JP2007322165A - Electrophysiological measuring instrument, and electrophysiologial measurement method - Google Patents

Electrophysiological measuring instrument, and electrophysiologial measurement method Download PDF

Info

Publication number
JP2007322165A
JP2007322165A JP2006150350A JP2006150350A JP2007322165A JP 2007322165 A JP2007322165 A JP 2007322165A JP 2006150350 A JP2006150350 A JP 2006150350A JP 2006150350 A JP2006150350 A JP 2006150350A JP 2007322165 A JP2007322165 A JP 2007322165A
Authority
JP
Japan
Prior art keywords
electrode
sample cell
cell
electrophysiological measurement
measurement apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006150350A
Other languages
Japanese (ja)
Inventor
Kiyohiko Tateyama
清彦 館山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006150350A priority Critical patent/JP2007322165A/en
Publication of JP2007322165A publication Critical patent/JP2007322165A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate operation even with respect to small cells, and to measure potential in the cell in a low invasive manner. <P>SOLUTION: This electrophysiological measuring instrument 1 is provided with the first electrode 11, arranged in an outside of the sample cell A under a contact condition, a second electrode 12 inserted into the inside of the sample cell A, and a measuring means 15 for measuring a potential difference between the first electrode 11 and the second electrode 12 inserted into the sample cell A. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気生理測定装置および電気生理測定方法に関するものである。   The present invention relates to an electrophysiological measurement device and an electrophysiological measurement method.

従来、細胞内の信号の伝達や機能の発現を解析する方法として、膜電位や膜電流の変化を検出する方法(パッチクランプ法)が知られている(例えば、特許文献1参照。)。
この方法は、ガラス管の先端を細胞に接触させて吸引するとともに、ガラス管の内部に電解液を貯留することにより、ガラス管内の電解液柱を細胞に密着状態に維持される電極として使用するものである。
特開2004−294211号公報
2. Description of the Related Art Conventionally, a method for detecting changes in membrane potential or membrane current (patch clamp method) is known as a method for analyzing signal transmission and function expression in cells (see, for example, Patent Document 1).
In this method, the tip of the glass tube is brought into contact with the cell and sucked, and the electrolytic solution in the glass tube is used as an electrode that is kept in close contact with the cell by storing the electrolytic solution inside the glass tube. Is.
JP 2004-294221 A

しかしながら、パッチクランプ法は、ガラス管を細胞に接触させて、細胞を吸引するものであるため、より小さい細胞に対して、細胞を吸引する操作が困難であるとともに、ガラス管の太さに限界があるという不都合がある。また、ガラス管が細くなると、より細胞膜を突き抜けやすくなり、また接触圧の制御も困難になることから、小さい細胞に対して、侵襲性が大きく操作が困難であるという問題がある。   However, since the patch clamp method sucks cells by bringing the glass tube into contact with the cells, it is difficult to suck the cells with respect to smaller cells, and the thickness of the glass tube is limited. There is a disadvantage that there is. In addition, when the glass tube is thinned, it becomes easier to penetrate the cell membrane and the control of the contact pressure becomes difficult, so that there is a problem that the invasiveness is large and the operation is difficult for a small cell.

本発明は上述した事情に鑑みてなされたものであって、より小さい細胞に対しても操作を容易に行うことができ、低侵襲に細胞内の電位を測定することができる電気生理測定装置および電気生理測定方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and can be easily operated even on a smaller cell, and an electrophysiological measurement device capable of measuring an intracellular potential in a minimally invasive manner. The object is to provide an electrophysiological measurement method.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、試料細胞の外部に接触状態に配置される第1電極と、前記試料細胞の内部に挿入される第2電極と、前記第1電極と前記試料細胞に挿入された前記第2電極との間の電位差を測定する測定手段とを備える電気生理測定装置を提供する。
In order to achieve the above object, the present invention provides the following means.
The present invention includes a first electrode disposed in contact with the outside of a sample cell, a second electrode inserted into the sample cell, and the second electrode inserted into the first electrode and the sample cell. And an electrophysiological measuring device including a measuring means for measuring a potential difference between the two.

上記発明においては、前記試料細胞を内部に保持する試料細胞保持手段を備え、前記第1電極が前記試料細胞保持手段の底部に設けられていることとしてもよい。
また、上記発明においては、前記第1電極が、前記資料細胞の水平断面より広い面状の電極であることとしてもよい。
また、上記発明においては、前記第1電極が、前記試料細胞を観察するための光の光路を避けて配置されていることとしてもよい。
In the above-mentioned invention, it is good also as providing the sample cell holding means which holds the sample cell inside, and the 1st electrode being provided in the bottom of the sample cell holding means.
In the above invention, the first electrode may be a planar electrode wider than a horizontal cross section of the sample cell.
Moreover, in the said invention, the said 1st electrode is good also as arrange | positioning avoiding the optical path of the light for observing the said sample cell.

また、上記発明においては、前記第1電極が、前記試料細胞を観察するための光の光路上に設けられた透明電極からなることとしてもよい。
また、上記発明においては、前記試料保持手段が、該試料保持手段の内部の第1電極と試料保持手段の外部とを絶縁することとしてもよい。
Moreover, in the said invention, the said 1st electrode is good also as consisting of a transparent electrode provided on the optical path of the light for observing the said sample cell.
In the above invention, the sample holding means may insulate the first electrode inside the sample holding means from the outside of the sample holding means.

また、上記発明においては、前記第2電極が、前記試料細胞より細い先端部を有する針状の電極であることとしてもよい
また、上記発明においては、前記第2電極が、半導体材料を含むこととしてもよい。
In the above invention, the second electrode may be a needle-like electrode having a tip that is thinner than the sample cell. In the above invention, the second electrode includes a semiconductor material. It is good.

また、上記発明においては、前記第2電極は、前記試料細胞に挿入される先端部が露出され、他の部分が絶縁膜により被覆されていることとしてもよい。
また、上記発明においては、前記測定手段が、前記第2電極の前記試料細胞への挿入前後において測定された前記電気的特性の変化を測定することとしてもよい。
Moreover, in the said invention, the said 2nd electrode is good also as the front-end | tip part inserted in the said sample cell being exposed, and other parts being coat | covered with the insulating film.
Moreover, in the said invention, the said measurement means is good also as measuring the change of the said electrical property measured before and after insertion to the said sample cell of the said 2nd electrode.

また、上記発明においては、前記試料細胞に対して刺激を与えるための刺激信号を前記第2電極に加える刺激信号発生手段を備えることとしてもよい。
また、上記発明においては、前記第2電極が挿入される前記試料細胞を光学的に観察する光学的観察手段を備えることとしてもよい。
Moreover, in the said invention, it is good also as providing the stimulation signal generation means which applies the stimulation signal for giving a stimulus with respect to the said sample cell to a said 2nd electrode.
Moreover, in the said invention, it is good also as providing the optical observation means which optically observes the said sample cell in which a said 2nd electrode is inserted.

また、本発明は、試料細胞の外部に、第1電極を接触状態に配置する工程と、前記試料細胞の内部に第2電極を挿入する工程と、該第1電極と、前記試料細胞の内部に挿入された第2電極との間の電位差を検出する工程とを備える電気生理測定方法を提供する。   The present invention also includes a step of placing the first electrode in contact with the outside of the sample cell, a step of inserting the second electrode into the sample cell, the first electrode, and the inside of the sample cell. An electrophysiological measurement method comprising: detecting a potential difference between the second electrode inserted into the first electrode.

本発明によれば、より小さい細胞に対しても操作を容易に行うことができ、低侵襲に細胞内の電位を測定することができるという効果を奏する。   According to the present invention, it is possible to easily operate even a smaller cell, and there is an effect that the intracellular potential can be measured with minimal invasiveness.

以下、本発明の第1の実施形態に係る電気生理測定装置1および電気生理測定方法について、図1〜図4を参照して説明する。
本実施形態に係る電気生理測定装置1は、図1に示されるように、細胞を観察するための顕微鏡装置2に備えられる。
Hereinafter, an electrophysiological measurement device 1 and an electrophysiological measurement method according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, an electrophysiological measurement apparatus 1 according to this embodiment is provided in a microscope apparatus 2 for observing cells.

顕微鏡装置2は、細胞を収容する容器3を載置するステージ4と、該ステージ4上の細胞を照明する照明装置5と、細胞において反射あるいは透過した光、あるいは細胞から発生した蛍光を観察する観察装置6と、ステージ4を駆動制御するステージコントローラ7と、照明装置5および観察装置6を制御する顕微鏡コントローラ8と、観察装置6により得られた画像を処理する画像処理装置9と、該画像処理装置9により処理された画像を表示する表示装置10とを備えている。   The microscope apparatus 2 observes a stage 4 on which a container 3 that accommodates cells is placed, an illumination apparatus 5 that illuminates the cells on the stage 4, light reflected or transmitted through the cells, or fluorescence generated from the cells. An observation device 6, a stage controller 7 that drives and controls the stage 4, a microscope controller 8 that controls the illumination device 5 and the observation device 6, an image processing device 9 that processes an image obtained by the observation device 6, and the image And a display device 10 for displaying an image processed by the processing device 9.

前記照明装置5には、細胞に対して、観察装置6とは反対側から照明光を照射する透過照明光源5Aおよび、該透過照明光源5Aから発せられた照明光を細胞に集光するコンデンサレンズ5Cと、細胞に対して観察装置6と同一方向から照明光を照射する落射照明光源5Bとが備えられている。
また、観察装置6には、図示しない対物レンズを含む観察光学系と、該観察光学系を介した細胞からの光を撮像して画像を取得するCCD素子6Aと、細胞からの光を直接観察するための接眼レンズ6Bとが備えられている。
The illumination device 5 includes a transmission illumination light source 5A that irradiates the cells with illumination light from the side opposite to the observation device 6, and a condenser lens that collects the illumination light emitted from the transmission illumination light source 5A on the cells. 5C and an epi-illumination light source 5B that irradiates the cells with illumination light from the same direction as the observation device 6 are provided.
The observation device 6 includes an observation optical system including an objective lens (not shown), a CCD element 6A that captures an image of light from the cell via the observation optical system, and directly observes the light from the cell. And an eyepiece 6B.

本実施形態に係る電気生理測定装置1は、図2に示されるように、前記顕微鏡装置2のステージ4上に載置され、バッファ液あるいは培養液Lを貯留する前記容器3の底面に設けられた平板状の第1電極11と、該第1電極11上において培養される細胞Aに対して上方から近接させられる第2電極12と、該第2電極12を移動させる駆動ユニット13と、該駆動ユニット13を制御する駆動ユニット制御回路14と、前記第1電極11および第2電極12間の電位差を測定する測定回路15とを備えている。   As shown in FIG. 2, the electrophysiological measurement apparatus 1 according to the present embodiment is placed on the stage 4 of the microscope apparatus 2 and provided on the bottom surface of the container 3 that stores a buffer solution or a culture solution L. A flat plate-like first electrode 11, a second electrode 12 brought close to the cell A cultured on the first electrode 11 from above, a drive unit 13 for moving the second electrode 12, A drive unit control circuit 14 for controlling the drive unit 13 and a measurement circuit 15 for measuring a potential difference between the first electrode 11 and the second electrode 12 are provided.

前記第1電極11は、透明電極により構成され、その表面に細胞Aが培養されるようになっている。
前記第2電極12は、図2および図3に示されるように、先端に尖鋭な針部12Aを有するカンチレバー状に形成されている。第2電極12は、シリコン基板12Bの表面に導電膜12Cを成膜することにより形成されている。シリコン基板12B上に形成された導電膜12Cは、先端の針部12Aにおいて細胞Aの核C内に完全に収容される程度の寸法だけ露出させられ、それ以外の部分は絶縁膜12Dによって被覆されている。第2電極12は、取付部材16により駆動ユニット13に取り付けられている。
The first electrode 11 is composed of a transparent electrode, and the cells A are cultured on the surface thereof.
As shown in FIGS. 2 and 3, the second electrode 12 is formed in a cantilever shape having a sharp needle portion 12A at the tip. The second electrode 12 is formed by forming a conductive film 12C on the surface of the silicon substrate 12B. The conductive film 12C formed on the silicon substrate 12B is exposed by a size that can be completely accommodated in the nucleus C of the cell A in the needle portion 12A at the tip, and the other portions are covered with the insulating film 12D. ing. The second electrode 12 is attached to the drive unit 13 by an attachment member 16.

駆動ユニット13は、X,Y,Z方向に針部12Aを移動させる、例えば、3軸の直線移動機構を備えている。容器3は、絶縁材料により構成され、内部の第1電極11を外部に対して電気的に絶縁するようになっている。また、第1電極11は接地されている。   The drive unit 13 includes, for example, a triaxial linear movement mechanism that moves the needle portion 12A in the X, Y, and Z directions. The container 3 is made of an insulating material, and electrically insulates the first electrode 11 inside from the outside. The first electrode 11 is grounded.

前記測定回路15は、図2に示されるように、第1電極11と第2電極12との間に接続されている。測定回路15は、容器3底面の第1電極11と、第2電極12の針部12Aに露出している導電膜12Cとの間に、刺激信号(活動電位)を発生させる刺激信号発生装置15Aと、刺激信号に対する応答を計測する電気信号測定装置15Bとを備えている。   As shown in FIG. 2, the measurement circuit 15 is connected between the first electrode 11 and the second electrode 12. The measurement circuit 15 generates a stimulation signal (action potential) 15A between the first electrode 11 on the bottom surface of the container 3 and the conductive film 12C exposed on the needle portion 12A of the second electrode 12. And an electric signal measuring device 15B for measuring a response to the stimulus signal.

このように構成された本実施形態に係る電気生理測定装置1を用いた電気生理測定方法について、以下に説明する。
本実施形態に係る電気生理測定装置1を用いて、細胞Aの膜電位を測定するには、ステージコントローラ7および顕微鏡コントローラ8を作動させ、ステージ4の作動により測定したい細胞Aを顕微鏡観察下に配置する。そして、駆動ユニット制御回路14の作動により駆動ユニット13を作動させ、第2電極12の針部12Aを細胞Aの上方から細胞Aに近接させる。
An electrophysiological measurement method using the electrophysiological measurement device 1 according to this embodiment configured as described above will be described below.
In order to measure the membrane potential of the cell A using the electrophysiological measurement apparatus 1 according to this embodiment, the stage controller 7 and the microscope controller 8 are operated, and the cell A to be measured by the operation of the stage 4 is observed under a microscope. Deploy. Then, the drive unit 13 is operated by the operation of the drive unit control circuit 14 so that the needle portion 12A of the second electrode 12 is brought close to the cell A from above the cell A.

そして、このとき、第1電極11と第2電極12との間に接続された測定回路15を作動させ、針部12Aの導電膜12Cと第1電極11との間の電気化学系のインピーダンスを測定する。
容器3の底面に設けられた第1電極11が細胞Aに接触することにより、細胞膜Bの電位が第1電極11の電位(接地電位)に固定されている。そして、第2電極12の針部12Aに設けた導電膜12Cが細胞膜Bに接触するまでの間においては、図4に符号Pで示されるように、第2電極12と細胞膜Bとの距離が変化しても、両者間のインピーダンスに変化はない。
At this time, the measurement circuit 15 connected between the first electrode 11 and the second electrode 12 is operated, and the impedance of the electrochemical system between the conductive film 12C of the needle portion 12A and the first electrode 11 is set. taking measurement.
When the first electrode 11 provided on the bottom surface of the container 3 contacts the cell A, the potential of the cell membrane B is fixed to the potential of the first electrode 11 (ground potential). Then, until the conductive film 12C provided on the needle portion 12A of the second electrode 12 comes into contact with the cell membrane B, the distance between the second electrode 12 and the cell membrane B is as indicated by the symbol P in FIG. Even if it changes, the impedance between both does not change.

さらに、第2電極12を下降させて、針部12Aに設けた導電膜12Cが細胞膜Bに接触すると、図4に符号Qで示されるように、第2電極12と細胞膜Bとの間のインピーダンスが急激に変化する。そして、第2電極12をさらに下降させて、針部12Aに設けた導電膜12Cが細胞Aの核C内に侵入すると、導電膜12Cが細胞内電位となることにより、インピーダンスが所定値になる(符号R)。したがって、細胞A内への針部12Aの挿入作業中に第1電極11と第2電極12との間のインピーダンスを測定して、電解液抵抗の変化を検出することにより、針部12Aに設けた導電膜12Cの細胞Aへの接触および侵入を精度よく検知することができる。   Further, when the second electrode 12 is lowered and the conductive film 12C provided on the needle portion 12A comes into contact with the cell membrane B, the impedance between the second electrode 12 and the cell membrane B is indicated by the symbol Q in FIG. Changes rapidly. Then, when the second electrode 12 is further lowered and the conductive film 12C provided on the needle portion 12A enters the nucleus C of the cell A, the conductive film 12C becomes an intracellular potential, so that the impedance becomes a predetermined value. (Code R). Accordingly, the impedance between the first electrode 11 and the second electrode 12 is measured during the insertion operation of the needle portion 12A into the cell A, and a change in the electrolyte resistance is detected, thereby providing the needle portion 12A. The contact and intrusion of the conductive film 12C into the cell A can be accurately detected.

この場合において、本実施形態に係る電気生理測定方法によれば、針部12Aに設けた導電膜12Cが細胞A内に侵入したことが検知された後に、針部12Aの移動を停止し、再度、測定回路15の作動により、活動電位を測定する。すなわち、測定回路15内の刺激信号発生装置15Aの作動により、所定の刺激信号を発生し、電気信号測定装置15Bの作動により、その刺激信号に対する応答信号を測定し、記録する。   In this case, according to the electrophysiological measurement method according to the present embodiment, after it is detected that the conductive film 12C provided on the needle portion 12A has entered the cell A, the movement of the needle portion 12A is stopped, and then again. The action potential is measured by the operation of the measurement circuit 15. That is, a predetermined stimulus signal is generated by the operation of the stimulus signal generation device 15A in the measurement circuit 15, and a response signal to the stimulus signal is measured and recorded by the operation of the electric signal measurement device 15B.

本実施形態に係る電気生理測定装置1を用いた電気生理測定方法によれば、シリコン基板12Bをベースとした先端の細い針部12Aを1本だけ細胞A内に侵入させて測定を行うので、細胞Aに対する侵襲性を低く抑えることができる。また、針部12Aの細胞A内への侵入をインピーダンスの変化により容易に判断することができ、作業者によるばらつきが少なく、小さい細胞Aに対しても安定した操作を行うことができるという利点がある。さらに、絶縁膜12Dから露出する導電膜12Cを極小さく制限でき、導電膜12Cの露出部分全体を細胞A内に侵入させて、ノイズが小さく安定した測定を行うことができる。   According to the electrophysiological measurement method using the electrophysiological measurement device 1 according to the present embodiment, since only one thin needle portion 12A having a thin tip based on the silicon substrate 12B enters the cell A, the measurement is performed. The invasiveness to the cell A can be kept low. In addition, the intrusion of the needle portion 12A into the cell A can be easily determined based on the change in impedance, and there is an advantage that a stable operation can be performed even on a small cell A with little variation among operators. is there. Furthermore, the conductive film 12C exposed from the insulating film 12D can be limited to an extremely small size, and the entire exposed portion of the conductive film 12C can enter the cell A, so that stable measurement with low noise can be performed.

なお、本実施形態においては、第1電極11と第2電極12間のインピーダンスの変化により、針部12Aの細胞A内への侵入を検知することとしたが、これに限定されるものではなく、針部12A先端の位置と、細胞Aの位置とを光学的手段により確認しながら侵入を判別することとしてもよい。   In the present embodiment, the intrusion of the needle portion 12A into the cell A is detected by a change in impedance between the first electrode 11 and the second electrode 12. However, the present invention is not limited to this. The intrusion may be determined while confirming the position of the tip of the needle portion 12A and the position of the cell A by optical means.

また、第1電極11として、その表面上で細胞Aを培養する透明電極を採用した。これにより、第1電極11および容器3底面を介した落射照明および透過照明が可能となる。これに代えて、第1電極11としては不透明な電極を採用し、照明光が通過する光路を避けて配置することとしてもよい。   Moreover, the transparent electrode which culture | cultivates the cell A on the surface as the 1st electrode 11 was employ | adopted. Thereby, epi-illumination and transmission illumination via the first electrode 11 and the bottom surface of the container 3 are possible. Instead of this, an opaque electrode may be employed as the first electrode 11 and may be disposed avoiding an optical path through which illumination light passes.

本発明の第1の実施形態に係る電気生理測定装置を示す全体構成図である。1 is an overall configuration diagram showing an electrophysiological measurement device according to a first embodiment of the present invention. 図1の電気生理測定装置のカンチレバー近傍の構造を示す拡大図である。It is an enlarged view which shows the structure of the cantilever vicinity of the electrophysiology measuring apparatus of FIG. 図1の電気生理測定装置のカンチレバーに設けた針部の細胞への挿入動作を説明する図であり、(a)は接触前、(b)は接触時、(c)は侵入後の状態をそれぞれ示している。It is a figure explaining the insertion operation to the cell of the needle part provided in the cantilever of the electrophysiology measuring device of Drawing 1, (a) before contact, (b) at the time of contact, (c) after the penetration. Each is shown. 図1の挿入動作に伴う第1電極と第2電極間のインピーダンス変化を示すグラフである。It is a graph which shows the impedance change between the 1st electrode and 2nd electrode accompanying the insertion operation | movement of FIG.

符号の説明Explanation of symbols

A 細胞(試料細胞)
1 電気生理測定装置
2 顕微鏡装置(光学的観察手段)
3 容器(試料細胞保持手段)
11 第1電極(透明電極)
12 第2電極
12A 針部(針状の電極)
12D 絶縁膜
15 測定回路(測定手段)
15A 刺激信号発生回路(刺激信号発生手段)
A cells (sample cells)
1 Electrophysiological measurement device 2 Microscope device (optical observation means)
3 Container (Sample cell holding means)
11 First electrode (transparent electrode)
12 Second electrode 12A Needle part (needle-like electrode)
12D insulating film 15 measurement circuit (measurement means)
15A Stimulation signal generation circuit (stimulation signal generation means)

Claims (13)

試料細胞の外部に接触状態に配置される第1電極と、
前記試料細胞の内部に挿入される第2電極と、
前記第1電極と前記試料細胞に挿入された前記第2電極との間の電位差を測定する測定手段とを備える電気生理測定装置。
A first electrode disposed in contact with the outside of the sample cell;
A second electrode inserted into the sample cell;
An electrophysiological measurement apparatus comprising: a measurement unit that measures a potential difference between the first electrode and the second electrode inserted into the sample cell.
前記試料細胞を内部に保持する試料細胞保持手段を備え、
前記第1電極が前記試料細胞保持手段の底部に設けられている請求項1に記載の電気生理測定装置。
A sample cell holding means for holding the sample cell inside;
The electrophysiological measurement apparatus according to claim 1, wherein the first electrode is provided on a bottom portion of the sample cell holding means.
前記第1電極が、前記資料細胞の水平断面より広い面状の電極である請求項2に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 2, wherein the first electrode is a planar electrode wider than a horizontal section of the data cell. 前記第1電極が、前記試料細胞を観察するための光の光路を避けて配置されている請求項2に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 2, wherein the first electrode is disposed so as to avoid an optical path of light for observing the sample cell. 前記第1電極が、前記試料細胞を観察するための光の光路上に設けられた透明電極からなる請求項2に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 2, wherein the first electrode is a transparent electrode provided on an optical path of light for observing the sample cell. 前記試料保持手段が、該試料保持手段の内部の第1電極と試料保持手段の外部とを絶縁する請求項2に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 2, wherein the sample holding means insulates the first electrode inside the sample holding means from the outside of the sample holding means. 前記第2電極が、前記試料細胞より細い先端部を有する針状の電極である請求項1に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 1, wherein the second electrode is a needle-like electrode having a tip that is thinner than the sample cell. 前記第2電極が、半導体材料を含む請求項1に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 1, wherein the second electrode includes a semiconductor material. 前記第2電極は、前記試料細胞に挿入される先端部が露出され、他の部分が絶縁膜により被覆されている請求項1に記載の電気生理測定装置。   2. The electrophysiological measurement device according to claim 1, wherein a tip portion of the second electrode inserted into the sample cell is exposed and the other portion is covered with an insulating film. 前記測定手段が、前記第2電極の前記試料細胞への挿入前後において測定された前記電気的特性の変化を測定する請求項1に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 1, wherein the measurement unit measures a change in the electrical characteristics measured before and after insertion of the second electrode into the sample cell. 前記試料細胞に対して刺激を与えるための刺激信号を前記第2電極に加える刺激信号発生手段を備える請求項1に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 1, further comprising a stimulation signal generation unit that applies a stimulation signal for applying stimulation to the sample cell to the second electrode. 前記第2電極が挿入される前記試料細胞を光学的に観察する光学的観察手段を備える請求項1に記載の電気生理測定装置。   The electrophysiological measurement apparatus according to claim 1, further comprising an optical observation unit that optically observes the sample cell into which the second electrode is inserted. 試料細胞の外部に、第1電極を接触状態に配置する工程と、
前記試料細胞の内部に第2電極を挿入する工程と、
該第1電極と、前記試料細胞の内部に挿入された第2電極との間の電位差を検出する工程とを備える電気生理測定方法。
Arranging the first electrode in contact with the outside of the sample cell;
Inserting a second electrode into the sample cell;
An electrophysiological measurement method comprising a step of detecting a potential difference between the first electrode and a second electrode inserted into the sample cell.
JP2006150350A 2006-05-30 2006-05-30 Electrophysiological measuring instrument, and electrophysiologial measurement method Withdrawn JP2007322165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150350A JP2007322165A (en) 2006-05-30 2006-05-30 Electrophysiological measuring instrument, and electrophysiologial measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150350A JP2007322165A (en) 2006-05-30 2006-05-30 Electrophysiological measuring instrument, and electrophysiologial measurement method

Publications (1)

Publication Number Publication Date
JP2007322165A true JP2007322165A (en) 2007-12-13

Family

ID=38855129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150350A Withdrawn JP2007322165A (en) 2006-05-30 2006-05-30 Electrophysiological measuring instrument, and electrophysiologial measurement method

Country Status (1)

Country Link
JP (1) JP2007322165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068530A1 (en) * 2013-11-11 2015-05-14 浜松ホトニクス株式会社 Cell observation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068530A1 (en) * 2013-11-11 2015-05-14 浜松ホトニクス株式会社 Cell observation apparatus
JP2015094618A (en) * 2013-11-11 2015-05-18 浜松ホトニクス株式会社 Cell observation device
EP3070157A4 (en) * 2013-11-11 2017-05-31 Hamamatsu Photonics K.K. Cell observation apparatus

Similar Documents

Publication Publication Date Title
JP4408538B2 (en) Probe device
CN102313982B (en) Microscope and area determination method
US9304068B2 (en) Cell collection apparatus, cell collecting system, and cell collecting method
JP2006105960A (en) Sample inspection method and device
CN110108905B (en) Method and device for detecting membrane potential and nerve cell membrane repairing behaviors of nerve cells
WO2002099408A1 (en) Signal detecting sensor provided with multi-electrode
JP2000284186A (en) Coordinate transforming method for position setting means of observation device and observation device equipped with coordinate transforming means
JP2008136401A (en) Gene transfer device and method therefor
JP7287427B2 (en) Cell aspiration support device and control method for cell aspiration support device
JP5116689B2 (en) Nanoscale fault isolation and measurement system
Lin et al. A simple and convenient set-up of light addressable potentiometric sensors (LAPS) for chemical imaging using a commercially available projector as a light source
JP2007322165A (en) Electrophysiological measuring instrument, and electrophysiologial measurement method
JP2007205850A (en) Electrochemical measuring device
TW200912299A (en) Analyzer
CN112557702A (en) Chromatography detection device and method based on atomic force microscope and ion beam
JP4953357B2 (en) Cell invasion probe, cell invasion device having the cell invasion probe, and detailed invasion method
JP2007319034A (en) Device for manipulating cell and method for manipulating the cell
JP2015114630A (en) Optical observation device, optical observation method, and image processing program of sample observation image
WO2015129136A1 (en) Endoscope device
CN214794877U (en) Chromatography detection device based on atomic force microscope and ion beam
JP2014052260A5 (en)
JP2014052260A (en) Specimen for measuring organism component, measuring apparatus main body, and organism component measuring apparatus including them
CN114002131A (en) Cell electrochemistry and electrophysiology combined detection device and detection method
JP4601000B2 (en) Specific substance observation device and specific substance observation method
JP5455957B2 (en) Semiconductor element failure analysis method and failure analysis apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804