JP2007322311A - Constant potential electrolytic gas sensor and gas sensor manufacturing method - Google Patents

Constant potential electrolytic gas sensor and gas sensor manufacturing method Download PDF

Info

Publication number
JP2007322311A
JP2007322311A JP2006154449A JP2006154449A JP2007322311A JP 2007322311 A JP2007322311 A JP 2007322311A JP 2006154449 A JP2006154449 A JP 2006154449A JP 2006154449 A JP2006154449 A JP 2006154449A JP 2007322311 A JP2007322311 A JP 2007322311A
Authority
JP
Japan
Prior art keywords
working electrode
gas
gas sensor
electrode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006154449A
Other languages
Japanese (ja)
Other versions
JP4308223B2 (en
Inventor
Hitoshi Nakamura
仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komyo Rikagaku Kogyo KK
Original Assignee
Komyo Rikagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komyo Rikagaku Kogyo KK filed Critical Komyo Rikagaku Kogyo KK
Priority to JP2006154449A priority Critical patent/JP4308223B2/en
Publication of JP2007322311A publication Critical patent/JP2007322311A/en
Application granted granted Critical
Publication of JP4308223B2 publication Critical patent/JP4308223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor improved in response relay with respect to a gas having strong adsorbability and especially markedly improved in response delay when the amount of moisture in a measuring target gas is large. <P>SOLUTION: A three-phase interface of solid-liquid-gas is formed between with respect to the detection target compound gas moved through an acting electrode 7 by diffusion at the boundary of the acting electrode 7 and an electrolyte 12 and the detection target compound gas is made to react at the three-phase interface to allow a current to flow to the acting electrode 7. Since the weight of the acting electrode 7 on an air-permeable film 4b is set to 7 mg/cm<SP>2</SP>or below and the thickness of the acting electrode 7 is thin, the adsorbing amount of the detection target compound gas moved through the acting electrode 7 is small and a response delay time is short. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はガスを検知するためのセンサ技術に関するものである。特に、検知ガスに対する応答特性の改良に関する。   The present invention relates to a sensor technology for detecting gas. In particular, it relates to an improvement in response characteristics with respect to a detection gas.

定電位電解式ガスセンサは、ガスを電解して発生する電流によりガス濃度を測定するセンサで、濃度に比例した信号が得られる、比較的選択性に優れる、消費電力が小さい等の特徴がある。
しかし、これまでのセンサは吸着性でかつ水分と親和性の高いガス、例えばアンモニア、アルコール、二酸化硫黄及び二酸化窒素などに対しては応答が遅い傾向にあり、特に測定ガス中の水分量が多い場合著しく遅くなる現象がみられた。
A constant potential electrolysis gas sensor is a sensor that measures a gas concentration based on a current generated by electrolyzing a gas, and can obtain a signal proportional to the concentration, has relatively high selectivity, and has low power consumption.
However, conventional sensors tend to have a slow response to gases that are adsorptive and have a high affinity for moisture, such as ammonia, alcohol, sulfur dioxide, and nitrogen dioxide. Especially, the amount of moisture in the measurement gas is large. In some cases, the phenomenon was extremely slow.

従来の定電位電解式ガスセンサは、多孔質膜から成る通気性フィルム上にPtやAu等の貴金属を触媒として含有する作用電極が配置されている。通常使用される作用電極の通気性フィルムとしては、厚み0.5mm程度の多孔質PTFE膜が用いられ、配置される作用電極は数十μmの厚みであり、その中の触媒金属の含有量は、10〜15mg/cm2である。
特に、吸着性でかつ水分と親和性の高いガスに対し、応答の遅れ時間が長い点が問題であり、解決が望まれている。
従来技術のガスセンサは、例えば下記文献に記載されている。
特開2003−166971号公報
In a conventional constant potential electrolytic gas sensor, a working electrode containing a noble metal such as Pt or Au as a catalyst is disposed on a breathable film made of a porous film. A porous PTFE membrane having a thickness of about 0.5 mm is used as a normally used working electrode breathable film, and the working electrode disposed is several tens of μm in thickness. 10-15 mg / cm 2 .
In particular, the problem is that the response delay time is long for an adsorbent gas having a high affinity with moisture, and a solution is desired.
Prior art gas sensors are described, for example, in the following documents.
JP 2003-166971 A

本発明は上記課題を解決するために創作されたものであり、応答遅れ時間が短いガスセンサを提供する。   The present invention was created to solve the above-described problems, and provides a gas sensor with a short response delay time.

本発明の発明者等は、応答遅れが生じる原因は、通気性フィルムと作用電極の界面にあると推測した。
図7は、ガスセンサの内部の応答遅れに関連する部分を示す図面であり、符号101は、通気性フィルム102の片面上に配置された電極(ここでは作用電極)を示している。
電極101の反対側には、電解液103が配置されている。
The inventors of the present invention speculated that the cause of the response delay is the interface between the air permeable film and the working electrode.
FIG. 7 is a diagram showing a portion related to a response delay inside the gas sensor, and reference numeral 101 denotes an electrode (here, a working electrode) disposed on one side of the air-permeable film 102.
On the opposite side of the electrode 101, an electrolytic solution 103 is disposed.

通気性フィルム102は、電解液は浸透できないが、測定対象ガス中のガス状の検出対象化合物は浸透できる通気性を有しており、電極101と電解液103との界面には、検出対象化合物のガスが電気化学的に化学反応する固相(電極)−液層(電解液)−気相(検出対象化合物ガス)のいわゆる三相界面104が形成されている。   The gas permeable film 102 cannot permeate the electrolytic solution, but has a gas permeability that allows the gaseous detection target compound in the measurement target gas to permeate. The detection target compound is present at the interface between the electrode 101 and the electrolytic solution 103. A so-called three-phase interface 104 of a solid phase (electrode), a liquid layer (electrolyte), and a gas phase (detection target compound gas) is formed.

電解液103は電極101を透過できないため、電極101のうち、通気性フィルム102との境界を形成する部分には、電解液と接触できない非反応性電極層が出現しており、通気性フィルム側から拡散してくるガスは、非反応性電極層を通過する際吸着され、応答遅延を引き起こしていると推測された。
吸着量が少なくなれば応答遅延時間は短くなるから、そのためには、非反応性電極層の膜厚を可及的に薄くすれば、応答性は改善されることになる。
Since the electrolytic solution 103 cannot pass through the electrode 101, a non-reactive electrode layer that cannot contact the electrolytic solution appears in the portion of the electrode 101 that forms a boundary with the breathable film 102, and the breathable film side It was assumed that the gas diffusing from the gas was adsorbed when passing through the non-reactive electrode layer, causing a response delay.
Since the response delay time is shortened as the amount of adsorption decreases, the response is improved by reducing the thickness of the non-reactive electrode layer as much as possible.

ところが、通気性フィルム上に配置された電極膜の底面は、通気性フィルムに食込んでおり、電極膜と通気性フィルムの境界部分を電子顕微鏡で観察しても、どこまでが電極膜であるかは明確に区別できない。特に、電極膜を薄くすると、その膜厚を正確に測定することができず、膜厚を制御することは困難である。   However, the bottom surface of the electrode film placed on the breathable film is biting into the breathable film, and even if the boundary between the electrode film and the breathable film is observed with an electron microscope, how far is the electrode film? Cannot be clearly distinguished. In particular, when the electrode film is thinned, the film thickness cannot be measured accurately, and it is difficult to control the film thickness.

そこで、本発明の発明者等は、作用電極の膜厚を実質的に薄くするために、通気性フィルム上の作用電極に含有される触媒金属の、通気性フィルム上の単位面積当りの重量に上限を設けた。   Therefore, the inventors of the present invention, in order to substantially reduce the film thickness of the working electrode, the weight per unit area on the breathable film of the catalytic metal contained in the working electrode on the breathable film. An upper limit was set.

実験によれば、触媒金属の重量が7mg/cm2以下であれば、非反応性電極層の膜厚は薄くなるため、応答遅れが小さく、性能のよいセンサが得られている。
触媒金属が薄すぎると作用電極としての機能が劣化する。実験によれば、触媒金属の単位面積当りの重量は、3mg/cm2以上であることが望ましい。
According to experiments, when the weight of the catalyst metal is 7 mg / cm 2 or less, the film thickness of the non-reactive electrode layer becomes thin, so that a sensor with good performance and small response delay is obtained.
If the catalytic metal is too thin, the function as the working electrode is deteriorated. According to experiments, the weight per unit area of the catalytic metal is desirably 3 mg / cm 2 or more.

本発明は、上記知見に基づいて創作されたものであり、容器本体に収容された電解液と、表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、前記作用電極の裏面と接触し、気体が浸透可能な通気性フィルムと、前記電解液とそれぞれ接触する対極と比較電極とを有し、前記通気性フィルムに接触した測定対象ガス中に含まれる検出対象化合物が前記通気性フィルムと前記作用電極を透過し、前記作用電極と前記電解液の界面で前記作用電極に含有される触媒金属と接触して化学反応が進行じ、前記検出対象化合物の濃度に応じた電流が前記作用電極に流れるように構成されたガスセンサであって、前記触媒金属の前記通気性フィルム上の単位面積当りの重量は、7mg/cm2以下にされたガスセンサである。
また、本発明は、前記触媒金属の前記通気性フィルム上の単位面積当りの重量が、3mg/cm2以上にされたガスセンサである。
また、本発明は、前記触媒金属は白金であるガスセンサである。
また、本発明は、前記電解液は中性であり、前記検出対象化合物はアンモニアであるガスセンサである。
また、容器本体に収容された電解液と、表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、前記作用電極の裏面と接触し、気体が浸透可能な通気性フィルムと、前記電解液とそれぞれ接触する対極と比較電極とを有し、前記通気性フィルムに接触した測定対象ガス中に含まれる検出対象化合物が前記通気性フィルムと前記作用電極の内部を移動し、前記作用電極と前記電解液の界面で前記作用電極に含有される触媒金属と接触して化学反応が進行し、前記検出対象化合物の濃度に応じた電流が前記作用電極に流れるように構成されたガスセンサを製造するガスセンサ製造方法において、前記触媒金属の粉末を電解液中に分散させた分散液を作成し、前記分散液を前記通気性フィルムを濾紙として吸引濾過し、前記通気性フィルム上の濾別物を押圧して前記作用電極を形成するガスセンサ製造方法であって、前記分散液には、前記作用電極中の前記触媒金属の単位面積当りの重量が3mg/cm2以上7mg/cm2以下になるように、前記触媒金属の粉末を分散させるガスセンサ製造方法である。
The present invention has been created on the basis of the above knowledge, the electrolytic solution accommodated in the container body, the working electrode whose surface is in contact with the electrolytic solution and is permeable to the electrolytic solution, and the working electrode A detection target compound contained in a measurement target gas that has a breathable film that is in contact with the back surface and allows gas to permeate, a counter electrode that is in contact with the electrolyte solution, and a reference electrode, and that is in contact with the breathable film. A current passing through the air-permeable film and the working electrode, and in contact with the catalytic metal contained in the working electrode at the interface between the working electrode and the electrolytic solution, a chemical reaction proceeds, and a current corresponding to the concentration of the detection target compound Is a gas sensor configured to flow to the working electrode, wherein the weight of the catalytic metal per unit area on the breathable film is 7 mg / cm 2 or less.
Further, the present invention is the gas sensor wherein the weight per unit area of the catalytic metal on the breathable film is 3 mg / cm 2 or more.
Moreover, this invention is a gas sensor whose said catalyst metal is platinum.
Moreover, this invention is a gas sensor whose said electrolyte solution is neutral and whose said detection target compound is ammonia.
Further, an electrolytic solution housed in a container body, a working electrode whose surface is in contact with the electrolytic solution, which can be penetrated by the electrolytic solution, a breathable film which is in contact with the back surface of the working electrode and is capable of penetrating gas The detection target compound contained in the measurement target gas in contact with the air permeable film moves inside the gas permeable film and the working electrode, A gas sensor configured such that a chemical reaction proceeds by contact with a catalytic metal contained in the working electrode at the interface between the working electrode and the electrolytic solution, and a current corresponding to the concentration of the detection target compound flows through the working electrode. In the gas sensor manufacturing method for manufacturing a gas sensor, a dispersion is prepared by dispersing the catalyst metal powder in an electrolyte, and the dispersion is suction filtered using the breathable film as a filter paper, and the breathable film is prepared. The gas sensor manufacturing method by pressing the filtration of the upper forming the working electrode, wherein the dispersion, the weight per unit area of the catalyst metal in the working electrode is 3 mg / cm 2 or more 7 mg / cm This is a gas sensor manufacturing method in which the catalyst metal powder is dispersed so as to be 2 or less.

