JP2007326726A - Silica powder, its manufacturing method and its use - Google Patents

Silica powder, its manufacturing method and its use Download PDF

Info

Publication number
JP2007326726A
JP2007326726A JP2006157365A JP2006157365A JP2007326726A JP 2007326726 A JP2007326726 A JP 2007326726A JP 2006157365 A JP2006157365 A JP 2006157365A JP 2006157365 A JP2006157365 A JP 2006157365A JP 2007326726 A JP2007326726 A JP 2007326726A
Authority
JP
Japan
Prior art keywords
silica powder
composition
surface area
specific surface
organosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157365A
Other languages
Japanese (ja)
Other versions
JP4745138B2 (en
Inventor
Takaya Goto
貴也 後藤
Hideaki Sonoda
英明 園田
Seigo Naruse
誠吾 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006157365A priority Critical patent/JP4745138B2/en
Publication of JP2007326726A publication Critical patent/JP2007326726A/en
Application granted granted Critical
Publication of JP4745138B2 publication Critical patent/JP4745138B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide silica powder which has excellent light transmittance equal to that of an epoxy resin, the light transmittance of which is hardly deteriorated even when used for a long time and which is suitable for producing an LED sealing resin composition or the like and to provide a method for manufacturing the silica powder and a rubber or resin composition, particularly, the LED sealing resin composition using the silica powder. <P>SOLUTION: The silica powder has 120-250 m<SP>2</SP>/g specific surface area when measured according to a BET one-point method, ≤1.8 cc/100 g linseed oil absorption capacity per 1 m<SP>2</SP>specific surface area when measured according to JIS-K5101-13-1 and ≥0.85 average sphericity. The method for manufacturing the silica powder comprises the steps of: forming a high temperature field of ≥1,600°C; and jetting gaseous organosiloxane of 1/200 to 1/5 times of the volume of the high temperature field toward the high temperature field at 200-800 m/second jetting speed to heat-treat the jetted organosiloxane. A composition is obtained by mixing the obtained silica powder in at least one of the epoxy resin and a silicone resin. The LED sealing resin composition consists of the obtained composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリカ粉末、その製造方法及び用途に関する。 The present invention relates to silica powder, a method for producing the same, and use thereof.

従来、LED封止用樹脂としてエポキシ樹脂が用いられている。エポキシ樹脂は光透過性に優れ、成型性が良く、安価であるが、長時間の使用によって劣化しやすく光透過性が低下する。この問題は、LED用途がパイロットランプや電光掲示板などの表示用途ではあまり深刻ではないが、蛍光灯の代替、自動車用ヘッドライト、液晶ディスプレイ用バックライトの光源等の照明用途では無視することができない。しかも、白色LEDでは、従来のLEDよりも発熱が大きくなるが、エポキシ樹脂の大きな応力によってワイヤーの断線などを来たし、LEDが点灯しないとことがしばしば起きた。 Conventionally, an epoxy resin has been used as an LED sealing resin. Epoxy resins are excellent in light transmittance, have good moldability, and are inexpensive, but are easily deteriorated by long-term use, and light transmittance is lowered. This problem is not so serious in LED display applications such as pilot lamps and electric bulletin boards, but cannot be ignored in lighting applications such as fluorescent lamp replacement, automotive headlights, and liquid crystal display backlights. . Moreover, the white LED generates more heat than the conventional LED, but it often happens that the wire breaks due to the large stress of the epoxy resin and the LED does not light up.

そこで、エポキシ樹脂のかわりにシリコーン樹脂を用いることが提案されているが、シリコーン樹脂はエポキシ樹脂よりも成形性が劣りしかも高価であるのでエポキシ樹脂の全面代替とはならない。したがって、依然としてエポキシ樹脂には大きな魅力があり、その欠点を改善して使用するべく種々のシリカ粉末を充填することが提案されている。しかしながら、四塩化珪素の火炎熱分解法シリカ粉末(フュームドシリカ)ではストラクチャー構造を有するため少量充填しても白濁する、珪酸ソーダを原料とする含水珪酸シリカ粉末(珪酸ソーダ法シリカ)では純度が95%程度と低く不純物によって着色し、また凝集が多いのでエポキシ樹脂中への分散がよくない、金属シリコン粉末の燃焼法シリカ粉末ではBET比表面積が最大でも120m/gであるので光を散乱する、シリコーンオイルの燃焼法シリカ粉末(特許文献1)ではストラクチャーによる凝集を形成するなどし、いずれの場合も光透過性を低下させた。
特開2002−060214
Therefore, it has been proposed to use a silicone resin in place of the epoxy resin, but the silicone resin is inferior in moldability and more expensive than the epoxy resin, so it is not a full replacement for the epoxy resin. Therefore, epoxy resins still have great attraction, and it has been proposed to fill various silica powders in order to improve their drawbacks. However, silicon tetrachloride flame pyrolysis silica powder (fumed silica) has a structure structure and thus becomes cloudy even when filled in small amounts. Hydrous silica silicate powder (sodium silicate silica) using sodium silicate as a raw material has purity. As low as 95%, it is colored by impurities and has a lot of agglomeration, so dispersion in the epoxy resin is not good. Metallic silica powder combustion method Silica powder has a BET specific surface area of 120 m 2 / g at most, so it scatters light The silicone oil combustion method silica powder (Patent Document 1) formed agglomeration due to the structure, and in all cases reduced the light transmittance.
JP 2002-060214 A

