JP2007317383A - Electromagnetic wave generator and x-ray imaging system - Google Patents

Electromagnetic wave generator and x-ray imaging system Download PDF

Info

Publication number
JP2007317383A
JP2007317383A JP2006142737A JP2006142737A JP2007317383A JP 2007317383 A JP2007317383 A JP 2007317383A JP 2006142737 A JP2006142737 A JP 2006142737A JP 2006142737 A JP2006142737 A JP 2006142737A JP 2007317383 A JP2007317383 A JP 2007317383A
Authority
JP
Japan
Prior art keywords
target
charged particles
electromagnetic wave
wave generator
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006142737A
Other languages
Japanese (ja)
Other versions
JP4573803B2 (en
Inventor
Hirobumi Tanaka
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006142737A priority Critical patent/JP4573803B2/en
Publication of JP2007317383A publication Critical patent/JP2007317383A/en
Application granted granted Critical
Publication of JP4573803B2 publication Critical patent/JP4573803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost, high-luminance and large-intensity X-ray source having a compact X-ray source size of several micrometers, and large in a heat radiation effect of an X-ray target. <P>SOLUTION: In a round accelerator having a charged particle generation means, a charged particle acceleration means, a deflection magnetic field generation means, and the X-ray target arranged on a stable orbit of charged particles, a metal rod having a needle-like tip form having a diameter around 10 μm is used for the X-ray target, and the direction of the needle-like projection part is set vertical to the direction in which the charged particles are orbiting. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、荷電粒子を高エネルギーに加速する加速器を用い、この加速した荷電粒子をターゲットに衝突させてX線等の電磁波を発生させる電磁波発生装置および電磁波発生装置を用いたX線撮像システムに関するものである。   The present invention relates to an electromagnetic wave generation device that uses an accelerator that accelerates charged particles to high energy, collides the accelerated charged particles with a target to generate electromagnetic waves such as X-rays, and an X-ray imaging system using the electromagnetic wave generation device. Is.

円形加速器を利用した従来の電磁波発生装置には、電子蓄積リングを利用した装置等が知られている。電子蓄積リングを利用した電磁波発生装置は、入射器と電子蓄積リングから構成されており、所定のエネルギーにまで加速された電子ビームが入射器から電子蓄積リングに入射され、電子蓄積リング内の一定軌道上を周回する。周回軌道上にはターゲットが配置されており、周回する電子ビームとの衝突により、X線等の電磁波が発生するようになっている。(特許文献1参照)
特許第2796071号公報(特に段落番号0048)
As a conventional electromagnetic wave generator using a circular accelerator, a device using an electron storage ring is known. An electromagnetic wave generator using an electron storage ring is composed of an injector and an electron storage ring, and an electron beam accelerated to a predetermined energy is incident on the electron storage ring from the injector and is constant in the electron storage ring. Go around the orbit. A target is disposed on the orbit, and electromagnetic waves such as X-rays are generated by collision with the circulating electron beam. (See Patent Document 1)
Japanese Patent No. 2796071 (particularly paragraph number 0048)

このような電子蓄積リングを利用した電磁波発生装置(特許文献1)では、電子ビームをターゲットに繰り返し衝突させる為に、X線ターゲットとしてタングステンワイヤーやカーボン薄膜を用いていた。しかも周回する電子ビームとの衝突により発生するX線の光源サイズを10μm程度にするには、ワイヤー径は10μm程度、薄膜の厚さは10μm程度にする必要があった。その場合、ワイヤー径や薄膜厚が小さいと、熱伝導による除熱効果が小さく、例えばワイヤー支持部を冷却しても、冷却効果は殆どない。よって、ターゲット部に電子ビームが衝突した時の温度上昇が非常に大きく、ワイヤーや薄膜が溶けてしまうという課題があった。   In an electromagnetic wave generator (Patent Document 1) using such an electron storage ring, a tungsten wire or a carbon thin film is used as an X-ray target in order to repeatedly collide the electron beam with the target. Moreover, in order to reduce the size of the light source of X-rays generated by collision with the circulating electron beam, it is necessary to set the wire diameter to about 10 μm and the thickness of the thin film to about 10 μm. In that case, if the wire diameter or thin film thickness is small, the heat removal effect by heat conduction is small, and for example, even if the wire support is cooled, there is almost no cooling effect. Therefore, the temperature rise when the electron beam collides with the target portion is very large, and there is a problem that the wire and the thin film are melted.

この発明は、上記のような問題点を解決するためになされたものであり、従来に比べて強度の強い電子ビームが衝突しても溶けることのないX線ターゲットを提供し、結果的に高強度のX線の発生が可能な電磁波発生装置、及び、前記電磁波発生装置を用いたX線撮像システムを実現することを目的とするものである。   The present invention has been made to solve the above-described problems, and provides an X-ray target that does not melt even when an electron beam having a higher intensity than conventional ones collides. An object of the present invention is to realize an electromagnetic wave generator capable of generating intense X-rays and an X-ray imaging system using the electromagnetic wave generator.

この発明の電磁波発生装置は、荷電粒子を発生させる荷電粒子発生手段と、この荷電粒子発生手段で発生した荷電粒子を加速する加速手段と、この加速手段で加速された荷電粒子を偏向させて周回軌道上を周回させる偏向磁界発生手段と、先端が針状に尖った金属棒で構成され、前記偏向磁界発生手段により周回している荷電粒子を前記金属棒の先端に衝突させてX線を発生させるターゲットとを備えたものである。   The electromagnetic wave generator of the present invention includes a charged particle generating means for generating charged particles, an accelerating means for accelerating the charged particles generated by the charged particle generating means, and deflecting the charged particles accelerated by the accelerating means. Consists of a deflection magnetic field generating means that circulates on the orbit and a metal rod with a tip sharpened like a needle, and generates X-rays by colliding charged particles circulating around the deflection magnetic field generating means with the tip of the metal rod And a target to be made.

この発明のX線撮像システムは、荷電粒子を発生させる荷電粒子発生手段と、この荷電粒子発生手段で発生した荷電粒子を加速する加速手段と、この加速手段で加速された荷電粒子を偏向させて周回軌道上を周回させる偏向磁界発生手段と、先端が針状に尖った金属棒で構成され、前記偏向磁界発生手段により周回している荷電粒子を前記金属棒の先端に衝突させてX線を発生させるターゲットとを有する電磁波発生装置、この電磁波発生装置で発生したX線を被照射体に照射してその撮影画像を検出する撮像検出器、およびこの撮像検出器で検出した画像を処理して前記被照射体の透視画像を得るデータ処理装置を備えたものである。   The X-ray imaging system according to the present invention includes charged particle generation means for generating charged particles, acceleration means for accelerating the charged particles generated by the charged particle generation means, and deflecting charged particles accelerated by the acceleration means. A deflecting magnetic field generating means that circulates on a circular orbit, and a metal rod having a needle-like tip pointed, and a charged particle circulated by the deflecting magnetic field generating means collides with the tip of the metal rod to emit X-rays. An electromagnetic wave generator having a target to be generated, an imaging detector for irradiating an irradiated body with X-rays generated by the electromagnetic wave generator to detect the captured image, and processing an image detected by the imaging detector A data processing device for obtaining a fluoroscopic image of the irradiated object is provided.

この発明によれば、ターゲットが針状に尖った金属棒で構成されているため、電子ビームはターゲット先端の針状部に衝突してX線の光源サイズを小さく出来、一方電子ビームの衝突による温度上昇はターゲットの根元部の径の大きい箇所で除熱されるので、大強度の荷電粒子をX線ターゲットに衝突させることが可能となり、大強度の微小光源サイズのX線を発生させることができる電磁波発生装置が得られる。
またこの発明の電磁波発生装置をX線撮像システムに用いることにより、X線の屈折の差を用いた屈折コントラスト撮像が可能となり、コンパクトで低コストなX線撮像システムを実現でき、数mm程度の微小ながんを、低被曝線量で識別することができる。また、原子番号の近い2つの物質でも屈折効果の差は従来の吸収効果の差より数100倍程度大きく、その透視識別が可能となる。
According to the present invention, since the target is composed of a needle-shaped metal rod, the electron beam can collide with the needle-like portion at the tip of the target to reduce the size of the X-ray light source, while the electron beam collides. Since the temperature rise is removed at a location where the diameter of the base portion of the target is large, it becomes possible to cause high-intensity charged particles to collide with the X-ray target, and X-rays having a high-intensity micro light source size can be generated. An electromagnetic wave generator is obtained.
Further, by using the electromagnetic wave generator of the present invention in an X-ray imaging system, it becomes possible to perform refraction contrast imaging using the difference in refraction of X-rays, and a compact and low-cost X-ray imaging system can be realized. Small cancers can be identified with a low dose. In addition, the difference between the refractive effects of two substances having similar atomic numbers is several hundred times larger than the difference between the conventional absorption effects, and the fluoroscopic identification is possible.

実施の形態1.
図1から図4を用いてこの発明の実施の形態1について説明する。実施の形態1では荷電粒子として電子ビームを加速し、ターゲットに衝突させることでX線を発生させる電磁波発生装置に関し記述する。
図1はこの発明の実施の形態1による電磁波発生装置の断面図で、電子ビームが周回する電子ビーム軌道平面上で断面化したものである。図2は図1のII−II線における断面図で、この発明の実施の形態1によるX線ターゲットの構成図である。図3はこの発明の実施の形態1によるX線ターゲットに荷電粒子ビームが近づいていくことを示す説明図である。図4はこの発明の実施の形態1によるX線ターゲットに荷電粒子ビームが近づいていく時の荷電粒子の垂直方向の振動の様子を示す説明図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIGS. Embodiment 1 describes an electromagnetic wave generator that generates X-rays by accelerating an electron beam as charged particles and colliding with a target.
FIG. 1 is a cross-sectional view of an electromagnetic wave generator according to Embodiment 1 of the present invention, which is cross-sectionalized on an electron beam trajectory plane around which an electron beam circulates. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and is a configuration diagram of the X-ray target according to the first embodiment of the present invention. FIG. 3 is an explanatory diagram showing that a charged particle beam approaches the X-ray target according to Embodiment 1 of the present invention. FIG. 4 is an explanatory view showing the state of vibration of the charged particles in the vertical direction when the charged particle beam approaches the X-ray target according to Embodiment 1 of the present invention.

図1において、荷電粒子発生手段11は電子銃を有して荷電粒子(電子ビーム)を発生するものである。荷電粒子加速手段12は磁界を発生して、それに基づく電界により電粒子発生手段11で発生した荷電粒子(電子ビーム)を加速するものである。偏向磁界発生手段13は荷電粒子加速手段12で加速された荷電粒子を磁界により偏向させて、加速周回軌道15上を周回させるもので、複数個(図示では4個)設けられている。X線ターゲット14は図2で詳述するように、先端が針状に尖った金属棒で構成され、偏向磁界発生手段13により周回している荷電粒子を前記金属棒の先端に衝突させてX線を発生させるものである。なおX線ターゲット14は図示では1個であるが、荷電粒子の周回軌道上に複数個設けてもよい。真空ダクト16は加速している荷電粒子を高真空に保持するもので、荷電粒子(電子ビーム)が周回するよう円環状に構成されている。   In FIG. 1, a charged particle generating means 11 has an electron gun and generates charged particles (electron beam). The charged particle accelerating means 12 generates a magnetic field and accelerates charged particles (electron beams) generated by the electroparticle generating means 11 by an electric field based on the magnetic field. The deflecting magnetic field generating means 13 deflects the charged particles accelerated by the charged particle accelerating means 12 by a magnetic field and circulates on the accelerating orbit 15 and is provided in a plurality (four in the figure). As will be described in detail with reference to FIG. 2, the X-ray target 14 is composed of a metal bar having a tip that is pointed like a needle, and charged particles circulating around by the deflection magnetic field generating means 13 collide with the tip of the metal bar. A line is generated. The number of X-ray targets 14 is one in the drawing, but a plurality of X-ray targets 14 may be provided on the orbit of charged particles. The vacuum duct 16 holds accelerated charged particles in a high vacuum, and is configured in an annular shape so that charged particles (electron beams) circulate.

荷電粒子発生手段11は荷電粒子の加速周回軌道15の外側に設置され、荷電粒子は反時計方向に周回されるようになっている。またX線ターゲット14は荷電粒子の周回軌道上の内側に配置され、ターゲットの針状先端部の方向を、荷電粒子が前記ターゲットの外側を周回している時には外側に向けて配置されている。また荷電粒子加速手段12は装置の中央に配置されている。そして上記荷電粒子発生手段11、荷電粒子加速手段12、偏向磁界発生手段13、X線ターゲット14、真空ダクト16で円形加速器が構成される。   The charged particle generation means 11 is installed outside the acceleration orbit 15 of charged particles, and the charged particles are circulated counterclockwise. Further, the X-ray target 14 is arranged on the inner side of the orbit of the charged particles, and the direction of the needle-like tip portion of the target is arranged outward when the charged particles orbit the outside of the target. The charged particle acceleration means 12 is disposed at the center of the apparatus. The charged particle generating means 11, charged particle accelerating means 12, deflection magnetic field generating means 13, X-ray target 14 and vacuum duct 16 constitute a circular accelerator.

上記構成において、荷電粒子発生手段11で発生したパルス幅数μ秒の電子ビームは、偏向磁界発生手段13で偏向を受けることにより真空ダクト16内を周回しながら荷電粒子加速手段12の磁界で誘起される電界により図の周方向に加速される。こうして電子ビームは、荷電粒子加速手段12と偏向磁界発生手段13との相互作用により荷電粒子の加速軌道15上を周回する。
本装置内の電子ビームは偏向磁界発生手段13の部分で略円弧軌道に沿って、偏向磁界発生手段13がない部分は直線に近い軌道に沿って走行し、両軌道を合わせて周回軌道を構成する。偏向磁界発生手段13の磁極端と電子ビームの進行方向のなす角度は90度ではなく、電子ビームは磁極端を通る毎に漏洩磁場による収束を受けて所定のビームサイズで加速される。電子ビームは大気中では減衰してしまうので、高真空に保持された真空ダクト16の内部を周回する。荷電粒子加速手段12と偏向磁界発生手段13は50Hzから数10kHz程度の交流磁場が電磁石電源(図示省略)によりかけられており、両者の磁場強度の関係を所定の値にすると電子ビームは大きく周回軌道を変えることなく、ある領域の中を安定に周回・加速させることが可能となる。
In the above configuration, an electron beam having a pulse width of several microseconds generated by the charged particle generating means 11 is induced by the magnetic field of the charged particle accelerating means 12 while circling in the vacuum duct 16 by being deflected by the deflecting magnetic field generating means 13. The electric field is accelerated in the circumferential direction of the figure. Thus, the electron beam circulates on the charged particle acceleration orbit 15 by the interaction between the charged particle acceleration means 12 and the deflection magnetic field generation means 13.
The electron beam in this apparatus travels along a substantially circular orbit at the part of the deflecting magnetic field generating means 13, and the part without the deflecting magnetic field generating means 13 travels along a trajectory that is close to a straight line. To do. The angle formed between the magnetic pole end of the deflection magnetic field generating means 13 and the traveling direction of the electron beam is not 90 degrees, and the electron beam is converged by the leakage magnetic field every time it passes through the magnetic pole end and accelerated with a predetermined beam size. Since the electron beam is attenuated in the atmosphere, the electron beam circulates inside the vacuum duct 16 held in a high vacuum. The charged particle accelerating means 12 and the deflecting magnetic field generating means 13 are applied with an alternating magnetic field of about 50 Hz to several tens of kHz by an electromagnet power source (not shown). It is possible to stably circulate and accelerate in a certain area without changing the trajectory.

加速された電子ビームは荷電粒子加速手段12と偏向磁界発生手段13の磁場強度の関係を少し変えると内側に移動し、安定周回領域に設置されたターゲット14に衝突してX線を発生する。発生するX線の光源サイズはターゲット14のサイズとほぼ同じになるので、ターゲット14のサイズが小さいと光源サイズを小さくすることができる。ターゲットサイズは数μm程度にすることが可能であり、光源サイズが数μm程度のX線源を実現することが可能である。周回している電子ビームのサイズは数mmから数100mmであるので、1周回でターゲット14に衝突する電子は少ない。しかし、ターゲット14に衝突しなかった電子は、安定周回領域を周回しているのでそのまま装置中を周回し続ける。そしていつか必ずターゲット14に衝突してX線を発生する。こうして発生したX線は図示していないX線取出しポートから取り出し、X線撮像システムなどの医療診断装置に利用する。   The accelerated electron beam moves inward when the relationship between the magnetic field strengths of the charged particle acceleration means 12 and the deflection magnetic field generation means 13 is slightly changed, and collides with the target 14 installed in the stable orbital region to generate X-rays. Since the light source size of the generated X-ray is almost the same as the size of the target 14, the light source size can be reduced if the size of the target 14 is small. The target size can be about several μm, and an X-ray source with a light source size of about several μm can be realized. Since the size of the circulating electron beam is several mm to several hundred mm, few electrons collide with the target 14 in one round. However, since the electrons that have not collided with the target 14 circulate in the stable circulation region, they continue to circulate in the apparatus as they are. And sometime, it always collides with the target 14 and generates X-rays. The X-rays thus generated are taken out from an X-ray take-out port (not shown) and used for a medical diagnostic apparatus such as an X-ray imaging system.

なお、周回する電子ビームは、ターゲット14に衝突しない領域で所定のエネルギーまで加速された後、ターゲット14に衝突する領域に達し、X線を発生する。よって、加速中の電子ビームは、ターゲット14に衝突しない領域を周回するので、電子ビームは、加速途中にターゲット14に衝突することにより無駄に失われることはない。また、ターゲット14は、発生したX線がターゲット14内で自己吸収されることにより減少することのないよう、電子ビーム周回方向、即ちX線発生方向に対して薄いものとなっている。さらに、ターゲット14に衝突した電子ビームが薄いターゲットで失うエネルギーは非常に小さく、例えば1MeVの電子ビームが7μm厚のタングステンターゲットに衝突した時、1.6%程度のエネルギーしか失われない。エネルギーが20%から40%程度異なる電子ビームを安定に周回させる様に偏向磁界発生手段13を設計することが可能であり、一度ターゲット14に衝突した電子ビームも安定に周回を続けることができる。一度ターゲットに衝突した電子が次にターゲットに衝突するまでには数万周程度周回を続けるので、1周で数eVのエネルギー増加があるとすると、次に衝突するまでに数10keVから数100keVのエネルギー増加がある。よって、何度もターゲット14に電子ビームを衝突させることが可能となり、大強度のX線を発生させることができる。   The circulating electron beam is accelerated to a predetermined energy in a region where it does not collide with the target 14 and then reaches a region where it collides with the target 14 to generate X-rays. Therefore, since the accelerating electron beam circulates in a region where it does not collide with the target 14, the electron beam is not lost unnecessarily by colliding with the target 14 during acceleration. Further, the target 14 is thin with respect to the electron beam circulation direction, that is, the X-ray generation direction so that generated X-rays are not reduced by self-absorption in the target 14. Furthermore, the energy that the electron beam colliding with the target 14 loses with a thin target is very small. For example, when a 1 MeV electron beam collides with a tungsten target having a thickness of 7 μm, only about 1.6% of the energy is lost. The deflecting magnetic field generating means 13 can be designed so as to stably circulate an electron beam having an energy difference of about 20% to 40%, and the electron beam once colliding with the target 14 can continue to circulate stably. Since electrons that have once collided with the target continue to circulate tens of thousands of laps until the next collision with the target, if there is an increase in energy of several eV in one lap, several tens of keV to several hundreds of keV until the next collision occurs. There is an increase in energy. Therefore, it becomes possible to make the electron beam collide with the target 14 many times, and high-intensity X-rays can be generated.

ところで、上記の様に大電流の荷電粒子をX線ターゲット14に衝突させるには衝突により発生する熱の除去が大きな技術課題である。微小な点光源X線とする為には、微小なX線ターゲットとし、そのターゲットを細いワイヤー等で支える必要があるが、細いワイヤーでは熱伝導が小さく温度上昇により微小ターゲットや細いワイヤーが溶解してしまうからである。そこでこの発明では図2に示すように、ターゲット14を先端が針状に尖った金属棒とした。即ち、X線ターゲット14は、径の太い(直径0.5mm程度)根元部14aとテーパ形状の針状突起部14bと金属棒支持構造体14cとで構成した。針状突起部14bの先端の直径Φは20μm〜5μm程度で、好ましくは5μm程度であるが、図中では視覚上太く記載している。また針状突起部14bの長さsは数100μmから数mmである。なおこのX線ターゲット14の材料としては、目的に応じて様々の材質のものを使うことができるが、融点が高く、膨張率が低く、熱伝導率の大きな材質、例えばタングステン、タンタル、モリブデン、カーボンなどの金属が使用される。なお図2において、加速器中を周回する荷電粒子である電子ビーム断面21を模式的に表している。   By the way, as described above, removal of heat generated by the collision is a major technical problem in order to make charged particles of a large current collide with the X-ray target 14. In order to make a fine point light source X-ray, it is necessary to use a fine X-ray target and support the target with a thin wire, etc. However, with a thin wire, the heat conduction is small and the temperature rises so that the fine target and the thin wire dissolve. Because it will end up. Therefore, in the present invention, as shown in FIG. 2, the target 14 is a metal rod having a needle-like tip. In other words, the X-ray target 14 was composed of a base portion 14a having a large diameter (about 0.5 mm in diameter), a tapered needle-like projection portion 14b, and a metal rod support structure 14c. The diameter Φ of the tip of the needle-like protrusion 14b is about 20 μm to 5 μm, preferably about 5 μm, but is shown visually thick in the drawing. Further, the length s of the needle-like protrusion 14b is several hundred μm to several mm. Various materials can be used as the material of the X-ray target 14 depending on the purpose, but materials having a high melting point, a low expansion coefficient, and a high thermal conductivity such as tungsten, tantalum, molybdenum, Metals such as carbon are used. In FIG. 2, an electron beam cross section 21 that is a charged particle that circulates in the accelerator is schematically shown.

荷電粒子加速手段12と偏向磁界発生手段13の磁場強度の関係を所定の値にすると荷電粒子である電子ビーム断面21は除々にターゲット14の針状突起部14bに接近する。その接近する様子を図3に示す。図3は、ある時間の電子ビーム断面21aが、時間Δt経過した後の電子ビーム断面21bを示す。時間Δtで電子ビーム断面はΔDだけ針状突起部14bへ接近する様に、荷電粒子加速手段12と偏向磁界発生手段13の磁場強度の関係を制御する。この時、荷電粒子が針状突起部14bの先端の直径分Φだけ近づく時間を、荷電粒子(電子ビーム)が円形加速器中を周回する時間(周回時間)の10倍以上に設定する。   When the relationship between the magnetic field strengths of the charged particle accelerating means 12 and the deflection magnetic field generating means 13 is set to a predetermined value, the electron beam cross section 21 that is a charged particle gradually approaches the needle-like protrusion 14 b of the target 14. The approach is shown in FIG. FIG. 3 shows the electron beam cross section 21b after the elapse of time Δt. At time Δt, the relationship between the magnetic field strengths of the charged particle acceleration means 12 and the deflection magnetic field generation means 13 is controlled so that the electron beam cross section approaches the needle-like protrusion 14b by ΔD. At this time, the time for the charged particles to approach by the diameter Φ of the tip of the needle-like protrusion 14b is set to 10 times or more of the time for the charged particles (electron beam) to circulate in the circular accelerator (circulation time).

図4は荷電粒子である電子ビーム断面21の中の1つの荷電粒子を模式的に表した。荷電粒子は加速器中を1つの軌道で周回しているのではなく、1つの軌道の近傍を振動(ベータトロン振動)しながら周回している。即ち、電子ビーム断面21中に荷電粒子の周回毎の断面をプロットすると荷電粒子41の様になる。即ち、荷電粒子41は図示矢印のように垂直方向に振動し、電子ビーム断面21をほぼ覆い尽くす様にして周回させることができる。よって、図3の様に荷電粒子を除々に針状突起部14bへ接近させていけば、垂直方向の全ての電子ビームは針状突起部14bに衝突させることが可能となり、直径7μm程度の点光源のX線を発生させることが可能となる。針状突起部14bへ衝突した荷電粒子は若干エネルギーを失うがその後も周回を続ける。   FIG. 4 schematically shows one charged particle in the electron beam cross section 21 which is a charged particle. The charged particles do not circulate around the accelerator in one orbit, but circulate around the one orbit while vibrating (betatron oscillation). That is, a charged particle 41 is obtained by plotting a cross section of each charged particle in the electron beam cross section 21. That is, the charged particles 41 can oscillate so as to vibrate in the vertical direction as shown by the arrows in the figure and almost completely cover the electron beam section 21. Therefore, if the charged particles are gradually brought closer to the needle-like protrusion 14b as shown in FIG. 3, all the electron beams in the vertical direction can collide with the needle-like protrusion 14b, and the diameter is about 7 μm. X-rays from the light source can be generated. The charged particles colliding with the needle-like protrusions 14b lose some energy but continue to circulate thereafter.

以上の構成にすることで、電子ビームはターゲット先端の針状突起部14bに衝突してX線の光源サイズを小さく出来、一方電子ビームの衝突による温度上昇はターゲットの根元部14aの径の大きい箇所で除熱されるので、大強度の荷電粒子をX線ターゲットに衝突させることが可能となる。こうして大強度の微小光源サイズのX線を発生させることができる。   With the above configuration, the electron beam collides with the needle-like protrusion 14b at the tip of the target to reduce the size of the X-ray light source, while the temperature rise due to the collision of the electron beam increases the diameter of the base portion 14a of the target. Since heat is removed at the location, charged particles with high intensity can collide with the X-ray target. In this way, high-intensity X-rays with a small light source size can be generated.

実施の形態2
図5はこの発明の実施の形態2による電磁波発生装置の断面図で、電子ビームが周回する電子ビーム軌道平面上で断面化したものである。図6は図5に示すX線ターゲット付近の拡大図である。
図5において、図1と同じ符号は図1の構成と同じにつき、説明を省略する。遮蔽体51はターゲット14に不要な荷電粒子が衝突することを防ぐためのもので、金属の板で構成され、ターゲット14の材料と同じ、タングステンやタンタルで構成されている。
Embodiment 2
FIG. 5 is a cross-sectional view of an electromagnetic wave generator according to Embodiment 2 of the present invention, which is cross-sectionalized on an electron beam trajectory plane around which an electron beam circulates. FIG. 6 is an enlarged view of the vicinity of the X-ray target shown in FIG.
5, the same reference numerals as those in FIG. 1 are the same as those in FIG. The shield 51 is for preventing unnecessary charged particles from colliding with the target 14, is made of a metal plate, and is made of tungsten or tantalum, which is the same as the material of the target 14.

周回を続ける荷電粒子の内、ある電子ビームは何周回かの後にターゲット14の太い直径の根元部14aに衝突してしまい、X線の点光源に対しノイズとなってしまう。そこで、図6に示す様に、円形加速器中の前記X線ターゲット14と異なる周回軌道上の上流側に、電子ビームをダンプする、即ち電子ビームがターゲットの根元部14aに衝突することを防ぐ遮蔽体51を配置した。そうすることで、遮蔽体51がなければ太い直径の根元部14aに衝突する荷電粒子ビームを予め除去することが可能となり、SN比の良いX線点光源が実現できる。なお図5では、遮蔽体51はX線ターゲット14の上流側に設けたが、下流側に設けても同様な効果が得られる。しかし遮蔽体51は円形加速器の任意の位置におけば良いのではなく、周回する電子ビームの水平方向の振動により荷電粒子が内側にくる位置に配置する必要がある。   Among the charged particles that continue to circulate, a certain electron beam collides with the base 14a having a large diameter of the target 14 after a certain number of laps, resulting in noise with respect to the X-ray point light source. Therefore, as shown in FIG. 6, the electron beam is dumped to the upstream side of the circular orbit different from the X-ray target 14 in the circular accelerator, that is, the shielding that prevents the electron beam from colliding with the base portion 14a of the target. A body 51 was placed. By doing so, if there is no shield 51, it becomes possible to remove in advance the charged particle beam that collides with the root portion 14a having a large diameter, and an X-ray point light source with a good SN ratio can be realized. Although the shield 51 is provided on the upstream side of the X-ray target 14 in FIG. 5, the same effect can be obtained even if provided on the downstream side. However, the shield 51 does not have to be placed at an arbitrary position of the circular accelerator, but needs to be arranged at a position where the charged particles come inside due to the horizontal vibration of the circulating electron beam.

実施の形態3
図7はこの発明の実施の形態3による電磁波発生装置の断面図で、電子ビームが周回する電子ビーム軌道平面上で断面化したものである。図7において、図1と同じ符号は図1の構成と同じにつき、説明を省略する。
実施の形態1ではターゲット14が荷電粒子の加速周回軌道15上の内側に配置されていたが、実施の形態3はターゲット14を荷電粒子の加速周回軌道15上の外側に配置したものである。なお、ターゲット14を荷電粒子の加速周回軌道15上の外側に配置した場合、荷電粒子発生手段11は荷電粒子の加速周回軌道15の内側に設置するのが良い。この実施の形態3でも実施の形態1と同様の効果を奏する。
Embodiment 3
FIG. 7 is a cross-sectional view of an electromagnetic wave generator according to Embodiment 3 of the present invention, which is cross-sectionalized on an electron beam trajectory plane around which an electron beam circulates. In FIG. 7, the same reference numerals as those in FIG. 1 are the same as those in FIG.
In the first embodiment, the target 14 is disposed on the inner side of the acceleration orbit 15 of the charged particles. However, in the third embodiment, the target 14 is disposed on the outer side of the acceleration orbit 15 of the charged particles. When the target 14 is arranged outside the charged particle acceleration orbit 15, the charged particle generating means 11 is preferably installed inside the charged particle acceleration orbit 15. This third embodiment also has the same effect as the first embodiment.

荷電粒子加速手段12と偏向磁界発生手段13は50Hzから数10kHz程度の交流磁場が電磁石電源によりかけられており、両者の磁場強度の関係を所定の値にすると電子ビームは大きく軌道を変化しないである領域の中を安定に加速する。加速された電子ビームは荷電粒子加速手段12と偏向磁界発生手段13の磁場強度の関係を少し変えると外側に移動し、安定周回領域に設置されたターゲット14に衝突してX線を発生する。またX線ターゲット14はターゲットの針状先端部の方向を、荷電粒子が前記ターゲット14の内側を周回している時には内側に向け、荷電粒子の周回軌道上に配置されている。   The charged particle accelerating means 12 and the deflecting magnetic field generating means 13 are applied with an alternating magnetic field of about 50 Hz to several tens of kHz by an electromagnet power source. If the relationship between the two magnetic field strengths is set to a predetermined value, the electron beam does not greatly change its trajectory. Stable acceleration in a certain area. The accelerated electron beam moves outward when the relationship between the magnetic field strengths of the charged particle acceleration means 12 and the deflection magnetic field generation means 13 is slightly changed, and collides with the target 14 installed in the stable orbital region to generate X-rays. Further, the X-ray target 14 is arranged on the orbit of the charged particle so that the direction of the needle-like tip of the target is directed inward when the charged particle is circulating inside the target 14.

またこの実施の形態3においても、実施の形態2と同様にターゲット14に不要な荷電粒子が衝突することを防ぐための遮蔽体51を設けることにより、X線の点光源に対するノイズを少なくすることが出来る。この場合、遮蔽体51は円形加速器の任意の位置におけば良いのではなく、周回する電子ビームの水平方向の振動により荷電粒子が外側にくる位置に配置する必要がある。   Also in the third embodiment, similarly to the second embodiment, by providing a shield 51 for preventing unnecessary charged particles from colliding with the target 14, noise to the X-ray point light source is reduced. I can do it. In this case, the shield 51 does not have to be placed at an arbitrary position of the circular accelerator, but needs to be arranged at a position where the charged particles come to the outside by the horizontal vibration of the circulating electron beam.

実施の形態4
図8はこの発明の実施の形態1乃至3に示す電磁波発生装置を利用したこの発明の実施の形態4を示すX線撮像システムの概略構成図で、電磁波発生装置71と撮像検出器73とデータ処理装置74で構成されている。電磁波発生装置71は実施の形態1乃至3で説明した電磁波発生装置のいずれかが使用される。
電磁波発生装置71で発生した高輝度X線75は、被照射体である人体72に照射され、撮像検出器73で検出される。撮像検出器73で検出した画像はデータ処理装置74で処理され、透視画像となる。
Embodiment 4
FIG. 8 is a schematic configuration diagram of an X-ray imaging system showing the fourth embodiment of the present invention using the electromagnetic wave generating device shown in the first to third embodiments of the present invention. The electromagnetic wave generating device 71, the imaging detector 73, and the data The processing unit 74 is configured. Any of the electromagnetic wave generators described in the first to third embodiments is used as the electromagnetic wave generator 71.
High-intensity X-rays 75 generated by the electromagnetic wave generator 71 are irradiated to a human body 72 that is an irradiated body, and detected by an imaging detector 73. The image detected by the imaging detector 73 is processed by the data processing device 74 to become a fluoroscopic image.

電磁波発生装置71では光源サイズ数μmから数10μm程度の高輝度のX線を発生させることができるので、X線の微小な屈折を利用した撮像方法である屈折コントラスト撮像が可能となる。従来はSpring8等の直径が数100m程度の放射光装置でしか実現できなかったので医学利用が進まなかったが、この発明では、従来のX線管球と同じ程度か、よりコンパクトな電磁波発生装置71を用いて屈折コントラスト撮像が実現できるので、医学利用が大きく促進されると考えられる。屈折コントラスト撮像法を用いると密度の異なる微小物質の境界を強調した撮像が可能となり、しかも拡大画像をとることができるので、数mm程度の微小ながんを識別することができる。しかも、屈折コントラストによる撮像画像では従来の吸収コントラスト撮像画像の10倍以上の高コントラストが実現できるので、従来の撮像方法と比較して1/10程度の低被曝線量で撮像が実現できる。   Since the electromagnetic wave generator 71 can generate high-intensity X-rays having a light source size of several μm to several tens of μm, it is possible to perform refraction contrast imaging, which is an imaging method using minute X-ray refraction. Conventionally, since it could only be realized with a synchrotron radiation device such as Spring 8 having a diameter of about several hundreds of meters, medical utilization did not proceed. However, in the present invention, an electromagnetic wave generator of the same level as that of a conventional X-ray tube or a more compact Since refraction contrast imaging can be realized using 71, it is considered that medical use is greatly promoted. When the refraction contrast imaging method is used, it is possible to perform imaging with emphasis on the boundary between minute substances having different densities, and further, an enlarged image can be taken, so that a minute cancer of about several mm can be identified. In addition, since a captured image based on refraction contrast can realize a high contrast that is 10 times or more that of a conventional absorption contrast captured image, it is possible to realize imaging with a low exposure dose of about 1/10 compared to the conventional imaging method.

この発明の実施の形態1による電磁波発生装置の断面図である。It is sectional drawing of the electromagnetic wave generator by Embodiment 1 of this invention. この発明の実施の形態1によるX線ターゲットの構成図である。It is a block diagram of the X-ray target by Embodiment 1 of this invention. この発明の実施の形態1によるX線ターゲットに荷電粒子ビームが近づいていくことを示す説明図である。It is explanatory drawing which shows that a charged particle beam approaches the X-ray target by Embodiment 1 of this invention. この発明の実施の形態1によるX線ターゲットに荷電粒子ビームが近づいていく時の荷電粒子の垂直方向の振動の様子を示す説明図である。It is explanatory drawing which shows the mode of the vibration of the charged particle vertical direction when a charged particle beam approaches the X-ray target by Embodiment 1 of this invention. この発明の実施の形態2による電磁波発生装置の断面図である。It is sectional drawing of the electromagnetic wave generator by Embodiment 2 of this invention. この発明の実施の形態2によるX線ターゲット付近の拡大図である。It is an enlarged view of the X-ray target vicinity by Embodiment 2 of this invention. この発明の実施の形態3による電磁波発生装置の断面図である。It is sectional drawing of the electromagnetic wave generator by Embodiment 3 of this invention. この発明の実施の形態4によるX線撮像システムの概略構成図である。It is a schematic block diagram of the X-ray imaging system by Embodiment 4 of this invention.

符号の説明Explanation of symbols

11:荷電粒子発生手段、 12:荷電粒子加速手段、
13:偏向磁界発生手段、 14、ターゲット、
14a:金属棒、 14b:針状突起部、 14c:金属棒支持構造体、
15:荷電粒子の加速周回軌道、 16:真空ダクト、
21:荷電粒子ビームの断面図、 41:荷電粒子、
51:遮蔽体、 71:電磁波発生装置、
72:被照射体、 73:撮像検出器、
74:データ処理装置、 75:X線
11: Charged particle generation means, 12: Charged particle acceleration means,
13: deflection magnetic field generating means, 14, target,
14a: a metal rod, 14b: a needle-like protrusion, 14c: a metal rod support structure,
15: Accelerated orbit of charged particles 16: Vacuum duct
21: sectional view of charged particle beam, 41: charged particle,
51: Shielding body 71: Electromagnetic wave generator,
72: irradiated object, 73: imaging detector,
74: Data processing device, 75: X-ray

Claims (5)

荷電粒子を発生させる荷電粒子発生手段と、この荷電粒子発生手段で発生した荷電粒子を加速する加速手段と、この加速手段で加速された荷電粒子を偏向させて周回軌道上を周回させる偏向磁界発生手段と、先端が針状に尖った金属棒で構成され、前記偏向磁界発生手段により周回している荷電粒子を前記金属棒の先端に衝突させてX線を発生させるターゲットとを備えた電磁波発生装置。   Charged particle generating means for generating charged particles, accelerating means for accelerating charged particles generated by the charged particle generating means, and generation of a deflecting magnetic field for deflecting charged particles accelerated by the accelerating means to circulate on a circular orbit Electromagnetic wave generation comprising: a means for forming an X-ray by colliding the charged particle rotating around by the deflection magnetic field generating means with the tip of the metal rod, and a target composed of a metal rod whose tip is pointed like a needle apparatus. ターゲットの針状先端部の方向を、荷電粒子が前記ターゲットの外側を周回している時には外側に、荷電粒子が前記ターゲットの内側を周回している時には内側に向け、荷電粒子の周回軌道上に配置することを特徴とする請求項1に記載の電磁波発生装置。   The direction of the needle-like tip of the target is directed outward when the charged particles circulate outside the target, and directed toward the inside when the charged particles circulate inside the target. The electromagnetic wave generator according to claim 1, wherein the electromagnetic wave generator is disposed. ターゲットの針状先端部の直径は20μm〜5μmとしたことを特徴とする請求項1または請求項2に記載の電磁波発生装置。   The electromagnetic wave generator according to claim 1 or 2, wherein a diameter of a needle-like tip portion of the target is 20 µm to 5 µm. ターゲットの針状先端部以外に荷電粒子が衝突するのを避けるため、荷電粒子を遮蔽する遮蔽体を荷電粒子の周回軌道上の内側または外側に配置したことを特徴とする請求項2に記載の電磁波発生装置。   3. The shield according to claim 2, wherein a shield that shields the charged particles is disposed inside or outside the orbit of the charged particles in order to avoid collision of the charged particles other than the needle-like tip of the target. Electromagnetic wave generator. 荷電粒子を発生させる荷電粒子発生手段と、この荷電粒子発生手段で発生した荷電粒子を加速する加速手段と、この加速手段で加速された荷電粒子を偏向させて周回軌道上を周回させる偏向磁界発生手段と、先端が針状に尖った金属棒で構成され、前記偏向磁界発生手段により周回している荷電粒子を前記金属棒の先端に衝突させてX線を発生させるターゲットとを有する電磁波発生装置、この電磁波発生装置で発生したX線を被照射体に照射してその撮影画像を検出する撮像検出器、およびこの撮像検出器で検出した画像を処理して前記被照射体の透視画像を得るデータ処理装置を備えたX線撮像システム。   Charged particle generating means for generating charged particles, accelerating means for accelerating charged particles generated by the charged particle generating means, and generation of a deflecting magnetic field for deflecting charged particles accelerated by the accelerating means to circulate on a circular orbit And an electromagnetic wave generator comprising a target that is made up of a metal rod whose tip is pointed like a needle, and generates X-rays by colliding charged particles circulating around the deflection magnetic field generating unit with the tip of the metal rod An imaging detector for irradiating the irradiated body with X-rays generated by the electromagnetic wave generator and detecting the captured image; and processing the image detected by the imaging detector to obtain a fluoroscopic image of the irradiated body An X-ray imaging system provided with a data processing device.
JP2006142737A 2006-05-23 2006-05-23 Electromagnetic wave generator and X-ray imaging system Expired - Fee Related JP4573803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142737A JP4573803B2 (en) 2006-05-23 2006-05-23 Electromagnetic wave generator and X-ray imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142737A JP4573803B2 (en) 2006-05-23 2006-05-23 Electromagnetic wave generator and X-ray imaging system

Publications (2)

Publication Number Publication Date
JP2007317383A true JP2007317383A (en) 2007-12-06
JP4573803B2 JP4573803B2 (en) 2010-11-04

Family

ID=38851077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142737A Expired - Fee Related JP4573803B2 (en) 2006-05-23 2006-05-23 Electromagnetic wave generator and X-ray imaging system

Country Status (1)

Country Link
JP (1) JP4573803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088125B2 (en) 2011-06-10 2015-07-21 Samsung Electronics Co., Ltd. Electromagnetic wave generator and optical shutter using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS415120Y1 (en) * 1964-02-08 1966-03-22
JPH02249959A (en) * 1989-03-24 1990-10-05 Hitachi Ltd X-ray generator
JPH08195300A (en) * 1994-11-16 1996-07-30 Res Dev Corp Of Japan Radioactive ray generating method using electron accumulating ring and the electron accumulating ring
JPH10106460A (en) * 1996-09-24 1998-04-24 Siemens Ag Radioactive ray source for generating multicolor, particularly, two-color x-ray
JP2000088777A (en) * 1998-09-08 2000-03-31 Hyogo Kagaku Gijutsu Kyokai X-ray imaging apparatus
JP2004296164A (en) * 2003-03-26 2004-10-21 Mitsubishi Electric Corp Power source for deflection electromagnet and power source for acceleration core of charged particle accelerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS415120Y1 (en) * 1964-02-08 1966-03-22
JPH02249959A (en) * 1989-03-24 1990-10-05 Hitachi Ltd X-ray generator
JPH08195300A (en) * 1994-11-16 1996-07-30 Res Dev Corp Of Japan Radioactive ray generating method using electron accumulating ring and the electron accumulating ring
JPH10106460A (en) * 1996-09-24 1998-04-24 Siemens Ag Radioactive ray source for generating multicolor, particularly, two-color x-ray
JP2000088777A (en) * 1998-09-08 2000-03-31 Hyogo Kagaku Gijutsu Kyokai X-ray imaging apparatus
JP2004296164A (en) * 2003-03-26 2004-10-21 Mitsubishi Electric Corp Power source for deflection electromagnet and power source for acceleration core of charged particle accelerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088125B2 (en) 2011-06-10 2015-07-21 Samsung Electronics Co., Ltd. Electromagnetic wave generator and optical shutter using the same

Also Published As

Publication number Publication date
JP4573803B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US8401151B2 (en) X-ray tube for microsecond X-ray intensity switching
US9991085B2 (en) Apparatuses and methods for generating distributed x-rays in a scanning manner
US5857008A (en) Microfocus X-ray device
US3360647A (en) Electron accelerator with specific deflecting magnet structure and x-ray target
JP4622977B2 (en) Circular accelerator, electromagnetic wave generator, and electromagnetic wave imaging system
JP2548108B2 (en) X-ray exposure device
US8477908B2 (en) System and method for beam focusing and control in an indirectly heated cathode
JPH0432800A (en) Ct device, transmission device, x-ray generation device charged particle converging device, target for x-ray generation, and collimator
JP2003288853A (en) X-ray device
JP2011071101A (en) X-ray generator
US9754758B2 (en) X-ray source having cooling and shielding functions
JP2018186070A (en) Cathode head with multiple filaments for high emission focal spot
US8284901B2 (en) Apparatus and method for improved transient response in an electromagnetically controlled x-ray tube
Prabhu et al. Production of x-rays using x-ray tube
JP3795028B2 (en) X-ray generator and X-ray therapy apparatus using the apparatus
JP4573803B2 (en) Electromagnetic wave generator and X-ray imaging system
JP6243293B2 (en) Neutron capture therapy device and transmutation device
JP2012138203A (en) X-ray generation device and x-ray irradiation device using group of x-ray generation device
US20140112449A1 (en) System and method for collimating x-rays in an x-ray tube
KR20190040265A (en) X-ray tube
US11882642B2 (en) Particle based X-ray source
US9530608B2 (en) X-ray generation from a super-critical field
KR101707219B1 (en) X-Ray Tube Having Anode Rod for Avoiding Interference and Apparatus for Detecting with the Same
US10468222B2 (en) Angled flat emitter for high power cathode with electrostatic emission control
JP7184342B2 (en) Beam targets and beam target systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees