JP2007320779A - Method and apparatus for producing source gas for ammonia synthesis - Google Patents

Method and apparatus for producing source gas for ammonia synthesis Download PDF

Info

Publication number
JP2007320779A
JP2007320779A JP2006149523A JP2006149523A JP2007320779A JP 2007320779 A JP2007320779 A JP 2007320779A JP 2006149523 A JP2006149523 A JP 2006149523A JP 2006149523 A JP2006149523 A JP 2006149523A JP 2007320779 A JP2007320779 A JP 2007320779A
Authority
JP
Japan
Prior art keywords
oxygen
ammonia synthesis
gas
enriched air
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149523A
Other languages
Japanese (ja)
Inventor
Nobuhiro Yamada
伸広 山田
Yoshinori Masuko
芳範 増子
Shuichi Funatsu
秀一 船津
Yoshiyuki Watanabe
嘉之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Osaka Gas Co Ltd
Original Assignee
JGC Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Osaka Gas Co Ltd filed Critical JGC Corp
Priority to JP2006149523A priority Critical patent/JP2007320779A/en
Publication of JP2007320779A publication Critical patent/JP2007320779A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing source gas for ammonia synthesis, wherein a production apparatus can be made simple when the source gas for ammonia synthesis is produced by using light hydrocarbons as raw material, resulting in suppression in the energy cost, and to provide the apparatus for producing the source gas. <P>SOLUTION: A steam reforming reaction and an air partial oxidation reaction are simultaneously carried out by heating light hydrocarbons from a pipe 3, steam from a pipe 6 and oxygen-enriched air having an oxygen concentration of 40-50 vol% from an oxygen-enriched air supply source 7 and then introducing them into a one-stage reforming reactor 5. Thereafter, the source gas suitable for ammonia synthesis containing hydrogen and nitrogen in a ratio of about 3:1 is obtained by passing the resulting gas through a shift reactor 12, a decarbonator 14 and a methanation reactor 16 to remove carbon monoxide and carbon dioxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、天然ガスなどの軽質炭化水素を原料として、水素と窒素とをモル比でほぼ3対1の割合で含むアンモニア合成用素ガスを製造する方法およびそのための製造装置に関する。   The present invention relates to a method for producing a raw gas for ammonia synthesis containing light hydrocarbons such as natural gas as raw materials and hydrogen and nitrogen in a molar ratio of approximately 3 to 1, and a production apparatus therefor.

このようなアンモニア合成用素ガスを製造する方法としては、天然ガスなどの軽質炭化水素にスチームを加えて一次改質反応器に送り込み、ここで水蒸気改質を行って、水素と一酸化炭素を含むガスを得る。ついで、このガスに空気を加えて二次改質反応器に送って空気部分酸化を行って、水素、窒素、一酸化炭素、二酸化炭素、水などを含む合成ガスを得る。   As a method for producing such a raw gas for ammonia synthesis, steam is added to light hydrocarbons such as natural gas and sent to the primary reforming reactor, where steam reforming is performed to convert hydrogen and carbon monoxide. Get the gas containing. Next, air is added to this gas and sent to the secondary reforming reactor to perform partial air oxidation to obtain a synthesis gas containing hydrogen, nitrogen, carbon monoxide, carbon dioxide, water and the like.

その後、この合成ガスをシフト反応器に送って、これに含まれる一酸化炭素と水とをシフト反応させて二酸化炭素と水素とし、一酸化炭素の減量と水素の増量を計る。ついで、アルカリ洗浄によって、これに含まれる二酸化炭素を除去し、さらに残余の一酸化炭素と水素を反応させてメタンと水にするメタン化反応を行うことで、水素と窒素とがモル比で3対1の割合で含むアンモニア合成用素ガスを得る方法がある。   Thereafter, this synthesis gas is sent to a shift reactor, and carbon monoxide and water contained therein are subjected to a shift reaction to form carbon dioxide and hydrogen, and a decrease in carbon monoxide and an increase in hydrogen are measured. Next, the carbon dioxide contained in this is removed by alkali washing, and the remaining carbon monoxide and hydrogen are reacted to form methane and water, whereby a hydrogen to nitrogen ratio of 3 is obtained. There is a method for obtaining a raw gas for ammonia synthesis containing a ratio of one to one.

この2段改質方法では、一次改質反応器での反応が吸熱反応となるため、反応管を外部から高温に加熱する必要がある。このため、余分のエネルギーを必要とし、さらには一次改質反応器が大型化する不都合がある。   In this two-stage reforming method, since the reaction in the primary reforming reactor is an endothermic reaction, it is necessary to heat the reaction tube to a high temperature from the outside. For this reason, extra energy is required, and further, the primary reforming reactor is disadvantageously enlarged.

特開昭59−195502号公報には、一次改質反応、二次改質反応を経て得られた合成ガスにさらにシフト化反応、アルカリ洗浄、メタン化反応を施し、そののち水素と窒素との含有比率を調整するため、圧力スイング吸着工程、窒素添加工程を経る製造方法が開示されている。   In Japanese Patent Laid-Open No. 59-195502, the synthesis gas obtained through the primary reforming reaction and the secondary reforming reaction is further subjected to a shift reaction, an alkali cleaning, and a methanation reaction. In order to adjust the content ratio, a production method that includes a pressure swing adsorption process and a nitrogen addition process is disclosed.

この方法では、製造設備が複雑化することになり、さらに製品となるアンモニア合成用素ガス中の水素の一部が圧力スイング吸着工程においてロスとなるなどの不都合がある。
また、米国特許第4792441号明細書は、軽質炭化水素の改質方法として、外部加熱型の水蒸気改質反応器と酸素富化空気による部分酸化反応を2段で組み合わせる方法を開示している。
さらに、米国特許第5202057号明細書には、軽質炭化水素の改質方法として、外部加熱型の水蒸気改質法のみとして水素を製造し、一方で窒素は外部加熱用に用いる空気を含む煙道排ガスから分離精製して製造し、最後に水素と窒素を混合してアンモニア合成用素ガス得る方法が開示されている。
しかしながら、これらの方法は、主たる改質反応器が外部加熱型であることから、設備の大型化や高圧反応化に対して不利になるとともに設備構成が複雑化する欠点がある。
米国特許第4792441号明細書 米国特許第5202057号明細書 特開昭59−195502号公報
In this method, the production equipment becomes complicated, and there is a disadvantage that a part of hydrogen in the ammonia synthesis raw gas as a product is lost in the pressure swing adsorption process.
US Pat. No. 4,792,441 discloses a light hydrocarbon reforming method in which an externally heated steam reforming reactor and a partial oxidation reaction with oxygen-enriched air are combined in two stages.
Further, in US Pat. No. 5,202,057, as a light hydrocarbon reforming method, hydrogen is produced only as an external heating steam reforming method, while nitrogen is a flue containing air used for external heating. There is disclosed a method of producing by separating and purifying from exhaust gas and finally mixing hydrogen and nitrogen to obtain a raw gas for ammonia synthesis.
However, these methods have disadvantages in that the main reforming reactor is of the external heating type, which is disadvantageous for increasing the size of the equipment and for the high-pressure reaction, and complicates the equipment configuration.
US Pat. No. 4,792,441 US Pat. No. 5,202,057 JP 59-195502

よって、本発明における課題は、軽質炭化水素を原料としてアンモニア合成用素ガスを製造する際に、製造装置を簡便とすることができ、エネルギーコストを抑えることができるアンモニア合成用素ガスの製造方法および製造装置を得ることにある。   Therefore, the problem in the present invention is that the production apparatus for ammonia synthesis can be simplified and the energy cost can be reduced when producing the elementary gas for ammonia synthesis using light hydrocarbons as a raw material. And to obtain a manufacturing device.

かかる課題を解決するため、
請求項1にかかる発明は、軽質炭化水素とスチームと酸素富化空気とを接触部分酸化反応に供して、水素と窒素を含むアンモニア合成用素ガスを得る際、
酸素濃度40〜50体積%の酸素富化空気を用いることを特徴とするアンモニア合成用素ガスの製造方法である。
To solve this problem,
In the invention according to claim 1, when light hydrocarbons, steam, and oxygen-enriched air are subjected to a catalytic partial oxidation reaction to obtain an ammonia synthesis elementary gas containing hydrogen and nitrogen,
A method for producing an elementary gas for ammonia synthesis, characterized by using oxygen-enriched air having an oxygen concentration of 40 to 50% by volume.

請求項2にかかる発明は、接触部分酸化反応が、周期律表第VIII族金属を担持した触媒を用いることも特徴とする請求項1記載のアンモニア合成用素ガスの製造方法である。
請求項3にかかる発明は、接触部分酸化反応が、圧力1〜10MPa、温度200〜1200℃で行われることを特徴とする請求項1または2記載のアンモニア合成用素ガスの製造方法である。
The invention according to claim 2 is the method for producing an elementary gas for ammonia synthesis according to claim 1, wherein the catalytic partial oxidation reaction uses a catalyst carrying a Group VIII metal of the periodic table.
The invention according to claim 3 is the method for producing a raw gas for ammonia synthesis according to claim 1 or 2, wherein the catalytic partial oxidation reaction is performed at a pressure of 1 to 10 MPa and a temperature of 200 to 1200 ° C.

請求項4にかかる発明は、酸素富化空気中の酸素と軽質炭化水素中の炭素との比、(O/C)が0.3〜0.8モル/モルであることを特徴とする請求項1ないし3のいずれかに記載のアンモニア合成用素ガスの製造方法である。
請求項5にかかる発明は、スチームと軽質炭化水素中の炭素との比が1〜5モル/モルであることを特徴とする請求項1ないし4のいずれかに記載のアンモニア合成用素ガスの製造方法である。
請求項6にかかる発明は、接触部分酸化反応が、一段の反応器で行われることを特徴とする請求項1ないし5のいずれかに記載のアンモニア合成用素ガスの製造方法である。
The invention according to claim 4 is characterized in that the ratio of oxygen in the oxygen-enriched air to carbon in the light hydrocarbon, (O 2 / C) is 0.3 to 0.8 mol / mol. It is a manufacturing method of the elementary gas for ammonia synthesis according to any one of claims 1 to 3.
The invention according to claim 5 is the ammonia synthesis raw gas according to any one of claims 1 to 4, wherein the ratio of steam to carbon in the light hydrocarbon is 1 to 5 mol / mol. It is a manufacturing method.
The invention according to claim 6 is the method for producing an elementary gas for ammonia synthesis according to any one of claims 1 to 5, wherein the catalytic partial oxidation reaction is performed in a single-stage reactor.

請求項7にかかる発明は、酸素濃度40〜50体積%の酸素富化空気を発生、供給する酸素富化空気供給源と、この酸素富化空気供給源からの酸素富化空気とスチームと軽質炭化水素を導入して接触部分酸化反応を行う接触改質反応器を備えたことを特徴とするアンモニア合成用素ガスの製造装置である。   The invention according to claim 7 is an oxygen-enriched air supply source that generates and supplies oxygen-enriched air having an oxygen concentration of 40 to 50% by volume, oxygen-enriched air from the oxygen-enriched air supply source, steam, and light An apparatus for producing an elementary gas for ammonia synthesis, comprising a catalytic reforming reactor that introduces hydrocarbons and performs a catalytic partial oxidation reaction.

請求項8にかかる発明は、接触改質反応器が、周期律表第VIII族金属を担持した触媒を充填したものであることも特徴とする請求項7記載のアンモニア合成用素ガスの製造装置である。
請求項9にかかる発明は、酸素富化空気供給源が、酸素分離膜装置、空気液化分離装置および圧力スイング吸着装置のいずれかを備えたものであることを特徴とする請求項7または8記載のアンモニア合成用素ガスの製造装置である。
請求項10にかかる発明は、接触改質反応器が、一段の反応器であることを特徴とする請求項7ないし9のいずれかに記載のアンモニア合成用素ガスの製造装置である。
The invention according to claim 8 is the apparatus for producing an elementary gas for ammonia synthesis according to claim 7, wherein the catalytic reforming reactor is filled with a catalyst carrying a metal of group VIII of the periodic table. It is.
The invention according to claim 9 is characterized in that the oxygen-enriched air supply source includes any one of an oxygen separation membrane device, an air liquefaction separation device, and a pressure swing adsorption device. This is an apparatus for producing an elementary gas for ammonia synthesis.
The invention according to claim 10 is the ammonia synthesis elementary gas production apparatus according to any one of claims 7 to 9, wherein the catalytic reforming reactor is a one-stage reactor.

本発明によれば、酸素濃度40〜50体積%の酸素富化空気を用いることで、1段で水蒸気改質反応と空気部分酸化反応が同時に進行し、反応器を1基にでき、製造設備を簡略化できる。また、反応管を加熱する必要がなく、外部からの加熱が不要であり、反応温度を低く抑えることが出来るため、触媒の劣化が防止される。また、後段での圧力スイング吸着工程などを設けることなく、水素と窒素とのモル比率がほぼ3対1のアンモニア合成用素ガスを得ることができる。   According to the present invention, by using oxygen-enriched air having an oxygen concentration of 40 to 50% by volume, the steam reforming reaction and the partial air oxidation reaction can proceed simultaneously in one stage, and the reactor can be integrated into one unit. Can be simplified. Further, there is no need to heat the reaction tube, no external heating is required, and the reaction temperature can be kept low, so that deterioration of the catalyst is prevented. In addition, it is possible to obtain an ammonia synthesis raw gas having a molar ratio of hydrogen to nitrogen of approximately 3 to 1 without providing a pressure swing adsorption process or the like in the subsequent stage.

図1は、本発明のアンモニア合成用素ガスの製造装置の一例を示すものである。
原料となる天然ガス、ナフサ、石油ガス等の軽質炭化水素は、管1から脱硫反応器2に送られ、軽質炭化水素中に含まれる硫黄分が除去される。ここでの脱硫反応器2には、例えば原料ガス中の硫黄分を水素で還元して硫化水素とする還元反応器と、生成された硫化水素を吸着する吸着器を備えたものなどが用いられる。
FIG. 1 shows an example of an apparatus for producing an ammonia synthesis raw gas according to the present invention.
Light hydrocarbons such as natural gas, naphtha, and petroleum gas, which are raw materials, are sent from the pipe 1 to the desulfurization reactor 2 to remove sulfur contained in the light hydrocarbons. The desulfurization reactor 2 used here includes, for example, a reduction reactor in which a sulfur content in the raw material gas is reduced to hydrogen sulfide to form hydrogen sulfide, and an adsorber that adsorbs the generated hydrogen sulfide. .

脱硫処理された軽質炭化水素は、管3から加熱器4を介して1段接触改質反応器5に送られる。この際、スチームが管6から管3に合流され、さらに酸素富化空気が酸素富化空気供給源7から管8を通って管3に合流され、軽質炭化水素とスチームと酸素富化空気とからなる混合ガスが加熱器4に送り込まれ、ここで加熱されたうえ、1段接触改質反応器5に送り込まれる。この際、脱硫された軽質炭化水素、スチーム、酸素富化空気の温度によっては加熱器4を省略することもできる。   The desulfurized light hydrocarbon is sent from the pipe 3 to the one-stage catalytic reforming reactor 5 through the heater 4. At this time, steam is joined from the pipe 6 to the pipe 3, and oxygen-enriched air is joined from the oxygen-enriched air supply source 7 to the pipe 3 through the pipe 8, and light hydrocarbons, steam, oxygen-enriched air, The mixed gas consisting of is fed into the heater 4, heated here, and fed into the one-stage catalytic reforming reactor 5. At this time, the heater 4 can be omitted depending on the temperatures of the desulfurized light hydrocarbon, steam, and oxygen-enriched air.

上記スチームとしては圧力1〜10MPa程度のものが用いられる。また、上記酸素富化空気供給源7としては、酸素濃度40〜50体積%の酸素富化空気を発生して供給するものが用いられ、具体的には酸素分離膜装置、空気液化分離装置、圧力スイング吸着装置などを備えたものが用いられる。   As the steam, one having a pressure of about 1 to 10 MPa is used. As the oxygen-enriched air supply source 7, one that generates and supplies oxygen-enriched air having an oxygen concentration of 40 to 50% by volume is used. Specifically, an oxygen separation membrane device, an air liquefaction separation device, A device provided with a pressure swing adsorption device or the like is used.

上記酸素富化空気中の酸素の濃度は、本発明において重量な因子であり、この濃度が40体積%未満では1段接触改質器5で得られる合成ガス中の原料メタンの未反応量が増加して効率が低下し、50体積%を越えると得られる合成ガス中のアンモニア合成用素ガスの収量が大きく低下してやはり効率が低下し、ともに不都合である。
また、酸素富化空気の圧力は1〜10MPa程度とされる。
The concentration of oxygen in the oxygen-enriched air is a significant factor in the present invention. When this concentration is less than 40% by volume, the unreacted amount of raw methane in the synthesis gas obtained in the single-stage catalytic reformer 5 is low. When the volume is increased and the efficiency is lowered, and the volume exceeds 50% by volume, the yield of the raw gas for ammonia synthesis in the resultant synthesis gas is greatly lowered, and the efficiency is also lowered.
The pressure of the oxygen-enriched air is about 1 to 10 MPa.

