JP2007325781A - Observation device and method for inside of scattering medium - Google Patents

Observation device and method for inside of scattering medium Download PDF

Info

Publication number
JP2007325781A
JP2007325781A JP2006159773A JP2006159773A JP2007325781A JP 2007325781 A JP2007325781 A JP 2007325781A JP 2006159773 A JP2006159773 A JP 2006159773A JP 2006159773 A JP2006159773 A JP 2006159773A JP 2007325781 A JP2007325781 A JP 2007325781A
Authority
JP
Japan
Prior art keywords
observation
light source
image
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006159773A
Other languages
Japanese (ja)
Other versions
JP5008901B2 (en
Inventor
Yutaka Ishiwatari
裕 石渡
Hiroyuki Nishida
浩幸 西田
Daisuke Asada
大輔 浅田
Keiji Handa
啓二 半田
Kenji Harano
健二 原野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Medical Systems Corp
Original Assignee
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Medical Systems Corp filed Critical Olympus Medical Systems Corp
Priority to JP2006159773A priority Critical patent/JP5008901B2/en
Publication of JP2007325781A publication Critical patent/JP2007325781A/en
Application granted granted Critical
Publication of JP5008901B2 publication Critical patent/JP5008901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly precisely confirm the presence/absence of matters inside an observation object including scattering media such as visceral fat. <P>SOLUTION: This observation device 1 for inside of a scattering medium is provided with a light source 2, an illumination optical system 3 guiding the light L1 from the light source 2 to an observation object A including the scattering media, and an observation optical system 6 acquiring an image of the observation object A illuminated by the illumination optical system 3. Also, the observation optical system 6 is disposed with a light shielding member 8 shielding the image of the light source 2 projected on the surface of the observation object A by the illumination optical system 3 in a position conjugated with the image of the light source 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、散乱媒質内観察装置および散乱媒質内観察方法に関するものである。   The present invention relates to a scattering medium observation device and a scattering medium observation method.

疾患部分を摘出するなどの外科手術を行う場合には、血管やリンパ管などの循環器や神経を損傷しないように、その位置を把握しながら手術が進められる。このため、執刀する担当医は血管等の位置を解剖学的に熟知する必要がある。特に、血管の場所を特定することは必要不可欠である。   When performing a surgical operation such as removing a diseased part, the operation is performed while grasping the position so as not to damage the circulatory organs and nerves such as blood vessels and lymph vessels. For this reason, it is necessary for the attending physician to know the position of blood vessels and the like anatomically. In particular, it is essential to identify the location of blood vessels.

しかし、血管等の配置・分布には個人差があるため、手術に際しては、血管の位置を慎重に探しながら切開する必要があり、手術時間が長期化してしまう不都合がある。
手術時間の長期化は、患者への負担を増大させることになる。したがって、患者への負担を軽減するために、血管等の配置を個人差にかかわらず確認することが必要になってきている。
However, since there are individual differences in the arrangement / distribution of blood vessels and the like, it is necessary to make an incision while carefully searching for the position of the blood vessels during the operation, which disadvantageously increases the operation time.
Prolonging the operation time increases the burden on the patient. Therefore, in order to reduce the burden on the patient, it is necessary to confirm the arrangement of blood vessels regardless of individual differences.

血管の位置情報を検出する方法としては、例えば、特許文献1に開示されたものがある。
この特許文献1の方法は、静脈認証技術であり、血管の配置・分布に個人差があることを利用して、血管の配置・分布から個人を特定する技術である。
特開2000−339445号公報
As a method for detecting the position information of a blood vessel, for example, there is one disclosed in Patent Document 1.
The method of this patent document 1 is a vein authentication technique, and is a technique for specifying an individual from the arrangement / distribution of blood vessels by utilizing the individual difference in the arrangement / distribution of blood vessels.
JP 2000-339445 A

しかしながら、この静脈認証技術は、掌の皮膚近傍に存在する静脈を血管中のヘモグロビンの吸光特性を利用して検出する技術であるため、皮膚表面から深い位置にある血管を検出することはできない。また、この静脈認証技術は、皮下の血管を検出対象としている。皮膚は生体組織の中でも光を比較的散乱させずに透過させる特性を有しているからである。   However, since this vein authentication technique is a technique for detecting a vein existing in the vicinity of the skin of the palm using the light absorption characteristics of hemoglobin in the blood vessel, it cannot detect a blood vessel at a deep position from the skin surface. In addition, this vein authentication technique targets a subcutaneous blood vessel. This is because the skin has the characteristic of transmitting light without being scattered relatively in the living tissue.

これに対して、外科手術等において配置や分布を確認したい血管等は、臓器表面の内臓脂肪や皮下深部組織等の内部に存在する。内臓細胞や皮下深部組織は、皮膚と比べると光の散乱特性が強く、表面近傍で強く反射され、内部の血管等の物体の情報を検出することが困難である。
したがって、特許文献1の静脈認証技術では、内臓脂肪等の散乱媒質を含む観察対象内部の物体の存否を確認することができないという不都合がある。
On the other hand, blood vessels and the like whose arrangement and distribution are to be confirmed in a surgical operation or the like are present inside visceral fat on the surface of an organ, deep subcutaneous tissue, or the like. Visceral cells and subcutaneous deep tissues have stronger light scattering characteristics than skin and are strongly reflected near the surface, making it difficult to detect information on objects such as internal blood vessels.
Therefore, the vein authentication technique disclosed in Patent Document 1 has a disadvantage in that it cannot be confirmed whether or not an object inside the observation target including a scattering medium such as visceral fat is present.

本発明は、上述した事情に鑑みてなされたものであって、内臓脂肪等の散乱媒質を含む観察対象内部の物体の存否を精度よく確認することを可能とする散乱媒質内観察装置および散乱媒質内観察方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and is an in-scattering medium observation device and a scattering medium capable of accurately confirming the presence or absence of an object inside an observation target including a scattering medium such as visceral fat. The purpose is to provide an internal observation method.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、光源と、該光源からの光を散乱媒質を含む観察対象に導く照明光学系と、該照明光学系により照明された前記観察対象の画像を取得する観察光学系とを備え、該観察光学系に、前記照明光学系により前記観察対象の表面に投影される前記光源の像を遮光する遮光部材が、該光源の像と略共役な位置に配置されている散乱媒質内観察装置を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention includes a light source, an illumination optical system that guides light from the light source to an observation target including a scattering medium, and an observation optical system that acquires an image of the observation target illuminated by the illumination optical system, A scattering medium observation device in which a light-shielding member that shields an image of the light source projected on the surface of the observation target by the illumination optical system is disposed at a position substantially conjugate with the image of the light source. provide.

