JP2007326768A - Kf-containing barium titanate-based piezoelectric substance, and its production method - Google Patents

Kf-containing barium titanate-based piezoelectric substance, and its production method Download PDF

Info

Publication number
JP2007326768A
JP2007326768A JP2007122088A JP2007122088A JP2007326768A JP 2007326768 A JP2007326768 A JP 2007326768A JP 2007122088 A JP2007122088 A JP 2007122088A JP 2007122088 A JP2007122088 A JP 2007122088A JP 2007326768 A JP2007326768 A JP 2007326768A
Authority
JP
Japan
Prior art keywords
crystal
tio
piezoelectric
batio
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007122088A
Other languages
Japanese (ja)
Other versions
JP5526422B2 (en
Inventor
Yukikuni Akishige
幸邦 秋重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2007122088A priority Critical patent/JP5526422B2/en
Publication of JP2007326768A publication Critical patent/JP2007326768A/en
Application granted granted Critical
Publication of JP5526422B2 publication Critical patent/JP5526422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new lead-free ferroelectric substance or new piezoelectric substance having high piezoelectric constant. <P>SOLUTION: The piezoelectric substance is a crystal of ferroelectric substance having a composition represented by the general formula, Ba<SB>1-x</SB>K<SB>x</SB>TiO<SB>3-x</SB>F<SB>x</SB>(wherein 0<x<0.13). The crystal is prepared by a method comprising a raw material-blending process of blending raw materials in such a manner that Ti has a greater molar ratio relative to Ba, and a crystal growth process of growing a crystal of BaTiO<SB>3</SB>by the flux method using KF as a flux. The piezoelectric constant d<SB>33</SB>of the crystal is 300 pC/N at room temperature, and its relative permittivity ε' is 12,000. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、KFを含有するチタン酸バリウム系圧電体またはその製造方法に関し、特に、圧電定数d33が大きく、また室温における比誘電率が大きなチタン酸バリウム系素材またはその製造方法に関する。 The present invention relates to a barium titanate-based piezoelectric body containing KF or a method for manufacturing the same, and more particularly to a barium titanate-based material having a large piezoelectric constant d 33 and a large relative dielectric constant at room temperature or a method for manufacturing the same.

チタン酸バリウム(BaTiO)は強誘電体として知られている。強誘電体は圧電材料として用いることができるので、電子部品材料として広く利用されている。中でも、セラミック系圧電材料としては、チタン酸ジルコニウム酸鉛(PZT)がその圧電定数も大きく、最もよく用いられてきている経緯がある。 Barium titanate (BaTiO 3 ) is known as a ferroelectric. Ferroelectrics can be used as piezoelectric materials and are therefore widely used as electronic component materials. Among them, as a piezoelectric ceramic material, lead zirconate titanate (PZT) has a large piezoelectric constant and has been most often used.

特許第3751304号公報Japanese Patent No. 3751304 特開2003−104796号公報JP 2003-104796 A

しかしながら、PZTは鉛を含むため、環境面への配慮から近年では鉛フリーな圧電材料が求められている。   However, since PZT contains lead, in recent years, a lead-free piezoelectric material has been demanded in consideration of environmental considerations.

本発明は上記に鑑みてなされたものであって、鉛を含まない新規な強誘電体または圧電定数の大きい新規な圧電体を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a novel ferroelectric material containing no lead or a novel piezoelectric material having a large piezoelectric constant.

請求項1に記載の発明は、BaTiO結晶のうち、Baの一部がKに置換され、Oの一部がKと実質的に同量のFに置換された組成を有するチタン酸バリウム系圧電体である。ここで、実質的に同量とは数量が同じ、すなわち、電気的に中性であることを意味し、EPMAにより分析した場合に誤差により若干の数量の違いがあっても原子数が同数であると結論づけられることを含む意味である。 The invention according to claim 1 is a barium titanate system having a composition in which a part of Ba is substituted with K and a part of O is substituted with F in substantially the same amount as K in the BaTiO 3 crystal. It is a piezoelectric body. Here, “substantially the same amount” means that the quantity is the same, that is, electrically neutral, and the number of atoms is the same even if there is a slight difference in quantity due to error when analyzed by EPMA. This means that it can be concluded that there is.

また、請求項2に記載の発明は、一般式がBa1−xTiO3−x(ただし、0<x<0.13)として表される組成を有する圧電体である。 The invention according to claim 2, general formula Ba 1-x K x TiO 3 -x F x ( however, 0 <x <0.13) is a piezoelectric material having a composition expressed as.

また、請求項3に記載の発明は、Baに対するTiのモル比が大きくなるように原料を調製し、仮焼きにより実質的にBaOとTiOのみからなる混合物を生成し、これに、KFを融剤としたフラックス法により請求項1または2に記載の結晶を得ることを特徴とする圧電体製造方法である。ここで原料はたとえば、BaCOのような化合物であってもよく、仮焼きにより余分な化合物が含まれなくなるのであれば特に限定されない。実質的にとは、仮焼きにより余分な化合物が含まれなくなることをいう。 In the invention of claim 3, the raw material is prepared so that the molar ratio of Ti to Ba is increased, and a mixture consisting essentially of BaO and TiO 2 is produced by calcining, and KF is added to this. 3. A method of manufacturing a piezoelectric body, wherein the crystal according to claim 1 or 2 is obtained by a flux method using a flux. Here, the raw material may be, for example, a compound such as BaCO 3 and is not particularly limited as long as no extra compound is contained by calcining. “Substantially” means that no extra compound is contained by calcining.

また、請求項4に記載の発明は、Baに対するTiのモル比が大きくなるように原料を配合する原料配合工程と、KFを融剤としたフラックス法によりBaTiO結晶を成長させようとする結晶成長工程と、を含み、Baの一部がKに置換され、また、Oの一部がFに置換された結晶を得ることを特徴とする圧電体製造方法である。換言すれば、請求項2に記載の発明は、BaよりもTiのモル比が大きくなるように原料を配合し、KFを融剤としたフラックス法によりBaTiO結晶を成長させようとして、Baの一部がKに置換され、また、Oの一部がFに置換されたチタン酸バリウム系結晶を得ることを特徴とする圧電体製造方法である。 Further, the invention according to claim 4 is a crystal which is intended to grow a BaTiO 3 crystal by a raw material blending step of blending the raw material so as to increase the molar ratio of Ti to Ba and a flux method using KF as a flux. A method of manufacturing a piezoelectric body, comprising: a growth step, wherein a crystal in which a part of Ba is substituted with K and a part of O is substituted with F is obtained. In other words, in the invention according to claim 2, the raw material is blended so that the molar ratio of Ti is larger than Ba, and BaTiO 3 crystals are grown by the flux method using KF as a flux. A method of manufacturing a piezoelectric body, characterized in that a barium titanate-based crystal in which a part is substituted with K and a part of O is substituted with F is obtained.

なお、Baに対するTiのモル比とは、原料として元素単体を用いるという意味ではなく、それぞれ化合物中に存在するBaとTiのモル比をいう。また、Baの一部がKに置換され、また、Oの一部がFに置換され、とは、Kの置換量とFの置換量が実測結果として同量であることを厳密に求めることを意図するものではなく、たとえばEPMAにより分析した場合、必ずしもKの置換量とFの置換量が同一でなくともよいものも含むことを意味する。   In addition, the molar ratio of Ti to Ba does not mean that an elemental element is used as a raw material, but refers to the molar ratio of Ba and Ti present in each compound. In addition, a part of Ba is replaced with K, and a part of O is replaced with F. This means that the replacement amount of K and the replacement amount of F are the same as the actual measurement result. For example, when analyzed by EPMA, it means that the substitution amount of K and the substitution amount of F do not necessarily have to be the same.

また、請求項5に記載の発明は、請求項3または4に記載の圧電体製造方法において、原料にBaTiを用いたこと、または、BaTiOとTiOとを用いたことを特徴とする圧電体製造方法である。すなわち、請求項5に記載の発明は、BaTiO結晶を得るには、チタンの含有量が相対的に多いことを意味している。 The invention according to claim 5 is characterized in that in the piezoelectric body manufacturing method according to claim 3 or 4, BaTi 2 O 5 is used as a raw material, or BaTiO 3 and TiO 2 are used. This is a method for manufacturing a piezoelectric body. That is, the invention described in claim 5 means that the content of titanium is relatively large in order to obtain BaTiO 3 crystals.

また、請求項6に記載の発明は、請求項3または4に記載の圧電体製造方法において、TiOとBaOとを、そのモル比がTiO/BaO>1となるようにして原料を調整したことを特徴とする圧電体製造方法である。すなわち、請求項6に記載の発明は、BaTiO結晶を得るには、チタンの含有量が相対的に多いことを意味している。 The invention of claim 6, adjusted in the piezoelectric method according to claim 3 or 4, and TiO 2 and BaO, the molar ratio of the raw material as a TiO 2 / BaO> 1 This is a method of manufacturing a piezoelectric body. That is, the invention described in claim 6 means that the content of titanium is relatively large in order to obtain BaTiO 3 crystals.

また、請求項7に記載の圧電体は、一般式がBa1−xTiO3−xとして表され、一次から二次へ相転移が移行するx=0.1近傍の組成である圧電体である。ここで、相転移があると種々の物性が変化するが、たとえば、キュリーワイス則による誘電率の二次転移を挙げることができる。 In the piezoelectric body according to claim 7, the general formula is represented as Ba 1-x K x TiO 3−x F x , and the composition in the vicinity of x = 0.1 in which the phase transition is transferred from the first order to the second order. It is a certain piezoelectric body. Here, various physical properties change when there is a phase transition. For example, a second-order transition of dielectric constant according to the Curie-Weiss law can be given.

本発明によれば、鉛を含まない新規な強誘電体または圧電定数の大きい新規な圧電体を得ることができる。   According to the present invention, a novel ferroelectric material containing no lead or a novel piezoelectric material having a large piezoelectric constant can be obtained.

以下、本発明を詳細に説明する。
<製造>
原料の調整をするにあたり、まず、BaCO:TiO=1:2(モル比)を混合し、アルミナるつぼに入れ、800℃で8時間仮焼きしてCOを飛ばした。なお、BaCOは関東化学株式会社製の純度99.9%の試薬を9.8769g(0.05mol)用い、TiOはALDRICH社製の純度99.8%の試薬を8.0060g(0.1mol)用いた。
Hereinafter, the present invention will be described in detail.
<Manufacturing>
In adjusting the raw materials, first, BaCO 3 : TiO 2 = 1: 2 (molar ratio) was mixed, put into an alumina crucible, and calcined at 800 ° C. for 8 hours to fly CO 2 . For BaCO 3 , 9.8769 g (0.05 mol) of a 99.9% purity reagent manufactured by Kanto Chemical Co., Ltd. was used, and for TiO 2, a 99.8% purity reagent manufactured by ALDRICH was used. 1 mol) was used.

続いて、仮焼きにより得られたBaTiO+TiOの混合物にKFをフラックスとしてチタン酸バリウム系結晶を成長させた。すなわち、フラックス法による結晶成長を試みた。なお、BaTiO+TiO:KF=1:10(モル比)とした。BaTiO+TiOは9.3918g(Ba換算で0.03mol)用い、KFは、メルク株式会社製の純度99%の試薬を17.43g(0.3mol)用いた。 Subsequently, a barium titanate-based crystal was grown on the BaTiO 3 + TiO 2 mixture obtained by calcining using KF as a flux. That is, crystal growth by the flux method was tried. Note that BaTiO 3 + TiO 2 : KF = 1: 10 (molar ratio). BaTiO 3 + TiO 2 used was 9.3918 g (0.03 mol in terms of Ba), and KF used 17.43 g (0.3 mol) of a 99% pure reagent manufactured by Merck Co., Ltd.

結晶成長に際しては、ふた付き白金るつぼを用い、室温から2時間かけて616℃まで、その後4時間かけて1073℃まで温度を上昇させ、1073℃を4時間維持し、その後2時間かけて976℃まで冷却し、その後8時間かけて796℃まで冷却した。その後制御を解除し、るつぼを室温まで自然冷却した。   For crystal growth, using a platinum crucible with a lid, the temperature was increased from room temperature to 616 ° C. over 2 hours, then to 1073 ° C. over 4 hours, maintained at 1073 ° C. for 4 hours, and then 976 ° C. over 2 hours. And then cooled to 796 ° C. over 8 hours. Thereafter, the control was released, and the crucible was naturally cooled to room temperature.

るつぼの中から、固まったフッ化カリウムと、結晶化しなかったチタン酸バリウムを洗い流し、単結晶を取り出した。単結晶の大きさは数ミリ程度であった。   From the crucible, the solidified potassium fluoride and the barium titanate that was not crystallized were washed away, and the single crystal was taken out. The size of the single crystal was about several millimeters.

以上は、BaCO:TiO=1:2、すなわち、BaCO+(1+α)TiOと表現するとα=1.0の場合であるが、この表記に従って、α=0.3,0.5,0.7,1.2として原料を配合し、同様な方法で結晶を得た。 The above is the case where BaCO 3 : TiO 2 = 1: 2, ie, BaCO 3 + (1 + α) TiO 2 is α = 1.0. According to this notation, α = 0.3, 0.5 , 0.7 and 1.2, the raw materials were blended, and crystals were obtained in the same manner.

<評価:組成>
得られた単結晶を、EPMA定量分析したところ、α=1.0のときBa0.890.10TiO2.880.13であり、融剤のKFがBaTiOに約0.1mol取り込まれた結晶であることが確認できた。また、粉末XRD解析をおこなったところ、BaTiO結晶であれば2θが45°付近で二つに分かれるピークが一つであるなど若干の相違が見られるものの、得られた結晶は基本的にBaTiO結晶に極めて近似した構造であることも確認できた(図1参照)。これらの結果から、得られた結晶は、BaTiOのBの一部がKに置換され、電荷の関係からKと等量のOがFに置換された結晶であるといえる。すなわち、この結晶は、一般式をBa1−xTiO3−xとして表すことのできるチタン酸バリウム系結晶である。上記の製造工程を経れば、x=0.1のチタン酸バリウムBa0.90.1TiO2.90.1を得ることができる。なお、以降ではこの一般式で表される結晶を適宜新結晶と称することとする。
<Evaluation: Composition>
When the obtained single crystal was quantitatively analyzed by EPMA, it was Ba 0.89 K 0.10 TiO 2.88 F 0.13 when α = 1.0, and the KF of the flux was about 0.000 in BaTiO 3 . It was confirmed that the crystals were incorporated by 1 mol. Further, when powder XRD analysis was performed, a slight difference such as one peak split into two when 2θ was around 45 ° was observed in the case of BaTiO 3 crystal, but the obtained crystal was basically BaTiO 3. It was also confirmed that the structure was very close to 3 crystals (see FIG. 1). From these results, it can be said that the obtained crystal is a crystal in which a part of B of BaTiO 3 is substituted with K and an equivalent amount of O to K is substituted with F due to the charge relationship. That is, the crystal is a general formula Ba 1-x K x TiO 3 -x F barium titanate-based crystal, which can be expressed as x. Through the above manufacturing steps, barium titanate Ba 0.9 K 0.1 TiO 2.9 F 0.1 with x = 0.1 can be obtained. Hereinafter, the crystal represented by this general formula will be referred to as a new crystal as appropriate.

α=0.5と0.7についてのEPMA定量分析結果もあわせて表1に示す。

Figure 2007326768
表1より、KF濃度xはαの値の約1/10であることが確認できる。 The EPMA quantitative analysis results for α = 0.5 and 0.7 are also shown in Table 1.
Figure 2007326768
From Table 1, it can be confirmed that the KF concentration x is about 1/10 of the value of α.

次に、新結晶の物性を評価した。
<評価:誘電率>
新結晶の自然面である(100)面に銀ペーストを塗り、比誘電率ε’の温度依存を測定した。数kHz以上では圧電共振が現れるため、300Hzの低周波における比誘電率を測定した。なお、あわせて誘電損失tanδも測定した。図2は、新結晶の比誘電率ε’および誘電損失tanδの測定結果を示したグラフである。なお、図示は省略するが、周波数が30Hz、または、100Hzにおいても、ほぼ同一の曲線が得られた。
Next, the physical properties of the new crystals were evaluated.
<Evaluation: Dielectric constant>
Silver paste was applied to the (100) plane, which is the natural plane of the new crystal, and the temperature dependence of the relative dielectric constant ε ′ was measured. Since piezoelectric resonance appears above a few kHz, the relative dielectric constant at a low frequency of 300 Hz was measured. In addition, dielectric loss tan δ was also measured. FIG. 2 is a graph showing the measurement results of the relative permittivity ε ′ and dielectric loss tan δ of the new crystal. Although illustration is omitted, substantially the same curve was obtained even when the frequency was 30 Hz or 100 Hz.

新結晶の比誘電率ε’は、室温近くの約35℃で12000近くのピーク値を有することがわかった。また、−53℃、−10℃でも同様のピーク値(相転移点)が観測された。BaTiOの相転移点が130℃、−5℃、−90℃であるため、KおよびFの混入により新結晶の高温の相転移点Tcは約100℃低下し、低温の相転移点は約40℃上昇したことが確認できた。なお、新結晶の誘電損失tanδは1%程度であり、良好な強誘電体であることも確認できた。 It was found that the relative permittivity ε ′ of the new crystal had a peak value near 12000 at about 35 ° C. near room temperature. Further, similar peak values (phase transition points) were observed at −53 ° C. and −10 ° C. Since the phase transition point of BaTiO 3 is 130 ° C., −5 ° C., and −90 ° C., mixing of K and F causes the high temperature phase transition point Tc of the new crystal to decrease by about 100 ° C., and the low temperature phase transition point is about It was confirmed that the temperature rose by 40 ° C. The dielectric loss tan δ of the new crystal was about 1%, and it was confirmed that the new crystal was a good ferroelectric.

同様に、α=0.3,0.5,1.2についても比誘電率ε’を測定した。結果を図3に示す。図示したように、誘電曲線のTcはαが大きくなるにつれ徐々に低温側にシフトしていくが、Tcにおける比誘電率ε’はいったん小さくなりα=1.0(x=0.10)あたりで急激に上昇し、その後再び小さくなっていくことがわかった。   Similarly, the relative dielectric constant ε ′ was also measured for α = 0.3, 0.5, and 1.2. The results are shown in FIG. As shown in the figure, the Tc of the dielectric curve gradually shifts to a lower temperature side as α increases, but the relative dielectric constant ε ′ at Tc once decreases and becomes around α = 1.0 (x = 0.10). It suddenly rose and became smaller after that.

図4は、比誘電率の逆数プロットである。常誘電相ではCurie-Weiss則ε’=C/(T−T)が成り立つ(ここでCはCurie-Weiss定数、Tは常誘電Curie温度である)。一般に、一次転移の場合にはT<Tcであり、二次転移ではT=Tcとなる。図4の結果が明確に示すように、α=0.3,0.5の場合、TはTcより20℃〜30℃低く、一次転移の特徴を表している。一方、α=1.0では、T=Tcとなり、二次転移の性質を示すようになる。さらにα=1.2では、転移のブロード化が起きており、ε’=C/(T−Tに近似していくことから二次転移からさらに散漫相転移に移行していくことがわかった。以上から、α=1.0近傍(x=0.1近傍)での急激な誘電率の上昇は、転移の次数が一次から二次に変化する臨界点近傍での誘電率の振る舞いを反映したものとして理解できることが確認できた。 FIG. 4 is a reciprocal plot of relative permittivity. In the paraelectric phase, the Curie-Weiss rule ε ′ = C / (T−T 0 ) holds (where C is the Curie-Weiss constant and T 0 is the paraelectric Curie temperature). In general, T 0 <Tc for the first order transition and T 0 = Tc for the second order transition. As clearly shown in the results of FIG. 4, when α = 0.3, 0.5, T 0 is 20 ° C. to 30 ° C. lower than Tc, and represents the characteristic of the first order transition. On the other hand, when α = 1.0, T 0 = Tc, indicating the nature of the second order transition. Furthermore, when α = 1.2, the transition is broadened, and since it approximates to ε ′ = C / (T−T 0 ) 2 , the transition from the second-order transition to the more diffuse phase transition is required. I understood. From the above, the sudden increase in the dielectric constant in the vicinity of α = 1.0 (in the vicinity of x = 0.1) reflects the behavior of the dielectric constant in the vicinity of the critical point where the order of transition changes from the first order to the second order. It was confirmed that it can be understood as a thing.

次に、各周波数における比誘電率の温度依存性を測定した結果を図5に示す。周波数は、10Hz,10Hz,10Hzである。なお、図5は図3と異なり温度を℃で表記している。また、測定点を各周波数で7点としているので、図3のように精細な曲線とはなっていないが、大きな周波数依存性は特に認められなかった。 Next, the results of measuring the temperature dependence of the relative dielectric constant at each frequency are shown in FIG. The frequencies are 10 2 Hz, 10 4 Hz, and 10 6 Hz. In FIG. 5, the temperature is expressed in ° C. unlike FIG. In addition, since the measurement points are 7 points at each frequency, it is not a fine curve as shown in FIG. 3, but a large frequency dependency was not particularly recognized.

また、常誘電相(T>Tc)と強誘電相(T<Tc)における比誘電率の周波数依存性を測定した。結果を図6および図7に示す。各温度域で、ほぼフラットであることが確認できた。なお、f=10Hzでプロットの様子が異なっているが、測定装置であるLCRメータをHP4284AからHP4285Aに切り替えているためである。 Further, the frequency dependence of the relative permittivity in the paraelectric phase (T> Tc) and the ferroelectric phase (T <Tc) was measured. The results are shown in FIG. 6 and FIG. It was confirmed that the temperature was almost flat in each temperature range. Note that although the appearance of the plot is different at f = 10 5 Hz, the LCR meter, which is a measuring device, is switched from HP4284A to HP4285A.

<評価:圧電定数d33
新結晶の圧電定数d33をd33メータにより測定した。測定装置は、IACAS製 XJ−6B d33/d31 Materを用いた。なお、測定用試料に400V〜500Vの電圧を印加した状態で、試料を100℃から冷却して分極処理をおこなった。測定結果を図8に示した。グラフからわかるように、新結晶の室温における圧電定数は、d33=300pC/Nであった。この値は、BaTiOの室温における値の約6倍であり、PZTの室温における値の200pC/Nよりも大きい。すなわち、新結晶は極めて有望な圧電特性を有することが確認できた。なお、35℃までの測定結果を図9に示す。温度が高くなると若干圧電定数が小さくややばらつきも見られるものの、d33>200pC/Nであり依然として大きな値であることが確認できた。
<Evaluation: the piezoelectric constant d 33>
The piezoelectric constant d 33 of the new crystals was measured by d 33 meter. The measuring device used was XJ-6B d 33 / d 31 Mater manufactured by IACAS. In addition, in the state which applied the voltage of 400V-500V to the sample for a measurement, the sample was cooled from 100 degreeC and the polarization process was performed. The measurement results are shown in FIG. As can be seen from the graph, the piezoelectric constant of the new crystal at room temperature was d 33 = 300 pC / N. This value is about 6 times the value of BaTiO 3 at room temperature and is larger than the value of PZT at room temperature of 200 pC / N. That is, it was confirmed that the new crystal has extremely promising piezoelectric characteristics. In addition, the measurement result to 35 degreeC is shown in FIG. As the temperature increased, the piezoelectric constant was slightly small and slightly varied, but it was confirmed that d 33 > 200 pC / N and still a large value.

<評価:DEヒステリシスループ測定>
新結晶には、Tc=35℃以下において、強誘電体特有のDE履歴曲線が観測されたので、新結晶の残留分極Prと抗電界Ecとを測定した。図10は、新結晶の残留分極Prと抗電界Ecのそれぞれの温度依存を測定した結果を示したグラフである。
<Evaluation: DE hysteresis loop measurement>
In the new crystal, a DE history curve peculiar to the ferroelectric was observed at Tc = 35 ° C. or lower, and therefore, the residual polarization Pr and coercive electric field Ec of the new crystal were measured. FIG. 10 is a graph showing the results of measuring the temperature dependence of the remanent polarization Pr and coercive electric field Ec of the new crystal.

<評価:TcのK濃度依存>
図11は、新結晶Ba1−xTiO3−xのKの濃度xを0〜0.12付近までふったときの転移温度とK濃度の関係を表した相図である。得られたチタン酸バリウム系結晶は、立方晶、正方晶、斜方晶、菱面体晶と逐次転移をするが、その相転移温度はほぼKF濃度に比例して連続的に変化する。高温から二つの転移温度は減少傾向であり、最後の転移温度は増加傾向であることがわかった。したがって、x=0.16〜0.17付近でピンチングが起こることが示唆された。なお、KFの置換量を変化させるために、原料中のTi量や融剤KFの量を相対的に変化させて先に示したのと同様な方法により結晶を作成した。なお、それぞれの結晶についてはEPMA定量分析してxを決定している。
<Evaluation: T concentration dependence of K>
Figure 11 is a phase diagram showing a relationship between transition temperature and K concentration when shook the concentration x of the new crystal Ba 1-x K x TiO 3 -x F x of K to around 0 to 0.12. The obtained barium titanate-based crystal undergoes sequential transition to cubic, tetragonal, orthorhombic, and rhombohedral, but its phase transition temperature changes continuously in proportion to the KF concentration. From the high temperature, it was found that the two transition temperatures were decreasing and the final transition temperature was increasing. Therefore, it was suggested that pinching occurs near x = 0.16 to 0.17. In order to change the amount of KF substitution, crystals were prepared in the same manner as described above by relatively changing the amount of Ti in the raw material and the amount of the flux KF. Note that x is determined by EPMA quantitative analysis for each crystal.

本発明によれば、圧電定数d33の値が常温でPZTより高く、鉛フリーであるので、コンデンサー材料としてはもとより、広く圧電材料として、インクジェットプリンタのプリンタヘッド、液晶画面のバックライト用の圧電トランスなどにも適用可能である。すなわち、本発明である物質または本発明である製造方法により得られる物質は、強誘電体としても圧電体(または圧電材料)としても使用できる According to the present invention, higher than the PZT at room temperature is the value of the piezoelectric constant d 33, since it is lead-free, as well as a condenser material, widely as a piezoelectric material, the ink jet printer printhead, a piezoelectric for back light of a liquid crystal display It can also be applied to transformers. That is, the substance according to the present invention or the substance obtained by the production method according to the present invention can be used as a ferroelectric substance or a piezoelectric substance (or piezoelectric material).

新結晶のX線回折パターンを示したグラフである。It is the graph which showed the X-ray-diffraction pattern of the new crystal. 新結晶の比誘電率ε’および誘電損失tanδの温度依存性を示したグラフである。6 is a graph showing the temperature dependence of the relative permittivity ε ′ and dielectric loss tan δ of a new crystal. αを変えたときの比誘電率の温度依存性を示した図である。It is the figure which showed the temperature dependence of the dielectric constant when changing (alpha). 比誘電率の逆数プロットであるIt is a reciprocal plot of relative permittivity 各周波数における比誘電率の温度依存性を測定した結果を示した図である。It is the figure which showed the result of having measured the temperature dependence of the dielectric constant in each frequency. 常誘電相(T>Tc)における比誘電率の周波数依存性を測定した結果を示した図である。It is the figure which showed the result of having measured the frequency dependence of the dielectric constant in a paraelectric phase (T> Tc). 強誘電相(T<Tc)における比誘電率の周波数依存性を測定した結果を示した図である。It is the figure which showed the result of having measured the frequency dependence of the dielectric constant in a ferroelectric phase (T <Tc). 新結晶の圧電定数d33の室温付近の値を測定したグラフである。It is a graph of values around room new crystal piezoelectric constant d 33. 新結晶の圧電定数d33の室温付近の値を測定したグラフである。It is a graph of values around room new crystal piezoelectric constant d 33. 新結晶の残留分極Prと抗電界Ecのそれぞれの温度依存を測定した結果を示したグラフである。It is the graph which showed the result of having measured each temperature dependence of the remanent polarization Pr and the coercive electric field Ec of a new crystal. 新結晶のxを0〜0.12付近までふったときの転移温度とK濃度の関係を表した相図である。It is a phase diagram showing the relationship between the transition temperature and the K concentration when x of the new crystal is swept to around 0 to 0.12.

Claims (7)

BaTiO結晶のうち、Baの一部がKに置換され、Oの一部がKと実質的に同量のFに置換された組成を有するチタン酸バリウム系圧電体。 A barium titanate piezoelectric material having a composition in which a part of Ba is replaced with K and a part of O is replaced with F in substantially the same amount as K in the BaTiO 3 crystal. 一般式が
Ba1−xTiO3−x(ただし、0<x<0.13)
として表される組成を有する圧電体。
The general formula is Ba 1−x K x TiO 3−x F x (where 0 <x <0.13)
A piezoelectric body having a composition expressed as:
Baに対するTiのモル比が大きくなるように原料を調製し、
仮焼きにより実質的にBaOとTiOのみからなる混合物を生成し、
これに、KFを融剤としたフラックス法により請求項1または2に記載の結晶を得ることを特徴とする圧電体製造方法。
Prepare the raw material so that the molar ratio of Ti to Ba is large,
Producing a mixture consisting essentially of BaO and TiO 2 by calcination,
3. A method for manufacturing a piezoelectric body, wherein the crystal according to claim 1 is obtained by a flux method using KF as a flux.
Baに対するTiのモル比が大きくなるように原料を配合する原料配合工程と、
KFを融剤としたフラックス法によりBaTiO結晶を成長させようとする結晶成長工程と、
を含み、
Baの一部がKに置換され、また、Oの一部がFに置換された結晶を得ることを特徴とする圧電体製造方法。
A raw material blending step of blending raw materials so that the molar ratio of Ti to Ba is increased;
A crystal growth step for growing BaTiO 3 crystals by a flux method using KF as a flux;
Including
A method for producing a piezoelectric body, characterized in that a crystal in which a part of Ba is substituted with K and a part of O is substituted with F is obtained.
原料にBaTiを用いたこと、または、BaTiOとTiOとを用いたことを特徴とする請求項3または4に記載の圧電体製造方法。 5. The method of manufacturing a piezoelectric body according to claim 3, wherein BaTi 2 O 5 is used as a raw material, or BaTiO 3 and TiO 2 are used. TiOとBaOとを、そのモル比がTiO/BaO>1となるようにして原料を調整したことを特徴とする請求項3または4に記載の圧電体製造方法。 5. The method for manufacturing a piezoelectric body according to claim 3, wherein the raw materials are adjusted so that the molar ratio of TiO 2 and BaO is TiO 2 / BaO> 1. 一般式がBa1−xTiO3−xとして表され、一次から二次へ相転移が移行するx=0.1近傍の組成である圧電体。 A piezoelectric body having a composition in the vicinity of x = 0.1 in which the general formula is represented as Ba 1-x K x TiO 3 -x F x and the phase transition shifts from the first order to the second order.
JP2007122088A 2006-05-09 2007-05-07 Barium titanate crystal piezoelectric material containing KF Expired - Fee Related JP5526422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007122088A JP5526422B2 (en) 2006-05-09 2007-05-07 Barium titanate crystal piezoelectric material containing KF

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006130539 2006-05-09
JP2006130539 2006-05-09
JP2007122088A JP5526422B2 (en) 2006-05-09 2007-05-07 Barium titanate crystal piezoelectric material containing KF

Publications (2)

Publication Number Publication Date
JP2007326768A true JP2007326768A (en) 2007-12-20
JP5526422B2 JP5526422B2 (en) 2014-06-18

Family

ID=38927505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007122088A Expired - Fee Related JP5526422B2 (en) 2006-05-09 2007-05-07 Barium titanate crystal piezoelectric material containing KF

Country Status (1)

Country Link
JP (1) JP5526422B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215450A (en) * 2009-03-17 2010-09-30 Shimane Univ Method for producing barium titanate crystal
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2015067462A (en) * 2013-09-27 2015-04-13 国立大学法人島根大学 Method for producing hexagonal barium titanate-based dielectric material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843715B1 (en) * 1970-06-13 1973-12-20
JPS63503456A (en) * 1986-06-02 1988-12-15 ヒユーズ・エアクラフト・カンパニー Method for producing single-crystal binary metal oxides with improved purity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843715B1 (en) * 1970-06-13 1973-12-20
JPS63503456A (en) * 1986-06-02 1988-12-15 ヒユーズ・エアクラフト・カンパニー Method for producing single-crystal binary metal oxides with improved purity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215450A (en) * 2009-03-17 2010-09-30 Shimane Univ Method for producing barium titanate crystal
JP2011006266A (en) * 2009-06-23 2011-01-13 Shimane Univ METHOD OF MANUFACTURING BaTi2O5 TYPE FERROELECTRIC CERAMIC
JP2015067462A (en) * 2013-09-27 2015-04-13 国立大学法人島根大学 Method for producing hexagonal barium titanate-based dielectric material

Also Published As

Publication number Publication date
JP5526422B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Qiao et al. Enhanced energy density and thermal stability in relaxor ferroelectric Bi0. 5Na0. 5TiO3-Sr0. 7Bi0. 2TiO3 ceramics
Badapanda et al. Dielectric, ferroelectric and piezoelectric study of BNT-BT solid solutions around the MPB region
Park et al. Highly enhanced mechanical quality factor in lead-free (K0. 5Na0. 5) NbO3 piezoelectric ceramics by co-doping with K5. 4Cu1. 3Ta10O29 and CuO
Zhao et al. Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics
JP5219921B2 (en) Metal oxide, piezoelectric material and piezoelectric element
GB2349272A (en) Piezoelectric paste and piezoelectric film and piezoelectric part using the same
Wang et al. Phase transition characteristics and associated piezoelectricity of potassium-sodium niobate lead-free ceramics
Lin et al. Ferroelectric and piezoelectric properties of Bi0. 5Na0. 5TiO3–SrTiO3–Bi0. 5Li0. 5TiO3 lead-free ceramics
Yan et al. Effect of Mn doping on the piezoelectric properties of 0.82 Pb (Zr1/2Ti1/2) O3–0.03 Pb (Mn1/3Sb2/3) O3–0.15 Pb (Zn1/3Nb2/3) O3 ferroelectric ceramics
Xing et al. Structure and electrical properties of (0.965− x)(K 0.48 Na 0.52) NbO 3–x BiGaO 3–0.035 (Bi 0.5 Na 0.5) ZrO 3 piezoelectric ceramics
Fuentes et al. Structural and dielectric properties of La-and Ti-modified K 0.5 Na 0.5 NbO 3 ceramics
Zeng et al. Growth and characterization of lead-free Ba (1− x) CaxTi (1− y) ZryO3 single crystal
Xu et al. Exploration on the origin of enhanced piezoelectric properties in transition-metal ion doped KNN based lead-free ceramics
Chen et al. Piezoelectric and dielectric properties of 0.995 K0. 48Na0. 48Li0. 04Nb (1− x) SbxO3–0.005 BiAlO3 lead-free piezoelectric ceramics
Wang et al. Origin of superior hardening properties in KCuTa3O9-doped K0. 5Na0. 5NbO3 lead-free piezoelectric ceramics
Chen et al. Enhancement of piezoelectric properties in low-temperature sintering PZN–PZT ceramics by Sr2+ substitution
Jaiban et al. The effects of donor (Nb5+) and acceptor (Cu2+, Zn2+, Mn2+, Mg2+) doping at B-site on crystal structure, microstructure, and electrical properties of (Ba0. 85Ca0. 15) Zr0. 1Ti0. 9O3 ceramics
JP5526422B2 (en) Barium titanate crystal piezoelectric material containing KF
Li et al. Relaxor behavior and Raman spectra of CuO-doped Pb (Mg 1/3 Nb 2/3) O 3-PbTiO 3 ferroelectric ceramics
Xue et al. The dielectric and ferroelectric properties of (Ba 0. 5 Sr 0. 5) TiO3-doped (Bi 0. 5 Na 0. 5) TiO3 lead-free ceramics
Wang et al. Phase transition and piezoelectric properties of alkali niobate ceramics through composition tuning
Mazumder et al. ‘Ultra’-low-temperature sintering of PZT: A synergy of nano-powder synthesis and addition of a sintering aid
Adamczyk-Habrajska et al. Impedance Studies of K0. 5Na0. 5NbO3 ceramics prepared from mechanochemically activated powders
Liu et al. Growth and characterization of Mn-doped Na1/2Bi1/2TiO3 lead-free ferroelectric single crystal
Lin et al. Structure and electrical properties of Bi 0.5 Na 0.5 TiO 3-Y 0.5 Na 0.5 TiO 3-BaTiO 3 lead-free piezoelectric ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5526422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees