JP2007324748A - 時分割多重cdma方式の受信機 - Google Patents

時分割多重cdma方式の受信機 Download PDF

Info

Publication number
JP2007324748A
JP2007324748A JP2006150424A JP2006150424A JP2007324748A JP 2007324748 A JP2007324748 A JP 2007324748A JP 2006150424 A JP2006150424 A JP 2006150424A JP 2006150424 A JP2006150424 A JP 2006150424A JP 2007324748 A JP2007324748 A JP 2007324748A
Authority
JP
Japan
Prior art keywords
phase
phase difference
signal
time slot
symbol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150424A
Other languages
English (en)
Inventor
Masashi Naito
昌志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006150424A priority Critical patent/JP2007324748A/ja
Publication of JP2007324748A publication Critical patent/JP2007324748A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Time-Division Multiplex Systems (AREA)

Abstract

【課題】周波数オフセットに起因する受信信号の位相シフトによる復調データの誤り率特性を改善する。
【解決手段】1シンボル遅延回路10と位相差分検出回路11とにより、受信信号の逆拡散信号aの各タイムスロットにおいて、各シンボル間の位相差分cが検出される。検出された位相差分cは、位相範囲回転回路12により、変調による位相差分を除去する処理がなされて周波数オフセットによる位相シフト量dが検出され、平均化回路13でタイムスロット毎に平均化されてタイムスロット毎の位相シフト量eが得られる。補正量演算部14は、この位相シフト量eに基づいて、逆拡散信号aのタイムスロット毎に、シンボル毎の位相補償量fが形成され、AFC補正部15により、この位相補償量fに基づいて、逆拡散信号aがタイムスロットのシンボル毎に周波数オフセットによる位相シフトが補正される。
【選択図】図2

Description

本発明は、デジタル無線伝送システムでの受信機に係り、特に、時分割多重CDMA(Code Division Multiple Access:符号分割多元接続)方式の無線伝送に用いられる受信機に関する。
第三世代移動通信システムの標準規格としてのITM-2000(International Mobile Telecommunication-2000)規格による方式の1つとして、CDMA方式に時分割多重を適用したTD-CDMA(Time Division-CDMA:時分割多重CDMA)方式とTD-SCDMA(TD-Syncronous-CDMA:時分割同期CDMA)方式とがある。以下では、特に、TD-SCDMA方式を例にして説明する。
TD-SCDMA方式は、基地局への上りリンクと基地局からの下りリンクとの周波数を共通にするCDMA方式であって、チップレートを1,28Mcpsとし、1フレームを2つのサブフレームに分割し、さらに、夫々のサブフレームを7つのタイムスロットに分割して、上り信号と下り信号とをタイムスロット単位で時分割多重して通信を行なう方式である。
図6(a)はIMT-2000の規格による方式の1つであるW-CDMA(Wideband-CDMA)方式での制御チャンネルであるDPCCH(Dedicated Phisical Control Channel)のタイムスロットの構成を示すものであって、時分割多重化されず、連続したタイムスロットの列を1つのユーザが占有する。各タイムスロットには、その先頭部にパイロット(Pilot)信号が配置されており、DCH(Dedicated Channel:ユーザ情報,制御情報の転送用チャンネル)、即ち、データチャンネルであるDPDCH(Dedicated Phisical Data Channel)と制御チャンネルであるDPCCHとで、複数のタイムスロットのパイロット信号を用いて内挿補間型AFC(Automatic Frequency Control)の制御が行なわれる。
図6(b)はTD-SCDMA方式でのデータチャンネルの1タイムスロットの構成を示すものであって、タイムスロットの中央部に144チップのミッドアンブル(midamble)が設けられ、その前後に352チップのデータシンボル(Data Symbol)が、最終段に16チップのガード(Gurad)が夫々設けられた構成をなしている。ミッドアンブルはユーザ毎に異なるパターンのコードからなり、TD-SCDMA方式では、このミッドアンブルで同期検波が行なわれるが、補間などによるデータシンボルのAFC制御は行なわれない。
図7は従来の時分割多重CDMA方式の受信機の要部を示すブロック図であって、1はチャンネル推定部、2はミッドアンブルコード生成部、3は逆拡散部、4は拡散コード生成部、5はデータ復調部である。
同図において、直交検波後のQPSK変調されて拡散変調されているユーザ毎の複素I,Q信号が、受信信号として、チャンネル推定部1と逆拡散部3とに供給される。
ここで、QPSK変調は、データチャンネルの一連のビット列を2ビットずつに区分し、区分した2ビットの値「1」,「0」の組み合わせ[00],[01],[10],[11]に応じた搬送波の位相を0゜,90゜,180゜,270゜と異ならせる変調方式であって、各区分での一方のビット列(即ち、データチャンネルの一連のビット列の一つおきのビットの列)をI信号とし、他方のビット列をQ信号とするものである。I信号の搬送波をcosωtとすると、Q信号の搬送波は−sinωtとなり、これらは直交変調される。QPSK変調された信号は、かかるI,Q信号の複素信号として表わされる。なお、かかる2ビットの組み合わせをシンボルといい、その期間を1シンボル期間という。このようにQPSK変調することにより、1シンボル毎に、その2ビット値に応じて搬送波の位相が上記のように異なることになる。
入力される受信信号(チップレート)は、直交検波された拡散変調のI,Q信号であり、I,Q信号毎に次の処理がなされてデータ復調される。
即ち、かかる受信信号は、各ユーザ(各ユーザの移動端末)から種々のパスを通ってきた信号が合成されたものであり、チャンネル推定部1では、ミッドアンブルコード生成部2で生成されるユーザ毎のミッドアンブルコードを用いて、各ユーザの受信信号のI,Q信号に相関処理が行なわれ、かかる処理により、ユーザ毎に受信信号が通ってきたパス(チャンネル)が推定されて、その結果としての無線伝播特性を表わすチャンネル応答を出力する。逆拡散部3では、拡散コード生成部4で生成されるユーザ毎の拡散コードを用いて、チャンネル推定部1でのユーザ毎に推定されたパス毎に受信信号のI,Q信号が逆拡散処理され、同じユーザからの夫々のパスを通った逆拡散信号がI,Q信号毎に合成され、他のユーザからの夫々のパスを通った逆拡散信号が除去されてユーザ毎のI,Q信号夫々の逆拡散信号が得られる。そして、これらユーザ毎の逆拡散信号(シンボルレート)はデータ復調部5に供給される。データ復調部5はユーザ毎に設けられており、逆拡散部3からのユーザ毎の逆拡散信号は該当するデータ復調部5に供給されて復調され、ユーザ毎の復調データが得られる(例えば、特許文献1参照)。
特開2003ー23372
ところで、通常、受信信号には、規定の周波数に周波数オフセットが付加される。かかる周波数オフセットが存在すると、シンボル毎に位相が一定量ずつシフトする位相回転が生じる。
即ち、QPSK変調信号のI,Q信号の上記シンボルは、そのビット値の組み合わせ、従って、搬送波の位相に応じて、IQ平面上の信号点で表わされる。図8(a)はI,Q座標軸からなるIQ平面を表わすものであるが、+I座標軸はシンボルがビット値[00]で搬送波の位相が0゜であるときの信号点の位置であり、−Q座標軸はシンボルがビット値[10]で搬送波の位相が90゜であるときの信号点の位置、−I座標軸はシンボルがビット値[11]で搬送波の位相が180゜であるときの信号点の位置、Q座標軸はシンボルがビット値[01]で搬送波の位相が270゜であるときの信号点の位置である。以下では、±I座標軸上,±Q座標軸上の4点の位置を軸上位置という。
QPSK変調信号のシンボルの信号点は±I座標軸上,±Q座標軸上のいずれかの位置、即ち、いずれかの軸上位置にあるが、周波数オフセットにより、QPSK変調信号に位相シフト、即ち、位相オフセットが生ずると、シンボルの信号点は、図8(b)に示すように、軸上位置からこのIQ座標平面の原点を中心とする円軌道上を位相シフト量ΔfT分移動して、軸上位置からずれることになる。各軸上位置からの信号点の許容位相シフト量は±45゜であり、これ以上の位相シフトがあると、もとの2ビットを復元できなくなる。例えば、ビット値[0,1]のシンボルの信号点は+Q座標軸上の軸上位置にあるが、その位相が+45゜を超えてシフトした場合には、+I座標軸の±45゜の範囲内にあるから、[0,0]として2ビットが復元されることになり、エラーが生ずることになる。
そこで、図7において、受信したQPSK変調信号に周波数オフセットがあると、シンボル毎に位相シフト量が順次蓄積されていき、位相が回転することになる。図8(c)は、説明を簡明にするために、ビット値[0,1]のシンボルが繰り返した場合のかかる状態を示すものであって、あるシンボルの信号点A1が+Q座標軸の軸上位置にあるとすると、次のシンボルでは、位相シフト量が加算されることにより、その信号点A2がその位相シフト量分+Q座標軸からさらにずれることになる。さらに次のシンボルでは、さらに位相シフト量が加算されるので、その信号点A3は+Q座標軸からさらにシフトすることになり、以下、信号点A4,A5,……というように、順次の信号点が円軌道上を矢印で示す同じ方向に移動していき、信号点が回転するような状態となる。そして、この信号点が+Q座標軸から45゜を超えて位相シフトした状態となると、[0,1]の2ビットが[0,0]のビットと誤って復調されることになる。
ところで、図7に示す構成の受信機では、チャンネル推定部1において、各タイムスロット毎にミッドアンブル(図6(b))でミッドアンブルコード生成部2からミッドアンブルコードを用いて、ユーザ毎に、チャンネル応答が出力されるのであるが、このチャンネル推定の結果として、QPSK変調信号の上記の位相シフトも検出される。この検出された位相シフト量もチャンネル応答として出力されるのであるが、逆拡散部3では、この検出された位相シフト量をもとに、位相補償が行なわれる。
かかる位相補償は、タイムスロット毎に、ミッドアンブルでの位相シフトがなくなる位相補償量を用いて行なわれるものであるから、データシンボルの部分でも、同じ位相補償量を用いて位相補償が行なわれ(即ち、図8(c)において、ミッドアンブルの信号点をA3とすると、この信号点A3が+Q座標軸の軸上位置となるように、タイムスロットでの位相補償が行なわれ)、これにより、タイムスロット全体からみると、周波数オフセットによる位相シフト量が減少し、また、タイムスロット毎にかかる位相補償が行なわれて、夫々のタイムスロットで位相シフト量が減少することになる。
そこで、周波数オフセットが少ない状態では、タイムスロット内で全ての信号点を軸上位置から±45゜以内となるように位相補償することができるから、各別問題なく受信したQPSK変調信号の復調を行なうことができるが、移動局での送信用のRF周波数を発生する基準発信子の周波数オフセットが大きい場合や、移動局が高速移動することによるドップラシフトによって周波数オフセットが発生した場合などでは、タイムスロットの始端と終端とでの位相シフト量が、ミッドアンブルでの位相シフト量からみて、非常に大きく、顕著のものとなる。そこで、上記のように、タイムスロットの中央部のミッドアンブルを用いてタイムスロット内で同期検波型位相補償を行なっても、タイムスロットの始端と終端とでの位相シフト量が大きく残留し、復調データに誤りが発生することになる。
本発明の目的は、かかる問題を解消し、周波数オフセットに起因する復調データの誤り率特性を改善した時分割多重CDMA方式の受信機を提供することにある。
上記目的を達成するために、本発明は、デジタル無線伝送システムの時分割多重CDMA方式の受信機であって、複素信号からなる受信信号のタイムスロット毎に、ミットアンブルコードを用いてチャンネル推定するチャンネル推定手段と、該チャンネル推定手段のチャンネル推定出力と拡散符号を用いて該受信信号を逆拡散処理する逆拡散手段と、該逆拡散手段から出力される逆拡散信号の位相オフセットを補償するAFC型位相補償手段と、該位相補償手段で位相補償された該受信信号をデータ復調するデータ復調手段とを備え、該AFC型位相補償手段は、該受信信号の該タイムスロットでのシンボル間の位相差分を検出する位相差分検出手段と、該位相差分検出手段で検出された該位相差分から90゜の整数倍の成分を除去し、該位相差分を所定の角度範囲内に位相シフトする位相範囲回転手段と、該位相範囲回転手段から出力される該位相差分をタイムスロット毎に平均化し、各タイムスロット毎の位相差分を形成する平均化手段と、該平均化手段で平均化された該位相差分に基づいて、該逆拡散信号の位相オフセットの補正位相量を形成する補正量演算部と、該補正位相量をもとに該逆拡散信号を位相補正するAFC補正手段とを有することを特徴とするものである。
本発明によると、周波数オフセットに起因する受信信号の位相シフト量をタイムスロット内の各シンボル間の位相差分から求め、該位相シフト量に基づいて、該受信信号の該シンボル毎に、該周波数オフセットに起因する位相シフトを補正するものであるから、データ復号に際しての該周波数オフセットに起因する誤り率特性をタイムスロッド全体にわたって改善することができる。
以下、本発明の実施形態を図面により説明する。
図1は本発明による時分割多重CDMA方式の受信機の一実施形態を示すブロック構成図であって、6はAFC型位相補償部であり、図7に対応する部分には同一符号をつけて重複する説明を省略する。
同図において、図7で説明したようにして、逆拡散部3から出力される各ユーザのI,Q信号の逆拡散信号(例えば、QPSK変調の複素I,Q信号)は夫々AFC型位相補償部6に供給される。ここで、上記のように、逆拡散部3から出力されるユーザnに対する逆拡散信号はQPSK変調されたI,Q複素信号であるが、以下では、ユーザnの逆拡散信号でのタイムスロット内のk番目のシンボルを、I信号については、DetI(n,k)とし、Q信号については、DetQ(n,k)とする。但し、nはユーザNoであって、n=1,2,……であり、ユーザnはn番目のユーザを表わす。また。kはタイムスロット内での先頭からのシンボルの順番を表わす。
AFC型位相補償部6はユーザ毎に設けられており、逆拡散部3からのユーザ毎の逆拡散信号は夫々該当するAFC型位相補償部6に供給され、逆拡散されたI,Q信号毎に、周波数オフセットによって生ずるタイムスロット毎の位相オフセットの補償処理(即ち、位相補償処理)がなされる。位相補償処理されたユーザ毎の逆拡散信号は、ユーザ毎に該当するデータ復調部5に供給され、夫々が、例えば、QPSK復調されて復調データが得られる。
図2は図1におけるAFC型位相補償部6の一具体例を示すブロック図であって、10は1シンボル遅延回路、11は位相差分検出回路、12は位相範囲回転回路、13は平均化回路、14は補正量演算部、15はAFC補正部である。ここでは、ユーザnのAFC型位相補償部6として説明する。
同図において、逆拡散部3(図1)からのユーザnのI,Q信号の逆拡散信号a(そのタイムスロット内のk番目のシンボルは[DetI(n,k),DetQ(n,k)]で表わされる)は、1シンボル遅延回路10と位相差分検出回路11とAFC補正部15とに供給される。1シンボル遅延回路10では、入力された逆拡散信号aが1シンボル分遅延され、位相差分検出回路11に供給される。この位相差分検出回路11では、I信号とQ信号とについて、1シンボル遅延回路10からの遅延逆拡散信号bと入力された逆拡散信号aとの位相差分cが1シンボル毎に検出され、位相範囲回転回路12に供給される。従って、かかる位相差分cは、前後する2つのシンボル間の位相差分である。
位相範囲回転回路12は、位相差分検出回路11で検出された位相差分からQPSK変調による位相差分(90゜の整数倍)を差し引き、周波数オフセットによる位相シフト量だけを抽出するものである。これを図3により説明する。
いま、ある時点からみて、I,Q信号が合成された状態でのQPSK変調信号の最初のシンボルの2ビット値(以下、単にシンボルという)が[01]、次のシンボルが[10]、さらに次のシンボルが[00]とする。また、周波数オフセットにより、1シンボル毎に位相シフト量ΔfTずつ位相回転(加算)していくものとする。
このような場合、最初のシンボルのIQ平面での信号点A1が、図3(a)に示すように、周波数オフセットにより、+Q座標軸の軸上位置から時計廻り方向に位相シフト量ΔfTだけ回転した位置にあるとすると、次の2番目のシンボルの信号点A2は、2ΔfTの位相シフトがあるから、+Q座標軸を基準とすると、図3(b)に示すように、位相シフト量(90゜×2+2ΔfT)だけ時計廻り方向に回転した位置にある。さらに次の3番目のシンボルの信号点A3は、3ΔfTの位相シフトがあるから、+Q座標軸を基準とすると、図3(c)に示すように、位相シフト量(90゜+3ΔfT)だけ時計廻り方向に回転した位置にある。
そこで、最初のシンボルと2番目のシンボルとの位相差分を取ると、図3(b)に示す位相から図3(a)に示す位相を差し引くことになるから、+Q座標軸を基準とすると、この+Q座標軸からの位相差分cは、図3(d)に示すように、
(90゜×2+2ΔfT)−ΔfT=90゜×2+ΔfT
となり、2番目のシンボルと3番目のシンボルとの位相差分cは、図3(c)に示す位相から図3(b)に示す位相を差し引くことになるから、+Q座標軸からの位相差分cは、図3(e)に示すように、
(90゜+3ΔfT)−(90゜×2+2ΔfT)=−90゜+ΔfT
となる。
位相差分検出回路11では、以上のような位相差分cに対するI,Q信号の位相差情報を検出するものである。例えば、最初のシンボルでのI,Q信号の位相情報が図3(a)の信号点A1を表わし、次のシンボルのI,Q信号の位相差情報が図3(b)の信号点A2を表わしている。ここで、I信号の位相情報をPi、Q信号の位相差情報をPqとすると、信号点A1の位相θは、
θ=tan-1(Pq/Pi) ……(1)
で表わされる。位相差分検出回路11では、最初のシンボルのI信号と次のシンボルのI信号との位相情報Piの差分処理により、I信号の位相差情報ΔPiが得られ、同様にして、Q信号の位相差情報ΔPqが得られ、これらI,Q信号の位相差情報ΔPi,ΔPqによるΔθ=tan-1(ΔPq/ΔPi)が図3(d)での位相差分cを表わしていることになる。
以上のようにして、位相差分cが検出されるのであるが、かかる位相差分cのうちの90゜の整数倍の位相差分はシンボルのQPSK変調によるものであり、位相範囲回転回路12は得られた位相差分cからm×90゜(但し、m=0,1,2,3)を差し引くことにより、周波数オフセットによる位相シフト量ΔfTを求めるものである。
このために、位相範囲回転回路12は、I,Q信号の位相差情報ΔPi,ΔPqを処理することにより、位相差分cの位相(上記位相差情報Δθ)をm×90゜回転させ、即ち、(位相差分c−m×90゜)の演算を行ない、
−45゜<位相差分c−m×90゜<45゜
となる(位相差分c−m×90゜)を求め、これを周波数オフセットによる位相シフト量ΔfTとするものである。これは、シンボルのQPSK変調による位相差分は90゜のm(整数)倍であって、図8で説明したように、I,Q座標軸を中心として±45゜を超える場合はシンボルのQPSK変調によるものであり、±45゜以下の場合には、シンボルのQPSK変調によるものではないことによるものである。
なお、以上は、位相の基準となるシンボルを[01]としたが、[00]、[10]、[11]であっても同様であり、いずれも周波数オフセットによる位相シフト量ΔfTが得られる。
位相範囲回転回路12から上記のようにして得られた周波数オフセットによる位相シフト量dが平均化回路13に供給され、タイムスロット毎に平均化される。かかる処理は、I,Q信号の位相範囲回転回路12で処理された位相差分情報ΔPi,ΔPqを夫々タイムスロット毎に平均化処理することによって行なわれる。
なお、図6(b)に示すタイムスロットにおいて、ミッドアンブルの部分はデータを表わすものではないから、位相差分検出回路11で位相差分は検出されず、また、位相範囲回転回路12においても、処理されない。従って、平均化回路13で平均化される位相シフト量eは、各タイムスロットにおいて、ミッドアンブルの前後のデータシンボルの部分の位相シフト量dの平均値である。
ここで、平均化回路13から出力されるI信号の平均化された位相差情報ΔPiをAv_I、Q信号の平均化された位相差情報ΔPqをAv_Qとすると、QPSK変調信号の位相差分ΔfTは、
ΔfT=tan-1(Av_Q/Av_I) ……(2)
で表わされる。補正量演算部14では、式(2)の演算によって位相差分ΔfTを求め、I,Q信号毎に、タイムスロットでの各シンボルのDetI(n,k),DetQ(n,k)の位相補償量fを求める。
AFC補正分は、かかる位相補償量fを用いてI,Q信号の各シンボルDetI(n,k),DetQ(n,k)の位相補償を行なう。I信号の位相補償されたタイムスロットのk番目のシンボルAFCI(n,k)は、
AFCI(n,k)=Re〔DetI(n,k)+jDetQ(n,k)×exp(-jΔfT(k-X))〕……(3)
但し、Reはreal パート(実数部)
で表わされ、Q信号の位相補償されたタイムスロットのk番目のシンボルAFCQ(n,k)は、
AFCQ(n,k)=Im〔DetI(n,k)+jDetQ(n,k)×exp(-jΔfT(k-X))〕……(4)
但し、Imはimaginary パート(虚数部)
で表わされる。但し、上記(3),(4)式において、Xはタイムスロットでのミッドアンブルの中心のシンボルの番号であって、タイムスロットが図6(b)で示すスロット構成の場合、
X={352+(144/2)}/(拡散率SF)
であり、例えば、拡散率SF=16とすると(1シンボルが16スロットとなる)、X=26.5である。
図4は図2に示すAFC型位相補償部6の以上の動作を示す図である。
図4(a)は、図8(c)と同様、入力されるユーザnの逆拡散信号aでの周波数オフセットによる位相回転状態を示すものである。周波数オフセットによるシンボル間での位相シフト量を、上記のように、ΔfTとすると、逆拡散信号aに対し、位相差分検出回路11では、図4(b)に示すように、
c1=ΔfT
c2=90゜+ΔfT
c3=180゜+ΔfT
c4=270゜+ΔfT
のいずれかの位相差分cが検出される。これら位相差分cのうちの90゜,180゜,270゜はQPSK変調によるものであり、位相範囲回転回路12において、かかる位相差分cをm(=0,1,2,3)×90度位相回転させて修正することにより、図4(b)に示すいずれの位相差分cも、図4(c)に示すように、
c=ΔfT
の位相差分dが得られることになる。このようにして得られた各シンボル毎の位相差分dを平均化回路13によってタイムスロット内で平均化し、平均化されて位相差分eをもとに補正量演算部14で位相補償量fを作成し、AFC補正部15により、この位相補償量fに基づいて入力される逆拡散信号aの各シンボルを位相補償することにより、周波数オフセットによって図4(a)に示すように位相回転していた逆拡散信号aが、図4(d)に示すように、全てのシンボルの信号点Aが、その2ビット値に応じた軸上位置となって周波数オフセットによる位相シフトが補償されることになり、位相補償されたAFC補正出力信号gが得られる。このAFC補正出力信号gがデータ復調部5(図1)に供給される。
図5は1タイムスロットがシンボル1からシンボルnまでのn個のシンボルからなるものとして、この実施形態により、逆拡散信号aでの周波数オフセットによる位相シフトが補償される様子を示すものである。
いま、図5(a)に示すように、周波数オフセットにより、シンボル1でΔfTの位相シフト量が付加されており、以下、シンボル毎に位相シフト量ΔfTが加算されていって、最後のシンボルnでnΔfTの位相シフトが付加されたものとする。このように位相シフトすることにより、逆拡散信号aに位相回転が生ずることになる。なお、fTはQPSK変調による変調位相を表わし、シンボルi(但し、i=1,2,……,n)では、かかる変調位相fTに周波数オフセットによる位相シフト量iΔfTが加算されることになる。
図2における1シンボル遅延回路10〜補正量演算部14は、このような逆拡散信号aから位相シフト量ΔfTを検出して位相補償量fを作成するものであって、得られた位相補償量fを基に、AFC補正部15において、逆拡散信号aのシンボルに対して上記式(3),(4)の位相補償を行なうことにより、図5(b)に示すように、位相シフト量iΔfTが除かれたAFC補正信号gが得られることになる。
このようにして、この実施形態では、各タイムスロット内において、データシンボル(図6(b))の各シンボル毎に周波数オフセットによる位相シフトが補償されて、夫々のシンボルでの位相シフト量を図8(c)で説明した軸上位置に対して±45゜の許容位相シフト量以内に納めることができ、データ復調部5(図1)での周波数オフセットに起因する復調データの誤りを大幅に低減して、復調データの誤り率特性を大幅に改善することができる。
また、位相差分検出回路11から得られる位相差分cに入力される逆拡散信号aに混入している雑音成分なども混入し、これによってこの位相差分cにばらつきが生ずるが、平均化回路13でタイムスロット全体にわたって平均化されるので、かかる雑音成分なども平均化されて位相差分cから除かれることになり、AFC補正部15での逆拡散信号の位相補償処理では、かかる雑音成分などによって影響されことがなくなる。
以上、本発明の実施形態について説明したが、本発明はかかる実施形態にのみ限定されるものではない。例えば、上記実施形態では、受信信号をQPSK変調された信号としたが、他の変調方式であってもよい。また、上記の数値は一例を示すものである。
本発明による時分割多重CDMA方式の受信機の一実施形態を示すブロック構成図である。 図1におけるAFC型位相補償部の一具体例を示すブロック構成図である。 図2における位相差分検出回路の動作を示す図である。 図2に示すAFC型位相補償部の一連の動作を示す図である。 図2に示すAFC型位相補償部によって逆拡散信号から周波数オフセットによる位相シフトが除かれる様子を示す図である。 W-CDMA方式とTD-SCDMA方式でのタイムスロットの構成を示す図である。 従来の時分割多重CDMA方式の受信機の一例を示すブロック構成図である。 周波数オフセットによるQPSK変調信号の位相回転を示す図である。
符号の説明
1 チャンネル推定部
2 ミッドアンブルコード生成部
3 逆拡散部
4 拡散コード生成部
5 データ復調部
6 AFC型位相補償部
10 1シンボル遅延回路
11 位相差分検出回路
12 位相範囲回転回路
13 平均化回路
14 補正量演算部
15 AFC補正部

Claims (1)

  1. デジタル無線伝送システムの時分割多重CDMA方式の受信機であって、
    複素信号からなる受信信号のタイムスロット毎に、ミットアンブルコードを用いてチャンネル推定するチャンネル推定手段と、
    該チャンネル推定手段のチャンネル推定出力と拡散符号を用いて該受信信号を逆拡散処理する逆拡散手段と、
    該逆拡散手段から出力される逆拡散信号の位相オフセットを補償するAFC型位相補償手段と、
    該位相補償手段で位相補償された該受信信号をデータ復調するデータ復調手段と
    を備え、
    該AFC型位相補償手段は、
    該受信信号の該タイムスロットでのシンボル間の位相差分を検出する位相差分検出手段と、
    該位相差分検出手段で検出された該位相差分から90゜の整数倍の成分を除去し、該位相差分を所定の角度範囲内に位相シフトする位相範囲回転手段と、
    該位相範囲回転手段から出力される該位相差分をタイムスロット毎に平均化し、各タイムスロット毎の位相差分を形成する平均化手段と、
    該平均化手段で平均化された該位相差分に基づいて、該逆拡散信号の位相オフセットの補正位相量を形成する補正量演算部と、
    該補正位相量をもとに該逆拡散信号を位相補正するAFC補正手段と
    を有することを特徴とする時分割多重CDMA方式の受信機。
JP2006150424A 2006-05-30 2006-05-30 時分割多重cdma方式の受信機 Pending JP2007324748A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150424A JP2007324748A (ja) 2006-05-30 2006-05-30 時分割多重cdma方式の受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150424A JP2007324748A (ja) 2006-05-30 2006-05-30 時分割多重cdma方式の受信機

Publications (1)

Publication Number Publication Date
JP2007324748A true JP2007324748A (ja) 2007-12-13

Family

ID=38857184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150424A Pending JP2007324748A (ja) 2006-05-30 2006-05-30 時分割多重cdma方式の受信機

Country Status (1)

Country Link
JP (1) JP2007324748A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683203B2 (en) * 2018-05-04 2023-06-20 Marvell Asia Pte, Ltd. Methods and apparatus for providing a demapping system with phase compensation to demap uplink transmissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683203B2 (en) * 2018-05-04 2023-06-20 Marvell Asia Pte, Ltd. Methods and apparatus for providing a demapping system with phase compensation to demap uplink transmissions

Similar Documents

Publication Publication Date Title
JP5481427B2 (ja) 伝送誤差を軽減する方法
US7366228B2 (en) Synchronization detecting apparatus
EP1245103A1 (en) Offset correction in a spread spectrum communication system
JP2007324748A (ja) 時分割多重cdma方式の受信機
US7586980B2 (en) Apparatus for coherent combining type demodulation in communication system and method thereof
JP2930585B1 (ja) Ds−cdmaシステムにおける信号受信装置
JP4190962B2 (ja) Cdma受信装置、及びそのチャネル推定装置と方法
JP2880153B1 (ja) Ds−cdmaシステムにおける信号受信装置