本発明によれば、光源から発せられた光が照明光学系により観察対象に照射されると、散乱媒質を含む観察対象においてはその表面において、一部が反射し一部が観察対象内に進行する。観察対象の表面において反射された光により光源の像が形成されることとなるが、観察光学系に遮光部材が設けられているので、取得される画像内に光源の像が含まれることが防止され、観察対象の表面から内部に進行した後に観察対象の表面に戻って射出された光が撮影される。観察対象内に進行した光は、観察対象内部の散乱媒質により散乱されて仮想的な光源が形成されるので、形成された仮想的な光源よりも表面側に配置されている物体の影を撮影することが可能となる。その結果、内臓脂肪等の散乱媒質を含む観察対象内部の物体の存否を精度よく確認することができる。   According to the present invention, when the light emitted from the light source is irradiated onto the observation target by the illumination optical system, a part of the observation target including the scattering medium is reflected on the surface and a part of the light travels in the observation target. To do. Although the light source image is formed by the light reflected on the surface of the observation target, the observation optical system is provided with a light shielding member, so that the image of the light source is prevented from being included in the acquired image. Then, after traveling from the surface of the observation target to the inside, the light emitted back to the surface of the observation target is imaged. Since the light that has traveled into the observation target is scattered by the scattering medium inside the observation target to form a virtual light source, the shadow of the object placed on the surface side of the formed virtual light source is photographed. It becomes possible to do. As a result, the presence or absence of an object inside the observation target including a scattering medium such as visceral fat can be accurately confirmed.

また、本発明は、光源と、該光源からの光を散乱媒質を含む観察対象に導く照明光学系と、該照明光学系により照明された前記観察対象の画像を取得する観察光学系とを備え、該観察光学系が、前記照明光学系により前記観察対象の表面に投影される前記光源の像以外の領域から射出する光を撮影する散乱媒質内観察装置を提供する。
本発明によれば、観察光学系が、観察対象の表面に投影される光源の像以外の領域からの光を撮影するので、輝度の高い光源の像を考慮しなくて済む。これにより、CCD等のカメラのダイナミックレンジを大きくしなくても、観察対象内部の物体の存否を確認することが可能となる。例えば、光源像をカメラの視野範囲外に配置することにより、取得される画像内から光源の像を簡易に除外することができる。
The present invention also includes a light source, an illumination optical system that guides light from the light source to an observation target including a scattering medium, and an observation optical system that acquires an image of the observation target illuminated by the illumination optical system. The observation optical system provides an in-scattering medium observation device that photographs light emitted from a region other than the image of the light source projected onto the surface of the observation target by the illumination optical system.
According to the present invention, since the observation optical system captures light from a region other than the image of the light source projected on the surface of the observation target, it is not necessary to consider the image of the light source with high luminance. This makes it possible to confirm the presence or absence of an object inside the observation target without increasing the dynamic range of a camera such as a CCD. For example, by arranging the light source image outside the field of view of the camera, the image of the light source can be easily excluded from the acquired image.

上記発明においては、前記観察光学系に、前記照明光学系により前記観察対象の表面に投影される前記光源の像を遮光する遮光部材が、該光源の像と略共役な位置に配置されていることとしてもよい。
このようにすることで、遮光部材により、取得される画像内から光源の像を簡易に除外することができる。
In the above invention, the light-shielding member that shields the image of the light source projected on the surface of the observation target by the illumination optical system is disposed in the observation optical system at a position substantially conjugate with the image of the light source. It is good as well.
By doing in this way, the image of a light source can be easily excluded from the acquired image by the light shielding member.

また、上記発明においては、前記光源の像と、前記遮光部材とが相似形であることとしてもよい。
また、上記発明においては、前記光源と前記遮光部材とが共役な位置に配置されていることとしてもよい。
Moreover, in the said invention, it is good also as the image of the said light source, and the said light-shielding member having a similar shape.
Moreover, in the said invention, it is good also as the said light source and the said light-shielding member being arrange | positioned in the conjugate position.

また、上記発明においては、前記照明光学系が、前記観察対象の表面に投影する光源の像を光軸に交差する方向に走査する光源像走査手段を備え、前記観察光学系が、前記遮光部材を光軸に交差する方向に走査する遮光部材走査手段を備え、これら光源像走査手段および遮光部材走査手段を同期して制御する制御手段を備えることとしてもよい。   In the above invention, the illumination optical system includes light source image scanning means for scanning a light source image projected onto the surface of the observation target in a direction intersecting an optical axis, and the observation optical system includes the light shielding member. It is also possible to provide a light shielding member scanning means for scanning the light source in a direction crossing the optical axis, and a control means for controlling the light source image scanning means and the light shielding member scanning means in synchronization.

制御手段の作動により、光源像走査手段による光源の像の走査に同期して、遮光部材走査手段により遮光部材が走査させられるので、光源の像が移動しても、常に、取得される画像内から光源の像を除外して、光源の像以外の領域から射出される光のみにより画像を形成することが可能となる。これにより、遮光部材が固定されている場合に観察範囲に生じる死角の発生を防止し、観察範囲全体における散乱媒質内の観察を行うことが可能となる。   By the operation of the control means, the light shielding member is scanned by the light shielding member scanning means in synchronism with the scanning of the light source image by the light source image scanning means. By removing the image of the light source from the image, it is possible to form an image only with light emitted from a region other than the image of the light source. Accordingly, it is possible to prevent the generation of a blind spot occurring in the observation range when the light shielding member is fixed, and to perform observation in the scattering medium in the entire observation range.

また、上記発明においては、2以上の遮光部材を備え、光源からの光の強度に応じて遮光部材を切り替える切替手段を備えることとしてもよい。
このようにすることで、表面から深い位置にある物体を検出するために、光源からの光の強度を増加させると、表面上における光源の像の大きさが大きくなるが、切替手段の作動により、遮光部材を切り替えることで、光源の像の大きさに合わせた遮光部材を選択して、取得される画像内から光源の像を除外することができる。
Moreover, in the said invention, it is good also as providing the switching means which comprises two or more light shielding members, and switches a light shielding member according to the intensity | strength of the light from a light source.
In this way, increasing the intensity of light from the light source to detect an object at a deep position from the surface increases the size of the image of the light source on the surface. By switching the light shielding member, it is possible to select the light shielding member in accordance with the size of the image of the light source and exclude the image of the light source from the acquired image.

また、本発明は、光源からの光を散乱媒質を含む観察対象の表面に投影し、該観察対象の表面に投影された光源の像以外の領域から射出された光を撮影し、取得された画像に基づいて、観察対象内部の物体の存否を観察する散乱媒質内観察方法を提供する。
上記発明においては、観察対象の表面に投影された光源の像を遮光することとしてもよい。
In the present invention, the light from the light source is projected onto the surface of the observation target including the scattering medium, and the light emitted from the region other than the image of the light source projected on the surface of the observation target is captured and acquired. Provided is an in-scattering medium observation method for observing the presence or absence of an object inside an observation target based on an image.
In the said invention, it is good also as shielding the image of the light source projected on the surface of the observation object.

本発明によれば、内臓脂肪等の散乱媒質を含む観察対象内部の物体の存否を精度よく確認することができるという効果を奏する。   According to the present invention, there is an effect that the presence or absence of an object inside an observation target including a scattering medium such as visceral fat can be confirmed with high accuracy.

以下、本発明の第1の実施形態に係る散乱媒質内観察装置(以下、単に観察装置と言う。)1について、図1〜図3を参照して説明する。
本実施形態に係る観察装置1は、図1に示されるように、光源2と、光源2からの照明光Lを集光する照明光学系3と、該照明光学系3により集光された照明光Lの一部を反射するハーフミラー4と、該ハーフミラー4により反射された照明光Lを集光して観察対象Aに照射させる一方、観察対象Aからの戻り光Lを集光する対物レンズ5と、該対物レンズ5により集光され、ハーフミラー4を透過した戻り光Lを撮影して画像を取得する観察光学系6とを備えている。
A scattering medium observation device (hereinafter simply referred to as an observation device) 1 according to a first embodiment of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, the observation apparatus 1 according to the present embodiment has a light source 2, an illumination optical system 3 that collects the illumination light L 1 from the light source 2, and the illumination optical system 3. a half mirror 4 that reflects part of the illumination light L 1, whereas for irradiating the observation target a condenses the illumination light L 1 reflected by the half mirror 4, the return light L 2 from the observation target a an objective lens 5 for focusing, is focused by the objective lens 5, and a viewing optical system 6 to obtain an image by capturing return light L 2 having passed through the half mirror 4.

該観察光学系6は、ハーフミラー4を透過した戻り光Lを集光して中間像を結像させる結像レンズ7と、該結像レンズ7による中間像位置B近傍に配置された遮光部材8と、該遮光部材8により遮光されずに透過した戻り光Lを集光して結像レンズ7による像をリレーするリレー光学系9と、該該リレー光学系9による結像位置に配置され、戻り光Lを撮像するCCD等の撮像素子10とを備えている。 The observation optical system 6 condenses the return light L 2 that has passed through the half mirror 4 to form an intermediate image, and a light shield disposed near the intermediate image position B by the imaging lens 7. A member 8, a relay optical system 9 that condenses the return light L 2 that is transmitted without being shielded by the light shielding member 8, and relays an image by the imaging lens 7; and an imaging position by the relay optical system 9. It is disposed, and an imaging device 10 such as a CCD for capturing the return light L 2.

前記遮光部材8の配置されている結像レンズ7による中間像位置Bと、対物レンズ5による光源2の像の結像位置とは光学的に略共役な位置関係に配置されている。また、対物レンズ5による光源2の像の結像位置と光源2とも略共役な位置関係に配置されている。   The intermediate image position B by the imaging lens 7 on which the light shielding member 8 is arranged and the imaging position of the image of the light source 2 by the objective lens 5 are arranged in an optically conjugate positional relationship. Further, the image forming position of the image of the light source 2 by the objective lens 5 and the light source 2 are arranged in a substantially conjugate positional relationship.

前記遮光部材8の大きさは、前記観察対象Aの表面に形成される光源2の像の大きさに従って定められている。光源2の強度が高く、観察対象A内の散乱媒質による散乱特性が強い場合、観察対象Aの表面には大きな光源像(後述する比較的浅い仮想光源の像も含む。)Cが形成されるので、これに合わせて遮光部材8は、光源像Cからの戻り光が撮像素子10に向けて通過するのを阻止するのに必要な大きさおよび形状を備えている。   The size of the light shielding member 8 is determined according to the size of the image of the light source 2 formed on the surface of the observation object A. When the intensity of the light source 2 is high and the scattering characteristics of the scattering medium in the observation target A are strong, a large light source image (including a relatively shallow virtual light source image described later) C is formed on the surface of the observation target A. Accordingly, in accordance with this, the light shielding member 8 has a size and a shape necessary for preventing the return light from the light source image C from passing toward the image sensor 10.

すなわち、観察対象Aの表面に投影される光源2の像は光源2の大きさによって決定されるが、観察対象A内部の散乱媒質により散乱した結果形成される仮想光源の像が光源2の強度によって変化するので、遮光部材8の大きさは、観察対象Aの表面に投影される光源2の像および、観察対象A内の浅い位置に形成される仮想光源の像を遮光するような大きさに設定されている。   That is, the image of the light source 2 projected on the surface of the observation target A is determined by the size of the light source 2, but the image of the virtual light source formed as a result of scattering by the scattering medium inside the observation target A is the intensity of the light source 2. Therefore, the size of the light shielding member 8 is large enough to shield the image of the light source 2 projected on the surface of the observation target A and the image of the virtual light source formed at a shallow position in the observation target A. Is set to

このように構成された本実施形態に係る観察装置1を用いた観察方法について以下に説明する。
本実施形態に係る観察装置1を用いて内臓脂肪等の散乱媒質を含む観察対象Aを観察するには、ランプ等の光源2から発生せられ、照明光学系3で集光され、ハーフミラー4および対物レンズ5を介して伝播された照明光Lを、観察対象Aに照射し、観察対象Aの表面上に光源2の像Cを形成する。
An observation method using the observation apparatus 1 according to the present embodiment configured as described above will be described below.
In order to observe the observation object A including a scattering medium such as visceral fat using the observation apparatus 1 according to the present embodiment, the half mirror 4 is generated from a light source 2 such as a lamp, condensed by an illumination optical system 3, and the half mirror 4. The illumination light L 1 propagated through the objective lens 5 is irradiated onto the observation object A, and an image C of the light source 2 is formed on the surface of the observation object A.

観察対象Aに照射された照明光Lの内の一部は表面で反射され、その他の部分が観察対象A内の散乱媒質により散乱され、図2および図3に示されるように、表面から連続的に多数の仮想的な光源(以下、仮想光源と言う。)2A〜2Cを形成していく。ここで、仮想光源2A〜2Cは観察対象A内に連続的に無数に形成されるが、ここでは、説明の簡略のため、複数の有限な仮想光源2A〜2Cが形成されたものとして説明する。 Some of the irradiated on the observation target A illumination light L 1 is reflected by the surface, other portions are scattered by the scattering medium in the observation object A, as shown in FIGS. 2 and 3, from the surface A large number of virtual light sources (hereinafter referred to as virtual light sources) 2A to 2C are successively formed. Here, the virtual light sources 2 </ b> A to 2 </ b> C are formed innumerably continuously in the observation target A, but here, for the sake of simplicity of explanation, it is assumed that a plurality of finite virtual light sources 2 </ b> A to 2 </ b> C are formed. .

観察対象A内に形成された仮想光源2A〜2Cおよび観察対象Aの表面上に形成された光源2の像Cは、対物レンズ5および結像レンズ7を介して、中間像位置Bにリレーされ、さらに、リレー光学系9により撮像素子10の撮像面10aにリレーされる。そして、撮像素子10の作動により観察対象Aの表面の画像が取得される。   The virtual light sources 2A to 2C formed in the observation object A and the image C of the light source 2 formed on the surface of the observation object A are relayed to the intermediate image position B via the objective lens 5 and the imaging lens 7. Further, the relay optical system 9 relays the image pickup surface 10a to the image pickup surface 10a. Then, the image of the surface of the observation target A is acquired by the operation of the image sensor 10.

この場合において、本実施形態に係る観察装置1においては、結像レンズ7による中間像位置Bに遮光部材8が配置されているので、該遮光部材8により観察対象Aの表面上に形成された光源2の像Cおよび、観察対象Aの浅い位置に形成された仮想光源2Aの像が遮光部材8によって遮光される。これにより、強度の高い光源2の像Cおよび仮想光源2Aの像が撮像素子10により撮影されることが防止される。   In this case, in the observation apparatus 1 according to the present embodiment, since the light shielding member 8 is disposed at the intermediate image position B by the imaging lens 7, the light shielding member 8 is formed on the surface of the observation target A. The image C of the light source 2 and the image of the virtual light source 2 </ b> A formed at a shallow position of the observation target A are shielded by the light shielding member 8. Thereby, the image C of the light source 2 and the image of the virtual light source 2A having high intensity are prevented from being taken by the image sensor 10.

すなわち、本実施形態に係る観察装置1によれば、観察対象Aの表面下の比較的深い位置に形成された仮想光源2B,2Cからの弱い光のみが撮像素子10によって撮像される。したがって、撮像素子10により撮像される比較的深い位置の仮想光源2B,2Cと、観察対象Aの表面との間に血管等の検出対象Xが存在する場合、撮像素子10により取得される画像中には検出対象Xが影となって現れることになる。これにより、簡易に検出対象Xの存否を判定することが可能となる。   That is, according to the observation device 1 according to the present embodiment, only the weak light from the virtual light sources 2B and 2C formed at a relatively deep position below the surface of the observation target A is imaged by the imaging element 10. Therefore, when a detection target X such as a blood vessel exists between the virtual light sources 2B and 2C at a relatively deep position imaged by the image sensor 10 and the surface of the observation target A, in the image acquired by the image sensor 10 In this case, the detection target X appears as a shadow. This makes it possible to easily determine whether the detection target X exists.

この場合において、遮光部材8により光源2の像Cおよび仮想光源2Aの像が撮像素子10により撮影されることが防止されるので、撮像素子10に入射される光量は全体的に小さくなる。したがって、光源2の像C等からの強い光によるノイズの発生を低減でき、撮像素子10の感度を増大させることによって、検出対象Xの存否の判定を簡易に行うことが可能となる。   In this case, since the light shielding member 8 prevents the image C of the light source 2 and the image of the virtual light source 2A from being captured by the image sensor 10, the amount of light incident on the image sensor 10 is reduced as a whole. Therefore, the generation of noise due to strong light from the image C of the light source 2 can be reduced, and the presence or absence of the detection target X can be easily determined by increasing the sensitivity of the image sensor 10.

図2および図3に、遮光部材8による遮光領域と観察可能な検出対象Xの深さとの関係を示す。
図2に示されるように、検出対象Xが観察対象A内の比較的浅い位置にある場合、検出対象Xと観察対象Aの表面との間に形成される表面側の仮想光源2Aも観察対象Aの表面近くに形成される。このため、観察対象A内での散乱の影響が少なく、観察対象Aの表面上に投影された光源2の像Cに対して、表面側の仮想光源2Aの像の大きさがさほど大きくならない。したがって、検出対象Xよりも表面側の仮想光源2Aを遮光するための遮光部材8としては表面上に投影された光源2の像Cに対して若干大きいものを採用すればよい。
2 and 3 show the relationship between the light shielding region by the light shielding member 8 and the depth of the detection target X that can be observed.
As shown in FIG. 2, when the detection target X is at a relatively shallow position in the observation target A, the surface side virtual light source 2A formed between the detection target X and the surface of the observation target A is also the observation target. It is formed near the surface of A. For this reason, the influence of scattering in the observation target A is small, and the size of the image of the virtual light source 2A on the surface side is not so large as compared with the image C of the light source 2 projected on the surface of the observation target A. Therefore, as the light shielding member 8 for shielding the virtual light source 2A on the surface side from the detection target X, a slightly larger one than the image C of the light source 2 projected on the surface may be employed.

一方、図3に示されるように、検出対象Xが観察対象A内の比較的深い位置にある場合、検出対象Xよりも表面側に配置される散乱媒質が増えるため、形成される仮想光源2A,2Bが多くなる。また、散乱による影響も大きくなるので、仮想光源2A,2Bの大きさも大きくなる。さらに、比較的深い位置にある検出対象Xを検出しようとする場合、観察対象Aの表面から入射される照明光Lが検出対象Xまで届きにくくなるので、光源2から発する照明光Lの強度を高くする必要もある。その結果、仮想光源2A,2Bの大きさはさらに大きくなる。
このため、比較的深い位置に配置されている検出対象Xを検出するためには、比較的浅い位置に配置されている検出対象Xを検出する場合よりも、遮光部材8による遮光領域を大きくする必要がある。
On the other hand, as shown in FIG. 3, when the detection target X is at a relatively deep position in the observation target A, the scattering medium disposed on the surface side of the detection target X increases, so that the formed virtual light source 2A , 2B increases. Moreover, since the influence by scattering becomes large, the size of the virtual light sources 2A and 2B also becomes large. Furthermore, when the detection target X at a relatively deep position is to be detected, the illumination light L 1 incident from the surface of the observation target A is difficult to reach the detection target X, so that the illumination light L 1 emitted from the light source 2 It is also necessary to increase the strength. As a result, the sizes of the virtual light sources 2A and 2B are further increased.
For this reason, in order to detect the detection target X arranged at a relatively deep position, the light shielding region by the light shielding member 8 is made larger than when detecting the detection target X arranged at a relatively shallow position. There is a need.