吸着性の強いガスに対する応答遅れが改善される。特に、測定対象ガス中の水分量が多い場合の応答遅れが著しく改善された。   Response delay to strongly adsorbing gas is improved. In particular, the response delay when the amount of moisture in the gas to be measured is large is remarkably improved.

図1に本発明の実施の形態として、定電位電解式アンモニアセンサの例を示す。
図1の符号1は本発明の第一例のガスセンサであり、両端部にそれぞれ開口部を有する筒状の容器本体3を有している。
FIG. 1 shows an example of a constant potential electrolytic ammonia sensor as an embodiment of the present invention.
Reference numeral 1 in FIG. 1 denotes a gas sensor according to a first example of the present invention, which has a cylindrical container body 3 having openings at both ends.

開口部は、ガス透過性を有する通気性フィルム4a、4bによってそれぞれ塞がれている。一方の開口に位置する通気性フィルム4aには、その容器本体3の内部側の表面に、対極(C.E.)5と比較電極(R.E.)6とが密着して配置されており、他方の開口に位置する通気性フィルム4bには、同様に、容器本体3の内部側の表面に作用電極(W.E.)7が密着して配置されている。   The openings are respectively closed by gas permeable breathable films 4a and 4b. The breathable film 4a located in one opening has a counter electrode (CE) 5 and a reference electrode (RE) 6 in close contact with the inner surface of the container body 3, and the other opening has Similarly, a working electrode (WE) 7 is disposed in close contact with the inner surface of the container body 3 in the air permeable film 4b.

作用電極7が配置された通気性フィルム4bには、後述するように、作用電極7と電解液12との界面で化学反応を進行させるために、通気性フィルム4bには、ガス状の検出対象化合物が透過できる通気性が必要であり、例えば四フッ化エチレン樹脂(PTFE)等の多孔質の樹脂フィルムが用いられる。   As will be described later, the breathable film 4b on which the working electrode 7 is disposed has a gaseous detection target in order to cause a chemical reaction to proceed at the interface between the working electrode 7 and the electrolytic solution 12. The air permeability which can permeate | transmit a compound is required, for example, porous resin films, such as a tetrafluoroethylene resin (PTFE), are used.

また、作用電極7が配置された通気性フィルム4bの厚さは、通気性フィルム4b自体による吸着要因をより少なくするため、0.1mm以下とするのが好ましい。対極5と比較電極6が配置された通気性フィルム4aの厚さは0.1mm以上であってもかまわない。   In addition, the thickness of the air permeable film 4b on which the working electrode 7 is disposed is preferably 0.1 mm or less in order to reduce the adsorption factor by the air permeable film 4b itself. The thickness of the air permeable film 4a on which the counter electrode 5 and the comparison electrode 6 are arranged may be 0.1 mm or more.

各電極5〜7は耐腐食性の膜状の電極であり、触媒金属として、例えば膜状の白金(白金黒を含む。)電極で構成されている。また、バインダーと触媒金属の混合物が膜状に成形されている。   Each of the electrodes 5 to 7 is a corrosion-resistant film-like electrode, and is composed of, for example, a film-like platinum (including platinum black) electrode as a catalyst metal. Further, a mixture of a binder and a catalyst metal is formed into a film shape.

通気性フィルム4a、4bに各電極5〜7を配置し、固定する方法は以下の通りである。
Pt黒粉末(比表面積20cm2/g前後のPt微粉末)を触媒金属の粉末として用い、触媒金属粉末単独、又は、触媒金属粉末とバインダ粉末(四フッ化エチレン樹脂(PTFE)の粉末等)を適当な溶剤等の液体に分散させ、通気性フィルム4bを濾紙として、分散液を減圧濾過すると、分散液中の粉末成分が濾別され、通気性フィルム4b上に、触媒金属粉末、又は触媒金属粉末とバインダ粉末の混合物が濾別物として残る。
The method of disposing and fixing the electrodes 5 to 7 on the breathable films 4a and 4b is as follows.
Using Pt black powder (Pt fine powder with a specific surface area of about 20 cm 2 / g) as the catalyst metal powder, the catalyst metal powder alone, or the catalyst metal powder and the binder powder (powder of tetrafluoroethylene resin (PTFE), etc.) Is dispersed in a liquid such as a suitable solvent, and the air-permeable film 4b is used as a filter paper, and the dispersion liquid is filtered under reduced pressure, whereby powder components in the dispersion liquid are separated by filtration, and a catalytic metal powder or catalyst is formed on the air-permeable film 4b. A mixture of metal powder and binder powder remains as a filtered product.

濾別物が配置される通気性フィルム4bの面積Sは予め分っており、濾別物中の触媒金属の密度が均一であるとすると、濾過した分散液中に含有される触媒金属の重量Wを調節することで、単位面積当りの触媒金属の重量W/Sを所望値にすることができる。
濾過後、通気性フィルム4bと濾別物とを押圧後加熱するかまたは加熱しながら押圧すると、電極膜(作用電極7)が得られる。
If the area S of the air-permeable film 4b on which the filtered product is disposed is known in advance, and the density of the catalytic metal in the filtered product is uniform, the weight W of the catalytic metal contained in the filtered dispersion is calculated. By adjusting, the weight W / S of the catalyst metal per unit area can be set to a desired value.
After filtration, when the breathable film 4b and the separated product are heated after being pressed or pressed while being heated, an electrode film (working electrode 7) is obtained.

触媒金属としてPt黒を用い、アンモニアを検出対象化合物とする場合、後述するように、Pt黒の添加量は、通気性フィルム4b上の単位面積当りの重量が3〜7mg/cm2好ましくは5mg/cm2前後が応答特性に優れている。
実験によると、4フッ化エチレン樹脂膜を通気性フィルムとして用いた場合の下限は3mg/cm2であり、それを下回ると作用電極7としての導電性が不十分になっている。
When Pt black is used as the catalyst metal and ammonia is used as the detection target compound, as will be described later, the amount of Pt black added is 3-7 mg / cm 2, preferably 5 mg per unit area on the breathable film 4b. A response characteristic of around / cm 2 is excellent.
According to experiments, the lower limit when a tetrafluoroethylene resin film is used as a breathable film is 3 mg / cm 2 , and below that, the conductivity as the working electrode 7 is insufficient.

なお、分散液12の濾過ではなく、ペースト状の分散液をスクリーン印刷法によって通気性フィルム4a、4b上に塗布し、加熱と押圧によって電極5〜7を形成してもよい。
また、真空蒸着、スパッタリング、イオンプレーティングの各法、または無電解めっき法によって、電極5〜7を通気性フィルム4a、4b上に形成することもできる。
Instead of filtering the dispersion 12, the paste-like dispersion may be applied on the breathable films 4a and 4b by screen printing, and the electrodes 5 to 7 may be formed by heating and pressing.
Moreover, the electrodes 5-7 can also be formed on the air-permeable films 4a and 4b by vacuum deposition, sputtering, ion plating, or electroless plating.

膜厚を薄くするためには、いずれの方法であっても、触媒金属の重量は、3〜7mg/cm2である。白金(Pt黒)ではなく、他の貴金属を触媒に用いることもできる。
対極と比較電極の場合、結合後のPt黒密度は7mg/cm2以上であってもかまわない。
In order to reduce the film thickness, the weight of the catalyst metal is 3 to 7 mg / cm 2 in any method. Instead of platinum (Pt black), other noble metals can be used for the catalyst.
In the case of the counter electrode and the reference electrode, the Pt black density after bonding may be 7 mg / cm 2 or more.

通気性フィルム4a、4bと容器本体3の端部との間、又は各電極5〜7と容器本体3の端部の間には、リング状のゴムから成るパッキン8a、8bが配置されている。
通気性フィルム4a、4bの反対側の面にもリング状のゴムから成るパッキン9a、9bが配置されており、そのパッキン9a、9bの表面には側板10a、10bが密着して配置されている。各側板10a、10bは、ねじ17によって容器本体3にねじ止め固定さてれいる。
Packing 8a, 8b made of ring-shaped rubber is disposed between the breathable films 4a, 4b and the end of the container body 3 or between the electrodes 5-7 and the end of the container body 3. .
Packing 9a, 9b made of ring-shaped rubber is also arranged on the opposite side of the breathable films 4a, 4b, and the side plates 10a, 10b are arranged in close contact with the surface of the packing 9a, 9b. . Each side plate 10 a, 10 b is fixed to the container body 3 with screws 17.

容器本体3の内部には、予め電解液12が封入されている。電極5〜7が形成された通気性フィルム4a、4bは容器本体3に押しつけられている。通気性フィルム4a、4bは、常圧では電解液12は浸透せず、電解液12は外部に漏れ出さないようになっている。   An electrolytic solution 12 is sealed in the container body 3 in advance. The breathable films 4 a and 4 b on which the electrodes 5 to 7 are formed are pressed against the container body 3. The breathable films 4a and 4b do not penetrate the electrolyte solution 12 at normal pressure, and the electrolyte solution 12 does not leak to the outside.

電解液12は、硫酸、リン酸等の酸水溶液、即ち、酸性水溶液を用いることができる。硝酸や塩酸も酸性水溶液であり、用いることができるが、揮発性があるので望ましくない。   As the electrolytic solution 12, an acid aqueous solution such as sulfuric acid or phosphoric acid, that is, an acidic aqueous solution can be used. Nitric acid and hydrochloric acid are also acidic aqueous solutions and can be used, but are not desirable because they are volatile.

他方、塩基性の電解液12は空気中の二酸化炭素と反応してしまうため、望ましくない。
アンモニア測定に対しては、塩化リチウムや塩化カルシウム等の中性塩水溶液が望ましい。
On the other hand, the basic electrolyte 12 is not desirable because it reacts with carbon dioxide in the air.
For ammonia measurement, a neutral salt solution such as lithium chloride or calcium chloride is desirable.

対極5と比較電極6側の側板10aには、厚み方向を貫通する空気穴15が形成されている。
対極5と比較電極6は通気性フィルム4a上で離間しており、通気性フィルム4aの、対極5と比較電極6の間の部分は電解液12に接触している。
通気性フィルム4aの電解液12と接触した部分の裏面は空気穴15の底部に露出されている。
空気穴15の開口から入った酸素を含んだ空気は通気性フィルム4aに接触すると、通気性フィルム4aの厚み方向に透過し、電解液12に溶け込む。
An air hole 15 penetrating in the thickness direction is formed in the side plate 10a on the counter electrode 5 and comparison electrode 6 side.
The counter electrode 5 and the reference electrode 6 are separated from each other on the gas permeable film 4 a, and the portion of the gas permeable film 4 a between the counter electrode 5 and the reference electrode 6 is in contact with the electrolytic solution 12.
The back surface of the portion of the breathable film 4 a that is in contact with the electrolyte solution 12 is exposed at the bottom of the air hole 15.
When the oxygen-containing air that has entered from the opening of the air hole 15 comes into contact with the air permeable film 4 a, it passes through the air permeable film 4 a in the thickness direction and dissolves in the electrolyte solution 12.

他方、作用電極7側の側板10bには、容器本体3側に凹部が形成されており、凹部は通気性フィルム4bによって塞がれ、貯留部18が形成されている。通気性フィルム4bは貯留部18内に露出されている。   On the other hand, in the side plate 10b on the working electrode 7 side, a recess is formed on the container body 3 side, and the recess is closed by the air permeable film 4b, and a storage portion 18 is formed. The air permeable film 4 b is exposed in the storage portion 18.

その側板10bには、外周位置から貯留部18に達する二本の通気孔13、14が形成されており、一方の通気孔13を吸気側とし、他方の通気孔14を排気側として検出対象のアンモニアを検出対象化合物として含む測定対象ガスが貯留部18に供給される。   The side plate 10b is formed with two vent holes 13 and 14 reaching from the outer peripheral position to the storage portion 18, and one of the vent holes 13 is an intake side and the other vent hole 14 is an exhaust side. A measurement target gas containing ammonia as a detection target compound is supplied to the storage unit 18.

図2の符号20は、上記ガスセンサ1を用いたアンモニアの測定装置であり、上記ガスセンサ1と、演算増幅器24と、基準電圧源26と、電流計27とを有している。   Reference numeral 20 in FIG. 2 is an ammonia measuring device using the gas sensor 1, and includes the gas sensor 1, an operational amplifier 24, a reference voltage source 26, and an ammeter 27.

上記ガスセンサ1の作用電極7、対極5、比較電極6にはそれぞれリード31〜33が接続されており、各リード31〜33により、作用電極7は一定電位(ここでは接地電位)に接続され、対極5は、演算増幅器24の出力端子に接続され、比較電極6は演算増幅器24の反転入力端子に接続されている。作用電極7は、接地電位ではなく、制御可能な電圧源に接続することもできる。
演算増幅器24の非反転入力端子には基準電圧源26の出力端子が接続されている。基準電圧源26は電源電圧を抵抗分割して作成してもよい。
Leads 31 to 33 are connected to the working electrode 7, the counter electrode 5, and the comparison electrode 6 of the gas sensor 1, and the working electrode 7 is connected to a constant potential (here, ground potential) by each of the leads 31 to 33. The counter electrode 5 is connected to the output terminal of the operational amplifier 24, and the comparison electrode 6 is connected to the inverting input terminal of the operational amplifier 24. The working electrode 7 can also be connected to a controllable voltage source instead of the ground potential.
The output terminal of the reference voltage source 26 is connected to the non-inverting input terminal of the operational amplifier 24. The reference voltage source 26 may be created by dividing the power supply voltage by resistance.

上記ガスセンサ1の作用電極7、対極5、比較電極6にはそれぞれリード線31〜33が接続されており、各リード線31〜33により、作用電極7は接地電位に、対極5は電流計27を介して演算増幅器24の出力端子に、比較電極6は演算増幅器24の反転入力端子に接続されている。演算増幅器24の非反転入力端子は基準電圧に接続され、いわゆるポテンショスタットを構成している。   Lead wires 31 to 33 are respectively connected to the working electrode 7, the counter electrode 5, and the comparison electrode 6 of the gas sensor 1, and the working electrode 7 is set to the ground potential and the counter electrode 5 is connected to the ammeter 27 by the lead wires 31 to 33. And the comparison electrode 6 is connected to the inverting input terminal of the operational amplifier 24. The non-inverting input terminal of the operational amplifier 24 is connected to a reference voltage to constitute a so-called potentiostat.

ポテンショスタットは、作用電極7の電位をその反応状態によらず一定に保つ回路であり、具体的には、比較電極6に対する作用電極7の電位を一定に保つ。比較電極6は空気中のO2と電解液中のH2O及びOH-の3者の平衡電位を維持する。
演算増幅器24に流れる電流は作用電極7と対極5の間に流れる電流に等しい。
The potentiostat is a circuit that keeps the potential of the working electrode 7 constant regardless of its reaction state. Specifically, the potential of the working electrode 7 with respect to the comparison electrode 6 is kept constant. The reference electrode 6 maintains a three-way equilibrium potential of O 2 in the air and H 2 O and OH − in the electrolyte.
The current flowing through the operational amplifier 24 is equal to the current flowing between the working electrode 7 and the counter electrode 5.

貯留部18に供給された測定対象ガス中に検出対象化合物(ここではアンモニア)が含まれていると、検出対象化合物は通気性フィルム4bを透過し、作用電極7と通気性フィルム4bの界面に到達する。   When the detection target compound (in this case, ammonia) is contained in the measurement target gas supplied to the reservoir 18, the detection target compound permeates the air permeable film 4b and enters the interface between the working electrode 7 and the air permeable film 4b. To reach.

通気性フィルム4b上に配置された作用電極7は電解液12と接触し、ガスが電気化学的に反応する固相(電極)−液層(電解液)−気相(反応ガス)のいわゆる三相界面が形成されており、アンモニアの場合、三相界面で下記式(1)によって酸化され、酸化電流(図2で上向きIa+)が流れる。
NH3+3OH- → 1/2N2+3H2O+3e- ……(1)
The working electrode 7 disposed on the breathable film 4b is in contact with the electrolyte solution 12, and the so-called three phases of solid phase (electrode) -liquid layer (electrolyte solution) -gas phase (reactive gas) in which the gas reacts electrochemically. A phase interface is formed, and in the case of ammonia, it is oxidized by the following formula (1) at the three-phase interface, and an oxidation current (upward Ia + in FIG. 2) flows.
NH 3 + 3OH → 1 / 2N 2 + 3H 2 O + 3e (1)

本発明では、作用電極7の通気性フィルム4bとの境界に形成される非反応性電極層(電解液12と接触していない触媒金属の層)の厚みは薄くされており、非反応性電極層に吸着されるアンモニアガスは少量であり、非反応性電極層が短時間で飽和するから、応答遅れ時間が短い。通気性フィルム4bの膜厚も薄くすれば、通気性フィルム4b自体による吸着要因も小さくなる。   In the present invention, the thickness of the non-reactive electrode layer (the layer of the catalytic metal that is not in contact with the electrolytic solution 12) formed at the boundary between the working electrode 7 and the breathable film 4b is reduced. The amount of ammonia gas adsorbed on the layer is small, and the non-reactive electrode layer is saturated in a short time, so that the response delay time is short. If the film thickness of the air permeable film 4b is also reduced, the adsorption factor by the air permeable film 4b itself is reduced.

対極5では、空気中に含まれる酸素の還元反応(1)’が起こる。
3/4O2+3/2H2O+3e- → 3OH- ……(1)’
上記反応によって生じる電流はNH3濃度に依存するため、NH3濃度を知ることができる。
At the counter electrode 5, a reduction reaction (1) ′ of oxygen contained in the air occurs.
3 / 4O 2 + 3 / 2H 2 O + 3e → 3OH (1) ′
Current generated by the reaction is dependent on the NH 3 concentration, it is possible to know the NH 3 concentration.

<Pt密度と特性の関係>
作用電極7側の通気性フィルム4bの厚さを0.06mm、比較電極6に対する作用電極7の制御電位を−100mV、測定対象ガスのアンモニア濃度を40ppmにし、単位面積当りのPt黒の重量を3〜15mg/cm2の範囲で変えて作用電極7を形成し、Pt黒の密度とアンモニア出力及び62.5%応答との関係を調べた。
<Relationship between Pt density and properties>
The thickness of the breathable film 4b on the working electrode 7 side is 0.06 mm, the control potential of the working electrode 7 with respect to the comparison electrode 6 is −100 mV, the ammonia concentration of the measurement target gas is 40 ppm, and the weight of Pt black per unit area is The working electrode 7 was formed in the range of 3 to 15 mg / cm 2 , and the relationship between the density of Pt black, the ammonia output, and the 62.5% response was examined.

62.5%応答とは、ガスセンサ1に測定対象ガスを導入してから、測定回路20の出力Ia+が最終値(約3分後)の62.5%に達するまでの時間であり、高圧ガス保安法における毒性ガス警報器の警報遅れに相当する。 The 62.5% response is the time from when the gas to be measured is introduced into the gas sensor 1 until the output Ia + of the measurement circuit 20 reaches 62.5% of the final value (after about 3 minutes). Corresponds to the alarm delay of toxic gas alarms in the Gas Safety Law.

測定結果を図3と図4に示す。
図3から、アンモニアに対する出力電流の値はPt黒の密度に大きく依存しないことが分る。
それに対し、図4から、62.5%応答については、明確な依存性が見られる。Pt黒密度が高くなるに従い、応答が遅くなっており、同図から、62.5%応答を10秒以下とするためには、7mg/cm2以下にすればよいことが分る。
なお、アンモニアガスに対する警報器の警報濃度は、通常許容濃度である25ppmに設定されており、40ppmの62.5%は25ppmである。
The measurement results are shown in FIGS.
It can be seen from FIG. 3 that the value of the output current for ammonia does not greatly depend on the density of Pt black.
In contrast, FIG. 4 shows a clear dependence on the 62.5% response. As the Pt black density increases, the response becomes slower. From the figure, it can be seen that in order to make the 62.5% response 10 seconds or less, it should be 7 mg / cm 2 or less.
The alarm concentration of the alarm device for ammonia gas is normally set to 25 ppm, which is an allowable concentration, and 62.5% of 40 ppm is 25 ppm.

<Pt密度と高温高湿試験の関係>
作用電極7が配置された通気性フィルム4bの厚さを0.06mm、比較電極6に対する作用電極7の制御電位を−100mV、測定対象ガス中のアンモニアの濃度を40ppmにし、通気性フィルム4b上の作用電極7は、単位面積当りのPt黒重量が5mg/cm2のセンサと10mg/cm2のセンサを高温高湿(34〜38℃、相対湿度約90%)雰囲気下に放置し、出力電流の変化と、62.5%応答の変化を測定した。
<Relationship between Pt density and high temperature and high humidity test>
On the breathable film 4b, the thickness of the breathable film 4b on which the working electrode 7 is disposed is 0.06 mm, the control potential of the working electrode 7 with respect to the comparison electrode 6 is −100 mV, the concentration of ammonia in the measurement target gas is 40 ppm, The working electrode 7 has a Pt black weight per unit area of 5 mg / cm 2 and a sensor of 10 mg / cm 2 in a high-temperature and high-humidity (34 to 38 ° C., relative humidity of about 90%) atmosphere. Changes in current and 62.5% response were measured.

測定結果を図5と図6に示す。単位面積当りのPt黒の重量が5mg/cm2のセンサは、高温高湿下に120日間放置した後でも出力電流の低下は10%程度であり、且つ、62.5%応答は、増大するものの30秒以内に維持された。これに対し、単位面積当りのPt黒重量が10mg/cm2のセンサでは、出力電流は約20%低下し、62.5%応答は80秒近くまで増大した。 The measurement results are shown in FIGS. In a sensor having a Pt black weight of 5 mg / cm 2 per unit area, the decrease in output current is about 10% even after being left for 120 days under high temperature and high humidity, and the 62.5% response increases. Maintained within 30 seconds. In contrast, in the sensor having a Pt black weight per unit area of 10 mg / cm 2 , the output current decreased by about 20% and the 62.5% response increased to nearly 80 seconds.

本発明のセンサを説明するための図面Drawing for explaining a sensor of the present invention そのセンサを用いた測定回路を説明するための図面Drawing for explaining a measurement circuit using the sensor 作用電極の単位面積当りのPt重量と出力電流の関係を示すグラフA graph showing the relationship between the Pt weight per unit area of the working electrode and the output current 作用電極の単位面積当りのPt重量と62.5%応答との関係を示すグラフGraph showing the relationship between the Pt weight per unit area of the working electrode and the 62.5% response 経過日数と出力電流の関係を示すグラフGraph showing the relationship between elapsed days and output current 経過日数と62.5%応答の関係を示すグラフGraph showing the relationship between elapsed days and 62.5% response 作用電極の機能を説明するための図面Drawing for explaining the function of the working electrode

符号の説明Explanation of symbols

1……ガスセンサ
3……容器本体
12……電解液
7……作用電極
4b……通気性フィルム
5……対極
6……比較電極
20……測定回路
DESCRIPTION OF SYMBOLS 1 ... Gas sensor 3 ... Container body 12 ... Electrolyte 7 ... Working electrode 4b ... Breathable film 5 ... Counter electrode 6 ... Comparative electrode 20 ... Measuring circuit

Claims (5)

容器本体に収容された電解液と、
表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、
前記作用電極の裏面と接触し、気体が浸透可能な通気性フィルムと、
前記電解液とそれぞれ接触する対極と比較電極とを有し、
前記通気性フィルムに接触した測定対象ガス中に含まれる検出対象化合物が前記通気性フィルムと前記作用電極の内部を移動し、前記作用電極と前記電解液の界面で前記作用電極に含有される触媒金属と接触して化学反応が進行じ、前記検出対象化合物の濃度に応じた電流が前記作用電極に流れるように構成されたガスセンサであって、
前記触媒金属の前記通気性フィルム上の単位面積当りの重量は、7mg/cm2以下にされたガスセンサ。
An electrolyte contained in the container body;
A working electrode whose surface is in contact with the electrolyte solution and is capable of penetrating the electrolyte solution;
A breathable film in contact with the back surface of the working electrode and capable of gas permeation;
A counter electrode in contact with the electrolyte and a reference electrode,
A catalyst to be detected contained in a gas to be measured in contact with the air permeable film moves in the air permeable film and the working electrode, and is contained in the working electrode at the interface between the working electrode and the electrolytic solution. It is a gas sensor configured such that a chemical reaction proceeds in contact with a metal, and a current corresponding to the concentration of the detection target compound flows to the working electrode,
The gas sensor wherein the weight per unit area of the catalytic metal on the breathable film is 7 mg / cm 2 or less.
前記触媒金属の前記通気性フィルム上の単位面積当りの重量は、3mg/cm2以上にされた請求項1記載のガスセンサ。 The gas sensor according to claim 1, wherein a weight per unit area of the catalytic metal on the breathable film is 3 mg / cm 2 or more. 前記触媒金属は白金である請求項1又は請求項2のいずれか1項記載のガスセンサ。   The gas sensor according to claim 1, wherein the catalyst metal is platinum. 前記電解液は中性であり、前記検出対象化合物はアンモニアである請求項3記載のガスセンサ。   The gas sensor according to claim 3, wherein the electrolytic solution is neutral and the detection target compound is ammonia. 容器本体に収容された電解液と、
表面が前記電解液と接触し、前記電解液が浸透可能な作用電極と、
前記作用電極の裏面と接触し、気体が浸透可能な通気性フィルムと、
前記電解液とそれぞれ接触する対極と比較電極とを有し、
前記通気性フィルムに接触した測定対象ガス中に含まれる検出対象化合物が前記通気性フィルムと前記作用電極の内部を移動し、前記作用電極と前記電解液の界面で前記作用電極に含有される触媒金属と接触して化学反応が進行し、前記検出対象化合物の濃度に応じた電流が前記作用電極に流れるように構成されたガスセンサを製造するガスセンサ製造方法において、
前記触媒金属の粉末を電解液中に分散させた分散液を作成し、
前記分散液を前記通気性フィルムを濾紙として吸引濾過し、
前記通気性フィルム上の濾別物を押圧して前記作用電極を形成するガスセンサ製造方法であって、
前記分散液には、前記作用電極中の前記触媒金属の単位面積当りの重量が3mg/cm2以上7mg/cm2以下になるように、前記触媒金属の粉末を分散させるガスセンサ製造方法。
An electrolyte contained in the container body;
A working electrode whose surface is in contact with the electrolyte solution and is capable of penetrating the electrolyte solution;
A breathable film in contact with the back surface of the working electrode and capable of gas permeation;
A counter electrode in contact with the electrolyte and a reference electrode,
A catalyst to be detected contained in a gas to be measured in contact with the air permeable film moves in the air permeable film and the working electrode, and is contained in the working electrode at the interface between the working electrode and the electrolytic solution. In a gas sensor manufacturing method for manufacturing a gas sensor configured such that a chemical reaction proceeds in contact with a metal, and a current according to the concentration of the detection target compound flows to the working electrode,
Create a dispersion in which the catalyst metal powder is dispersed in an electrolyte,
The dispersion is subjected to suction filtration using the breathable film as a filter paper,
A gas sensor manufacturing method for forming the working electrode by pressing a filtered product on the breathable film,
The gas sensor manufacturing method, wherein the catalyst metal powder is dispersed in the dispersion so that a weight per unit area of the catalyst metal in the working electrode is 3 mg / cm 2 or more and 7 mg / cm 2 or less.
JP2006154449A 2006-06-02 2006-06-02 Gas sensor for ammonia, ammonia detection method Active JP4308223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006154449A JP4308223B2 (en) 2006-06-02 2006-06-02 Gas sensor for ammonia, ammonia detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006154449A JP4308223B2 (en) 2006-06-02 2006-06-02 Gas sensor for ammonia, ammonia detection method

Publications (2)

Publication Number Publication Date
JP2007322311A true JP2007322311A (en) 2007-12-13
JP4308223B2 JP4308223B2 (en) 2009-08-05

Family

ID=38855263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006154449A Active JP4308223B2 (en) 2006-06-02 2006-06-02 Gas sensor for ammonia, ammonia detection method

Country Status (1)

Country Link
JP (1) JP4308223B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229285A (en) * 2008-03-24 2009-10-08 Figaro Eng Inc Electrochemical alcohol sensor
JP2015505251A (en) * 2011-11-07 2015-02-19 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229285A (en) * 2008-03-24 2009-10-08 Figaro Eng Inc Electrochemical alcohol sensor
JP2015505251A (en) * 2011-11-07 2015-02-19 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method

Also Published As

Publication number Publication date
JP4308223B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US10775338B2 (en) Electrochemical gas sensor, filter and methods
US10641728B2 (en) Printed gas sensor
CN108780059B (en) Electrochemistry H2S sensor and method for detecting hydrogen sulfide
JP2648337B2 (en) Acid gas sensor
JPS58118956A (en) Method and apparatus for gas detection
JP2002544478A (en) Improved toxic sensor and method of manufacturing the same
Lu et al. Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell
JP2004170420A (en) Hybrid-film type sensor
JP4184364B2 (en) Measuring method of nitrogen oxide concentration
CN110114665B (en) Method and apparatus for electrolyte concentration measurement
WO2015060328A1 (en) Potentiostatic electrolytic gas sensor
EP3161470A1 (en) Printed gas sensor
EP1332358A1 (en) Acid gas measuring sensors and method of making same
JP2005530994A (en) Electrochemical gas detection apparatus and method including a permeable membrane and an aqueous electrolyte
JP2005524825A (en) Electrochemical sensor
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
JP3881540B2 (en) Constant potential electrolysis gas sensor and gas detector
JP2015083924A (en) Constant potential electrolysis type gas sensor
JP4594487B2 (en) Constant potential electrolytic gas sensor
US4692220A (en) Electrochemical determination of formaldehyde
JP5276604B2 (en) Electrochemical sensor diagnostic method and electrochemical sensor
JP2003075394A (en) Detector for oxidizing-gas
US11874248B2 (en) Electrochemical gas sensor assembly
JP7474682B2 (en) Potential electrolysis gas sensor
JP2022080742A (en) Constant potential electrolytic gas sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090430

R150 Certificate of patent or registration of utility model

Ref document number: 4308223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250