上記加熱器4は、軽質炭化水素とスチームと酸素富化空気との混合ガスを1段接触改質反応器5の入口温度にまで加熱するものであり、酸素を有する可燃性ガスの自発的燃焼を抑えて、かつ反応開始温度まで加熱する指標として、200〜400℃程度とすることが好ましい。
酸素富化空気中の酸素と軽質炭化水素中の炭素との比(O/C)は、合成ガスとして不要なメタン残量が増加して効率が低下するのを防止するためには、0.3〜0.8モル/モルとすることが好適である。
同様の理由により、スチームと軽質炭化水素中の炭素との比(HO/C)を1〜5モル/モルとするのが好適である。
The heater 4 heats a mixed gas of light hydrocarbons, steam, and oxygen-enriched air to the inlet temperature of the one-stage catalytic reforming reactor 5, and spontaneous combustion of a combustible gas having oxygen. As an index for heating to the reaction start temperature while suppressing the above, it is preferable to set the temperature to about 200 to 400 ° C.
The ratio of oxygen in the oxygen-enriched air to carbon in the light hydrocarbon (O 2 / C) is 0 in order to prevent a decrease in efficiency due to an increase in the remaining amount of methane unnecessary as a synthesis gas. .3 to 0.8 mol / mol is preferable.
For the same reason, the ratio of steam to carbon in the light hydrocarbon (H 2 O / C) is preferably 1 to 5 mol / mol.

加熱器4を出た混合ガスは、温度200〜400℃、圧力1〜10MPaの状態で1段接触改質反応器5に送り込まれる。
この1段接触改質反応器5は、その内部に触媒層を有し、軽質炭化水素の酸素富化空気による酸化反応および軽質炭化水素の水蒸気改質反応を並行させて水素と窒素を含むアンモニア合成用素ガスを生成する。この反応は、外部から熱を供給しない自己熱改質反応であり、反応の進行に伴って触媒層を通過する間に反応熱による温度上昇が起こる。一般的に、生成ガスの温度が800〜1200℃の範囲になるような操作条件を選定する。
The mixed gas exiting the heater 4 is fed into the first-stage catalytic reforming reactor 5 at a temperature of 200 to 400 ° C. and a pressure of 1 to 10 MPa.
This one-stage catalytic reforming reactor 5 has a catalyst layer inside thereof, and ammonia containing hydrogen and nitrogen by performing an oxidation reaction of light hydrocarbons with oxygen-enriched air and a light hydrocarbon steam reforming reaction in parallel. Generate raw gas for synthesis. This reaction is a self-thermal reforming reaction in which no heat is supplied from the outside, and the temperature rises due to the reaction heat while passing through the catalyst layer as the reaction proceeds. Generally, operating conditions are selected such that the temperature of the product gas is in the range of 800-1200 ° C.

この1段接触改質反応器5において用いられる触媒としては、周期律表第VIII族の金属、例えばロジウム、パラジウム、白金、金などをアルミナ、マグネシアなどの耐熱性酸化物等からなる担体に担持してなるものが用いられ、なかでもロジウムを担持した触媒が好適である。金属の担持量は0.3〜3重量%程度である。   As a catalyst used in the one-stage catalytic reforming reactor 5, a group VIII metal such as rhodium, palladium, platinum, or gold is supported on a support made of a heat-resistant oxide such as alumina or magnesia. In particular, a catalyst supporting rhodium is preferable. The amount of metal supported is about 0.3 to 3% by weight.

このように、1段接触改質反応器5での触媒層温度としては、触媒層の入口から出口までの間で変化し、かつ全体として200〜1200℃の範囲で操作される。200℃未満では原料ガス中の水分の凝縮による触媒性能の低下が生じ、1200℃を越えると反応器材料の損傷や軽質炭化水素の反応率の限界などが起こるので、プロセス全体効率を考慮して200〜1200℃が好適な条件である。
また、1段接触反応器5の反応圧力としては、下流のアンモニア合成工程への供給に関わる難易度、触媒性能、反応器の耐圧性能などを総合的に勘案した結果、1〜10MPaで実施するのが好適である。
Thus, the catalyst layer temperature in the single-stage catalytic reforming reactor 5 varies from the inlet to the outlet of the catalyst layer, and is generally operated in the range of 200 to 1200 ° C. If the temperature is lower than 200 ° C., the catalyst performance is deteriorated due to condensation of moisture in the raw material gas. If the temperature exceeds 1200 ° C., the reactor material is damaged or the reaction rate of light hydrocarbons is limited. 200-1200 degreeC is a suitable condition.
The reaction pressure of the single-stage contact reactor 5 is 1 to 10 MPa as a result of comprehensive consideration of the difficulty related to the supply to the downstream ammonia synthesis process, catalyst performance, pressure resistance performance of the reactor, and the like. Is preferred.

以上の1段接触改質反応器5で生成して導出される合成ガスは、水素、窒素、未反応のメタン、一酸化炭素、二酸化炭素、水、アルゴンなどを含むもので、温度800〜1200℃、圧力1〜10MPaとなっている。そこで、アンモニア合成用素ガスとして最適な組成に仕上げるため、次の後処理工程を必要に応じて付加する。   The synthesis gas produced and derived by the above-described one-stage catalytic reforming reactor 5 contains hydrogen, nitrogen, unreacted methane, carbon monoxide, carbon dioxide, water, argon, etc., and has a temperature of 800 to 1200. C., pressure 1 to 10 MPa. Therefore, the following post-treatment process is added as necessary to finish the composition optimal for the ammonia synthesis gas.

この合成ガスは、管9を通って熱交換器10に送られ、ここで200〜400℃に冷却されたのち、管11からシフト反応器12に送られる。シフト反応器12では、合成ガス中の一酸化炭素と水とを反応させて、二酸化炭素と水素とにし、一酸化炭素の含有量を低減し、かつ水素の含有量を増加するシフト反応が行われる。このシフト反応器12には、従来から用いられてきたものをそのまま使用することができる。   This synthesis gas is sent to the heat exchanger 10 through the pipe 9, where it is cooled to 200 to 400 ° C. and then sent from the pipe 11 to the shift reactor 12. The shift reactor 12 performs a shift reaction in which carbon monoxide and water in the synthesis gas are reacted to form carbon dioxide and hydrogen, thereby reducing the carbon monoxide content and increasing the hydrogen content. Is called. As the shift reactor 12, those conventionally used can be used as they are.

シフト反応器12からの合成ガスは、管13から脱炭酸器14に送られ、ここでアミン水溶液などのアルカリ水溶液と気液接触させられ、これに含まれる二酸化炭素が除去される。
脱炭酸器14からの合成ガスは、管15を通ってメタン化反応器16に送られ、微量に残存する一酸化炭素を水素と反応させて、メタンと水とし、一酸化炭素を除去する。メタン化反応器16も従来から用いられているものをそのまま使用することができる。
The synthesis gas from the shift reactor 12 is sent from the pipe 13 to the decarbonator 14, where it is brought into gas-liquid contact with an alkaline aqueous solution such as an aqueous amine solution, and carbon dioxide contained therein is removed.
The synthesis gas from the decarbonator 14 is sent to the methanation reactor 16 through the pipe 15 to react a minute amount of remaining carbon monoxide with hydrogen to form methane and water to remove the carbon monoxide. As the methanation reactor 16, a conventionally used one can be used as it is.

メタン化反応器16から導出された合成ガスは、水素と窒素とをモル比でほぼ3対1の割合で含み、これ以外に少量のメタン、水、アルゴンを含むものとなり、これをアンモニア合成用素ガスとしてそのまま使用することができる。   The synthesis gas derived from the methanation reactor 16 contains hydrogen and nitrogen in a molar ratio of approximately 3 to 1, and in addition, contains a small amount of methane, water, and argon, which is used for ammonia synthesis. It can be used as it is as raw gas.

以下、具体例を示す。
(実施例1)
空気液化分離装置で得られた酸素濃度90体積%の酸素を空気で希釈して、酸素濃度45体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム5.9kg/hrと上記酸素富化空気4Nm/hrを加えて300℃に加熱した。この混合ガスを、触媒充填層径5cmで触媒充填高さ50cmであって、ロジウムをα−アルミナに担持した粒径3mmの触媒が充填されている1段接触改質反応器に導入した。
Specific examples are shown below.
Example 1
Oxygen having an oxygen concentration of 90% by volume obtained by the air liquefaction separator was diluted with air to prepare oxygen-enriched air having an oxygen concentration of 45% by volume.
For raw material natural gas 2.4 Nm 3 / hr obtained by adding hydrogen to natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) and hydrodesulfurizing Steam 5.9 kg / hr and the above oxygen-enriched air 4 Nm 3 / hr were added and heated to 300 ° C. This mixed gas was introduced into a one-stage catalytic reforming reactor having a catalyst packed bed diameter of 5 cm and a catalyst packing height of 50 cm and packed with a catalyst having a particle diameter of 3 mm in which rhodium was supported on α-alumina.

反応を開始して系が安定した後、反応器出口の合成ガスの組成を測定したところ、以下の組成を示した。
反応は2.5MPaの圧力で行った。反応器は、外部からの加熱を行うことがなく、全体として発熱反応であり、出口の合成ガスの温度は900℃であった。また、触媒層の温度は1000℃であったが、触媒の劣化はなかった。
メタン:水素:窒素:一酸化炭素:二酸化炭素:水:アルゴン=0.3:31.0:12.6:7.7:7.6:40.6:0.1(モル%)
After the reaction was started and the system was stabilized, the composition of the synthesis gas at the outlet of the reactor was measured, and the following composition was shown.
The reaction was performed at a pressure of 2.5 MPa. The reactor was exothermic as a whole without any external heating, and the temperature of the synthesis gas at the outlet was 900 ° C. Moreover, although the temperature of the catalyst layer was 1000 degreeC, there was no deterioration of a catalyst.
Methane: hydrogen: nitrogen: carbon monoxide: carbon dioxide: water: argon = 0.3: 31.0: 12.6: 7.7: 7.6: 40.6: 0.1 (mol%)

上記合成ガスを、250℃に冷却して多管冷却式の等温シフト化反応器に導入してシフト化反応を行って一酸化炭素の減量と水素の増量を行って以下の組成のガスを得た。
メタン:水素:窒素:一酸化炭素:二酸化炭素:水:アルゴン=0.3:38.5:12.6:0.2:15.2:33.1:0.1(モル%)
The above synthesis gas is cooled to 250 ° C. and introduced into a multi-tube cooling type isothermal shift reactor and subjected to a shift reaction to reduce carbon monoxide and increase hydrogen to obtain a gas having the following composition. It was.
Methane: hydrogen: nitrogen: carbon monoxide: carbon dioxide: water: argon = 0.3: 38.5: 12.6: 0.2: 15.2: 33.1: 0.1 (mol%)

さらに、この合成ガスを炭酸ガス吸収塔に通して、二酸化炭素を除去したのち、残存する一酸化炭素をメタン化反応器に送って除去し、以下の組成を有する合成ガスを得た。メタン化反応器での反応条件は、温度約300℃、圧力2.1MPaで、触媒には一般的なニッケル系触媒を使用した。
メタン:水素:窒素:一酸化炭素:二酸化炭素:水:アルゴン=1.0:73.4:24.5:0.0:0.0:0.9:0.2(モル%)
この合成ガスは、アンモニア合成用素ガスに最適な水素:窒素のモル比が3:1の比率で含まれるものである。
Further, this synthesis gas was passed through a carbon dioxide absorption tower to remove carbon dioxide, and then the remaining carbon monoxide was sent to the methanation reactor to remove it to obtain a synthesis gas having the following composition. The reaction conditions in the methanation reactor were a temperature of about 300 ° C. and a pressure of 2.1 MPa, and a general nickel catalyst was used as the catalyst.
Methane: Hydrogen: Nitrogen: Carbon monoxide: Carbon dioxide: Water: Argon = 1.0: 73.4: 24.5: 0.0: 0.0: 0.9: 0.2 (mol%)
This synthesis gas contains a hydrogen: nitrogen molar ratio of 3: 1 which is optimal for the ammonia synthesis raw gas.

(実施例2)
窒素透過型の膜分離装置を用いて酸素濃度40体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム4.9kg/hrと上記酸素富化空気4.4Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして1段接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
(Example 2)
Oxygen-enriched air having an oxygen concentration of 40% by volume was prepared using a nitrogen permeable membrane separator.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 4.9 kg / hr and the above oxygen-enriched air 4.4 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the single-stage catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1. Syngas was obtained.

この得られた合成ガスの組成は、水素と窒素との比率がモル比で2.5:1であった。
この比率は、アンモニア合成反応における生産効率を考えると、さらなる濃度調整を必要としない下限値である。すなわち、酸素富化空気の酸素濃度が40体積%未満では、本発明の利点を十分に発揮できないことになる。
The composition of the resulting synthesis gas had a molar ratio of hydrogen to nitrogen of 2.5: 1.
This ratio is a lower limit value that does not require further concentration adjustment in consideration of production efficiency in the ammonia synthesis reaction. That is, if the oxygen concentration of the oxygen-enriched air is less than 40% by volume, the advantages of the present invention cannot be fully exhibited.

(実施例3)
圧力スイング吸着装置を用いて酸素濃度50体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム7.3kg/hrと上記酸素富化空気3.8Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして1段接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
(Example 3)
Oxygen-enriched air having an oxygen concentration of 50% by volume was prepared using a pressure swing adsorption device.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 7.3 kg / hr and the above oxygen-enriched air 3.8 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the single-stage catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1. Syngas was obtained.

この得られた合成ガスの組成は、水素と窒素との比率がモル比で3.5:1であった。
この比率は、アンモニア合成反応における生産効率を考えると、さらなる濃度調整を必要としない上限値である。すなわち、酸素富化空気の酸素濃度が50体積%越えると、本発明の利点を十分に発揮できないことになる。
The composition of the resulting synthesis gas had a molar ratio of hydrogen to nitrogen of 3.5: 1.
This ratio is an upper limit value that does not require further concentration adjustment in consideration of production efficiency in the ammonia synthesis reaction. That is, if the oxygen concentration of the oxygen-enriched air exceeds 50% by volume, the advantages of the present invention cannot be fully exhibited.

(実施例4)
圧力スイング吸着装置を用いて酸素濃度50体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム9.9kg/hrと上記酸素富化空気4.2Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして1段接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
Example 4
Oxygen-enriched air having an oxygen concentration of 50% by volume was prepared using a pressure swing adsorption device.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 9.9 kg / hr and the above oxygen-enriched air 4.2 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the single-stage catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1. Syngas was obtained.

ただし、1段接触改質反応器での反応圧力を5.5MPaとし、メタン化反応器での反応圧力を5.1MPaとし、全体の反応圧力を実施例1のものに比較して3.0MPa高くして反応を行った。
得られた合成ガスの組成は、水素と窒素との比率がモル比で3:1で、アンモニア合成に最適な組成であった。
However, the reaction pressure in the single-stage catalytic reforming reactor was 5.5 MPa, the reaction pressure in the methanation reactor was 5.1 MPa, and the overall reaction pressure was 3.0 MPa compared to that in Example 1. The reaction was carried out at a high level.
The composition of the synthesis gas obtained was an optimal composition for ammonia synthesis with a molar ratio of hydrogen to nitrogen of 3: 1.

(実施例5)
窒素透過型の膜分離装置を用いて酸素濃度43体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム3.8kg/hrと上記酸素富化空気3.5Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして1段接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
(Example 5)
Oxygen-enriched air having an oxygen concentration of 43% by volume was prepared using a nitrogen permeable membrane separator.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 3.8 kg / hr and the above oxygen-enriched air 3.5 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the single-stage catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1. Syngas was obtained.

ただし、1段接触改質反応器での反応圧力を1.5MPaとし、メタン化反応器での反応圧力を1.1MPaとし、全体の反応圧力を実施例1のものに比較して1.0MPa低くして反応を行った。
得られた合成ガスの組成は、水素と窒素との比率がモル比で3:1で、アンモニア合成に最適な組成であった。
However, the reaction pressure in the single-stage catalytic reforming reactor is 1.5 MPa, the reaction pressure in the methanation reactor is 1.1 MPa, and the overall reaction pressure is 1.0 MPa compared to that in Example 1. The reaction was carried out at a low temperature.
The composition of the synthesis gas obtained was an optimal composition for ammonia synthesis with a molar ratio of hydrogen to nitrogen of 3: 1.

(比較例1)
窒素透過型の膜分離装置を用いて酸素濃度39体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム3.5kg/hrと上記酸素富化空気4.3Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして1段接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
(Comparative Example 1)
Oxygen-enriched air having an oxygen concentration of 39% by volume was prepared using a nitrogen permeable membrane separator.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 3.5 kg / hr and the above oxygen-enriched air 4.3 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the single-stage catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1. Syngas was obtained.

得られた合成ガスの組成は、水素と窒素との比率はモル比で2.5:1であったが、未反応のメタンが2モル%以上含まれていた。
すなわち、アンモニア合成における原料天然ガス使用量の原単位が悪く効率が低いことが判明した。
The composition of the resulting synthesis gas had a molar ratio of hydrogen to nitrogen of 2.5: 1, but contained 2 mol% or more of unreacted methane.
That is, it was found that the basic unit of the amount of raw material natural gas used in ammonia synthesis was poor and the efficiency was low.

以上のことから、酸素富化空気中の酸素濃度が低いと、混合するスチーム量の調整が限界に達して、結果的に未反応のメタンが増加して効率が低下するため、酸素富化空気中の酸素濃度は、40体積%以上が適切であることがわかる。   From the above, when the oxygen concentration in the oxygen-enriched air is low, the adjustment of the amount of steam to be mixed reaches the limit, resulting in an increase in unreacted methane and a decrease in efficiency. It can be seen that the oxygen concentration in the inside is appropriately 40% by volume or more.

(比較例2)
空気液化分離装置で得られた濃度90体積%の酸素を空気で希釈して酸素濃度51体積%の酸素富化空気を用意した。
天然ガス(メタン:エタン:プロパン:ブタン=88.56:7.21:3.05:1.18モル%)に水素を加えて水添脱硫した原料天然ガス2.4Nm/hrに対して、スチーム8.2kg/hrと上記酸素富化空気3.8Nm/hrを加えて300℃に加熱した。この混合ガスを実施例1と同様にして接触改質反応器に送り、同様の反応条件にて処理し、さらに実施例1と同様にしてシフト反応、二酸化炭素除去、メタン化反応を行い、合成ガスを得た。
(Comparative Example 2)
Oxygen having a concentration of 90% by volume obtained by the air liquefaction separation apparatus was diluted with air to prepare oxygen-enriched air having an oxygen concentration of 51% by volume.
With respect to 2.4Nm 3 / hr of natural gas (methane: ethane: propane: butane = 88.56: 7.21: 3.05: 1.18 mol%) added to hydrogen and hydrodesulfurized raw material natural gas Steam 8.2 kg / hr and the above oxygen-enriched air 3.8 Nm 3 / hr were added and heated to 300 ° C. This mixed gas is sent to the catalytic reforming reactor in the same manner as in Example 1, treated under the same reaction conditions, and further subjected to shift reaction, carbon dioxide removal, and methanation reaction in the same manner as in Example 1 to synthesize Got the gas.

得られた合成ガスの組成は、水素と窒素との比率はモル比で3.5:1であったが、未反応のメタンは1モル%以下で実用上問題はなかった。
しかしながら、製造された製品ガス(アンモニア合成用素ガス)量が実施例1のものに比較すると、15%も低く、この場合においても、原料天然ガス使用量の原単位が悪く効率が低いことが判明した。
The composition of the synthesis gas thus obtained had a molar ratio of hydrogen to nitrogen of 3.5: 1, but unreacted methane was 1 mol% or less, and there was no practical problem.
However, the amount of product gas produced (elementary gas for ammonia synthesis) is 15% lower than that of Example 1, and even in this case, the basic unit of the amount of raw material natural gas used is poor and the efficiency is low. found.

以上のことから、酸素富化空気中の酸素濃度が高すぎると、効率が低下するため、酸素富化空気中の酸素濃度は、50体積%以下が適切であることがわかる。   From the above, it can be seen that if the oxygen concentration in the oxygen-enriched air is too high, the efficiency is lowered, so that the oxygen concentration in the oxygen-enriched air is appropriately 50% by volume or less.

本発明のアンモニア合成用素ガスの製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus of the elementary gas for ammonia synthesis of this invention.

符号の説明Explanation of symbols

5・・接触改質器、7・・酸素富化空気供給源
5 ... Contact reformer, 7 ... Oxygen-enriched air supply source

Claims (10)

軽質炭化水素とスチームと酸素富化空気とを接触部分酸化反応に供して、水素と窒素を含むアンモニア合成用素ガスを得る際、
酸素濃度40〜50体積%の酸素富化空気を用いることを特徴とするアンモニア合成用素ガスの製造方法。
When a light hydrocarbon, steam, and oxygen-enriched air are subjected to a catalytic partial oxidation reaction to obtain an elementary gas for ammonia synthesis containing hydrogen and nitrogen,
A method for producing an elementary gas for ammonia synthesis, characterized by using oxygen-enriched air having an oxygen concentration of 40 to 50% by volume.
接触部分酸化反応が、周期律表第VIII族金属を担持した触媒を用いることも特徴とする請求項1記載のアンモニア合成用素ガスの製造方法。   The method for producing an elementary gas for ammonia synthesis according to claim 1, wherein the catalytic partial oxidation reaction uses a catalyst carrying a Group VIII metal of the periodic table. 接触部分酸化反応が、圧力1〜10MPa、温度200〜1200℃で行われることを特徴とする請求項1または2記載のアンモニア合成用素ガスの製造方法。   The method for producing an elementary gas for ammonia synthesis according to claim 1 or 2, wherein the contact partial oxidation reaction is performed at a pressure of 1 to 10 MPa and a temperature of 200 to 1200 ° C. 酸素富化空気中の酸素と軽質炭化水素中の炭素との比、(O/C)が0.3〜0.8モル/モルであることを特徴とする請求項1ないし3のいずれかに記載のアンモニア合成用素ガスの製造方法。 The ratio of oxygen in oxygen-enriched air to carbon in light hydrocarbons (O 2 / C) is 0.3 to 0.8 mol / mol, according to any one of claims 1 to 3. A process for producing an elementary gas for ammonia synthesis as described in 1. above. スチームと軽質炭化水素中の炭素との比が1〜5モル/モルであることを特徴とする請求項1ないし4のいずれかに記載のアンモニア合成用素ガスの製造方法。   The method for producing an elementary gas for ammonia synthesis according to any one of claims 1 to 4, wherein the ratio of steam to carbon in the light hydrocarbon is 1 to 5 mol / mol. 接触部分酸化反応が、一段の反応器で行われることを特徴とする請求項1ないし5のいずれかに記載のアンモニア合成用素ガスの製造方法。   The method for producing a raw gas for ammonia synthesis according to any one of claims 1 to 5, wherein the catalytic partial oxidation reaction is performed in a single-stage reactor. 酸素濃度40〜50体積%の酸素富化空気を発生、供給する酸素富化空気供給源と、この酸素富化空気供給源からの酸素富化空気とスチームと軽質炭化水素を導入して接触部分酸化反応を行う接触改質反応器を備えたことを特徴とするアンモニア合成用素ガスの製造装置。   An oxygen-enriched air supply source that generates and supplies oxygen-enriched air having an oxygen concentration of 40 to 50% by volume, and a contact portion by introducing oxygen-enriched air, steam, and light hydrocarbons from the oxygen-enriched air supply source An apparatus for producing an elementary gas for ammonia synthesis, comprising a catalytic reforming reactor that performs an oxidation reaction. 接触改質反応器が、周期律表第VIII族金属を担持した触媒を充填したものであることも特徴とする請求項7記載のアンモニア合成用素ガスの製造装置。   The apparatus for producing an elementary gas for ammonia synthesis according to claim 7, wherein the catalytic reforming reactor is filled with a catalyst supporting a Group VIII metal of the periodic table. 酸素富化空気供給源が、酸素分離膜装置、空気液化分離装置および圧力スイング吸着装置のいずれかを備えたものであることを特徴とする請求項7または8記載のアンモニア合成用素ガスの製造装置。   9. The production of an elementary gas for ammonia synthesis according to claim 7 or 8, wherein the oxygen-enriched air supply source comprises any one of an oxygen separation membrane device, an air liquefaction separation device, and a pressure swing adsorption device. apparatus. 接触改質反応器が、一段の反応器であることを特徴とする請求項7ないし9のいずれかに記載のアンモニア合成用素ガスの製造装置。
The apparatus for producing an elementary gas for ammonia synthesis according to any one of claims 7 to 9, wherein the catalytic reforming reactor is a one-stage reactor.
JP2006149523A 2006-05-30 2006-05-30 Method and apparatus for producing source gas for ammonia synthesis Pending JP2007320779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149523A JP2007320779A (en) 2006-05-30 2006-05-30 Method and apparatus for producing source gas for ammonia synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149523A JP2007320779A (en) 2006-05-30 2006-05-30 Method and apparatus for producing source gas for ammonia synthesis

Publications (1)

Publication Number Publication Date
JP2007320779A true JP2007320779A (en) 2007-12-13

Family

ID=38853910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149523A Pending JP2007320779A (en) 2006-05-30 2006-05-30 Method and apparatus for producing source gas for ammonia synthesis

Country Status (1)

Country Link
JP (1) JP2007320779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069220A1 (en) * 2007-11-29 2009-06-04 Jgc Corporation Process and apparatus for production of raw gas for ammonia synthesis
CN115385300A (en) * 2022-07-04 2022-11-25 西北农林科技大学 Process for producing ammonia from agricultural and forestry waste

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190821A (en) * 1982-04-14 1983-11-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Ammonia production
JPS59195502A (en) * 1983-04-15 1984-11-06 Toyo Eng Corp Manufacture of ammonia synthesis gas
US4792441A (en) * 1988-01-19 1988-12-20 Air Products And Chemicals, Inc. Ammonia synthesis
US5202057A (en) * 1988-09-14 1993-04-13 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
JP2001509771A (en) * 1997-06-06 2001-07-24 ノルスク・ヒドロ・アーエスアー Method of performing a catalytic or non-catalytic process using enriched oxygen as one of the reactants
JP2003303610A (en) * 2002-04-10 2003-10-24 Nippon Oil Corp Fuel cell system and its operating method and auto- thermal reforming device
JP2005320212A (en) * 2004-05-11 2005-11-17 Honda Motor Co Ltd Method for manufacturing hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190821A (en) * 1982-04-14 1983-11-07 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Ammonia production
JPS59195502A (en) * 1983-04-15 1984-11-06 Toyo Eng Corp Manufacture of ammonia synthesis gas
US4792441A (en) * 1988-01-19 1988-12-20 Air Products And Chemicals, Inc. Ammonia synthesis
US5202057A (en) * 1988-09-14 1993-04-13 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
JP2001509771A (en) * 1997-06-06 2001-07-24 ノルスク・ヒドロ・アーエスアー Method of performing a catalytic or non-catalytic process using enriched oxygen as one of the reactants
JP2003303610A (en) * 2002-04-10 2003-10-24 Nippon Oil Corp Fuel cell system and its operating method and auto- thermal reforming device
JP2005320212A (en) * 2004-05-11 2005-11-17 Honda Motor Co Ltd Method for manufacturing hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069220A1 (en) * 2007-11-29 2009-06-04 Jgc Corporation Process and apparatus for production of raw gas for ammonia synthesis
CN115385300A (en) * 2022-07-04 2022-11-25 西北农林科技大学 Process for producing ammonia from agricultural and forestry waste

Similar Documents

Publication Publication Date Title
TWI812634B (en) Autothermal ammonia cracking process
RU2412226C2 (en) Method of producing and converting synthetic gas (versions)
CA2706394C (en) Process for producing ammonia synthesis gas
AU2007325180B2 (en) Systems and processes for producing hydrogen and carbon dioxide
US8591769B2 (en) Hydrogen production with reduced carbon dioxide generation and complete capture
JP5721310B2 (en) Oxygen removal
JPWO2009069220A1 (en) Production method and production apparatus for elementary gas for ammonia synthesis
CN113795460A (en) ATR-based hydrogen process and apparatus
US8580153B2 (en) Hydrogen production with reduced carbon dioxide generation and complete capture
US20110318251A1 (en) Producing ammonia using ultrapure, high pressure hydrogen
JP2008528423A (en) Syngas production method with low carbon dioxide emission
WO2022038089A1 (en) Atr-based hydrogen process and plant
RU2707088C2 (en) Method and system for producing methanol using partial oxidation
JP2018512368A (en) Reformer including CO2 membrane
EP2474503A1 (en) Method for hydrogen production
KR20230029615A (en) How to produce hydrogen
JP3302363B2 (en) Method for producing high-purity carbon monoxide
WO2022253460A1 (en) Process and plant for producing pure hydrogen by steam reforming with low carbon dioxide emissions
CN116133982A (en) Low-hydrocarbon fuel
WO2023170389A1 (en) Process for producing hydrogen and method of retrofitting a hydrogen production unit
JP2007320779A (en) Method and apparatus for producing source gas for ammonia synthesis
EP3867195A1 (en) Carbon recycling in steam reforming process
JP2000233917A (en) Method of producing carbon monoxide from carbon dioxide
GB2621672A (en) Process for producing hydrogen
AU2023232982A1 (en) Process for producing hydrogen and method of retrofitting a hydrogen production unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321