JP2007326888A - Emulsified material of plastic and method for producing the same - Google Patents

Emulsified material of plastic and method for producing the same Download PDF

Info

Publication number
JP2007326888A
JP2007326888A JP2006156835A JP2006156835A JP2007326888A JP 2007326888 A JP2007326888 A JP 2007326888A JP 2006156835 A JP2006156835 A JP 2006156835A JP 2006156835 A JP2006156835 A JP 2006156835A JP 2007326888 A JP2007326888 A JP 2007326888A
Authority
JP
Japan
Prior art keywords
emulsion
water
particles
producing
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156835A
Other languages
Japanese (ja)
Inventor
Mitsuo Minagawa
光雄 皆川
Yasuo Ishikawa
泰男 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006156835A priority Critical patent/JP2007326888A/en
Publication of JP2007326888A publication Critical patent/JP2007326888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsified material having fine resin particle diameter of nano order and almost without containing air in the emulsion, and a method for producing the same. <P>SOLUTION: This method for producing the emulsified material is provided by emulsifying an acrylic acid ester polymer or styrene-acrylic acid ester copolymer, making fine particles by a cutting device 3 while swelling the emulsion under a vacuum atmosphere in a vacuum pot 1, at the same time making ≤0.001% air content in the emulsion, then compressing the swollen emulsion made as fine particles while decomposing by a supercritical device S to make hard fine particles and forming the emulsion having 5 to 100 nm particle diameter of the resin particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は塗料及びインクのベース材及びプラスチックの添加材として使用されるプラスチックのエマルジョン材及びその製造方法に関する。   The present invention relates to a plastic emulsion material used as a base material for paints and inks and an additive for plastics, and a method for producing the same.

最近、無公害の塗料、インクとして水性エマルジョンが注目されており、この水性エマルジョンは、例えば、酢酸ビニル、塩化ビニリデン、アクリル酸エステル等の組成物を乳化剤(界面活性剤)、重合開始剤等を用い、乳化装置により乳化重合して粒径0.1〜0.2μmの粒子を水に浮遊させるようにして調整されている。
特開平5−194911号
Recently, water-based emulsions have been attracting attention as pollution-free paints and inks. For example, vinyl emulsion, vinylidene chloride, acrylate esters, and the like can be used as emulsifiers (surfactants), polymerization initiators, and the like. It is adjusted so that particles having a particle size of 0.1 to 0.2 μm are suspended in water by emulsion polymerization using an emulsifier.
JP-A-5-194911

このようなエマルジョンの樹脂粒径は十分に細かいが、実際上は凝縮してしまい、その粒径は1μm以上となり、塗料、インクに使用した場合に接着力あるいは速乾性を増すためには、エマルジョン内の樹脂粒子更には水成分も更に細かくする必要性がある。   The resin particle size of such an emulsion is fine enough, but in practice it is condensed, and the particle size becomes 1 μm or more. In order to increase the adhesive force or quick drying property when used in paints and inks, the emulsion It is necessary to further refine the resin particles and the water component.

そこで、本発明のエマルジョン材は、水性エマルジョンを形成する樹脂粒子と水成分とからなり、前記エマルジョン材の粒子径は5〜100nm(ナノメーター)であり、エマルジョン中の空気(酸素)を0.001%以下とする。   Therefore, the emulsion material of the present invention comprises resin particles that form an aqueous emulsion and a water component, and the particle size of the emulsion material is 5 to 100 nm (nanometer), and the air (oxygen) in the emulsion is reduced to 0. 001% or less.

また、本発明のエマルジョン材の製造方法は、水性エマルジョンを形成する樹脂粒子と水成分とを真空雰囲気で混合撹拌しつつ膨潤させ樹脂粒子と水成分とを切断分解して細粒化し、次いで超臨界流体で膨潤細粒化された樹脂粒子と水成分とを更に分解により微細化するとともに高圧で樹脂粒子を固化するようにした。   Also, the method for producing an emulsion material of the present invention comprises swelling resin particles and water components that form an aqueous emulsion while mixing and stirring them in a vacuum atmosphere, cutting and decomposing the resin particles and water components, and then pulverizing them. The resin particles swollen and refined with the critical fluid and the water component were further refined by decomposition and the resin particles were solidified at high pressure.

本発明のエマルジョン材を塗料、インクのベース材とした場合には、粒子径が5〜100nmであるので、接着力が著しく増大し、プラスチックの核剤としての使用も可能となり、更に、空気含有量が著しく少ないので、難燃性が向上し塗膜に膨れがなくなる。   When the emulsion material of the present invention is used as a base material for paints and inks, since the particle diameter is 5 to 100 nm, the adhesive force is remarkably increased, and it can be used as a plastic nucleating agent. Since the amount is remarkably small, the flame retardancy is improved and the coating film is not swollen.

更に、本発明のエマルジョン材の製造方法によれば、真空状態で水分と樹脂粒子とを膨潤させつつ撹拌させ、これと同時に切断分解させるので、それらの粒子を小さくしつつ乳化重合を確実に行わせることができるとともに、水成分中に溶存している空気を0.001%以下にすることができる。   Furthermore, according to the method for producing an emulsion material of the present invention, water and resin particles are swollen and stirred in a vacuum state, and at the same time, they are cut and decomposed, so that emulsion polymerization is reliably performed while reducing these particles. In addition, the air dissolved in the water component can be made 0.001% or less.

本発明に係るエマルジョンは、水性の酢酸ビニル、塩化ビニリデン、アクリル酸エステル等の合成樹脂粒子60〜90重量%と水10〜40重量%からなり、前記樹脂粒子の粒径は5〜100nm(ナノメータ)であり、前記エマルジョン中に空気(酸素)含有量を0.001%以下とする。特に、樹脂粒子としては、アクリル酸エステル重合体又は、スチレン−アクリル酸共重合体が好ましく、この成分中にメタケイ酸ナトリウムなどの塩基性物質を加えて処理することにより架橋結合されたものは弾力性が負荷される(合成ゴム変性アクリル共重合体)。また、この代わりにスチレン・ブタジエン系合成樹脂エマルジョンを使用することも可能である。   The emulsion according to the present invention comprises 60 to 90% by weight of synthetic resin particles such as aqueous vinyl acetate, vinylidene chloride, and acrylate, and 10 to 40% by weight of water, and the resin particles have a particle size of 5 to 100 nm (nanometers). And the air (oxygen) content in the emulsion is 0.001% or less. In particular, as the resin particles, an acrylate polymer or a styrene-acrylic acid copolymer is preferable, and those which are crosslinked by adding a basic substance such as sodium metasilicate to this component are elastic. Is loaded (synthetic rubber-modified acrylic copolymer). Alternatively, it is possible to use a styrene / butadiene synthetic resin emulsion.

また、架橋構造を備えたアクリル酸エステル重合体又はスチレン−アクリル酸エステル共重合体はCOを利用した超臨界の酸性(pH2〜3)雰囲気にも十分耐え、しかも 接着剤としての機能をも有するので、塗料、インクのベース材として最適である。しかも水性塗料のベースとして使用しても乾燥後は耐水性にも強い。 In addition, the acrylic ester polymer or styrene-acrylic ester copolymer having a crosslinked structure sufficiently withstands a supercritical acidic (pH 2 to 3) atmosphere using CO 2 and also functions as an adhesive. Therefore, it is most suitable as a base material for paints and inks. Moreover, even if it is used as a base for water-based paints, it is also strong in water resistance after drying.

本発明において、水成分が10〜40重量%と少なくても、粒子径が5〜100nmと小さいので粘性が少なく塗布するのに支障がない。また、このように水成分が少ないと乾燥も早くなり、塗布後の水の蒸発による弊害も少ない。   In the present invention, even if the water component is as small as 10 to 40% by weight, the particle diameter is as small as 5 to 100 nm, so that the viscosity is low and there is no problem in coating. In addition, when the water component is small as described above, drying is quickened, and there are few harmful effects caused by evaporation of water after application.

本発明に係るエマルジョンは、以下のようにして製造される。   The emulsion according to the present invention is produced as follows.

酢酸ビニル、塩化ビニリデン、合成ゴム変性アクリル共重合体等の水性合成樹脂粒子の単量体組成物、界面活性剤及び重合開始剤等を高速乳化装置により乳化重合させて粒子径平均0.3〜0.5μm、固形分40〜50%、水分50〜60%からなるエマルジョンを通常の方法で準備する(第1工程)、次いで、このエマルジョンを真空釜内に注入し、真空雰囲気下で撹拌混合しながら高速回転する機械的切断又は超音波発信装置のような切断分解装置より真空下でエマルジョンから空気を放出させつつ(0.001%以下)膨潤した合成樹脂成分と水成分とを切断分解して水のクラスター及び合成樹脂粒子を細粒化する(粒子径0.1〜0.2μm)(第2工程)。このとき、水分は飛んでしまい、水分量を10〜40%に調整する。次いで、このエマルジョンを超臨界の圧力容器に移して、例えば、COを200気圧、40℃程度にして超臨界処理をする。このとき、細粒化されてはいるが膨潤された樹脂粒子は、超臨界流体により更に細分化されるとともに、その圧力により収縮され微細化され、その粒子径は5〜50ナノメータになる(第3工程)。 Monomer composition of water-based synthetic resin particles such as vinyl acetate, vinylidene chloride, synthetic rubber-modified acrylic copolymer, surfactant, polymerization initiator and the like are emulsion-polymerized with a high-speed emulsifier, and the average particle size is 0.3 to Prepare an emulsion consisting of 0.5 μm, solid content of 40-50% and moisture of 50-60% by the usual method (first step), then inject the emulsion into a vacuum kettle and stir and mix under vacuum atmosphere While cutting and decomposing the swollen synthetic resin component and water component while releasing air from the emulsion under vacuum from a cutting and decomposing device such as a mechanical cutting or ultrasonic transmission device that rotates at high speed (0.001% or less) The water clusters and the synthetic resin particles are finely divided (particle diameter 0.1 to 0.2 μm) (second step). At this time, moisture will fly off and the amount of moisture will be adjusted to 10-40%. Next, the emulsion is transferred to a supercritical pressure vessel, and supercritical processing is performed, for example, with CO 2 at about 200 atm and 40 ° C. At this time, the finely divided but swollen resin particles are further subdivided by the supercritical fluid, and are shrunk and refined by the pressure, and the particle diameter becomes 5 to 50 nanometers (first number) 3 steps).

なお、上述の方法では、3工程を別個の装置(高速乳化、真空釜、超臨界装置)で行っているが、これら3工程を1つの装置内で行うことも可能であり、第1、第2工程を1つの装置で、第2工程と第3工程とを1つの装置で行うことも可能である。   In the above method, the three steps are performed in separate devices (high-speed emulsification, vacuum kettle, supercritical device). However, these three steps can be performed in one device. It is also possible to perform the two steps with one device and the second step and the third step with one device.

このようにして作られたエマルジョン材は、塗料、インクのベース材としてそのまま利用できるし、プラスチックの添加剤としても利用できる。前記エマルジョンはナノオーダの微粒子であり、しかもその樹脂成分は接着剤としての機能を有するので、プラスチック成形時にエマルジョンの水成分を飛ばしながらプラスチック内に分散せしめれば、樹脂成分が結晶の核剤として機能するばかりか、プラスチック強化剤としても作用し、透明であるので、添加量は強度度合いに応じて自由に調整できる。   The emulsion material thus prepared can be used as it is as a base material for paints and inks, and can also be used as an additive for plastics. The emulsion is nano-order fine particles, and the resin component has a function as an adhesive. Therefore, if the water component of the emulsion is blown away during plastic molding and dispersed in the plastic, the resin component functions as a crystal nucleating agent. In addition, since it acts as a plastic reinforcing agent and is transparent, the amount added can be freely adjusted according to the strength level.

また、製造後のエマルジョンの凝集が問題となるが、この凝集を防止するには、エマルジョンに電場をかけ樹脂粒子を帯電させれば、粒子同士が反発しあって粒子同士の凝集を防ぐことができる。更に、製造後に純水を20〜30重量%加えてナノ粒子を浮遊させれば、凝集を有効に防止できる。   In addition, aggregation of the emulsion after production becomes a problem. To prevent this aggregation, if an electric field is applied to the emulsion and the resin particles are charged, the particles repel each other and prevent aggregation of the particles. it can. Furthermore, aggregation can be effectively prevented by adding 20 to 30% by weight of pure water after production and allowing the nanoparticles to float.

以下、実施例について説明する。   Examples will be described below.

図1、2、3に示す分子構造を有するスチレン−アクリル酸エステル共重合体(図1、2)及びアクリル酸エステル重合体(昭和高分子製)と水とを高速乳化装置により乳化重合し、乳白色エマルジョンを得た(第1工程)。これらエマルジョンは樹脂分40〜50重量%で水分50〜60重量%であった。pHは6〜8であり、粘度は1,500〜4,500(mPa・S:BH型回転粘度計)であった。   Styrene-acrylic acid ester copolymer (FIGS. 1 and 2) and acrylic acid ester polymer (manufactured by Showa Kogyo) having the molecular structure shown in FIGS. A milky white emulsion was obtained (first step). These emulsions had a resin content of 40-50% by weight and a water content of 50-60% by weight. The pH was 6 to 8, and the viscosity was 1,500 to 4,500 (mPa · S: BH type rotational viscometer).

図1に示すスチレン−アクリル酸エステル共重合体は、交叉した炭素主鎖50、50を有しており、これら主鎖50にエステル基COOR53、53…53とスチレン成分(ベンゼン環52、52…52を備えており、両主鎖50間には架橋51、51が形成さている。この架橋51はメタケイ酸ナトリウムなどの塩基性物資により行われ、これにより樹脂成分は弾力性を備えており、この樹脂は接着性、耐水性が良好であり、紫外線を照射しても殆ど黄変しなかった。また、図2に示すスチレン−アクリル酸エステル共重合体はベンゼン環52が図5の共重合体により減少しており、接着性、耐水性、更には耐紫外線に対する黄変度も改良されていた。図3に示すアクリル酸エステル重合体はスチレン成分であるベンゼン環を全くなくし、主鎖50にエステル基53のみを統合させたものであり、これは紫外線に対しては全く黄変しなかった。このような分子構造をもったものは、難燃性でガスバーナの火を当てても煤が発生しなかった。   The styrene-acrylic acid ester copolymer shown in FIG. 1 has crossed carbon main chains 50, 50, and ester groups COOR 53, 53... 53 and styrene components (benzene rings 52, 52. 52, and bridges 51 and 51 are formed between both main chains 50. This bridge 51 is made of a basic material such as sodium metasilicate, whereby the resin component has elasticity. This resin has good adhesiveness and water resistance, and hardly yellowed even when irradiated with ultraviolet rays.The styrene-acrylic acid ester copolymer shown in FIG. The acrylic acid ester polymer shown in Fig. 3 completely eliminates the benzene ring, which is a styrene component. Only the ester group 53 was integrated into the chain 50, which did not turn yellow at all against ultraviolet rays.The one with such a molecular structure is flame retardant and is exposed to a gas burner. No wrinkles occurred.

上述の重合体は架橋結合されており、この分子構造をもつアクリル酸エステルは合成ゴム変性アクリル酸エステルと呼ぶことができる。   The above-mentioned polymer is cross-linked, and an acrylate ester having this molecular structure can be called a synthetic rubber-modified acrylate ester.

このように準備したエマルジョンを図4に示すような真空釜1に注入する。前記真空釜1はエマルジョンを撹拌混合するための真空釜の周壁に沿って回転する回転羽根2を有し、この回転羽根2はゆっくりとエマルジョンを撹拌する。この回転羽根2の内側には、高速回転して(1500rpm)、エマルジョンの水成分及び樹脂成分を切断分解する切断分解装置3が設けられ、この装置3はモータMにより回転される回転軸4を有し、この回転軸4には円板5が固定され、この円板5上には一定間隔で切断羽根6、6…6が立設されている。また、真空釜1には真空ポンプ7が設けられている。真空釜内を真空状態にして3時間程度撹拌すると水成分及び樹脂成分は潤滑し、水成分も飛んで水成分が減少するとともに水中に混入していた空気(酸素)も飛んでその含有量は0.001%以下となっていた。これによりエマルジョンを使った塗料は加熱されたときに不燃性が増大するとともに“ふくれ”もなくなった。膨潤状態のエマルジョンは切断刃6でカットされ粒子は細粒化された(0.1〜0.4μm)(第2工程)。膨潤状態の粒子はカットされ易いし、物理的な切断刃6の代わりに図示しない超音波発信装置からの超音波でも膨潤状態の樹脂粒子は分解され易い。   The emulsion thus prepared is poured into a vacuum kettle 1 as shown in FIG. The vacuum pot 1 has a rotating blade 2 that rotates along the peripheral wall of the vacuum pot for stirring and mixing the emulsion, and the rotating blade 2 slowly stirs the emulsion. Inside the rotary blade 2, there is provided a cutting / disassembling device 3 that rotates at a high speed (1500 rpm) and cleaves and decomposes the water component and the resin component of the emulsion. The device 3 has a rotating shaft 4 that is rotated by a motor M. The rotating shaft 4 has a disk 5 fixed thereto, and cutting blades 6, 6... 6 are erected on the disk 5 at regular intervals. Further, the vacuum pot 1 is provided with a vacuum pump 7. When the inside of the vacuum kettle is evacuated and stirred for about 3 hours, the water component and resin component lubricate, the water component also flies and the water component decreases, and the air (oxygen) mixed in the water also flies and the content is It was 0.001% or less. As a result, the paint using the emulsion increased in nonflammability and no “blowing” when heated. The swelled emulsion was cut with a cutting blade 6 to make the particles fine (0.1 to 0.4 μm) (second step). The swollen particles are easily cut, and the swollen resin particles are easily decomposed even by ultrasonic waves from an ultrasonic transmitter (not shown) instead of the physical cutting blade 6.

次いで、図5に示すような超臨界装置Sにより処理することによりエマルジョンを更に微細化した(5〜100nm)。このように樹脂粒子をナノオーダーに微粒子化すると、粒子の表面積が著しく大きくなり、浮遊させる水分が多く必要となるので20〜30重量%の水分を加えると凝集が有効に防止できる。前記超臨界装置Sは圧力容器10を有し、この圧力容器10にはCO2ボンベ11が接続され、このボンベ11からのCOは圧力ポンプ12により200気圧以上に昇圧される。前記圧力容器10内には撹拌装置16が設けられ、この装置16によりエマルジョンが撹拌され、圧力容器10の周囲にはヒータ15が巻回され
、このヒータ15により容器内は40℃程度に維持される。前記エマルジョンは1時間程度超臨界処理されるとエマルジョンは完全に微細化され粘性も減少した(500〜2000mPa・s)(第3工程)。これを塗料として使ったら、薄膜(1〜10μm)が形成され、乾燥も早く、数秒で指に付着しなくなった。これをインクに使用すると乾燥が早すぎてインクジェットスプレーの場合にはノズルが詰まってしまうので、不凍液(エチレングリコール)を2〜3%加えたらノズルが詰まらなくなった。これは不凍液が微細樹脂粒子の周囲をコーティングして水分の蒸発を遅らせるためでときには、エチレングリコールが直ちに蒸発し、粒子内の水分の蒸発を促すので、印刷後の乾燥は遅れない。
Next, the emulsion was further refined (5 to 100 nm) by treatment with a supercritical apparatus S as shown in FIG. When the resin particles are made into nano-order particles in this way, the surface area of the particles is remarkably increased, and a large amount of water is required to be suspended. Therefore, aggregation of 20 to 30% by weight of water can be effectively prevented. The supercritical unit S has a pressure vessel 10, this is the pressure vessel 10 is connected to CO 2 gas cylinder 11, CO 2 from the cylinder 11 is raised above 200 atm by pressure pump 12. A stirring device 16 is provided in the pressure vessel 10, and the emulsion is stirred by the device 16. A heater 15 is wound around the pressure vessel 10, and the inside of the vessel is maintained at about 40 ° C. by the heater 15. The When the emulsion was supercritically treated for about 1 hour, the emulsion was completely refined and its viscosity decreased (500 to 2000 mPa · s) (third step). When this was used as a paint, a thin film (1 to 10 μm) was formed, and the film dried quickly and did not adhere to the finger within a few seconds. When this was used for ink, drying was too early and the nozzle was clogged in the case of inkjet spraying, so when 2-3% of antifreeze (ethylene glycol) was added, the nozzle did not clog. This is because the antifreeze liquid coats the periphery of the fine resin particles and delays the evaporation of water. In some cases, ethylene glycol immediately evaporates and promotes the evaporation of water in the particles, so that drying after printing is not delayed.

次に、高速乳化装置により乳化重合した乳白色エマルジョンを空気除去、細粒化、微粒化処理するための第2工程、第3工程を共通の装置で行なう場合について説明する。   Next, a case where the second step and the third step for subjecting the milky white emulsion emulsion-polymerized by the high-speed emulsification device to air removal, atomization, and atomization are performed by a common device will be described.

図8において、多機能エマルジョン処理装置40は、圧力容器41を有し、この圧力容器41は開閉蓋42によって開閉自在とされ、この圧力容器41内には撹拌切断装置43が設けられている。前記撹拌切断装置43はモータ71によって高速回転する軸70に取付けられた羽根44、44…44を有し、この羽根44は切断刃45を備えている。前記圧力容器41と開閉蓋42とは、それらのフランジ傾斜面49、50が複数設けたクランプ47の咬え面51と係合することによって密閉され、クランプ47は油圧シリンダ48によって水平方向に移動する。前記開閉蓋42には真空ポンプ52、COボンベ53及びこの中のCOを200気圧以上に加圧する加圧ポンプ54が接続されている。前記圧力容器の41の周壁には、コイル55が巻回され、このコイル55には、プラズマ波発信器56が接続され、この発信器56からは135000Hzの周波数の電流がコイル55に与えられる。これにより、圧力容器41の周壁にはそれに沿う磁界が生じ、圧力容器内には周方向の電気力線をもつ電場が与えられ、この電場は圧力容器41内のエマルジョン液に周方向の撹拌力を与える。 In FIG. 8, the multifunctional emulsion treatment apparatus 40 has a pressure vessel 41, which can be opened and closed by an opening / closing lid 42, and a stirring and cutting device 43 is provided in the pressure vessel 41. The stirring and cutting device 43 has blades 44, 44... 44 attached to a shaft 70 that rotates at high speed by a motor 71, and the blades 44 include a cutting blade 45. The pressure vessel 41 and the open / close lid 42 are hermetically sealed by engaging with the biting surface 51 of the clamp 47 provided with a plurality of flange inclined surfaces 49 and 50, and the clamp 47 is moved in the horizontal direction by the hydraulic cylinder 48. To do. Connected to the open / close lid 42 are a vacuum pump 52, a CO 2 cylinder 53, and a pressurizing pump 54 for pressurizing CO 2 therein to 200 atm or more. A coil 55 is wound around the peripheral wall of the pressure vessel 41, and a plasma wave transmitter 56 is connected to the coil 55, and a current having a frequency of 135000 Hz is applied to the coil 55 from the transmitter 56. As a result, a magnetic field along the peripheral wall of the pressure vessel 41 is generated, and an electric field having a circumferential electric force line is applied to the pressure vessel. This electric field is applied to the emulsion liquid in the pressure vessel 41 in the circumferential direction. give.

更に、コイル55の外側には、温度調節装置57が設けられ、この装置は温度調節された液媒を通すジャケットででもよく、ヒータでもよい。前記圧力容器41の底壁には超音波振動子60が臨まされ、その振動子60には超音波発信器61が接続されている。   Further, a temperature adjusting device 57 is provided outside the coil 55, and this device may be a jacket through which the temperature-controlled liquid medium passes or a heater. An ultrasonic transducer 60 faces the bottom wall of the pressure vessel 41, and an ultrasonic transmitter 61 is connected to the transducer 60.

第1工程で準備されたエマルジョンは開閉蓋42を開放して圧力容器41内に注入され、開閉蓋42を閉じた後に真空ポンプ52の作用により圧力容器内が真空になり、水と樹脂成分が膨潤しエマルジョンから空気が飛び出すと同時に水分も一部蒸発する。このときには、前記撹拌切断装置43が駆動し、羽根44、切断刃45は軸70(1500rpm)とともに回転し、膨潤した樹脂成分をカットし細粒化する。このとき、前記超音波発信子60を動作せしめ膨潤した樹脂成分を分解してもよい。更に、コイル55を動作せしめ、プラズマ波により撹拌効果を増大せしめる。   The emulsion prepared in the first step is injected into the pressure vessel 41 by opening the opening / closing lid 42, and after closing the opening / closing lid 42, the inside of the pressure vessel is evacuated by the action of the vacuum pump 52, and water and the resin component are removed. It swells and air evaporates from the emulsion, and part of the water evaporates. At this time, the stirring and cutting device 43 is driven, and the blades 44 and the cutting blade 45 rotate together with the shaft 70 (1500 rpm) to cut and swell the swollen resin component. At this time, the swollen resin component may be decomposed by operating the ultrasonic transmitter 60. Further, the coil 55 is operated, and the stirring effect is increased by the plasma wave.

エマルジョンから出た水蒸気と空気を図示しない弁を開いて圧力容器外に排出した後に超臨界処理が行われる。すなわち、ボンベ53からのCO2を200気圧以上に加圧ポンプ54により昇圧して圧力容器41内に送り込む。この時、撹拌効果を出すためにプラズマ波(コイル55の作動)を与えるとともに、膨潤して細粒化された樹脂成分の切断分解効果を出すために切断撹拌装置43及び超音波装置を駆動させる。なお、プラズマ波装置と超音波装置のどちらかを選択的に使用してもよい(空気除去、細粒化、微粒化のいずれの工程においても選択的でよい。)   A supercritical process is performed after opening the valve which is not shown in figure and exhausting the water vapor | steam and air which came out of emulsion from the pressure vessel. That is, the pressure of CO 2 from the cylinder 53 is increased to 200 atm or higher by the pressure pump 54 and sent into the pressure vessel 41. At this time, a plasma wave (operation of the coil 55) is applied in order to produce a stirring effect, and the cutting and stirring device 43 and the ultrasonic device are driven to produce a cutting and decomposing effect of the swelled and refined resin component. . Note that either a plasma wave device or an ultrasonic device may be selectively used (may be selective in any of the steps of air removal, atomization, and atomization).

更に、第3工程を経てナノ化したエマルジョンは時間の経過とともに凝集するので、直ちに図6に示すような電場装置20に収納するようにする。前記電場装置20は、電源21を有し、この電源21には絶縁箱24で絶縁状態にされた電極22が接続され、この電極22にエマルジョン容器23が載置され、容器内のエマルジョンの粒子は帯電し、この帯電した粒子は互いに反発してその凝集が防止される。前記電源21からは、電極板22に10V〜1KVの電圧が与えられ、特に微細振動を与えるためには、図7に示すような周波数11Hz〜50KHzのパルス電流が好ましい。   Furthermore, since the emulsion nano-sized through the third step aggregates with time, it is immediately stored in the electric field device 20 as shown in FIG. The electric field device 20 has a power source 21, and an electrode 22 insulated by an insulating box 24 is connected to the power source 21. An emulsion container 23 is placed on the electrode 22, and emulsion particles in the container are placed. Are charged and the charged particles repel each other to prevent their aggregation. From the power source 21, a voltage of 10V to 1KV is applied to the electrode plate 22, and a pulse current having a frequency of 11Hz to 50KHz as shown in FIG.

本発明のエマルジョン材は、塗料、インクのベースとして使用できるばかりでなく、プラスチックの添加剤としてのその補強を図ることもでき、粘着性が高いので、石粉、木粉、竹粉を固めて建築資材としたり、食品を入れる容器、トレー等の成形に使用できる。   The emulsion material of the present invention can be used not only as a base for paints and inks, but also can be reinforced as an additive for plastics and has high adhesiveness. It can be used as a material or for forming containers and trays for food.

本発明のスチレン−アクリル酸エステル共重合体の分子構造図である。It is a molecular structure figure of the styrene-acrylic acid ester copolymer of this invention. 本発明の他のスチレン−アクリル酸エステル共重合体の分子構造図である。It is the molecular structure figure of the other styrene-acrylic acid ester copolymer of this invention. 本発明のアクリル酸エステル重合体の分子構造図である。1 is a molecular structure diagram of an acrylate polymer of the present invention. 本発明のエマルジョン材を真空処理する場合の真空釜の概略構成図である。It is a schematic block diagram of the vacuum pot in the case of vacuum-processing the emulsion material of this invention. 本発明のエマルジョン材を超臨界処理する場合の超臨界装置の概略構成図である。It is a schematic block diagram of the supercritical apparatus in the case of carrying out the supercritical process of the emulsion material of this invention. 処理されたエマルジョン材の凝集を防止するための電場装置の概略図である。It is the schematic of the electric field apparatus for preventing the aggregation of the processed emulsion material. 図6の電場装置の波形図である。It is a wave form diagram of the electric field apparatus of FIG. 多機能処理装置の概略構成図である。It is a schematic block diagram of a multifunction processing apparatus.

符号の説明Explanation of symbols

1…真空釜
2…回転羽根
3…切断装置
6…切断刃
10…圧力容器
11…COボンベ
16…撹拌装置
20…電場装置
21…電源
22…電極版
30…パルス電流
40…多機能処理装置
1 ... vacuum pan 2 ... rotary blade 3 ... cutting device 6 ... cutting blade 10 ... pressure vessel 11 ... CO 2 cylinder 16 ... stirrer 20 ... field device 21: Power supply 22 ... electrode plate 30 ... pulse current 40 ... multifunction processor

Claims (2)

水性エマルジョンを形成する樹脂粒子と水成分とからなり、前記樹脂粒子径を5〜100nmとし、エマルジョン中の空気含有量を0.001重量%以下としたエマルジョン材。   An emulsion material comprising resin particles forming an aqueous emulsion and a water component, wherein the resin particle diameter is 5 to 100 nm, and the air content in the emulsion is 0.001% by weight or less. 水性エマルジョンを形成する樹脂粒子と水成分とを真空雰囲気で混合撹拌しつつ膨潤させ、それらを切断もしくは分解して細粒化し、次いで超臨界流体で膨潤細粒化した樹脂粒子と水成分とを更に分解しつつ高圧で押圧固化して微細粒子を形成するようにしたエマルジョン材の製造方法。   Resin particles that form an aqueous emulsion and a water component are swollen while being mixed and stirred in a vacuum atmosphere, and then cut or decomposed into fine particles, and then the resin particles and water components that have been swollen and fined with a supercritical fluid are combined. A method for producing an emulsion material, in which fine particles are formed by pressing and solidifying under high pressure while further decomposing.
JP2006156835A 2006-06-06 2006-06-06 Emulsified material of plastic and method for producing the same Pending JP2007326888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156835A JP2007326888A (en) 2006-06-06 2006-06-06 Emulsified material of plastic and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156835A JP2007326888A (en) 2006-06-06 2006-06-06 Emulsified material of plastic and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007326888A true JP2007326888A (en) 2007-12-20

Family

ID=38927586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156835A Pending JP2007326888A (en) 2006-06-06 2006-06-06 Emulsified material of plastic and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007326888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102065A1 (en) * 2008-02-14 2009-08-20 Boron Japan Co., Ltd. Additive, method for production of the same, and composition containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102065A1 (en) * 2008-02-14 2009-08-20 Boron Japan Co., Ltd. Additive, method for production of the same, and composition containing the same
JP2009191177A (en) * 2008-02-14 2009-08-27 Nippon Boron:Kk Additive, method for producing it, and composition containing it
EP2289989A4 (en) * 2008-02-14 2014-03-19 Blh Ecology Concepts L L C Additive, method for production of the same, and composition containing the same

Similar Documents

Publication Publication Date Title
RU2219197C2 (en) Method of preparing polymer dispersions with average particle size between 1/10 and 10 mcm
US20110019496A1 (en) Emulsification equipment
KR20090089785A (en) Process for the preparation of an artificial latex
WO2013080912A1 (en) Process for producing carbon nanotube composition and carbon nanotube composition
CN108314756A (en) A kind of microspheres and preparation method thereof prepared based on the original positions Pickering miniemulsion
TWI624478B (en) Method for producing synthetic isoprene polymer latex
JP2022532280A (en) Systems and methods for dehydrating and drying nanocellulose
EP2283047B1 (en) Filled nanoparticles
JP2005334808A (en) Ultrasonic dispersing apparatus
JP2007326888A (en) Emulsified material of plastic and method for producing the same
JPH01190759A (en) Production of silicone emulsion
JP6657847B2 (en) Polyvinyl chloride resin particles coated with inorganic fine particles and method for producing the same
WO2001081494A2 (en) Non-aqueous solvent-free process for making uv curable adhesives and sealants from epoxidized monohydroxylated diene polymers
JP2018030991A (en) Method for producing absorptive resin particle
JP7267749B2 (en) Emulsion manufacturing method and emulsion manufacturing apparatus
JP2004155851A (en) Method for producing block copolymer
Reynhout et al. Electrosteric stability of styrene/acrylic acid copolymer latices under emulsion polymerization reaction conditions
JP2009138047A (en) Method for preparing organic-inorganic composite emulsion
CN105061802A (en) Preparation method of foamed polyester slurry
CN106317425B (en) A method of organic inorganic hybridization hollow nanospheres are prepared by ultrasound
JP3451116B2 (en) High molecular weight polymer particles, high molecular weight polymer dispersion, and methods for producing them
JP2006282491A (en) Dispersion liquid of ultrafine particle silica, ultrafine particle silica dispersion, and method of producing the same
JP2001310944A (en) Method for producing aqueous dispersion of polyester resin
JP2006016414A (en) Method for producing ethylene/(meth)acrylic ester copolymer particle
WO2022181484A1 (en) Hollow particle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924