したがって、検出対象Aの深さ位置を特定することができない場合には、遮光部材8として、大きさの異なる複数の遮光部材8を用意しておき、ターレット等の切替手段(図示略)によって切り替えながら観察していくこととしてもよい。これにより検出対象Xの深さに適した大きさの遮光部材8によって光源2の像C等を遮光して、検出対象Xの存否を確認することができる。
また、上述したように、切替手段による遮光部材8の切替を、光源2から発せられる照明光Lの強度の切替に同期して行うようにしてもよい。
Therefore, when the depth position of the detection target A cannot be specified, a plurality of light shielding members 8 having different sizes are prepared as the light shielding member 8 and switched by a switching means (not shown) such as a turret. It is good also to observe while doing. Thus, the presence or absence of the detection target X can be confirmed by shielding the image C or the like of the light source 2 by the light shielding member 8 having a size suitable for the depth of the detection target X.
Further, as described above, the switching of the light shielding member 8 by the switching unit may be performed in synchronization with the switching of the intensity of the illumination light L 1 emitted from the light source 2.

また、本実施形態に係る観察装置1においては、結像レンズ7による中間像位置Bに固定した遮光部材8により光源2の像C等を遮光することとしたが、これに代えて、観察対象Aの表面における光源2の像を光軸に交差する方向に移動させ、これに同期して、遮光部材8を光軸に交差する方向に移動させることとしてもよい。   In the observation apparatus 1 according to the present embodiment, the image C or the like of the light source 2 is shielded from light by the light shielding member 8 fixed at the intermediate image position B by the imaging lens 7. The image of the light source 2 on the surface A may be moved in a direction intersecting the optical axis, and the light shielding member 8 may be moved in a direction intersecting the optical axis in synchronization with this.

例えば、照明光学系3に、観察対象Aの表面上に投影される光源2の像Cを、図4に示されるような矩形状に形成するスリット(図示略)と、該スリットを光軸に直交する方向に移動させるスリット移動機構(図示略)とを設ける。また、遮光部材8として、前記矩形状の光源2の像C等を遮光する大きさの矩形状のものを採用するとともに、該遮光部材8を光軸に直交する方向に移動させる遮光部材移動機構(図示略)を設ける。そして、スリット移動機構および遮光部材移動機構を同期して移動させる制御装置(図示略)を設けることとしてもよい。   For example, the illumination optical system 3 has a slit (not shown) that forms an image C of the light source 2 projected on the surface of the observation target A in a rectangular shape as shown in FIG. 4, and the slit as an optical axis. A slit moving mechanism (not shown) for moving in an orthogonal direction is provided. Further, as the light shielding member 8, a rectangular shape having a size that shields the image C of the rectangular light source 2 and the like is adopted, and the light shielding member moving mechanism that moves the light shielding member 8 in a direction perpendicular to the optical axis. (Not shown) is provided. And it is good also as providing the control apparatus (illustration omitted) which moves a slit moving mechanism and a light-shielding member moving mechanism synchronously.

このようにすることで、図4(a),(b)に示されるように、矩形状の光源2の像Cを観察対象Aの表面上において移動させて、観察対象Aの異なる領域を逐次照明することができ、その際に、観察対象Aの表面に投影される光源2の像Cおよびその周囲に形成される仮想光源2Aの像をその都度遮光部材8で遮光することができる。したがって、上記と同様にして、観察対象Aの表面およびその近傍以外の箇所から出射される、血管等の検出対象Xよりも深い位置に形成された仮想光源2B,2Cからの光を撮影することができる。   In this way, as shown in FIGS. 4A and 4B, the image C of the rectangular light source 2 is moved on the surface of the observation target A, and different regions of the observation target A are sequentially displayed. Illumination can be performed, and at that time, the image C of the light source 2 projected onto the surface of the observation target A and the image of the virtual light source 2A formed therearound can be shielded by the light shielding member 8 each time. Therefore, in the same manner as described above, the light from the virtual light sources 2B and 2C formed at a position deeper than the detection target X such as a blood vessel, which is emitted from the surface other than the surface of the observation target A and its vicinity, is imaged Can do.

そして、所定の時間間隔で撮像素子10により観察対象A表面の画像を取得して保存しておき、得られた複数枚の画像を合成することにより、図5に示されるように、観察対象Aの観察範囲全体の画像を生成することができる。
その結果、遮光部材8を固定した場合には遮光部材8の死角に配置された観察対象Aを観察できない場合があるが、光源2および遮光部材8を走査することにより、遮光部材8の死角をなくし、得られた画像から、観察範囲全体において検出対象Xの存否を判断することができる。
Then, an image of the surface of the observation target A is acquired and stored by the image sensor 10 at a predetermined time interval, and the plurality of obtained images are combined to obtain the observation target A as shown in FIG. An image of the entire observation range can be generated.
As a result, when the light shielding member 8 is fixed, the observation target A arranged at the blind spot of the light shielding member 8 may not be observed, but by scanning the light source 2 and the light shielding member 8, the blind spot of the light shielding member 8 is reduced. It is possible to determine whether the detection target X exists in the entire observation range from the obtained image.

次に、本発明の第2の実施形態に係る散乱媒質内観察装置(以下、観察装置と言う。)1′について、図6を参照して説明する。
なお、本実施形態の説明において、上述した第1の実施形態に係る散乱媒質内観察装置1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, an in-scattering medium observation apparatus (hereinafter referred to as an observation apparatus) 1 ′ according to a second embodiment of the present invention will be described with reference to FIG.
In the description of the present embodiment, portions having the same configuration as those in the scattering medium observation device 1 according to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る観察装置1′は、第1の実施形態に係る観察装置1が、対物レンズ5の光軸に沿う方向に照明光Lを照射する、いわゆる落射照明であったのに対し、対物レンズ5の外側から斜めに照明光Lを照射する点で相違している。 The observation apparatus 1 ′ according to the present embodiment is so-called epi-illumination in which the observation apparatus 1 according to the first embodiment irradiates the illumination light L 1 in the direction along the optical axis of the objective lens 5. The difference is that the illumination light L 1 is irradiated obliquely from the outside of the objective lens 5.

このように構成された観察装置1′を用いた観察方法について、以下に説明する。
本実施形態に係る観察装置1′によれば、光源2から、照明光学系3を介して集光され、観察対象Aの表面に対して、斜め方向から照射される照明光Lは、その一部が、表面において反射され、その他の部分が表面から観察対象A内に入射されることとなるが、表面において反射する照明光Lは、対物レンズ5に入射しない方向に反射される。したがって、対物レンズ5を介して集光される戻り光Lは、観察対象A内部に形成された仮想光源2A〜2Cからの光のみとなる。
An observation method using the observation apparatus 1 ′ configured as described above will be described below.
According to the observation apparatus 1 ′ according to the present embodiment, the illumination light L 1 that is collected from the light source 2 through the illumination optical system 3 and is irradiated on the surface of the observation target A from an oblique direction is A part of the light is reflected on the surface and the other part is incident on the observation object A from the surface. However, the illumination light L 1 reflected on the surface is reflected in a direction not incident on the objective lens 5. Therefore, the return light L 2 to be focused through the objective lens 5, is only the light from the formed therein observation target A virtual light source 2A-2C.

そして、結像レンズ7の中間像位置Bに配置された遮光部材8によって、比較的浅い位置に形成された仮想光源2Aからの光が遮光され、比較的深い位置に形成された仮想光源2B,2Cからの光により血管等の検出対象Xが影となって現れた画像を取得することができる。これにより、第1の実施形態と同様に、観察対象A内部における検出対象Xの存否を簡易に判定することができる。   Then, the light from the virtual light source 2A formed at a relatively shallow position is shielded by the light shielding member 8 arranged at the intermediate image position B of the imaging lens 7, and the virtual light source 2B formed at a relatively deep position. An image in which the detection target X such as a blood vessel appears as a shadow by the light from 2C can be acquired. Thereby, similarly to 1st Embodiment, the presence or absence of the detection target X in the observation target A can be determined easily.

なお、光源2からの照明光Lの強度に応じて、あるいは、検出対象Xの深さに応じて遮光部材8の大きさを切り替えることが有効である点、および、光源2および遮光部材8を同期して走査させることで遮光部材8の死角を発生させることなく観察範囲全体を観察することができる点は、第1の実施形態における観察装置1と同様である。 Note that it is effective to switch the size of the light shielding member 8 according to the intensity of the illumination light L 1 from the light source 2 or according to the depth of the detection target X, and the light source 2 and the light shielding member 8. As in the observation apparatus 1 in the first embodiment, the entire observation range can be observed without causing the blind spot of the light shielding member 8 by scanning in synchronization.

次に、本発明の第3の実施形態に係る散乱媒質内観察装置(以下、観察装置と言う。)1″について、図7を参照して以下に説明する。
なお、本実施形態の説明において、上述した第1の実施形態に係る散乱媒質内観察装置1と構成を共通とする箇所には同一符号を付して説明を省略する。
Next, a scattering medium observation device (hereinafter referred to as an observation device) 1 ″ according to a third embodiment of the present invention will be described below with reference to FIG.
In the description of the present embodiment, portions having the same configuration as those in the scattering medium observation device 1 according to the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態に係る観察装置1″は、光源としてレーザ光源2′を使用している点、および、ハーフミラー4に代えて偏光ビームスプリッタ4′を採用した点において、第1の実施形態と相違している。   The observation apparatus 1 ″ according to the present embodiment is different from the first embodiment in that a laser light source 2 ′ is used as a light source and a polarization beam splitter 4 ′ is used instead of the half mirror 4. is doing.

本実施形態に係る観察装置1″によれば、レーザ光源2′から発せられたレーザ光Lは直線偏光であるため偏光ビームスプリッタ4′により反射されて、対物レンズ5を介して観察対象Aに照射される。観察対象Aに照射されたレーザ光Lの一部は、観察対象Aの表面において反射され、他の部分は観察対象A内に入射される。観察対象Aの表面において反射されたレーザ光Lは、対物レンズ5により集光されて偏光ビームスプリッタ4′に入射されるが、この場合、レーザ光Lの偏光方向に変化はないので、偏光ビームスプリッタ4′により再度反射され、リレー光学系9に入射することが阻止される。 According to the observation apparatus 1 ″ according to the present embodiment, since the laser light L 1 emitted from the laser light source 2 ′ is linearly polarized light, it is reflected by the polarization beam splitter 4 ′ and is observed through the objective lens 5. is irradiated. the part of the laser beam L 1 irradiated on the observation target a, is reflected at the surface of the observation target a, the other part reflected at the surface of the. observation target a to be incident on the observation target a The laser beam L 1 thus collected is collected by the objective lens 5 and incident on the polarization beam splitter 4 ′. In this case, since the polarization direction of the laser beam L 1 does not change, the polarization beam splitter 4 ′ again Reflected and prevented from entering the relay optical system 9.

観察対象Aの表面において反射されることなく観察対象A内に入射されたレーザ光Lは、観察対象A内部の散乱媒質により散乱されて、仮想光源2A〜2Cを形成していく。レーザ光Lは、散乱媒質によって散乱されるに従って偏光状態が乱れていき、無偏光の状態となっていく。その結果、観察対象Aの表面から出射され、対物レンズ5により集光された仮想光源2A〜2Cからの光は、偏光ビームスプリッタ4′を透過して、仮想光源2A〜2Cの像を結像レンズ7による中間像位置Bに形成するようになる。 Laser light L 1 incident on the observation object A without being reflected at the surface of the observation target A is scattered by the observation object A inside the scattering medium, it will form a virtual light source 2A-2C. The laser beam L 1 is gradually disturbed polarization state according scattered by the scattering medium, will become a state of non-polarized light. As a result, the light from the virtual light sources 2A to 2C emitted from the surface of the observation target A and condensed by the objective lens 5 is transmitted through the polarization beam splitter 4 'to form images of the virtual light sources 2A to 2C. An intermediate image position B is formed by the lens 7.

特に、観察対象A内部の比較的浅い位置に仮想光源2Aを形成したレーザ光Lの戻り光Lは、比較的深い位置に仮想光源2B,2Cを形成したレーザ光Lの戻り光Lよりも散乱が少ないため、偏光状態の乱れが少なく直線偏光成分が多く含まれる。このため、比較的浅い位置で仮想光源2Aを形成したレーザ光Lの戻り光Lは、その直線偏光成分が偏光ビームスプリッタ4′により反射され、比較的深い位置で仮想光源2B,2Cを形成したレーザ光Lの戻り光Lは、そのほぼ全体が偏光ビームスプリッタ4′を透過するようになる。 In particular, the return light L 2 laser beam L 1 forming a virtual light source 2A to the relatively shallow position inside the observation object A is relatively deep position in the virtual light source 2B, the laser light L 1 formed with 2C returned light L Since there is less scattering than 2 , the polarization state is less disturbed and contains a large amount of linearly polarized light components. Therefore, the return light L 2 laser beam L 1 forming a virtual light source 2A at a relatively shallow position, the linearly polarized light component is reflected by the polarization beam splitter 4 ', a relatively deep position in the virtual light source 2B, a 2C Almost the entire return light L 2 of the formed laser light L 1 is transmitted through the polarization beam splitter 4 ′.

その結果、観察対象A表面における反射光および観察対象Aの比較的浅い位置における仮想光源2Aからの戻り光を偏光ビームスプリッタ4′により遮断し、比較的深い位置における仮想光源2B,2Cの強度を相対的に強くすることができる。その結果、遮光部材8を小さくしても、比較的深い位置に存在する検出対象Xを簡易に検出することができ、遮光部材8による死角を少なくすることができるという利点がある。   As a result, the reflected light on the surface of the observation object A and the return light from the virtual light source 2A at a relatively shallow position of the observation object A are blocked by the polarization beam splitter 4 ', and the intensity of the virtual light sources 2B and 2C at a relatively deep position is reduced. It can be relatively strong. As a result, even if the light shielding member 8 is made small, it is possible to easily detect the detection target X existing at a relatively deep position, and there is an advantage that the blind spot due to the light shielding member 8 can be reduced.

また、図8(a)に示されるように、照明光学系2′から照射するレーザ光Lをアレイ状に形成し、これに対応して、図8(b)に示されるように、遮光部材8をアレイ状に形成することとしてもよい。このようにすることで、少ない死角で広範囲にわたる観察を行うことができるという利点がある。 Further, as shown in FIG. 8 (a), the laser beam L 1 is irradiated from the illumination optical system 2 'is formed in an array, in response to this, as shown in FIG. 8 (b), shielding The members 8 may be formed in an array. By doing in this way, there exists an advantage that observation over a wide range can be performed with few blind spots.

本発明の第1の実施形態に係る散乱媒質用観察装置を示す全体構成図である。It is a whole lineblock diagram showing the observation device for scattering media concerning a 1st embodiment of the present invention. 図1の散乱媒質用観察装置において、比較的浅い位置に検出対象が存在する場合の遮光部材による遮光領域と観察対象内に形成される仮想光源との関係を示す(a)平面図、(b)縦断面図である。FIG. 1A is a plan view showing a relationship between a light shielding region by a light shielding member and a virtual light source formed in an observation target when the detection target exists at a relatively shallow position in the scattering medium observation apparatus of FIG. FIG. 図1の散乱媒質用観察装置において、比較的深い位置に検出対象が存在する場合の遮光部材による遮光領域と観察対象内に形成される仮想光源との関係を示す(a)平面図、(b)縦断面図である。FIG. 1A is a plan view showing a relationship between a light shielding region by a light shielding member and a virtual light source formed in an observation target when the detection target is present at a relatively deep position in the scattering medium observation apparatus of FIG. FIG. 図1の散乱媒質用観察装置の変形例であって、矩形状の光源像および遮光部材を走査する場合について説明する(a)走査開始位置近傍(b)走査途中位置における観察画像例を示す図である。FIG. 4 is a modification of the observation apparatus for scattering medium in FIG. 1 and illustrates a case where a rectangular light source image and a light shielding member are scanned. FIG. It is. 図4の画像を合成して取得された観察範囲全体の観察画像例を示す図である。It is a figure which shows the example of an observation image of the whole observation range acquired by synthesize | combining the image of FIG. 本発明の第2の実施形態に係る散乱媒質用観察装置を示す全体構成図である。It is a whole block diagram which shows the observation apparatus for scattering media which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る散乱媒質用観察装置を示す全体構成図である。It is a whole block diagram which shows the observation apparatus for scattering media concerning the 3rd Embodiment of this invention. 図7の散乱媒質用観察装置の変形例であって、(a)アレイ状にレーザ光の光源像の例、(b)アレイ状の遮光部材の例を示す図である。FIG. 8 is a modification of the scattering medium observation device of FIG. 7, (a) an example of a laser light source image in an array, and (b) an example of an array of light shielding members.

符号の説明Explanation of symbols

A 観察対象
C 像
1 観察装置(散乱媒質内観察装置)
2 光源
2′ レーザ光源(光源)
3 照明光学系
6 観察光学系
8 遮光部材
A Observation object C Image 1 Observation device (scattering medium observation device)
2 Light source 2 'Laser light source (light source)
3 Illumination optical system 6 Observation optical system 8 Shading member

Claims (9)

光源と、
該光源からの光を散乱媒質を含む観察対象に導く照明光学系と、
該照明光学系により照明された前記観察対象の画像を取得する観察光学系とを備え、
該観察光学系に、前記照明光学系により前記観察対象の表面に投影される前記光源の像を遮光する遮光部材が、該光源の像と略共役な位置に配置されている散乱媒質内観察装置。
A light source;
An illumination optical system for guiding light from the light source to an observation target including a scattering medium;
An observation optical system that acquires an image of the observation object illuminated by the illumination optical system,
In the observation optical system, a light shielding member that shields the image of the light source projected on the surface of the observation target by the illumination optical system is disposed at a position substantially conjugate with the image of the light source. .
光源と、
該光源からの光を散乱媒質を含む観察対象に導く照明光学系と、
該照明光学系により照明された前記観察対象の画像を取得する観察光学系とを備え、
該観察光学系が、前記照明光学系により前記観察対象の表面に投影される前記光源の像以外の領域から射出する光を撮影する散乱媒質内観察装置。
A light source;
An illumination optical system for guiding light from the light source to an observation target including a scattering medium;
An observation optical system that acquires an image of the observation object illuminated by the illumination optical system,
An observation apparatus in a scattering medium, wherein the observation optical system photographs light emitted from a region other than the image of the light source projected onto the surface of the observation target by the illumination optical system.
前記観察光学系に、前記照明光学系により前記観察対象の表面に投影される前記光源の像を遮光する遮光部材が、該光源の像と略共役な位置に配置されている請求項2に記載の散乱媒質内観察装置。   The light shielding member which shields the image of the said light source projected on the surface of the said observation object by the said illumination optical system in the said observation optical system is arrange | positioned in the substantially conjugate position with the image of this light source. In-scattering medium observation device. 前記光源の像と、前記遮光部材とが相似形である請求項1または請求項3に記載の散乱媒質内観察装置。   The scattering medium observation device according to claim 1, wherein the image of the light source and the light shielding member have a similar shape. 前記光源と前記遮光部材とが共役な位置に配置されている請求項1、請求項3または請求項4のいずれかに記載の散乱媒質内観察装置。   The observation apparatus in a scattering medium according to claim 1, wherein the light source and the light shielding member are arranged at conjugate positions. 前記照明光学系が、前記観察対象の表面に投影する光源の像を光軸に交差する方向に走査する光源像走査手段を備え、
前記観察光学系が、前記遮光部材を光軸に交差する方向に走査する遮光部材走査手段を備え、
これら光源像走査手段および遮光部材走査手段を同期して制御する制御手段を備える請求項1、請求項3から請求項5のいずれかに記載の散乱媒質内観察装置。
The illumination optical system includes a light source image scanning unit that scans an image of a light source projected onto the surface of the observation target in a direction intersecting an optical axis,
The observation optical system includes a light shielding member scanning unit that scans the light shielding member in a direction intersecting the optical axis,
6. The scattering medium observation device according to claim 1, further comprising a control unit that controls the light source image scanning unit and the light shielding member scanning unit in synchronization.
2以上の遮光部材を備え、
光源からの光の強度に応じて遮光部材を切り替える切替手段を備える請求項1、請求項3から請求項6のいずれかに記載の散乱媒質内観察装置。
Comprising two or more shading members,
The observation apparatus in a scattering medium according to any one of claims 1 to 3, further comprising switching means for switching a light shielding member in accordance with the intensity of light from the light source.
光源からの光を散乱媒質を含む観察対象の表面に投影し、
該観察対象の表面に投影された光源の像以外の領域から射出された光を撮影し、
取得された画像に基づいて、観察対象内部の物体の存否を観察する散乱媒質内観察方法。
Project the light from the light source onto the surface of the observation object, including the scattering medium,
Photographing light emitted from a region other than the image of the light source projected on the surface of the observation target,
A scattering medium observation method for observing the presence / absence of an object inside an observation target based on an acquired image.
観察対象の表面に投影された光源の像を遮光する請求項8に記載の散乱媒質内観察方法。   The observation method in a scattering medium according to claim 8, wherein an image of the light source projected on the surface of the observation target is shielded.
JP2006159773A 2006-06-08 2006-06-08 Scattering medium observation device Expired - Fee Related JP5008901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006159773A JP5008901B2 (en) 2006-06-08 2006-06-08 Scattering medium observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159773A JP5008901B2 (en) 2006-06-08 2006-06-08 Scattering medium observation device

Publications (2)

Publication Number Publication Date
JP2007325781A true JP2007325781A (en) 2007-12-20
JP5008901B2 JP5008901B2 (en) 2012-08-22

Family

ID=38926696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159773A Expired - Fee Related JP5008901B2 (en) 2006-06-08 2006-06-08 Scattering medium observation device

Country Status (1)

Country Link
JP (1) JP5008901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147635A1 (en) * 2008-07-23 2010-01-27 Olympus Medical Systems Corporation Subject observation apparatus and subject observation method
JP2010022717A (en) * 2008-07-23 2010-02-04 Olympus Medical Systems Corp Subject observation apparatus and subject observation method
JP2011161492A (en) * 2010-02-12 2011-08-25 Hitachi High-Technologies Corp Apparatus and method for inspecting laser beam-machined condition and apparatus and method for laser beam machining, and method of manufacturing solar panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751230A (en) * 1993-08-10 1995-02-28 Canon Inc Fundus camera
JPH0956681A (en) * 1995-08-28 1997-03-04 Topcon Corp Corneal endothelium cell photographing device
JPH11299735A (en) * 1998-04-23 1999-11-02 Canon Inc Ophthalmoscopic device
JP2000028927A (en) * 1998-07-13 2000-01-28 Topcon Corp Microscope for surgical operation
JP2000339445A (en) * 1999-03-23 2000-12-08 Sysmex Corp Non-invasive organism inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751230A (en) * 1993-08-10 1995-02-28 Canon Inc Fundus camera
JPH0956681A (en) * 1995-08-28 1997-03-04 Topcon Corp Corneal endothelium cell photographing device
JPH11299735A (en) * 1998-04-23 1999-11-02 Canon Inc Ophthalmoscopic device
JP2000028927A (en) * 1998-07-13 2000-01-28 Topcon Corp Microscope for surgical operation
JP2000339445A (en) * 1999-03-23 2000-12-08 Sysmex Corp Non-invasive organism inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147635A1 (en) * 2008-07-23 2010-01-27 Olympus Medical Systems Corporation Subject observation apparatus and subject observation method
JP2010022717A (en) * 2008-07-23 2010-02-04 Olympus Medical Systems Corp Subject observation apparatus and subject observation method
KR101109968B1 (en) * 2008-07-23 2012-02-17 올림푸스 메디칼 시스템즈 가부시키가이샤 Subject observation apparatus and subject observation method
US9345385B2 (en) 2008-07-23 2016-05-24 Olympus Corporation Subject observation apparatus and subject observation method
JP2011161492A (en) * 2010-02-12 2011-08-25 Hitachi High-Technologies Corp Apparatus and method for inspecting laser beam-machined condition and apparatus and method for laser beam machining, and method of manufacturing solar panel

Also Published As

Publication number Publication date
JP5008901B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP4091143B2 (en) OCT-assisted surgical microscope including a multi-coordinate manipulator
JP6062688B2 (en) Ophthalmic apparatus, method for controlling ophthalmic apparatus, and program
JP6527668B2 (en) Ophthalmic surgery apparatus and attachment for ophthalmic surgery
US20070027391A1 (en) Optical diagnosis and treatment apparatus
US9733460B2 (en) Method and apparatus for microscopic imaging
US9116353B2 (en) Microscope device
US10352819B2 (en) Method of measuring transmission characteristics of optical transfer medium and image acquisition device using the same
JP7106804B2 (en) Biopsy device and method
CN105942968A (en) Optical coherence tomographic imaging apparatus and method for controlling the same
JP6271927B2 (en) Laser treatment system
JP2008272489A (en) Fundus camera
JP4633210B2 (en) Surgical microscope equipment
JP2010227610A (en) Ophthalmologic imaging apparatus
JP2017176811A (en) Imaging device, imaging method, and medical observation instrument
JP5346635B2 (en) Fluorescence observation equipment
JP6609688B2 (en) Optical scanning imaging and projection apparatus and endoscope system
JP5008901B2 (en) Scattering medium observation device
JP5038626B2 (en) Fundus photographing device
JP2012107942A (en) Imaging device
JP6445124B2 (en) Laser treatment system
US20180092519A1 (en) Infrared fluorescence observation device
EP3165151A1 (en) Tomography device
JP2014212876A (en) Tumor region determination device and tumor region determination method
JP2005164815A (en) Optical device
WO2020008920A1 (en) Medical observation system, medical observation device, and medical observation device driving method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120530

R150 Certificate of patent or registration of utility model

Ref document number: 5008901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees