段の総和によってテーブル上の被調理物の重さを検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御できるし、その質量検出手段の出力値の割合から被調理物が載置されているテーブル上の載置位置も特定できるので、その被調理物に向けて水蒸気を効率良く吹き付けることが可能となる。   According to the seventh and eighth aspects, for example, the weight of the food to be cooked on the table is detected by the sum of the three mass detection means, and the control means supplies the steam generation means based on the detected value. The amount of water vapor can be controlled, and the placement position on the table on which the food item is placed can be specified from the ratio of the output value of the mass detection means, so that water vapor can be efficiently blown toward the food item. Is possible.

本発明の請求項9によれば、加熱ユニット内において、送風手段からの空気流に対して加熱手段と蒸気発生手段の蒸気噴出口とがそれぞれ対称位置に配置されるので、蒸気発生手段の蒸気噴出口から供給される水蒸気が直接加熱手段に接触しなくなり、これによって、加熱手段の表面にスケールが析出しにくくなり、加熱手段の寿命を延ばし、長期間安定した加熱調理を行うことができる。   According to the ninth aspect of the present invention, since the heating means and the steam outlet of the steam generating means are respectively arranged in symmetrical positions with respect to the air flow from the blowing means in the heating unit, the steam of the steam generating means The water vapor supplied from the jet outlet does not directly contact the heating means, whereby it becomes difficult for scale to deposit on the surface of the heating means, extending the life of the heating means and performing stable cooking for a long time.

以下、本発明の加熱調理器を、マグネトロンなどで構成される高周波加熱手段を有する電気式オーブンレンジを例にとって説明する。なお、本発明は、電気オーブン,電子レンジなどの加熱調理器にも適用できる。   Hereinafter, the cooking device of the present invention will be described with an electric microwave oven having high-frequency heating means composed of a magnetron or the like as an example. In addition, this invention is applicable also to heating cookers, such as an electric oven and a microwave oven.

図1は本発明の電気式オーブンレンジの側面断面図である。   FIG. 1 is a side sectional view of an electric microwave oven according to the present invention.

図2はその電気式オーブンレンジを背面側から見た斜視図であり、外枠であるカバー
35を本体前方に取り外した状態である。
FIG. 2 is a perspective view of the electric microwave oven as viewed from the back side, and shows a state in which a cover 35 as an outer frame is removed in front of the main body.

図3は図2に示す電気オーブンレンジの背面側に設置される熱風ユニット5の斜視図である。   FIG. 3 is a perspective view of the hot air unit 5 installed on the back side of the electric microwave oven shown in FIG.

電気式オーブンレンジの本体1は、加熱調理する食品等の被調理物4を収容する加熱室2,該加熱室2の底面2cに設けられた被調理物4を載置する回転しないテーブル3,加熱室2に熱風を循環させる熱風供給手段である熱風ユニット5,レンジ調理の加熱源であるマグネトロン6,マイクロ波を導く導波管7,加熱室2にマイクロ波を照射する回転アンテナ8,アンテナモータ9及び本体1の前面に設けた被調理物4を出し入れするための開閉自在なドア36等で構成されている。   The main body 1 of the electric microwave oven includes a heating chamber 2 for storing a cooking object 4 such as food to be cooked, a non-rotating table 3 on which the cooking object 4 provided on the bottom surface 2c of the heating chamber 2 is placed. A hot air unit that is a hot air supply means for circulating hot air in the heating chamber 2, a magnetron that is a heating source for range cooking 6, a waveguide 7 that guides microwaves, a rotating antenna 8 that irradiates the heating chamber 2 with microwaves, an antenna A motor 9 and a door 36 that can be opened and closed for taking in and out the food 4 provided on the front surface of the main body 1 are configured.

前記マグネトロン6,導波管7,回転アンテナ8及びアンテナモータ9等についてはすでに公知であるので、詳細な説明は省略するが、これらの構成部品は図示されているように加熱室2と本体1底面との空間(機械室)に配置されている。   Since the magnetron 6, the waveguide 7, the rotating antenna 8, the antenna motor 9 and the like are already known, detailed description thereof is omitted, but these components are shown in the heating chamber 2 and the main body 1 as shown in the figure. It is arranged in the space (machine room) with the bottom.

オーブン調理に使われる熱風ユニット5は、熱風供給手段を構成するもので、ダクト
5aと、このダクト5a内のほぼ中央に回転自在に設けられたファン等の送風手段10,この送風手段10の下方で空気流の流出側に設けられたヒータ等の加熱手段12,ダクト5aに取り付けられたファンモータ11等で構成され、加熱室2の背面壁後方に配置されている。
The hot air unit 5 used for oven cooking constitutes hot air supply means, and includes a duct 5a, a blower means 10 such as a fan that is rotatably provided substantially in the center of the duct 5a, and below the blower means 10. The heating means 12 such as a heater provided on the outflow side of the air flow, the fan motor 11 attached to the duct 5a, and the like are arranged behind the back wall of the heating chamber 2.

また、本発明では、熱風ユニット5の背面側となるダクト5aの外側であって、送風手段10の上方に蒸気発生手段13が設けられており、ダクト5aにおいて送風手段10を挟んだ上下の位置関係に蒸気発生手段13と加熱手段12が配置されている。その理由は、蒸気発生手段13の吹出口18から供給される水蒸気が、万一、加熱手段12に直接接触した場合、水の成分によっては加熱手段12の表面にスケールが析出して残存する場合がある。これを解決するため、本実施例では、加熱手段12と蒸気発生手段13を送風手段10を挟むようにできる限り離して配置する構成となっている。   In the present invention, the steam generating means 13 is provided outside the duct 5a on the back side of the hot air unit 5 and above the air blowing means 10, and the upper and lower positions sandwiching the air blowing means 10 in the duct 5a. The steam generating means 13 and the heating means 12 are arranged in relation. The reason is that, if the water vapor supplied from the outlet 18 of the steam generating means 13 is in direct contact with the heating means 12, depending on the components of water, scale may be deposited on the surface of the heating means 12 and remain. There is. In order to solve this, in this embodiment, the heating means 12 and the steam generation means 13 are arranged as far apart as possible so as to sandwich the air blowing means 10.

このように、加熱手段12と蒸気発生手段13を、送風手段10の流出風17の流れの向きが略反対向きとなる位置に配置することにより、加熱手段12へのスケールの付着による劣化や破損などを抑制し、加熱手段12の寿命を延ばすことができ、長期間安定した加熱調理を行うことができる。   In this way, by disposing the heating means 12 and the steam generation means 13 at a position where the flow direction of the outflow air 17 of the blower means 10 is substantially opposite, deterioration or damage due to adhesion of the scale to the heating means 12. The life of the heating means 12 can be extended and stable cooking can be performed for a long time.

なお、本実施例のように、熱風ユニット5の上方に蒸気発生手段13を、送風手段10を挟んで下方に加熱手段12を配置した構成でなく、例えば、逆に熱風ユニット5の上方に加熱手段12を、送風手段10を挟んで下方に蒸気発生手段13を配置した構成であってもよいし、別の実施例として、加熱手段12と蒸気発生手段13を、送風手段10を挟んで左右に離して配置した構成であってもよい。すなわち、本発明では加熱手段12と蒸気発生手段13が送風手段10の同じ側に配置されなければよい。   Note that, as in this embodiment, the steam generating means 13 is not disposed above the hot air unit 5 and the heating means 12 is disposed below the air blowing means 10. For example, the heating air is heated above the hot air unit 5. The means 12 may have a configuration in which the steam generating means 13 is disposed below the air blowing means 10. As another example, the heating means 12 and the steam generating means 13 are arranged on the left and right sides of the air blowing means 10. The structure arrange | positioned in the distance may be sufficient. That is, in the present invention, the heating unit 12 and the steam generation unit 13 may not be disposed on the same side of the blower unit 10.

また、加熱室2の背面壁には、多数のパンチング孔よりなる吸込孔2a,吹出孔2bが設けられており、吸込孔2aは送風手段10の略中心部、すなわち空気流の吸込孔2aに対向した位置に設けられ、吹出孔2bは送風手段10の上下位置にそれぞれ設けられている。   The back wall of the heating chamber 2 is provided with a plurality of punching holes 2a and blowout holes 2b. The suction hole 2a is formed in the substantially central portion of the blowing means 10, that is, in the airflow suction hole 2a. The air outlets 2b are respectively provided at the upper and lower positions of the air blowing means 10.

このように熱風ユニット5において、蒸気発生手段13と加熱手段12を送風手段10を挟んで離して配置すると、蒸気発生手段13から供給されたほぼ飽和の水蒸気が加熱手段12に効率良く当たらず、過熱水蒸気がうまくできないことが懸念されるが、前記熱風ユニット5の吸込孔2a,吹出孔2bが循環する空気流の流れ抵抗となっているので、蒸気発生手段13から供給された水蒸気は送風手段10の旋回流などの高速流によって熱風ユニット5内で攪拌され、蒸気発生手段13から離れた位置にある加熱手段12に激しく吹き付けられてさらに高温に過熱された過熱水蒸気を生成するものである。   Thus, in the hot air unit 5, when the steam generating means 13 and the heating means 12 are arranged with the air blowing means 10 interposed therebetween, the substantially saturated water vapor supplied from the steam generating means 13 does not efficiently hit the heating means 12, There is a concern that the superheated steam cannot be performed well, but the steam supplied from the steam generating means 13 is blown by the air flow through the suction hole 2a and the blowout hole 2b of the hot air unit 5 because of the flow resistance. 10 is stirred in the hot air unit 5 by a high-speed flow such as 10 swirling flows, and is violently blown to the heating means 12 at a position away from the steam generating means 13 to generate superheated steam superheated to a higher temperature.

図1及び図2の電気式オーブンレンジの本体1は、加熱室2の下部中央に回転するテーブルがない、いわゆるターンテーブルレス式オーブンレンジと言われるものである。   The main body 1 of the electric microwave oven shown in FIGS. 1 and 2 is a so-called turntableless microwave oven in which there is no rotating table in the lower center of the heating chamber 2.

また、熱風ユニット5のダクト5aの外側に配置されている蒸気発生手段13は、水が供給される容器13aと、該容器13aを加熱するヒータ13b、サーミスタ等の温度検出器(図示せず)等から構成される。   The steam generating means 13 disposed outside the duct 5a of the hot air unit 5 includes a container 13a to which water is supplied, a heater 13b for heating the container 13a, a temperature detector such as a thermistor (not shown). Etc.

ここで、容器13aはアルミダイキャスト等のアルミニウム材やステンレス材等の錆び難い金属材料で構成され、ヒータ13bは容器13aの肉部に埋め込まれたシーズヒータ等で構成されている。但し、容器13a,ヒータ13bともこれらの構成に限る必要はなく、容器13aは、昇温時間を短くするために熱容量を小さくすることが好ましく、より望ましくは容器13aの質量が100g〜200g程度がよい。また、ヒータ13bは、同じように昇温時間を短くするために、望ましくは100V電圧において消費電力を500W〜1000W程度にするのがよい。   Here, the container 13a is composed of an aluminum material such as aluminum die-casting or a metal material that is not easily rusted, such as stainless steel, and the heater 13b is composed of a sheathed heater or the like embedded in the meat portion of the container 13a. However, the container 13a and the heater 13b are not necessarily limited to these configurations, and the container 13a preferably has a small heat capacity in order to shorten the temperature raising time, and more desirably the weight of the container 13a is about 100 g to 200 g. Good. In addition, the heater 13b preferably has a power consumption of about 500 W to 1000 W at a voltage of 100 V in order to shorten the heating time.

このように、質量や消費電力を上記の数値にすることにより、蒸気発生手段13の所定温度までの昇温時間を30秒〜1分程度、もしくはそれ以下にすることができる。   In this way, by setting the mass and power consumption to the above-described numerical values, the temperature raising time until the steam generating means 13 reaches a predetermined temperature can be reduced to about 30 seconds to 1 minute or less.

もちろん、容器13aとヒータ13bは、この仕様や数値に限定する必要はないし、容器13aやヒータ13bはそれぞれ複数個に分割されていてもよい。また、蒸気発生手段13の外壁を断熱材で覆い、周囲への放熱を抑制すると、昇温時間が短縮でき、加熱効率の向上/省エネに繋がる。   Of course, the container 13a and the heater 13b do not need to be limited to these specifications and numerical values, and the container 13a and the heater 13b may be divided into a plurality of parts. Moreover, if the outer wall of the steam generation means 13 is covered with a heat insulating material to suppress heat dissipation to the surroundings, the temperature rise time can be shortened, leading to improvement in heating efficiency / energy saving.

容器13aへの水の供給は、本体1内に設けられた水タンク14から水ポンプ15と水配管34を介して行われる。ここで、水としては、衛生面を考えると、塩素成分を若干含む水道水等が望ましい。また、水タンク14や水ポンプ15,水配管34は、図1及び図2に示す位置に限る必要はない。特に、水タンク14は、本体1の前方から容易に取り出しやすい位置がよく、本体1の前方から見えるように、該本体1の底面か上面、又は側面がよい。   Water is supplied to the container 13 a from a water tank 14 provided in the main body 1 through a water pump 15 and a water pipe 34. Here, as water, in view of hygiene, tap water containing some chlorine components is desirable. Further, the water tank 14, the water pump 15, and the water pipe 34 need not be limited to the positions shown in FIGS. In particular, the water tank 14 is preferably located at a position where it can be easily taken out from the front of the main body 1, and the bottom, top, or side of the main body 1 is good so that it can be seen from the front of the main body 1.

蒸気の吹出口18は、蒸気発生手段13に接続されており、その先端は、送風手段10から流出する空気流に向けて吹き付けるように開口している。蒸気発生手段13は、水タンク14から供給された水が水蒸気になるときに膨張する圧力が吹出口18以外からほぼ抜けない構造を有しているので、蒸気発生手段13から吹出口18を通じて放出される水蒸気の圧力は水の水蒸気になる膨張力に応じて大きなものである。   The steam outlet 18 is connected to the steam generating means 13, and the tip thereof is opened to blow toward the air flow flowing out from the blower means 10. Since the steam generating means 13 has a structure in which the pressure that expands when the water supplied from the water tank 14 becomes water vapor does not substantially escape from other than the outlet 18, it is discharged from the steam generating means 13 through the outlet 18. The pressure of the generated water vapor is large according to the expansion force that becomes the water vapor.

吹出口18から噴出する蒸気流の放出される方向は、最も望ましくは、送風手段10から流出した直後の空気流に向けられるのがよい。この蒸気の該空気流に衝突させるように開口するために、吹出口18の位置は、送風手段10の空気流が熱風ユニット5内の他の気流に影響されない送風手段10の近傍に位置するのがよい。   The direction in which the steam flow ejected from the blower outlet 18 is released is most preferably directed to the air flow immediately after flowing out of the blowing means 10. In order to open so as to collide with the air flow of this steam, the position of the air outlet 18 is located in the vicinity of the air blowing means 10 where the air flow of the air blowing means 10 is not influenced by other air currents in the hot air unit 5. Is good.

また、送風手段10の空気流に対して同じ方向に蒸気流が向くのよりはより強い衝撃が蒸気流に加わるような角度で互いの気流が衝突する角度が好ましく、熱風ユニット5内の気流の循環を阻止しないためにも、互いの気流が対向するような方向は望ましくない。双方のバランスを考えると本実施例のように、送風手段10からの空気流に対して側方に吹出口18が設けられ、該空気流に対して側方から蒸気流が衝突するのが好ましい。   In addition, the angle at which the airflows collide with each other at an angle such that a stronger impact is applied to the steam flow than the steam flow in the same direction with respect to the airflow of the blowing means 10 is preferable. In order not to prevent the circulation, the direction in which the airflows face each other is not desirable. Considering the balance between the two, it is preferable that a blower outlet 18 is provided on the side with respect to the air flow from the blower 10 as in this embodiment, and the vapor flow collides with the air flow from the side. .

また、吹出口18の口径の大きさと数は水蒸気の噴出速度を制御するパラメータとなる。これは蒸気発生手段13で生じた蒸気の圧力が吹出口18からの蒸気の吹出しで減ぜられるものであるためで、本発明では、口径は1〜3mmで、個数は2〜4個(図3では3個)が望ましい。このように設けることで、適切な噴出速度で送風手段10からの空気流に対して蒸気流が衝突することが可能となり、蒸気発生手段13で生じた水蒸気を構成する水蒸気の各粒子の大きさを相対的に小さくすることが可能となる。   Further, the size and number of the diameters of the air outlets 18 are parameters for controlling the water vapor ejection speed. This is because the pressure of the steam generated in the steam generating means 13 is reduced by the steam blown out from the blower outlet 18. In the present invention, the diameter is 1 to 3 mm and the number is 2 to 4 (see FIG. 3 is 3). By providing in this way, it becomes possible for the steam flow to collide with the air flow from the blowing means 10 at an appropriate ejection speed, and the size of each particle of the steam constituting the steam generated by the steam generating means 13. Can be made relatively small.

以上のように構成された熱風ユニット5を有するターンテーブルレス方式の電気式オーブンレンジで、熱風を使ったオーブン調理を行うと、本発明では以下のことが実行される。
(1)熱風ユニット5が運転されると送風手段10がONとなり、加熱室2から吸込孔
2aを通して熱風ユニット5内に吸い込まれた流入風16は、送風手段10の回転によって高速の流出風17となって該送風手段10から勢い良く流出する。
(2)蒸気発生手段13では、ヒータ13bがONとなり、容器13aの昇温が開始される。
(3)容器13aが所定温度に近づくと、水配管34を通して水タンク14から水ポンプ15によって所定水量の水が蒸気発生手段13に供給される。所定温度の一例としては、水が沸騰・蒸発する飽和温度以上であり、150℃〜250℃程度が望ましいが、150℃以下であっても250℃以上であっても差し支えない。
When oven cooking using hot air is performed in the turntableless electric microwave oven having the hot air unit 5 configured as described above, the following is executed in the present invention.
(1) When the hot air unit 5 is operated, the air blowing means 10 is turned on, and the inflow air 16 sucked into the hot air unit 5 from the heating chamber 2 through the suction hole 2 a is rotated at a high speed by the rotation of the air blowing means 10. And flows out of the blowing means 10 vigorously.
(2) In the steam generating means 13, the heater 13b is turned on and the temperature of the container 13a is started to rise.
(3) When the container 13a approaches a predetermined temperature, a predetermined amount of water is supplied from the water tank 14 to the steam generating means 13 through the water pipe 34 by the water pump 15. An example of the predetermined temperature is equal to or higher than a saturation temperature at which water boils and evaporates, and is preferably about 150 ° C. to 250 ° C., but may be 150 ° C. or lower or 250 ° C. or higher.

また、所定水量は、被調理物4である食品やその調理メニューによって異なるが、5cc/分〜20cc/分程度が望ましい。
(4)蒸気発生手段13に水が供給されると、該供給水が高温に保たれた容器13aの内壁等に接触して瞬時に沸騰,蒸発し、飽和水蒸気が生成される。飽和水蒸気は、大気圧下では飽和温度が100℃である。なお、本実施例では、工程(2)から(4)では、先に蒸気発生手段13を容器13aを昇温させて所定温度に達した後、該蒸気発生手段13に少量の水を連続的または間欠的に供給し、瞬時に沸騰・蒸発させる方法をとっているが、別の方法として、先に蒸気発生手段13に所定量の水を貯水し、その後、貯水された蒸気発生手段13を昇温させて徐々に水を蒸発させる方式であっても差し支えない。
(5)蒸発した飽和水蒸気19は、水の体積に対して1600倍程度に膨張するので、該水蒸気19は蒸気発生手段13の蒸気噴出口である吹出口18から勢いよく噴出する。吹出口18の大きさと数は、上記でも述べたように水蒸気19の噴出速度を制御するパラメータとなるもので、本発明では、上記したように吹出口18の口径は1〜3mmで、個数は2〜4個が望ましい。
(6)蒸気発生手段13から噴き出した水蒸気19は、前記(1)で生成された送風手段10から出た直後の高速の流出風17と勢いよく衝突して衝撃力を与え、該水蒸気19に含まれていた大きい径の水蒸気はさらに細かく破砕される。なお、前記蒸気発生手段13から噴出した水蒸気19は、送風手段10から出た直後の高速の流出風17ではなく、空気流の流出端側、例えば、図1において、蒸気発生手段13と送風手段10の高さ方向の位置関係を接近させて、吹出口18から噴出する水蒸気19を送風手段10の羽根部の先端部側に吹き当ててもよい。また、蒸気発生手段13と送風手段10の位置関係は図1のままで、吹出口18にチューブを接続し、該チューブによって水蒸気19を前記のように送風手段10に導いてもよい。
The predetermined amount of water varies depending on the food to be cooked 4 and its cooking menu, but is preferably about 5 cc / min to 20 cc / min.
(4) When water is supplied to the steam generating means 13, the supplied water comes into contact with the inner wall of the container 13 a kept at a high temperature and instantaneously boils and evaporates to generate saturated water vapor. Saturated water vapor has a saturation temperature of 100 ° C. under atmospheric pressure. In the present embodiment, in steps (2) to (4), the steam generating means 13 is first heated up in the container 13a to reach a predetermined temperature, and then a small amount of water is continuously added to the steam generating means 13. Alternatively, the method of intermittently supplying and instantaneously boiling and evaporating is taken, but as another method, a predetermined amount of water is first stored in the steam generating means 13, and then the stored steam generating means 13 is used. There is no problem even if the temperature is raised and water is gradually evaporated.
(5) Since the evaporated saturated water vapor 19 expands to about 1600 times the volume of water, the water vapor 19 is ejected vigorously from the air outlet 18 which is the steam outlet of the steam generating means 13. The size and number of the outlets 18 are parameters for controlling the ejection speed of the water vapor 19 as described above. In the present invention, as described above, the diameter of the outlets 18 is 1 to 3 mm, and the number is Two to four are desirable.
(6) The water vapor 19 ejected from the steam generating means 13 vigorously collides with the high-speed outflow wind 17 immediately after exiting from the air blowing means 10 generated in the above (1) and gives an impact force. The contained large-diameter water vapor is further finely crushed. Note that the water vapor 19 ejected from the steam generating means 13 is not the high-speed outflow air 17 immediately after exiting from the air blowing means 10, but the air flow outlet end side, for example, in FIG. The water vapor 19 ejected from the blowout port 18 may be blown against the tip end side of the blade portion of the blowing means 10 by making the positional relationship in the height direction of 10 approach. Further, the positional relationship between the steam generating means 13 and the air blowing means 10 may remain the same as in FIG. 1, and a tube may be connected to the air outlet 18 and the water vapor 19 may be guided to the air blowing means 10 by the tube as described above.

よって、本発明では、ラジアルファン(遠心ファン)などで構成される送風手段10が水蒸気を細かく破砕する破砕手段であり、蒸気発生手段13から供給された水蒸気19が送風手段10の羽根部の先端部周辺、もしくは送風手段10から流出した直後の高速流出風17(空気流)と激しく衝突することによって、水蒸気19に衝撃を与えて細かく破砕することが特徴である。ここで、送風手段10の種類はラジアルファンでなくてもよく、クロスフローファンやシロッコファン,ターボファン等の送風機であっても差し支えない。
(7)前記(6)によって生成された径の異なる水蒸気は、その後、熱風ユニット5内の加熱手段12によって加熱され、微細水蒸気20等をたくさん含んだ高温熱風となって、吹出孔2bから加熱室2及び被調理物4に供給される。
Therefore, in this invention, the ventilation means 10 comprised with a radial fan (centrifugal fan) etc. is a crushing means which crushes water vapor | steam finely, and the water vapor | steam 19 supplied from the steam generation means 13 is the front-end | tip of the blade | wing part of the ventilation means 10. It is characterized in that the water vapor 19 is impacted and shattered finely by vigorously colliding with the high-speed outflow air 17 (air flow) immediately after flowing out from the air blowing means 10. Here, the type of the air blowing means 10 may not be a radial fan, and may be a blower such as a cross flow fan, a sirocco fan, or a turbo fan.
(7) The water vapor having different diameters generated by (6) is then heated by the heating means 12 in the hot air unit 5 and becomes high-temperature hot air containing a lot of fine water vapor 20 and the like, and is heated from the blowout hole 2b. It is supplied to the chamber 2 and the food 4 to be cooked.

加熱手段12によって過熱された微細水蒸気20等をたくさん含んだ高温熱風の温度は、100℃から350℃程度にすることもできるが、本実施例においてオーブン調理を考えた場合、望ましくは200℃から300℃程度がよく、より好ましくは230℃から
270℃程度(250±20℃)がよい。
The temperature of the high temperature hot air containing a lot of fine water vapor 20 and the like superheated by the heating means 12 can be about 100 ° C. to 350 ° C., but when considering oven cooking in this embodiment, it is preferably from 200 ° C. The temperature is preferably about 300 ° C., more preferably about 230 ° C. to 270 ° C. (250 ± 20 ° C.).

また、本発明の加熱,破砕された微細水蒸気20は、少なくともナノメートルオーダ
〔水分子の大きさである約0.3ナノメートル(nm) から1000nm未満〕の超微細な水蒸気と、マイクロメートルオーダ〔約1マイクロメートル(μm)〕以上の微細な水蒸気の両方を含んでいることが特徴である。もちろん、蒸気発生手段13の中で蒸発し切れなかった数十から数百マイクロメートルオーダの微細水滴が水蒸気19に含まれて噴出する場合や、蒸気発生手段13から噴出した水蒸気19がその直後に急冷されて微細水滴になる場合もあるが、いずれの微細水滴も、本発明の破砕手段である送風手段10と加熱手段12によって、さらに細かく破砕することができる。
(8)前記(1)〜(7)によって生成された微細水蒸気20(ナノメートルオーダの超微細な水蒸気とマイクロメートルオーダ以上の微細な水蒸気を含んでいる)は、加熱室2内の被調理物4に吹き付けられて作用し、図4に示すような次の効果が得られる。
Further, the heated and crushed fine water vapor 20 of the present invention includes at least a nanometer order (a water molecule size of about 0.3 nanometer (nm) to less than 1000 nm) and a micrometer order water vapor. It is characterized by containing both fine water vapor of [about 1 micrometer (μm)] or more. Of course, in the case where fine water droplets on the order of several tens to several hundreds of micrometers which are not completely evaporated in the steam generating means 13 are contained in the steam 19 and ejected, or the steam 19 ejected from the steam generating means 13 is immediately after that. In some cases, the water droplets are rapidly cooled to become fine water droplets, but any of the fine water droplets can be further finely crushed by the blowing means 10 and the heating means 12 which are the crushing means of the present invention.
(8) The fine water vapor 20 (containing nanometer-order ultrafine water vapor and micrometer-order or more fine water vapor) generated by the above (1) to (7) is to be cooked in the heating chamber 2. The following effects are obtained as shown in FIG.

つまり、一つは、微細水蒸気20に含まれる最も径の小さいナノメートルオーダの超微細水蒸気20aは、被調理物4の表面内層、さらには内部にまで浸透して行き、該被調理物4に水分を補給することによって加湿や保湿を行う。これは、ナノメートルオーダの超微細水蒸気の大きさが、被調理物4の表層等の生地の細かさより小さいため、被調理物4の表層から内部に容易に浸透していけるためである。   That is, for one thing, the ultrafine water vapor 20a of the smallest nanometer order contained in the fine water vapor 20 penetrates into the inner layer of the surface of the object to be cooked 4 and further into the inside of the food to be cooked 4. Humidification and moisturization are performed by supplying water. This is because the size of the ultrafine water vapor on the order of nanometers is smaller than the fineness of the dough such as the surface layer of the object 4 to be cooked, so that it can easily penetrate from the surface layer of the object 4 to the inside.

一方、もう一つは、微細水蒸気20に含まれるマイクロメートルオーダ以上のやや径の大きい微細水蒸気20bが被調理物4の表面に接触,付着し、温度が低い被調理物4の表面で凝縮することで大きな加熱エネルギを発生し、効率良い加熱を行う。つまり、微細水蒸気20bが凝縮水滴21になることによって発生する凝縮潜熱によって、被調理物4を効率良く加熱調理していく。当然、前記した本発明の微細水蒸気20の二つの効果は主たる効果であり、それ以外の効果を生み出してもよいし、2種類の水蒸気がお互いに補完しあってもよい。   On the other hand, the fine water vapor 20b having a slightly larger diameter than micrometer order contained in the fine water vapor 20 contacts and adheres to the surface of the object 4 to be cooked, and condenses on the surface of the object 4 to be cooked at a low temperature. Therefore, large heating energy is generated and efficient heating is performed. That is, the to-be-cooked object 4 is efficiently cooked by the latent heat of condensation generated when the fine water vapor 20 b becomes the condensed water droplets 21. Of course, the two effects of the fine water vapor 20 of the present invention described above are the main effects, and other effects may be produced, or two kinds of water vapor may complement each other.

なお、前記工程(1)〜(4)は、各工程の順番がそれぞれ入れ替わってもよい。   In the steps (1) to (4), the order of each step may be changed.

また、本実施例におけるオーブン調理に先立ち、被調理物4を電磁波により加熱(レンジ加熱)した後に、本実施例の過熱された水蒸気20を被調理物4に供給することで、被調理物4の表層から内部に浸透した水蒸気による加熱の効率が高まる。   Moreover, prior to the oven cooking in the present embodiment, the cooking object 4 is heated (range heating) by electromagnetic waves, and then the superheated water vapor 20 of the present embodiment is supplied to the cooking object 4 so that the cooking object 4 is heated. The efficiency of heating with water vapor penetrating from the surface layer to the inside increases.

図5は本発明の他の実施例で、図1と同様にターンテーブルレス方式の電気式オーブンレンジであるが、加熱室2の底面に置かれたテーブル3が加熱室2とは分離されており、加熱室2から着脱自在であり、テーブル3の下に被調理物4の重さを測る質量検出手段
22を設置していることが大きな相違点である。
FIG. 5 shows another embodiment of the present invention, which is a turntableless type electric microwave oven as in FIG. 1. However, the table 3 placed on the bottom surface of the heating chamber 2 is separated from the heating chamber 2. The main difference is that mass detecting means 22 for measuring the weight of the object to be cooked 4 is installed under the table 3.

本構成によれば、質量検出手段22によってテーブル3上の被調理物4の重さを検出し、該検出値に基づいて制御手段(図示せず)によって蒸気発生手段13から供給される水蒸気量19を制御し、被調理物4の調理内容に応じた適量の微細水蒸気20を加熱室2内に供給できることが特徴である。   According to this configuration, the mass detection means 22 detects the weight of the object 4 to be cooked on the table 3, and the amount of water vapor supplied from the steam generation means 13 by the control means (not shown) based on the detected value. 19 is characterized in that an appropriate amount of fine water vapor 20 can be supplied into the heating chamber 2 according to the cooking content of the cooking object 4.

図6は、図5に示した質量検出手段22の一例で、測定原理が静電容量式の検出手段である。該静電容量式の質量検出手段22は、薄板の金属材で作られた可動電極28と固定電極29から構成され、加熱室底面2cに取り付けられている。   FIG. 6 is an example of the mass detection means 22 shown in FIG. 5, and is a detection means whose measurement principle is a capacitance type. The capacitance type mass detection means 22 is composed of a movable electrode 28 and a fixed electrode 29 made of a thin metal material, and is attached to the heating chamber bottom surface 2c.

ここで、固定電極29と可動電極28は略平行に対向して所定の隙間、すなわち検出空間30を保持し、該固定電極29と可動電極28との間にコンデンサを形成し、テーブル3に載置された被調理物4の重さに応じて移動する可動電極28と、静置している固定電極29との検出空間30の変化を静電容量の変化に変換し、静電容量変化の検出から被調理物4の重さを算出するようになっている。なお、本発明での質量検出手段22は、静電容量式に限る必要はなく、歪式や光学式センサ等であっても差し支えない。   Here, the fixed electrode 29 and the movable electrode 28 face each other substantially in parallel to hold a predetermined gap, that is, the detection space 30, and a capacitor is formed between the fixed electrode 29 and the movable electrode 28 and mounted on the table 3. The change in the detection space 30 between the movable electrode 28 that moves in accordance with the weight of the placed cooking object 4 and the stationary electrode 29 that is stationary is converted into a change in capacitance, and the change in capacitance changes. The weight of the object to be cooked 4 is calculated from the detection. The mass detecting means 22 in the present invention is not limited to the capacitance type, and may be a strain type or an optical sensor.

また、本実施例では、被調理物4をテーブル3に直に載置せず、テーブル3上の調理網3aに載置する調理構成としており、熱風ユニット5から吹き出される微細水蒸気20が被調理物4全面に当たることにより、効率よく被調理物4を加熱することができる。   In this embodiment, the cooking object 4 is not placed directly on the table 3 but is placed on the cooking net 3a on the table 3 so that the fine steam 20 blown out from the hot air unit 5 is covered. By hitting the entire surface of the food 4, the food 4 can be efficiently heated.

さらに、熱風供給手段を構成する熱風ユニット5のダクト5aに配置される加熱手段
12を、例えばハロゲンヒータ等の高発光熱源12aとしており、熱風ユニット5下側の吹出孔2bから吹き出る微細水蒸気20を熱源光12bによる放射熱で加熱する構成となっている。
Furthermore, the heating means 12 arranged in the duct 5a of the hot air unit 5 constituting the hot air supply means is a high light emission heat source 12a such as a halogen heater, for example, and the fine water vapor 20 blown out from the blow hole 2b on the lower side of the hot air unit 5 is used. It is configured to heat with radiant heat from the heat source light 12b.

図7は図5の電気式オーブンレンジ本体1の熱風ユニット5を拡大した側面断面図である。本実施例では、加熱手段12として可視光(波長が約380〜800ナノメートル)も放つ高発光熱源12aを用いており、この高発光熱源12aにより、ダクト5a内で熱源光12bが反射して高発光熱源12aの配置されたダクト5aの下方側から蒸気発生手段13の配置されたダクト5a上方まで光が届き、ダクト5a内を熱源光12bで照らすことができる。   FIG. 7 is an enlarged side cross-sectional view of the hot air unit 5 of the electric microwave oven main body 1 of FIG. In the present embodiment, a high emission heat source 12a that emits visible light (wavelength of about 380 to 800 nanometers) is used as the heating means 12, and the high emission heat source 12a reflects the heat source light 12b in the duct 5a. Light can reach from the lower side of the duct 5a where the high light emission heat source 12a is arranged to the upper side of the duct 5a where the steam generating means 13 is arranged, and the inside of the duct 5a can be illuminated with the heat source light 12b.

ここで、上記高発光熱源12aとしては、例えばハロゲンヒータや石英管ヒータがある。   Here, examples of the high light emission heat source 12a include a halogen heater and a quartz tube heater.

従来の加熱調理器に広く利用されている熱源として、金属管に絶縁物を介して抵抗線を封入したシーズヒータがあるが、それに比べてハロゲンヒータは、フィラメントの周りに不活性ガスを封入したもので、光出力や放射効率が大きい特徴がある。   As a heat source widely used in conventional heating cookers, there is a sheathed heater in which a resistance wire is enclosed in a metal tube via an insulator. In contrast, a halogen heater encloses an inert gas around a filament. It has a feature that the light output and radiation efficiency are large.

また、ハロゲンヒータは、絶縁物を介在しないため昇温特性が速く、通電とともに大きな発光を伴ってヒータによる発熱が生じ、ヒータの外周に大きな発光量と放射熱量を供給することができ、さらに高い熱感度であるため加熱の制御性も良好である。   In addition, since the halogen heater does not intervene an insulator, the temperature rise characteristic is fast, the heater generates heat when energized, and a large amount of light and radiant heat can be supplied to the outer periphery of the heater. Due to the thermal sensitivity, the controllability of heating is also good.

一方、石英管の内部に抵抗発熱線を設けた石英管ヒータは、上記したハロゲンヒータと同様にシーズヒータに比べて大きな発光量と放射熱量を発することができ、また、構造が簡単であるため、安価な高発光熱源12aを構成できる。   On the other hand, a quartz tube heater having a resistance heating wire inside the quartz tube can emit a larger amount of light emission and radiant heat than a sheathed heater, as with the halogen heater described above, and has a simple structure. An inexpensive high emission heat source 12a can be configured.

但し、上記両ヒータにおいて、発光量や放射熱量を比べるとハロゲンヒータが最も良好であり、本発明の高発光熱源12aとして適している。   However, the halogen heater is the best in both the above heaters when compared with the amount of emitted light and the amount of radiant heat, and is suitable as the high emission heat source 12a of the present invention.

従って、加熱手段12を高発光熱源12aで構成した本発明では、熱風ユニット5のダクト5a内を通過する水蒸気と混合した高温空気は、直に高発光熱源12aで加熱されるとともに、熱源光12bによる熱放射で水蒸気を加熱することができ、被調理物4の加熱に有効な高温の水蒸気を加熱室2に供給することができる。   Therefore, in the present invention in which the heating means 12 is constituted by the high light emission heat source 12a, the high temperature air mixed with the water vapor passing through the duct 5a of the hot air unit 5 is directly heated by the high light emission heat source 12a and the heat source light 12b. The water vapor can be heated by the heat radiation by the high temperature, and high temperature water vapor effective for heating the cooking object 4 can be supplied to the heating chamber 2.

また、この高発光熱源12aから出る熱源光12bは、高温水蒸気を吹き出す加熱室2の吹出孔2b(パンチングメタル穴)を通して加熱室2の被調理物4を明るく照らすとともに、高温水蒸気の微細化を加熱室2で長く維持させることができる。   Further, the heat source light 12b emitted from the high light emission heat source 12a brightly illuminates the food 4 to be cooked in the heating chamber 2 through the blowout hole 2b (punching metal hole) of the heating chamber 2 that blows out the high temperature steam, and refines the high temperature steam. The heating chamber 2 can be maintained for a long time.

尚、本実施例の構成は、図1の電気式オーブンレンジに適用すれば、同様の加熱作用を提供できる。   In addition, if the structure of a present Example is applied to the electric type microwave oven of FIG. 1, the same heating effect | action can be provided.

図8は本発明の他の実施例であり、図7の電気式オーブンレンジの熱風ユニット5における蒸気発生手段13と高発光熱源12aなどで構成される加熱手段12の位置を入れ換えたものである。具体的には熱風ユニット5のダクト5aにおいて、送風手段10を挟んで上方に加熱手段12を配置し、下方に蒸気発生手段13を配置した構成となっている。   FIG. 8 shows another embodiment of the present invention, in which the position of the heating means 12 composed of the steam generating means 13 and the high light emission heat source 12a in the hot air unit 5 of the electric microwave oven of FIG. 7 is exchanged. . Specifically, in the duct 5 a of the hot air unit 5, the heating unit 12 is disposed above the air blowing unit 10, and the steam generation unit 13 is disposed below.

本実施例では、例えば高発光熱源12aにより熱源光12bが加熱室2上方の吹出孔
2bから被調理物4及びテーブル3など加熱室2全体に照射される。このため、加熱室2内の被調理物4を放射熱で加熱するとともに、熱風ユニット5を介して循環して供給される高温水蒸気を加熱することができる。
In this embodiment, for example, the heat source light 12b is irradiated from the blowing hole 2b above the heating chamber 2 to the entire heating chamber 2 such as the cooking object 4 and the table 3 by the high light emission heat source 12a. For this reason, while heating the to-be-cooked object 4 in the heating chamber 2 with a radiant heat, the high temperature water vapor circulated and supplied via the hot air unit 5 can be heated.

よって、加熱室2では微細化されて吹き出された高温水蒸気を微細化された状態で長時間維持し、安定した微細水蒸気を被調理物4に供給して効率よく調理することができる。   Therefore, in the heating chamber 2, the high-temperature steam blown out after being refined can be maintained for a long time in a refined state, and stable fine steam can be supplied to the food 4 to be cooked efficiently.

図9は本発明の他の実施例であり、図5と同様の構成における加熱制御に関して示したものである。   FIG. 9 shows another embodiment of the present invention and shows the heating control in the same configuration as FIG.

また、図10は、図5の質量検出手段22を有する電気式オーブンレンジの加熱室底面2cを上から見た平面略図である。本実施例では、テーブル3の下部には質量検出手段
22が3個設置されており、加熱室底面2cの後方中央部の質量検出手段22aと、加熱室底面2cの前方左側部の質量検出手段22bと、加熱室底面2cの前方右側部の質量検出手段22cによりテーブル3が安定に3点支持されている。なお、質量検出手段22によるテーブル3の支持は3点に限る必要はなく、4点であってもよく、さらには、それ以外の個数による支持であっても何ら差し支えない。
FIG. 10 is a schematic plan view of the heating chamber bottom 2c of the electric microwave oven having the mass detection means 22 of FIG. 5 as viewed from above. In the present embodiment, three mass detection means 22 are installed in the lower part of the table 3, and the mass detection means 22a at the rear center of the heating chamber bottom surface 2c and the mass detection means at the front left side of the heating chamber bottom surface 2c. The table 3 is stably supported at three points by 22b and the mass detection means 22c on the front right side of the heating chamber bottom surface 2c. The support of the table 3 by the mass detection means 22 is not necessarily limited to three points, and may be four points, and may be support by other numbers.

図9と図10において、質量検出手段22から制御手段27に出ている信号線がそれぞれ質量検出信号23,制御手段27から回転アンテナ9に出ている信号線がアンテナ制御信号24,制御手段27から熱風ユニット5側近の蒸気発生手段13に出ている信号線が蒸気量制御信号25,制御手段27からマグネトロン6に出ている信号線がマイクロ波制御信号26,制御手段27から加熱手段12に出ている信号線が加熱量制御信号40である。なお、ここに示した検出信号,制御信号以外の信号線や動力線は省略している。   9 and 10, the signal lines extending from the mass detection means 22 to the control means 27 are the mass detection signal 23, and the signal lines extending from the control means 27 to the rotating antenna 9 are the antenna control signal 24 and the control means 27, respectively. The signal line extending from the steam generating unit 13 near the hot air unit 5 to the steam amount control signal 25, the signal line extending from the control unit 27 to the magnetron 6 to the microwave control signal 26, and the control unit 27 to the heating unit 12 The outgoing signal line is the heating amount control signal 40. Note that signal lines and power lines other than the detection signals and control signals shown here are omitted.

次に、前記図8から図10に示す質量検出手段22と熱風ユニット5を有するターンテーブルレス式オーブンレンジにおいて、図11のフローチャートを用いて自動の調理方法を具体的に説明する。   Next, in the turntableless type microwave oven having the mass detecting means 22 and the hot air unit 5 shown in FIG. 8 to FIG. 10, an automatic cooking method will be specifically described using the flowchart of FIG.

<ステップ1>
まず、ドア36を開けて被調理物4をテーブル3上に載置し、該ドア36を閉める。そして、食品の種類や調理メニュー内容を操作パネル上のダイヤルやボタン等(図省略)により手入力する。なお、被調理物等を自動認識できる調理機器においては、該ステップ1は省略されてもよい。
<Step 1>
First, the door 36 is opened, the food item 4 is placed on the table 3, and the door 36 is closed. Then, the type of food and the contents of the cooking menu are manually input using a dial or button (not shown) on the operation panel. Note that step 1 may be omitted in a cooking appliance that can automatically recognize an object to be cooked or the like.

<ステップ2>
調理メニュー内容等を確認後、同様にダイヤルやボタン等により調理開始(スタート)を手入力する。なお、これらの手入力は本体1の操作パネル上ではなく、リモコンで行える加熱調理器においては、遠隔リモコン操作で行ってもよい。
<Step 2>
After confirming the contents of the cooking menu, etc., manually enter the start (start) of cooking using the dial or buttons. In addition, you may perform these manual input by remote control operation in the cooking-by-heating machine which can be performed with a remote control instead of on the operation panel of the main body 1. FIG.

<ステップ3>
ステップ2の操作が終わると、オーブンレンジの制御手段27が指令を出して質量検出手段22により被調理物(食品)4の質量検出を自動的に行う。つまり、本実施例のオーブンレンジでは、被調理物4の重さは自動検出されるので、ユーザが手入力で被調理物4の重さ情報(重さ何グラムや、何人前,何人分等)を入力する必要がないので、ユーザが事前に被調理物4の重さを測ることや、重さ情報を手入力するなどの手を煩わすことがない。
<Step 3>
When the operation of step 2 is completed, the control means 27 of the microwave oven issues a command, and the mass detection means 22 automatically detects the mass of the food item (food) 4. That is, in the microwave oven according to the present embodiment, the weight of the object 4 to be cooked is automatically detected. Therefore, the user manually inputs the weight information of the object 4 to be cooked (how many grams, how many servings, how many, etc.) ) Does not need to be input, so that the user does not have to worry about measuring the weight of the object to be cooked 4 in advance or manually inputting the weight information.

本実施例では、以下のようにして被調理物4の質量検出を自動的に行う。
(1)テーブル3の下部に設けた3個の質量検出手段22a,22b,22cによって、それぞれの支持点での重さWa,Wb,Wcを検出する。
(2)3個の質量検出手段22a,22b,22cの総和(W=Wa+Wb+Wc)によってテーブル3上の被調理物4の重さを算出する。
In the present embodiment, the mass detection of the object 4 is automatically performed as follows.
(1) The weights Wa, Wb, Wc at the respective support points are detected by the three mass detection means 22a, 22b, 22c provided at the lower part of the table 3.
(2) The weight of the object to be cooked 4 on the table 3 is calculated from the sum (W = Wa + Wb + Wc) of the three mass detectors 22a, 22b, 22c.

<ステップ4>
ステップ1で食品の種類や調理メニュー内容がわかり、ステップ3で食品(被調理物)4の重さがわかったので、これらの情報をもとに加熱時間を決定する。本加熱時間の設定も、制御手段27等によって自動的に算出し、決定される。
<Step 4>
In step 1, the type of food and cooking menu contents are found. In step 3, the weight of the food (cooking object) 4 is found. Therefore, the heating time is determined based on these pieces of information. The setting of the main heating time is also automatically calculated and determined by the control means 27 and the like.

<ステップ5>
蒸気を使った調理をしない場合は、本ステップ5は不要となるが、本実施例のように蒸気を使った加熱調理では、前記被調理物4の種類や調理メニュー,被調理物4の重さ,加熱時間をもとに蒸気発生量を自動的に算出し、決定する。蒸気発生量の制御は、例えば制御手段27によって蒸気発生手段13に供給される供給水量を制御することにより行うことができる。なお、熱風や蒸気の温度制御は、加熱手段12により行われる。
<Step 5>
If cooking is not performed using steam, step 5 is not necessary. However, in cooking using steam as in this embodiment, the type of cooking object 4, the cooking menu, and the weight of cooking object 4 The steam generation amount is automatically calculated and determined based on the heating time. The steam generation amount can be controlled, for example, by controlling the amount of water supplied to the steam generation unit 13 by the control unit 27. The temperature control of the hot air or steam is performed by the heating means 12.

<ステップ6>
前記諸々量の算出と決定は自動的にほぼ瞬時に行われ、その後、蒸気を使った加熱調理が自動的にスタートする。調理中の蒸気発生量は、被調理物4の種類,調理メニュー,質量等の情報に応じて制御手段27で適正に制御される。蒸気発生手段13から蒸気を連続的に発生させる調理もあれば、間欠的に発生させる調理もあるし、蒸気発生量が5cc/分程度でよい調理もあるし、20cc/分程度必要な調理もある。また、熱風温度も、オーブン調理に適した温度、例えば、200℃から300℃程度に制御される。なお、ここで、高温熱風が必要なオーブン調理でない場合(例えばレンジ調理)は、熱風ユニット5を構成する加熱手段12はOFFで、送風手段10のみをONすればよく、その場合でも、送風手段10が破砕手段の役目を果たし、水蒸気の細分化,微細化が行われる。
<Step 6>
The calculation and determination of the various amounts are automatically performed almost instantaneously, and then cooking using steam is automatically started. The amount of steam generated during cooking is appropriately controlled by the control means 27 in accordance with information such as the type of cooking object 4, cooking menu, and mass. There are cooking that continuously generates steam from the steam generating means 13, cooking that generates steam intermittently, cooking that requires a steam generation amount of about 5 cc / min, and cooking that requires about 20 cc / min. is there. The hot air temperature is also controlled at a temperature suitable for oven cooking, for example, about 200 ° C. to 300 ° C. In addition, when it is not oven cooking which requires high temperature hot air here (for example, range cooking), the heating means 12 which comprises the hot air unit 5 should just be turned off, and only the ventilation means 10 should just be turned on, Even in that case, ventilation means 10 serves as a crushing means, and water vapor is subdivided and refined.

これら、被調理物4の種類,調理メニュー,質量等の情報と、蒸気発生量や熱風温度等の制御諸量との関係は、あらかじめオーブンレンジの制御手段27等に記憶されている情報と、それをもとにした計算から算出できる。   The relationship between the information such as the type, cooking menu, and mass of the object to be cooked 4 and the control quantities such as the amount of steam generated and the hot air temperature is preliminarily stored in the control means 27 of the microwave oven, It can be calculated from the calculation based on it.

<ステップ7>
ステップ6でスタートした蒸気を使った加熱調理は、所定時間(ステップ6で決定された加熱時間)をかけて行われる。
<Step 7>
The cooking using the steam started in step 6 is performed over a predetermined time (the heating time determined in step 6).

<ステップ8>
そして、所定時間(加熱時間)経過すると調理が終了し、ユーザに終了を知らせる。
<Step 8>
And when predetermined time (heating time) passes, cooking will be complete | finished and a user will be notified of completion | finish.

前記した調理方法に加え、本発明の構成では、さらに以下のことができるようになる。つまり、テーブル3の下部に設けた3個の質量検出手段22a,22b,22cによって、それぞれの支持点での重さWa,Wb,Wcを検出した後、該3個の質量検出手段22a,22b,22cの総和(W=Wa+Wb+Wc)によってテーブル3上の被調理物4の重さを算出すると共に、前記した3つの支持点での重さWa,Wb,Wcの検出値の割合(重さのかかり方)から被調理物4の載置されている位置を算出することができるので、その載置位置を目掛けて微細水蒸気20を集中して吹き付けることが可能であり、さらには回転アンテナ8の回転を制御して(停止も含む)マイクロ波を集中照射することも可能となる。   In addition to the cooking method described above, the configuration of the present invention can further perform the following. That is, after the weights Wa, Wb, Wc at the respective support points are detected by the three mass detection means 22a, 22b, 22c provided at the lower part of the table 3, the three mass detection means 22a, 22b are detected. , 22c (W = Wa + Wb + Wc) to calculate the weight of the object 4 to be cooked on the table 3, and the ratio of the detected values of the weights Wa, Wb, Wc at the three support points (weight Since the position where the object 4 is placed can be calculated from the method of application), it is possible to concentrate and spray the fine water vapor 20 toward the placement position. It is also possible to irradiate the microwaves in a concentrated manner by controlling the rotation (including stopping).

なお、前記のように載置位置に微細水蒸気20を集中して吹き付けるには、前記の実施例等において、微細水蒸気20の加熱室2への吹出孔2bの直前の熱風ユニット5内に検出された載置位置に基づいて流れを制御する流れ制御手段(図示せず)を設ける必要がある。該流れ制御手段は電動式のルーバ等でよい。   In order to concentrate and spray the fine water vapor 20 on the mounting position as described above, the fine water vapor 20 is detected in the hot air unit 5 immediately before the blowout hole 2b to the heating chamber 2 in the above-described embodiment. It is necessary to provide a flow control means (not shown) for controlling the flow based on the mounting position. The flow control means may be an electric louver or the like.

また、図11で説明した調理のフローは手入力で行ってもよい。つまり、ステップ3,4,5において、被調理物4の重さ,加熱時間,蒸気量を、ダイヤルやボタン等により手入力するものである。   Further, the cooking flow described in FIG. 11 may be performed manually. That is, in steps 3, 4, and 5, the weight, heating time, and steam amount of the cooking object 4 are manually input using a dial, a button, or the like.

図12は本発明のさらに他の実施例で、前記した実施例と異なり、加熱室2の中央に設けた回転テーブル32が回転するターンテーブル方式の電気式オーブンレンジであり、熱風ユニット5は前記実施例と同様に有している。   FIG. 12 shows still another embodiment of the present invention. Unlike the above-described embodiment, FIG. 12 shows a turntable type electric microwave oven in which a rotary table 32 provided in the center of the heating chamber 2 rotates. Similar to the embodiment.

熱風ユニット5と蒸気発生手段13は図8と同様で、マグネトロン6から出たマイクロ波は導波管7を介して加熱室2の側面から被調理物4に照射される構成である。   The hot air unit 5 and the steam generating means 13 are the same as those in FIG. 8, and the microwave emitted from the magnetron 6 is irradiated onto the object 4 to be cooked from the side surface of the heating chamber 2 through the waveguide 7.

回転テーブル32は、その下部にあるテーブルモータ33により回転し、その同軸端部に1個の質量検出手段22が設置されており、該質量検出手段22により回転テーブル
32上に載置された被調理物4の重さを検出することができ、その質量検出信号23は制御手段27に送られる。調理方法は前記図7等で説明した内容と同様である。
The rotary table 32 is rotated by a table motor 33 at a lower portion thereof, and one mass detection means 22 is installed at the coaxial end portion thereof. The mass detection means 22 is placed on the rotary table 32. The weight of the food 4 can be detected, and the mass detection signal 23 is sent to the control means 27. The cooking method is the same as that described in FIG.

本発明の電気式オーブンレンジの側面断面図である。It is side surface sectional drawing of the electric type microwave oven of this invention. 図1の電気式オーブンレンジを背面から見た斜視図である。It is the perspective view which looked at the electric type microwave oven of Drawing 1 from the back. 図1の熱風ユニットの斜視図である。It is a perspective view of the hot air unit of FIG. 本発明の被調理物への水蒸気作用の模式図である。It is a schematic diagram of the water vapor | steam effect | action to the to-be-cooked thing of this invention. 本発明の第二の電気式オーブンレンジの側面断面図である。It is side surface sectional drawing of the 2nd electric microwave oven of this invention. 本発明の静電容量式質量検出手段の側面断面図である。It is side surface sectional drawing of the electrostatic capacitance type mass detection means of this invention. 図5の熱風ユニットの側面断面図である。It is side surface sectional drawing of the hot air unit of FIG. 本発明の第三の電気式オーブンレンジの側面断面図である。It is side surface sectional drawing of the 3rd electric type microwave oven of this invention. 本発明の質量検出手段を有する電気式オーブンレンジの側面断面図である。It is side surface sectional drawing of the electric type microwave oven which has a mass detection means of this invention. 本発明の質量検出手段でテーブルを3点支持する構成図である。It is a block diagram which supports three points | pieces with the mass detection means of this invention. 本発明の調理方法のフローチャートである。It is a flowchart of the cooking method of this invention. 本発明のターンテーブル式オーブンレンジの側面断面図である。It is side surface sectional drawing of the turntable type microwave oven of this invention.

符号の説明Explanation of symbols

1…本体、2…加熱室、2a…吸込孔、2b…吹出孔、3…テーブル、5…熱風ユニット、5a…ダクト、10…送風手段、12…加熱手段、12a…高発光熱源、13…蒸気発生手段、18…吹出口、20…微細水蒸気、21…凝縮水滴、22…質量検出手段、
27…制御手段。
DESCRIPTION OF SYMBOLS 1 ... Main body, 2 ... Heating chamber, 2a ... Suction hole, 2b ... Outlet hole, 3 ... Table, 5 ... Hot-air unit, 5a ... Duct, 10 ... Air blower, 12 ... Heating means, 12a ... High luminous heat source, 13 ... Steam generating means, 18 ... outlet, 20 ... fine water vapor, 21 ... condensed water droplets, 22 ... mass detecting means,
27: Control means.

Claims (9)

被調理物を収容する加熱室と、該加熱室を加熱する加熱手段と、水蒸気を発生する蒸気発生手段と、水蒸気に衝撃を与えて細かく破砕する破砕手段を兼ね備えた送風手段と、加熱手段と送風手段を覆うダクトで構成される熱風ユニットとを備え、前記蒸気発生手段をダクトの外側に設け、該蒸気発生手段と前記加熱手段とを前記送風手段を挟んだ位置関係に配置し、蒸気発生手段からダクト内に供給された水蒸気を送風手段から流出する空気流に向かって吹き付け、その衝撃で水蒸気を細かく破砕し、該水蒸気を前記加熱手段によって過熱して高温の水蒸気とし、該過熱水蒸気を加熱室内に供給することを特徴とする加熱調理器。   A heating chamber for storing the cooking object, a heating means for heating the heating chamber, a steam generating means for generating water vapor, a blowing means for impacting the water vapor and crushing means for finely crushing, and a heating means A hot air unit comprising a duct covering the air blowing means, the steam generating means is provided outside the duct, and the steam generating means and the heating means are arranged in a positional relationship sandwiching the air blowing means to generate steam. The steam supplied from the means into the duct is blown toward the air flow flowing out from the air blowing means, and the water vapor is crushed finely by the impact, and the water vapor is superheated by the heating means to form high-temperature water vapor. A heating cooker that is supplied into a heating chamber. 前記加熱手段を送風手段の下方に設け、蒸気発生手段を送風手段の上方に設けたことを特徴とする請求項1記載の加熱調理器。   The cooking device according to claim 1, wherein the heating means is provided below the blowing means, and the steam generating means is provided above the blowing means. 前記加熱手段が前記ダクト内を可視光によって明るく照らす高発光熱源であって、該高発光熱源表面の対流熱伝達と熱放射の両方により前記蒸気発生手段から供給された水蒸気を過熱して高温の水蒸気とすることを特徴とする請求項1乃至請求項2のいずれかに記載の加熱調理器。   The heating means is a high light emission heat source that brightly illuminates the inside of the duct with visible light, and overheats the water vapor supplied from the vapor generation means by both convective heat transfer and heat radiation on the surface of the high light emission heat source, and The cooking device according to any one of claims 1 to 2, wherein the cooking device is steam. 空気流と混合した高温の過熱水蒸気は、少なくとも、約1000ナノメートル未満の超微細な水蒸気と、約1マイクロメートル以上の微細な水蒸気の両方を含んでおり、前者の超微細な水蒸気を主に被調理物内に浸透させることで該被調理物を保湿・加湿し、後者の微細な水蒸気を主に被調理物表面に付着・凝縮させることで該被調理物を加熱調理することを特徴とする請求項1乃至請求項3のいずれかに記載の加熱調理器。   The hot superheated steam mixed with the air flow contains at least both ultrafine water vapor of less than about 1000 nanometers and fine water vapor of about 1 micrometer or more, and the former superfine water vapor is mainly used. Moisturizing and humidifying the cooking object by permeating into the cooking object, and heating and cooking the cooking object by attaching and condensing the latter fine water vapor mainly on the surface of the cooking object The cooking device according to any one of claims 1 to 3. 被調理物の質量を検出する質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、質量検出手段の検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給することを特徴とする請求項1乃至請求項4のいずれかに記載の加熱調理器。   A mass detecting means for detecting the mass of the object to be cooked and a control means for adjusting the amount of steam supplied into the heating chamber, and the amount of steam supplied from the steam generating means by the control means based on the detection value of the mass detecting means The heating cooker according to any one of claims 1 to 4, wherein an appropriate amount of water vapor corresponding to the cooking content of the cooking object is supplied to the heating chamber. 加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、被調理物の質量を検出する質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、質量検出手段によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給することを特徴とする請求項1乃至請求項4のいずれかに記載の加熱調理器。   A non-rotating table placed on the bottom of the heating chamber for placing the food to be cooked, a mass detecting means for detecting the mass of the food to be cooked, and a control means for adjusting the amount of water vapor supplied into the heating chamber, The mass of the object to be cooked on the table is detected by the detecting means, the amount of water vapor supplied from the steam generating means is controlled by the control means based on the detected value, and an appropriate amount of water vapor according to the cooking content of the object to be cooked is obtained. The cooking device according to any one of claims 1 to 4, wherein the cooking device is supplied into a heating chamber. 加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、該テーブルを支持するようにテーブル下面に設置されて被調理物の質量を検出する複数個の質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段を備え、複数個の質量検出手段の総和によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給することを特徴とする請求項1乃至請求項4のいずれかに記載の加熱調理器。   A non-rotating table placed on the bottom surface of the heating chamber for placing the food to be cooked; a plurality of mass detecting means installed on the lower surface of the table for supporting the table; Control means for adjusting the amount of steam supplied to the room is detected, the mass of the cooking object on the table is detected by the sum of a plurality of mass detection means, and the control means supplies the steam generation means from the steam generation means. The heating cooker according to any one of claims 1 to 4, wherein an amount of water vapor is controlled to supply an appropriate amount of water vapor according to the cooking content of the cooking object into the heating chamber. 加熱室の底面に設置されて被調理物を載置する回転しないテーブルと、加熱室に加熱空気を循環させる加熱手段と送風手段から構成される熱風供給手段と、送風手段からなる破砕手段と、テーブルを支持するように該テーブルの下面に設置されて被調理物の質量を検出する複数個の質量検出手段と、加熱室内に供給する水蒸気量を調節する制御手段とを備え、複数個の質量検出手段の総和によってテーブル上の被調理物の質量を検出し、該検出値に基づいて制御手段によって蒸気発生手段から供給される水蒸気量を制御すると共に、熱風供給手段を構成する加熱手段と破砕手段によって水蒸気をさらに加熱,破砕し、被調理物の調理内容に応じた適量の水蒸気を加熱室内に供給することを特徴とする請求項1乃至請求項4のいずれかに記載の加熱調理器。   A non-rotating table placed on the bottom surface of the heating chamber to place the food to be cooked, a hot air supply means composed of a heating means and a blowing means for circulating heated air in the heating chamber, a crushing means consisting of a blowing means, A plurality of mass detecting means installed on the lower surface of the table so as to support the table and detecting the mass of the object to be cooked, and a control means for adjusting the amount of water vapor to be supplied into the heating chamber. The mass of the object to be cooked on the table is detected by the sum of the detection means, the amount of steam supplied from the steam generation means is controlled by the control means based on the detected value, and the heating means and crushing that constitute the hot air supply means The steam according to any one of claims 1 to 4, wherein the steam is further heated and crushed by the means, and an appropriate amount of steam according to the cooking content of the cooking object is supplied into the heating chamber. Heat cooker. 被調理物を収容する加熱室と、該加熱室を加熱する加熱ユニットとを有し、該加熱ユニットは該加熱室を加熱する加熱手段と、水蒸気を発生する蒸気発生手段と、前記加熱手段で加熱された空気を前記加熱室に供給する送風手段と、前記加熱手段と前記送風手段を覆うダクトとを有し、前記蒸気発生手段を前記ダクトの外側に、前記蒸気発生手段の蒸気噴出口を前記ダクトの内側に設け、前記蒸気噴出口は前記加熱手段に対して前記送風手段を挟んだ位置に設けられ、前記蒸気発生手段から前記ダクト内に供給された水蒸気を前記送風手段から流出する空気流に向かって吹き付け、前記ダクト内に供給され前記加熱手段によって過熱された該過熱水蒸気を前記加熱室内に供給する加熱調理器。

A heating chamber for storing an object to be cooked; and a heating unit for heating the heating chamber. The heating unit includes a heating means for heating the heating chamber, a steam generating means for generating water vapor, and the heating means. A blowing unit that supplies heated air to the heating chamber; a duct that covers the heating unit and the blowing unit; and the vapor generation unit is disposed outside the duct, and a vapor outlet of the vapor generation unit is provided. Air that is provided inside the duct, the steam outlet is provided at a position sandwiching the air blowing means with respect to the heating means, and air that flows into the duct from the steam generating means flows out from the air blowing means A heating cooker that blows toward a flow and supplies the superheated steam supplied into the duct and superheated by the heating means into the heating chamber.

JP2006157967A 2006-06-07 2006-06-07 Heating cooker Withdrawn JP2007327674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157967A JP2007327674A (en) 2006-06-07 2006-06-07 Heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157967A JP2007327674A (en) 2006-06-07 2006-06-07 Heating cooker

Publications (1)

Publication Number Publication Date
JP2007327674A true JP2007327674A (en) 2007-12-20

Family

ID=38928256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157967A Withdrawn JP2007327674A (en) 2006-06-07 2006-06-07 Heating cooker

Country Status (1)

Country Link
JP (1) JP2007327674A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128251A1 (en) 2008-04-15 2009-10-22 パナソニック株式会社 Microwave heating device
WO2009078592A3 (en) * 2007-12-17 2010-10-07 Lg Electronics Inc. A microwave oven
JP2011179792A (en) * 2010-03-03 2011-09-15 Sanyo Electric Co Ltd Cooker
JPWO2013140773A1 (en) * 2012-03-19 2015-08-03 パナソニックIpマネジメント株式会社 Cooker
CN106439763A (en) * 2016-08-18 2017-02-22 无锡飞达纺织印染机械有限公司 Environment-friendly and energy-saving industrial heating device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078592A3 (en) * 2007-12-17 2010-10-07 Lg Electronics Inc. A microwave oven
US8546735B2 (en) 2007-12-17 2013-10-01 Lg Electronics Inc. Microwave oven
WO2009128251A1 (en) 2008-04-15 2009-10-22 パナソニック株式会社 Microwave heating device
EP2763501A2 (en) 2008-04-15 2014-08-06 Panasonic Corporation Microwave heating apparatus
JP2011179792A (en) * 2010-03-03 2011-09-15 Sanyo Electric Co Ltd Cooker
JPWO2013140773A1 (en) * 2012-03-19 2015-08-03 パナソニックIpマネジメント株式会社 Cooker
US9788678B2 (en) 2012-03-19 2017-10-17 Panasonic Intellectual Property Management Co., Ltd. Heating cooker
CN106439763A (en) * 2016-08-18 2017-02-22 无锡飞达纺织印染机械有限公司 Environment-friendly and energy-saving industrial heating device

Similar Documents

Publication Publication Date Title
JP4585910B2 (en) Cooker
JP2007003136A (en) Cooking device
CN101086341B (en) Heating cooking instrument
JP4586111B1 (en) Cooker
CN1589589B (en) High-frequency heating device with steam generating function
JP2005315487A (en) Method and device for heating by microwave
JP2007327674A (en) Heating cooker
JP2007003136A5 (en)
EP1741986A1 (en) Cooking apparatus and cooking method
US7241976B2 (en) Steam cooker
JP2004162936A (en) Heating cooker
JP2006132929A (en) Steam cooker
JP3284263B2 (en) Microwave heating equipment
JP4557788B2 (en) Cooker
JP5329303B2 (en) Cooker
JP4278629B2 (en) Cooker
JP6629099B2 (en) Cooking device
JP2007024388A (en) Cooking apparatus
JP4563270B2 (en) Cooker
JP6609454B2 (en) Cooker
JP4403092B2 (en) Cooker
JP4229860B2 (en) Steam cooker
JP6758336B2 (en) Cooker
JP6749280B2 (en) Cooker
JP2005300156A (en) Steam cooker

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901