本発明の目的は、エポキシ樹脂と同等の良好な光透過性を有し、長時間使用してもその低下の小さいLED封止用樹脂組成物を製造するのに好適なシリカ粉末とその製造方法を提供することである。また、別の目的は、光透過性の改善されたゴム組成物又は樹脂組成物(以下、両者を併せて「組成物」という。)を提供することであり、特にエポキシ樹脂組成物又はシリコーン樹脂からなる光透過性の改善されたLED封止用樹脂組成物を提供することである。 An object of the present invention is a silica powder suitable for producing a resin composition for LED encapsulation having a good light transmittance equivalent to that of an epoxy resin, and a decrease thereof is small even when used for a long time, and a method for producing the silica powder Is to provide. Another object is to provide a rubber composition or a resin composition (hereinafter referred to as “composition” together) having improved light transmittance, particularly an epoxy resin composition or a silicone resin. It is providing the resin composition for LED sealing by which the light transmittance improved.

本発明は、BET1点法比表面積が120〜250m/g、JIS−K5101−13−1によるアマニ油吸油量が比表面積1m当たり1.8cc/100g以下、平均球形度が0.85以上であるシリカ粉末である。本発明においては、BET1点法比表面積が160〜220m/g、JIS−K5101−13−1によるアマニ油吸油量が比表面積1m当たり1.6cc/100g以下、平均球形度が0.93以上であることが好ましい。また、表面活性剤で処理されていることが更に好ましい。 The present invention has a BET single point method specific surface area of 120 to 250 m 2 / g, linseed oil absorption according to JIS-K5101-13-1 is 1.8 cc / 100 g or less per 1 m 2 of specific surface area, and average sphericity is 0.85 or more. This is a silica powder. In the present invention, the BET one-point specific surface area is 160 to 220 m 2 / g, the linseed oil absorption according to JIS-K5101-13-1 is 1.6 cc / 100 g or less per 1 m 2 of specific surface area, and the average sphericity is 0.93. The above is preferable. Further, it is more preferable that the surface is treated with a surface active agent.

また、本発明は、温度1600℃以上の高温場の容積に対し、毎秒1/200〜1/5倍量のオルガノシロキサンを200〜800m/秒の突出速度で高温場に噴射し、熱処理することを特徴とするシリカ粉末の製造方法である。この発明においては、オルガノシロキサンの分子量が1500以下であることが好ましい。 Further, the present invention is to heat-treat by injecting 1/200 to 1/5 times the amount of organosiloxane per second at a protruding speed of 200 to 800 m / sec. Is a method for producing silica powder. In this invention, it is preferable that the molecular weight of the organosiloxane is 1500 or less.

さらに、本発明は、本発明のシリカ粉末をエポキシ樹脂及びシリコーン樹脂の少なくとも一方に含有させてなる組成物、特にLED封止用組成物である。 Furthermore, the present invention is a composition comprising the silica powder of the present invention contained in at least one of an epoxy resin and a silicone resin, particularly an LED sealing composition.

本発明によれば、エポキシ樹脂と同等の良好な光透過性を有し、しかもその経時低下の小さい樹脂組成物を得るのに好適なシリカ粉末と、その容易な製造方法が提供される。また、本発明によれば、光透過性の良好な組成物、特にLED封止用組成物が提供される。 According to the present invention, there are provided a silica powder suitable for obtaining a resin composition having good light transmittance equivalent to that of an epoxy resin and having a small deterioration with time, and an easy production method thereof. Moreover, according to this invention, the composition with favorable light transmittance, especially the composition for LED sealing are provided.

本発明において、シリカ粉末のBET1点法比表面積が120m/g未満では組成物の光透過性が悪化し、また250m/gをこえると組成物の光透過性の経時低下が大きくなる。好ましいBET1点法比表面積は160〜220m/gである。 In the present invention, if the BET single point method specific surface area of the silica powder is less than 120 m 2 / g, the light transmittance of the composition deteriorates, and if it exceeds 250 m 2 / g, the light transmittance of the composition decreases with time. A preferable BET one-point specific surface area is 160 to 220 m 2 / g.

また、シリカ粉末のJIS−K5101−13−1によるアマニ油吸油量が比表面積1m当たり1.8cc/100gをこえると、組成物の光透過性の経時低下が大きくなり、それ補うべく充填量を増やすと、組成物の粘度が大きくなって成形が困難となる。アマニ油吸油量は小さいほど好ましく、特に比表面積1m当たり1.6cc/100g以下であることが好ましい。 Further, when the linseed oil absorption amount of silica powder according to JIS-K5101-13-1 exceeds 1.8 cc / 100 g per 1 m 2 of the specific surface area, the light transmittance of the composition decreases significantly with time, and the filling amount is to compensate for it. When the amount is increased, the viscosity of the composition increases and molding becomes difficult. The linseed oil absorption is preferably as small as possible, and particularly preferably 1.6 cc / 100 g or less per 1 m 2 of specific surface area.

シリカ粉末の平均球形度が0.85未満であると、良好な光透過性を発現させるための充填量にした組成物の成形が困難となる。好ましい平均球形度は0.93以上である。 When the average sphericity of the silica powder is less than 0.85, it is difficult to mold the composition having a filling amount for developing good light transmittance. A preferable average sphericity is 0.93 or more.

平均球形度は、TEM写真から観察される粒子像を画像解析装置(例えば日本アビオニクス社製)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)を測定して求める。すなわち、周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとなる。粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、粒子の真円度は、真円度=A/B=A×4π/(PM)、として算出できる。これを任意の粒子200個について求め、その平均値を平均球形度とする。 The average sphericity is obtained by taking a particle image observed from a TEM photograph into an image analyzer (for example, manufactured by Nippon Avionics Co., Ltd.), and measuring the projected area (A) and perimeter length (PM) of the particle from the photograph. That is, when the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle is A / B. Assuming a perfect circle having the same circumference as the circumference of the particle (PM), PM = 2πr and B = πr 2 , so B = π × (PM / 2π) 2 , and the roundness of the particle is , Roundness = A / B = A × 4π / (PM) 2 This is calculated | required about arbitrary particles 200, and let the average value be average sphericity.

本発明のシリカ粉末は、本発明のシリカ粉末の製造方法によって製造することができる。本発明においてオルガノシロキサンは、ガスとして高温場に噴射される。オルガノシロキサンを液状で供給しても、シリカ粉末のBET1点法比表面積は120m/g以上とはならない。オルガノシロキサンは、ガス化を容易とするため、その分子量は1500以下であることが好ましい。このようなオルガノシロキサンを例示すれば、直鎖ジメチルポリシロキサン((CHSiO[Si(CHO]Si(CH、但し1≦n≦18)、ヘキサメチルジシロキサン、オクタメチルトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサンなどである。特に好ましいものは、上記一般式においてnが1〜3であるもの、及びデカメチルシクロペンタシロキサンである。 The silica powder of this invention can be manufactured with the manufacturing method of the silica powder of this invention. In the present invention, the organosiloxane is injected as a gas into a high temperature field. Even if the organosiloxane is supplied in a liquid state, the BET one-point specific surface area of the silica powder does not exceed 120 m 2 / g. Organosiloxane preferably has a molecular weight of 1500 or less in order to facilitate gasification. Examples of such organosiloxanes include linear dimethylpolysiloxane ((CH 3 ) 3 SiO [Si (CH 3 ) 2 O] n Si (CH 3 ) 3 , where 1 ≦ n ≦ 18), hexamethyldi Siloxane, octamethyltrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane and the like. Particularly preferred are those in which n is 1 to 3 in the above general formula and decamethylcyclopentasiloxane.

オルガノシロキサンのガスは、200〜800m/秒の突出速度で温度1600℃以上の高温場に噴射される。突出速度が200m/秒未満であると、得られたシリカ粉末のBET1点法比表面積は120m/g以上とはならず、また800m/秒をこえると、高温場の温度が低下し未反応のオルガノシロキサンが多くなる。好ましい突出速度は300〜600m/秒である。オルガノシロキサンのガスは、例えば空気や酸素などの助燃ガスや、LPG等の燃料ガスと混合されてノズルから噴射される。ノズルの口径と助燃ガス又は燃料ガスの流量を調節することによってオルガノシロキサンのガスの突出速度を制御することができる。噴射ガス中のオルガノシロキサンのガス濃度は、ストラクチャー構造を抑制する点から、0.5〜5体積%とであることが好ましい。オルガノシロキサンのガス化は、液状オルガノシロキサンの加熱蒸発によって行われる。 The organosiloxane gas is injected into a high temperature field at a temperature of 1600 ° C. or higher at a protruding speed of 200 to 800 m / sec. When the protrusion speed is less than 200 m / sec, the BET single point method specific surface area of the obtained silica powder does not exceed 120 m 2 / g, and when it exceeds 800 m / sec, the temperature in the high temperature field decreases and unreacted. The amount of organosiloxane increases. A preferable protrusion speed is 300 to 600 m / sec. The organosiloxane gas is mixed with an auxiliary combustion gas such as air or oxygen, or a fuel gas such as LPG and injected from the nozzle. The protruding speed of the organosiloxane gas can be controlled by adjusting the nozzle diameter and the flow rate of the auxiliary gas or fuel gas. The organosiloxane gas concentration in the propellant gas is preferably 0.5 to 5% by volume from the viewpoint of suppressing the structure structure. The gasification of the organosiloxane is performed by heating and evaporation of the liquid organosiloxane.

オルガノシロキサンのガスの噴射量は、温度1600℃以上の高温場の容積に対し毎秒1/200〜1/5倍量とする。1/200倍量未満では炉内温度の調節によるBET1点法比表面積の制御が困難となり、1/5倍量をこえると合着を形成し球形度の低下を招く。好ましくは毎秒1/100〜1/10倍量である。噴射する場所は、温度1600℃以上、特に1800〜2200℃となっている高温場である。1600℃未満の場所に噴射すると、未反応オルガノシロキサンが多くなる。 The amount of the organosiloxane gas sprayed is 1/200 to 1/5 times the volume of a high temperature field volume of 1600 ° C. or higher. If the amount is less than 1/200, it is difficult to control the BET single point method specific surface area by adjusting the furnace temperature. If the amount exceeds 1/5, adhesion is formed and the sphericity is lowered. The amount is preferably 1/100 to 1/10 times the amount per second. The place to inject is a high temperature field where the temperature is 1600 ° C. or higher, particularly 1800 to 2200 ° C. When sprayed to a place below 1600 ° C., the amount of unreacted organosiloxane increases.

特許文献1には、シリコーンオイルを燃焼させてシリカ粉末を製造すること、得られたシリカ粉末はBET1点法比表面積が3〜300m/gであることが実施例に記載されている。しかし、特許文献1には、オルガノシロキサンのガスを噴射すること、その噴射量を温度1600℃以上の高温場の容積に対し毎秒1/200〜1/5倍量とすること、更にはその突出速度を200〜800m/秒とすることについては記載がない。したがって、特許文献1と本発明の製造方法で製造されたシリカ粉末は、比表面積が同程度になることもあるが、特許文献1のアマニ油吸油量は本発明の比表面積1m当たり1.8cc/100gよりも著しく大きくなる。 Patent Document 1 describes that silica powder is produced by burning silicone oil, and that the obtained silica powder has a BET one-point specific surface area of 3 to 300 m 2 / g. However, Patent Document 1 discloses that an organosiloxane gas is injected, the injection amount is 1/200 to 1/5 times the volume of a high temperature field at a temperature of 1600 ° C. There is no description about the speed of 200 to 800 m / sec. Therefore, although the specific surface area of the silica powder manufactured by patent document 1 and the manufacturing method of this invention may become comparable, the linseed oil absorption amount of patent document 1 is 1. per 1 m < 2 > of specific surface area of this invention. It becomes significantly larger than 8cc / 100g.

本発明において、温度1600℃以上の高温場の形成と、その高温場を用いるシリカ粉末の製造は、例えば以下のようにして行う。装置としては、炉とこの炉に接続された捕集装置とからなるものが好ましく、その一例が特開2001−335313号公報に図示されている。更に説明すると、炉は、竪型炉、横型炉のいずれでもよいが、竪型炉が好ましい。炉は、オルガノシロキサンのガスをシリカに変化させるとともにそのシリカを溶融又は半溶融状態にして球状化させる溶融ゾーンと、球状化された粒子を冷却固化する冷却ゾーンとからなる。溶融ゾーンは、温度1600℃以上の高温場でもあり、火炎で形成される。冷却ゾーンでは、捕集装置における操作が容易となる温度までに球状化された粒子が冷却される。冷却は、自然冷却又は強制冷却によって行われる。自然冷却では、その温度に達する時間の間、球状化された粒子が滞留する長さに冷却ゾーンが設計されている。強制冷却は、冷却ゾーンから捕集装置に至る任意の間に例えば空気等の冷却ガスを供給することによって行われる。捕集装置では、例えば重沈沈降室、サイクロン、バグフィルター等の補集機の少なくとも1機が設置される。オルガノシロキサンのガスの噴射口は、炉の一方に取り付けられるが、竪型炉では、通常、炉の上面に取り付けられる。好ましくは、溶融ゾーンを形成させるため炉の上面に設けられた燃料バーナーの中央部(円心部)に、オルガノシロキサンのガスの噴射口を設けることが好ましい。これには二流体ノズルが好適となる。このようなバーナーは1個又は複数個が設置される。 In the present invention, formation of a high temperature field having a temperature of 1600 ° C. or higher and production of silica powder using the high temperature field are performed, for example, as follows. As an apparatus, what consists of a furnace and the collection apparatus connected to this furnace is preferable, and the example is shown in Unexamined-Japanese-Patent No. 2001-335313. More specifically, the furnace may be either a vertical furnace or a horizontal furnace, but is preferably a vertical furnace. The furnace is composed of a melting zone for changing the organosiloxane gas into silica, melting the silica into a semi-molten state and making it spheroidized, and a cooling zone for cooling and solidifying the spheroidized particles. The melting zone is also a high temperature field having a temperature of 1600 ° C. or higher, and is formed by a flame. In the cooling zone, the spheroidized particles are cooled to a temperature at which the operation in the collecting device is easy. Cooling is performed by natural cooling or forced cooling. In natural cooling, the cooling zone is designed to be long enough for the spheroidized particles to stay for the time to reach that temperature. Forced cooling is performed by supplying a cooling gas such as air, for example, at any time from the cooling zone to the collecting device. In the collection device, for example, at least one collector such as a heavy sedimentation chamber, a cyclone, and a bag filter is installed. An organosiloxane gas injection port is attached to one of the furnaces, but in a vertical furnace, it is usually attached to the upper surface of the furnace. Preferably, an organosiloxane gas injection port is preferably provided at the center (circular center) of the fuel burner provided on the upper surface of the furnace in order to form a melting zone. For this, a two-fluid nozzle is suitable. One or a plurality of such burners are installed.

火炎は、燃料バーナーから、プロパンガス、ブタンガス、水素等の燃料ガスと、酸素、空気等助燃ガスを噴射させることによって成させることができる。本発明ではこの火炎の外周部から更に助燃ガスを個別に噴射させることもできる。 The flame can be formed by injecting a fuel gas such as propane gas, butane gas, hydrogen, and an auxiliary combustion gas such as oxygen or air from a fuel burner. In the present invention, auxiliary combustion gas can be individually injected from the outer peripheral portion of the flame.

シリカ粉末のBET1点法比表面積はオルガノシロキサンのガスの突出速度と噴射量によって制御することができる。突出速度を大きくするほど、また噴射量を少なくするほど、比表面積が大きくなる。アマニ油吸油量は高温場の温度や、オルガノシロキサンの噴射量によって制御することができる。高温場の温度を高めるほど、またオルガノシロキサンの噴射量を減らすほど、アマニ油吸油量が小さくなる。 The BET single point specific surface area of the silica powder can be controlled by the protruding speed of the organosiloxane gas and the injection amount. The specific surface area increases as the protrusion speed increases and the injection amount decreases. The amount of linseed oil absorption can be controlled by the temperature in the high temperature field and the amount of organosiloxane injected. The higher the temperature in the high temperature field and the smaller the amount of organosiloxane sprayed, the smaller the linseed oil absorption.

本発明の組成物に用いるエポキシ樹脂を例示すれば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂などである。また、シリコーン樹脂を例示すれば、メチルシリコーン樹脂、メチルフェニルシリコーン樹脂、アルキッド変性シリコーン樹脂、エポキシ変性シリコーン樹脂、アクリル変性シリコーン樹脂、ポリエステル変性シリコーン樹脂などである。シリカ粉末の組成物中の含有率は40〜70質量%が好ましい。 Examples of the epoxy resin used in the composition of the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, Phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, and the like. Examples of the silicone resin include methyl silicone resin, methylphenyl silicone resin, alkyd-modified silicone resin, epoxy-modified silicone resin, acrylic-modified silicone resin, and polyester-modified silicone resin. As for the content rate in the composition of a silica powder, 40-70 mass% is preferable.

本発明のLED封止用組成物は、本発明の組成物からなるものである。LED封止材は、本発明の組成物と、その組成物の硬化剤と、硬化触媒とから構成されている。硬化剤を例示すれば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水パイロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸等などである。また、硬化触媒を例示すれば、イミダゾール類、トリフェニルフォスフィン類、トリブチルフォスフィンまたはそれらの塩類、DBU(ジアザビスシクロウンデセン)、三級アミン、カルボン酸金属塩類等などである。配合例の一例を示せば、本発明の組成物100質量部あたり、硬化剤が80〜110質量部、硬化触媒が0.01〜10質量部である。必要に応じ、染料、蛍光剤、変性剤、変色防止剤、離型剤などが配合される。形態は、液状、粉末状又はタブレット状であることが多い。LED封止材によるLED素子の封止は、トランスファー成形、注型等の常套手段によって行われる。 The composition for LED sealing of this invention consists of a composition of this invention. LED sealing material is comprised from the composition of this invention, the hardening | curing agent of the composition, and a curing catalyst. Examples of curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride, etc. is there. Examples of the curing catalyst include imidazoles, triphenylphosphine, tributylphosphine or salts thereof, DBU (diazabiscycloundecene), tertiary amine, carboxylic acid metal salts, and the like. If an example of a compounding example is shown, a hardening | curing agent will be 80-110 mass parts and a curing catalyst will be 0.01-10 mass parts per 100 mass parts of compositions of this invention. If necessary, a dye, a fluorescent agent, a modifier, a discoloration inhibitor, a release agent, and the like are blended. The form is often liquid, powder or tablet. The LED element is sealed with the LED sealing material by conventional means such as transfer molding and casting.

助燃ガス供給部、その内部が可燃ガス供給部で構成されているバーナー(直径150mmの円筒状)を、縦型炉(直径700mm×高さ5000mm)の上面に設置し、バーナーの円心部にノズル設置管を介して二流体ノズル(アトマックス社製商品名「BNH−160S」)を挿入した。1時間あたり可燃ガス(LPGガス)を6Nm、助燃ガス(酸素ガス)を18Nm供給し火炎を形成させながら、オルガノシロキサンとしてデカメチルシクロペンタシロキサン(分子量:370)を350℃に加熱された蒸発器にてガス化し、350℃に加熱した窒素ガス10Nmをキャリアガス、酸素30Nmを分散ガスとして二流体ノズルから噴射した。デカメチルシクロペンタシロキサンは、温度1600℃以上の高温場の容積(NEC三栄社製サーモグラフィ「TH9100MV」の画像から算出された容積)に対し表1に示される倍量のガスを、表1に示される突出速度で高温場に噴射した。生成したシリカ粉末は炉下部から捕集系にブロワーで吸引輸送され、バグフィルターで捕集した。デカメチルシクロペンタシロキサンの噴射量、突出速度の条件を変え、表1に示されるシリカ粉末A〜Mを製造した。なお、シリカ粉末Bは、シリカ粉末Aの200gを振動流動層(中央化工機社製「振動流動層装置VUA−15型」)に仕込み、吸引ブロワーにより循環させた空気にて流動化させながら水18gを噴射して5分間流動混合させた後、HMDS(東芝シリコーン社製商品名「TSL−8802」)30gを噴射し、30分間流動混合して表面処理を施したものである。 A burner (cylindrical shape with a diameter of 150 mm), the auxiliary combustion gas supply part of which is composed of a combustible gas supply part, is installed on the upper surface of a vertical furnace (diameter 700 mm × height 5000 mm) and placed at the center of the burner A two-fluid nozzle (trade name “BNH-160S” manufactured by Atmax Co., Ltd.) was inserted through the nozzle installation tube. Decamethylcyclopentasiloxane (molecular weight: 370) was heated to 350 ° C. as organosiloxane while supplying a combustible gas (LPG gas) of 6 Nm 3 and an auxiliary combustion gas (oxygen gas) of 18 Nm 3 per hour to form a flame. Nitrogen gas 10Nm 3 heated to 350 ° C. was gasified by an evaporator and injected from a two-fluid nozzle as carrier gas and oxygen 30Nm 3 as dispersion gas. Decamethylcyclopentasiloxane shows the gas in double the amount shown in Table 1 with respect to the volume in a high temperature field of 1600 ° C. or higher (the volume calculated from the image of thermography “TH9100MV” manufactured by NEC Sanei Co., Ltd.). Injected into a hot field at a protruding speed. The produced silica powder was sucked and transported from the lower part of the furnace to a collection system by a blower and collected by a bag filter. Silica powders A to M shown in Table 1 were produced by changing the injection amount of decamethylcyclopentasiloxane and the conditions of the protruding speed. In addition, silica powder B is prepared by adding 200 g of silica powder A to a vibrating fluidized bed (Chuo Kakoki Co., Ltd. “vibrating fluidized bed apparatus VUA-15 type”) and fluidizing it with air circulated by a suction blower. After 18 g is sprayed and fluidized and mixed for 5 minutes, 30 g of HMDS (trade name “TSL-8802” manufactured by Toshiba Silicone Co., Ltd.) is sprayed and fluidized and mixed for 30 minutes for surface treatment.

実施例1〜9 比較例1〜4
エポキシ当量185のビスフェノ−ルA型エポキシ樹脂100質量部あたり、シリカ粉末のメチルエチルケトン分散体をシリカ粉末として200質量部、テトラヒドロ無水フタル酸100質量部、DBU(ジアザビスシクロウンデセン)0.4質量部を混合して得られた組成物の流動性を測定した。その後、組成物を乾燥してメチルエチルケトンを除去した後、金型で加熱硬化させてエポキシ樹脂硬化体(幅10mm、長さ100mm、厚さ4mm)を製造し、以下にしたがって光透過率とその経時変化を測定した。それらの結果を表1に示す。なお、比較例1及び4ではシリカ粉末の割合が200質量部であっては流動性が悪化し成型することが困難であったので、シリカ粉末の割合を150質量部とした。
Examples 1-9 Comparative Examples 1-4
200 parts by mass of methyl ethyl ketone dispersion of silica powder as silica powder, 100 parts by mass of tetrahydrophthalic anhydride, 100 parts by mass of DBU (diazabiscycloundecene) per 100 parts by mass of bisphenol A type epoxy resin having an epoxy equivalent of 185 The fluidity of the composition obtained by mixing parts by mass was measured. Thereafter, the composition is dried to remove methyl ethyl ketone, and then cured by heating with a mold to produce a cured epoxy resin (width 10 mm, length 100 mm, thickness 4 mm). Changes were measured. The results are shown in Table 1. In Comparative Examples 1 and 4, when the proportion of the silica powder was 200 parts by mass, the fluidity deteriorated and it was difficult to mold, so the proportion of the silica powder was 150 parts by mass.

(1)組成物の流動性
エポキシ当量185のビスフェノ−ルA型エポキシ樹脂90質量部とシリカ粉末10質量部を、自公転型混練機(株式会社シンキー製:あわとり練太郎)を用いて公転2000rpm・自転600rpmにて10分混合し、E型粘度計(東機産業株式会社製:TVE−30H)にて1rpmのときの粘度を測定した。
(2)光透過率とその経時変化
エポキシ樹脂硬化体の初期光透過率を、紫外可視近赤外分光光度計(JASCO社製「V−530型」)を用い600nmの波長で測定した。その後、エポキシ樹脂硬化体に超高圧水銀ランプ(ウシオ電機株式会社製ML−501C/B、主波長365nm)により紫外線を1週間照射した後の経時光透過率を測定した。良好な光透過率は80%以上である。
(1) Fluidity of the composition 90 parts by mass of a bisphenol A type epoxy resin having an epoxy equivalent of 185 and 10 parts by mass of silica powder were revolved using a self-revolving kneading machine (Shinky Co., Ltd .: Awatori Kentaro). The mixture was mixed for 10 minutes at 2000 rpm and 600 rpm, and the viscosity at 1 rpm was measured with an E-type viscometer (manufactured by Toki Sangyo Co., Ltd .: TVE-30H).
(2) Light transmittance and its change with time The initial light transmittance of the cured epoxy resin was measured at a wavelength of 600 nm using an ultraviolet-visible near-infrared spectrophotometer ("V-530 type" manufactured by JASCO). Thereafter, the light transmittance over time was measured after the epoxy resin cured body was irradiated with ultraviolet rays for 1 week using an ultra-high pressure mercury lamp (ML-501C / B, manufactured by Ushio Inc., main wavelength 365 nm). Good light transmittance is 80% or more.

Figure 2007326726
Figure 2007326726

本発明のシリカ粉末は、組成物の充填材や、シリカ焼結体の製造原料などに使用できる。また、本発明の組成物は、LED封止用組成物や、各種成型物の製造原料に使用することができる。 The silica powder of the present invention can be used as a filler for a composition, a raw material for producing a silica sintered body, and the like. Moreover, the composition of this invention can be used for the composition for LED sealing, and the manufacturing raw material of various moldings.

Claims (7)

BET1点法比表面積が120〜250m/g、JIS−K5101−13−1によるアマニ油吸油量が比表面積1m当たり1.8cc/100g以下、平均球形度が0.85以上であるシリカ粉末。 Silica powder having a BET one-point specific surface area of 120 to 250 m 2 / g, linseed oil absorption according to JIS-K5101-13-1 of 1.8 cc / 100 g or less per 1 m 2 of specific surface area, and an average sphericity of 0.85 or more . BET1点法比表面積が160〜220m/g、JIS−K5101−13−1によるアマニ油吸油量が比表面積1m当たり1.6cc/100g以下、平均球形度が0.93以上である請求項1に記載のシリカ粉末。 The BET single point method specific surface area is 160 to 220 m 2 / g, the linseed oil absorption according to JIS-K5101-13-1 is 1.6 cc / 100 g or less per 1 m 2 of specific surface area, and the average sphericity is 0.93 or more. The silica powder according to 1. 表面活性剤で処理されている請求項1又は2に記載のシリカ粉末。 The silica powder according to claim 1 or 2, which has been treated with a surfactant. 温度1600℃以上の高温場の容積に対し、毎秒1/200〜1/5倍量のオルガノシロキサンのガスを200〜800m/秒の突出速度で高温場に噴射し、熱処理することを特徴とするシリカ粉末の製造方法。 It is characterized in that heat treatment is carried out by injecting an organosiloxane gas in an amount of 1/200 to 1/5 times the volume of a high temperature field at a temperature of 1600 ° C. or more to a high temperature field at a protruding speed of 200 to 800 m / sec. A method for producing silica powder. オルガノシロキサンの分子量が1500以下である請求項4に記載の製造方法。 The production method according to claim 4, wherein the molecular weight of the organosiloxane is 1500 or less. 請求項1又は2に記載のシリカ粉末をエポキシ樹脂及びシリコーン樹脂の少なくとも一方に含有させてなる組成物。 A composition comprising the silica powder according to claim 1 or 2 in at least one of an epoxy resin and a silicone resin. 請求項6に記載の組成物からなるLED封止用組成物。 The composition for LED sealing which consists of a composition of Claim 6.
JP2006157365A 2006-06-06 2006-06-06 Method for producing silica powder Expired - Fee Related JP4745138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157365A JP4745138B2 (en) 2006-06-06 2006-06-06 Method for producing silica powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157365A JP4745138B2 (en) 2006-06-06 2006-06-06 Method for producing silica powder

Publications (2)

Publication Number Publication Date
JP2007326726A true JP2007326726A (en) 2007-12-20
JP4745138B2 JP4745138B2 (en) 2011-08-10

Family

ID=38927466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157365A Expired - Fee Related JP4745138B2 (en) 2006-06-06 2006-06-06 Method for producing silica powder

Country Status (1)

Country Link
JP (1) JP4745138B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201461A (en) * 2013-04-02 2014-10-27 株式会社トクヤマ Hydrophobized dry silica microparticle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513976A (en) * 1997-05-26 1999-11-30 ロディア シミ Precipitated silica for elastomer reinforced filler
JP2003171117A (en) * 2001-11-30 2003-06-17 Shin Etsu Chem Co Ltd Hydrophobic silica fine powder and method for manufacturing the same
JP2005032872A (en) * 2003-07-09 2005-02-03 Shin Etsu Chem Co Ltd Sealing method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513976A (en) * 1997-05-26 1999-11-30 ロディア シミ Precipitated silica for elastomer reinforced filler
JP2003171117A (en) * 2001-11-30 2003-06-17 Shin Etsu Chem Co Ltd Hydrophobic silica fine powder and method for manufacturing the same
JP2005032872A (en) * 2003-07-09 2005-02-03 Shin Etsu Chem Co Ltd Sealing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201461A (en) * 2013-04-02 2014-10-27 株式会社トクヤマ Hydrophobized dry silica microparticle

Also Published As

Publication number Publication date
JP4745138B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP2006290724A (en) Spherical silica particle, its production method, and resin composition
CN117801544A (en) Curable particulate silicone compositions and methods for making the same
JP2001080927A (en) Production of dense quartz glass particle
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP2007051019A (en) Method for producing spheroidized inorganic powder
JP4460968B2 (en) Method for producing resin composition
JP2005068258A (en) Spherical alumina powder and its application
JPWO2009017058A1 (en) Silica powder, production method thereof and composition using the same
JP4745138B2 (en) Method for producing silica powder
JP2009173694A (en) Silicone-based polymer particle and curable resin composition containing the particle
US7083770B2 (en) Amorphous, fine silica particles, and method for their production and their use
JP6618144B2 (en) Spherical calcium fluoride
JP2006256913A (en) Spherical silica particle, resin composition and semiconductor liquid sealing material
JP2010285307A (en) Amorphous siliceous powder and method for producing the same, and usage
JP6942688B2 (en) Composition for transparent silica glass and its manufacturing method
JP2005082668A (en) Flame retardant, method for producing the same, and resin composition
JP3721285B2 (en) Spherical inorganic powder and its use
JPH03258852A (en) Epoxy resin composition and cured product thereof
CN106103345B (en) Method for producing silica dioxide granule
JP2704281B2 (en) Fused spherical silica and sealing resin composition using the same as filler
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP4342036B2 (en) Method for producing auxiliary for siliceous filler
JP7082257B1 (en) Fillers for semiconductor mounting materials, their manufacturing methods, and semiconductor mounting materials
JP2005120230A (en) Epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the composition
JP2009227504A (en) Spherical low-melting point glass composition powder, manufacturing method, and low-melting point glass composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees