JP2007315341A - Exhaust device for internal combustion engine - Google Patents

Exhaust device for internal combustion engine Download PDF

Info

Publication number
JP2007315341A
JP2007315341A JP2006147801A JP2006147801A JP2007315341A JP 2007315341 A JP2007315341 A JP 2007315341A JP 2006147801 A JP2006147801 A JP 2006147801A JP 2006147801 A JP2006147801 A JP 2006147801A JP 2007315341 A JP2007315341 A JP 2007315341A
Authority
JP
Japan
Prior art keywords
valve
flow path
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006147801A
Other languages
Japanese (ja)
Other versions
JP4802862B2 (en
Inventor
Shunsuke Yamana
俊輔 山名
Senki Ri
先基 李
Kenichi Sato
健一 佐藤
Masayoshi Nishizawa
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006147801A priority Critical patent/JP4802862B2/en
Priority to US11/752,990 priority patent/US7845161B2/en
Priority to DE602007011686T priority patent/DE602007011686D1/en
Priority to EP07108936A priority patent/EP1865163B1/en
Publication of JP2007315341A publication Critical patent/JP2007315341A/en
Application granted granted Critical
Publication of JP4802862B2 publication Critical patent/JP4802862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/18

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of a torque level difference when a flow path selector valve 5 is opened. <P>SOLUTION: In parallel to an upstream side portion of a main passage 3 which has a main catalyst converter 4 on the downstream side, a bypass passage 7 is provided whose cross section area is relatively smaller than the total cross section area of the main passage 3. A bypass catalyst converter 8 is provided in the bypass passage 7, and the flow path selector valve 5 is provided in the upstream side portion of the main passage 3, bypassed by the bypass passage 7, for closing the main passage 3. When the flow path selector valve 5 is changed over from a closed condition into an opened condition, a timing for closing an exhaust valve is quickened. This prevents the occurrence of the torque level difference when the flow path selector valve 5 is opened. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気装置に関する。   The present invention relates to an exhaust device for an internal combustion engine.

従来から知られているように、車両の床下などの排気系の比較的下流側にメイン触媒コンバータを配置した構成では、内燃機関の冷間始動後、触媒コンバータの温度が上昇して活性化するまでの間、十分な排気浄化作用を期待することができない。また一方、触媒コンバータを排気系の上流側つまり内燃機関側に近付けるほど、触媒の熱劣化による耐久性低下が問題となる。   As conventionally known, in a configuration in which the main catalytic converter is disposed relatively downstream of the exhaust system such as under the floor of a vehicle, the temperature of the catalytic converter rises and is activated after a cold start of the internal combustion engine. In the meantime, a sufficient exhaust purification action cannot be expected. On the other hand, the closer the catalytic converter is to the upstream side of the exhaust system, that is, the internal combustion engine side, the lower the durability due to thermal degradation of the catalyst.

そのため、特許文献1に開示されているように、メイン触媒コンバータを備えたメイン流路の上流側部分と並列にバイパス流路を設けるとともに、このバイパス流路に、別のバイパス触媒コンバータを介装し、両者を切り換える切換弁によって、冷間始動直後は、バイパス流路側に排気を案内するようにした排気装置が、従来から提案されている。この構成では、バイパス触媒コンバータは排気系の中でメイン触媒コンバータよりも相対的に上流側に位置しており、相対的に早期に活性化するので、より早い段階から排気浄化を開始することができる。
特開平5−321644号公報
Therefore, as disclosed in Patent Document 1, a bypass flow path is provided in parallel with the upstream portion of the main flow path including the main catalytic converter, and another bypass catalytic converter is interposed in the bypass flow path. However, an exhaust device has been conventionally proposed in which exhaust gas is guided to the bypass flow path side immediately after the cold start by a switching valve for switching between the two. In this configuration, the bypass catalytic converter is positioned relatively upstream of the main catalytic converter in the exhaust system and is activated relatively early, so that exhaust purification can be started from an earlier stage. it can.
JP-A-5-321644

しかしながら上記のような構成においては、メイン触媒コンバータの暖機が完了してメイン流路側へ排気が流れるように切換弁が切り換えられたときに、通路抵抗となるバイパス触媒コンバータを通らずに排気が流れることから、排圧が急激に低下し、トルク段差(具体的にはトルクの上昇)が発生する。   However, in the configuration as described above, when the changeover valve is switched so that the warm-up of the main catalytic converter is completed and the exhaust flows to the main flow path side, the exhaust does not pass through the bypass catalytic converter that becomes a passage resistance. As a result of the flow, the exhaust pressure rapidly decreases and a torque step (specifically, an increase in torque) occurs.

そこで、本発明は、メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、上記流路切換弁が閉状態から開状態へ切り換わるときに排気弁閉時期を早めることを特徴としている。これにより、流路切換弁が閉状態から開状態へ切り換わるときに、気筒内の残留ガス量をコントロールすることが可能となる。   Therefore, the present invention is provided with a bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. An exhaust system for an internal combustion engine, comprising: a bypass catalytic converter in a bypass passage; and a flow path switching valve that closes the main passage in the upstream portion of the main passage that is bypassed by the bypass passage. The exhaust valve closing timing is advanced when the path switching valve switches from the closed state to the open state. This makes it possible to control the amount of residual gas in the cylinder when the flow path switching valve is switched from the closed state to the open state.

本発明によれば、排気弁の閉弁時期を制御することにより気筒内の残留ガス量をコントロールし、流路切換弁が閉弁状態から開弁状態に切り替えられた際の上記残留ガス量の変化を抑え、かつ緩やかな上記残留ガス量のコントロールを可能とすることで、トルク段差を発生を防ぐことができる。   According to the present invention, the residual gas amount in the cylinder is controlled by controlling the closing timing of the exhaust valve, and the residual gas amount when the flow path switching valve is switched from the closed state to the open state is controlled. By suppressing the change and allowing the gradual control of the residual gas amount, generation of a torque step can be prevented.

以下、この発明を直列4気筒内燃機関の排気装置として適用した一実施形態を図面に基づいて詳細に説明する。   Hereinafter, an embodiment in which the present invention is applied as an exhaust device of an in-line four-cylinder internal combustion engine will be described in detail with reference to the drawings.

図1は、この排気装置の配管レイアウトを模式的に示した説明図であり、始めに、この図1に基づいて、排気装置全体の構成を説明する。   FIG. 1 is an explanatory view schematically showing the piping layout of the exhaust device. First, the configuration of the entire exhaust device will be described based on FIG.

シリンダヘッド1には、直列に配置された♯1気筒〜♯4気筒の各気筒の排気ポート2がそれぞれ側面に向かって開口するように形成されており、この排気ポート2のそれぞれに、メイン通路3が接続されている。♯1気筒〜♯4気筒の4本のメイン通路3は、1本の流路に合流しており、その下流側に、メイン触媒コンバータ4が配置されている。このメイン触媒コンバータ4は、車両の床下に配置される容量の大きなものであって、触媒としては、例えば、三元触媒とHCトラップ触媒とを含んでいる。上記のメイン通路3およびメイン触媒コンバータ4によって、通常の運転時に排気が通流するメイン流路が構成される。また、各気筒からの4本のメイン通路3の合流点には、流路切換手段として各メイン通路3を一斉に開閉する流路切換弁5が設けられている。   In the cylinder head 1, exhaust ports 2 of the cylinders # 1 to # 4 arranged in series are formed so as to open toward the side surfaces, and a main passage is formed in each of the exhaust ports 2. 3 is connected. The four main passages 3 of the # 1 cylinder to the # 4 cylinder merge into one flow path, and the main catalytic converter 4 is disposed on the downstream side thereof. The main catalytic converter 4 has a large capacity arranged under the floor of the vehicle, and includes, for example, a three-way catalyst and an HC trap catalyst as the catalyst. The main passage 3 and the main catalytic converter 4 constitute a main passage through which exhaust flows during normal operation. In addition, a flow path switching valve 5 that opens and closes the main passages 3 at the same time is provided as a flow path switching means at the junction of the four main paths 3 from each cylinder.

一方、バイパス流路として、各気筒のメイン通路3の各々から、該メイン通路3よりも通路断面積の小さなバイパス通路7がそれぞれ分岐している。各バイパス通路7の上流端となる分岐点6は、メイン通路3のできるだけ上流側の位置に設定されている。4本のバイパス通路7は、下流側で1本の流路に合流しており、その合流点の直後に、三元触媒を用いたバイパス触媒コンバータ8が介装されている。このバイパス触媒コンバータ8は、メイン触媒コンバータ4に比べて容量が小さな小型のものであり、望ましくは、低温活性に優れた触媒が用いられる。バイパス触媒コンバータ8の出口側から延びるバイパス通路7の下流端は、メイン通路3におけるメイン触媒コンバータ4上流側に合流点12において(流路切換弁5が合流点12より上流側となるように)接続されている。   On the other hand, bypass passages 7 each having a smaller passage sectional area than the main passage 3 are branched from the main passages 3 of the respective cylinders as bypass passages. The branch point 6 that is the upstream end of each bypass passage 7 is set to a position on the upstream side of the main passage 3 as much as possible. The four bypass passages 7 merge into one flow path on the downstream side, and a bypass catalytic converter 8 using a three-way catalyst is interposed immediately after the junction. The bypass catalytic converter 8 has a small capacity as compared with the main catalytic converter 4, and preferably uses a catalyst excellent in low-temperature activity. The downstream end of the bypass passage 7 extending from the outlet side of the bypass catalytic converter 8 is at the junction 12 on the upstream side of the main catalyst converter 4 in the main passage 3 (so that the flow path switching valve 5 is upstream of the junction 12). It is connected.

尚、メイン触媒コンバータ4の入口部およびバイパス触媒コンバータ8の入口部には、それぞれ空燃比センサ10,11が配置されている。   Air-fuel ratio sensors 10 and 11 are disposed at the inlet of the main catalytic converter 4 and the inlet of the bypass catalytic converter 8, respectively.

また、本実施形態において、排気弁を駆動する排気弁側動弁機構は、図示せぬ排気弁側カムシャフトの前端部に設けられた図示せぬ排気弁側スプロケットと、この排気弁側スプロケットと上記排気弁側カムシャフトとを所定の角度範囲内において相対的に回転させる図示せぬ排気弁側位相制御用アクチュエータと、から構成されている。つまり、上記排気弁側動弁機構は、位相可変手段を包含するものである。上記排気弁側スプロケットは、図示せぬタイミングチェーンもしくはタイミングベルトを介して、図示せぬクランクシャフトに連動している。上記排気弁側位相制御用アクチュエータは、例えば油圧式の回転型アクチュエータからなっている。この排気弁側位相制御用アクチュエータの作用によって、上記排気弁側スプロケットと上記排気弁側カムシャフトとが相対的に回転し、排気弁のバルブリフトにおけるリフト中心角が遅進する。つまり、排気弁のリフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。   Further, in the present embodiment, the exhaust valve side valve operating mechanism for driving the exhaust valve includes an exhaust valve side sprocket (not shown) provided at a front end portion of an exhaust valve side camshaft (not shown), An exhaust valve side phase control actuator (not shown) that relatively rotates the exhaust valve side camshaft within a predetermined angle range. That is, the exhaust valve side valve operating mechanism includes a phase varying means. The exhaust valve side sprocket is linked to a crankshaft (not shown) via a timing chain or timing belt (not shown). The exhaust valve side phase control actuator comprises, for example, a hydraulic rotary actuator. By the action of the exhaust valve side phase control actuator, the exhaust valve side sprocket and the exhaust valve side camshaft are relatively rotated, and the lift center angle in the valve lift of the exhaust valve is retarded. In other words, the entire lift angle is retarded without changing the lift characteristic curve itself of the exhaust valve. This change can also be obtained continuously.

このような構成において、冷間始動後の機関温度ないしは排気温度が低い段階では、適宜なアクチュエータを介して流路切換弁5が閉じられ、メイン通路3が遮断される。そのため、各気筒から吐出された排気は、その全量が分岐点6からバイパス通路7を通してバイパス触媒コンバータ8へと流れる。バイパス触媒コンバータ8は、排気系の上流側つまり排気ポート2に近い位置にあり、かつ小型のものであるので、速やかに活性化し、早期に排気浄化が開始される。   In such a configuration, when the engine temperature or the exhaust gas temperature after the cold start is low, the flow path switching valve 5 is closed via an appropriate actuator, and the main passage 3 is blocked. Therefore, the entire amount of exhaust discharged from each cylinder flows from the branch point 6 to the bypass catalytic converter 8 through the bypass passage 7. The bypass catalytic converter 8 is located upstream of the exhaust system, that is, at a position close to the exhaust port 2 and is small in size, so that it is activated quickly and exhaust purification is started at an early stage.

一方、機関の暖機が進行して、機関温度ないしは排気温度が十分に高くなったら、流路切換弁5が開放される。これにより、各気筒から吐出された排気は、主に、メイン通路3からメイン触媒コンバータ4を通過する。このときバイパス通路7側は特に遮断されていないが、バイパス通路7側の方がメイン通路3側よりも通路断面積が小さく、かつバイパス触媒コンバータ8が介在しているので、両者の通路抵抗の差により、排気流の大部分はメイン通路3側を通り、バイパス通路7側には殆ど流れない。従って、バイパス触媒コンバータ8の熱劣化は十分に抑制される。   On the other hand, when the engine warms up and the engine temperature or the exhaust temperature becomes sufficiently high, the flow path switching valve 5 is opened. Thus, the exhaust discharged from each cylinder mainly passes through the main catalytic converter 4 from the main passage 3. At this time, the bypass passage 7 side is not particularly cut off, but the bypass passage 7 side has a smaller passage cross-sectional area than the main passage 3 side and the bypass catalytic converter 8 is interposed. Due to the difference, most of the exhaust flow passes through the main passage 3 side and hardly flows into the bypass passage 7 side. Therefore, the thermal deterioration of the bypass catalytic converter 8 is sufficiently suppressed.

ここで、上記のように流路切換弁5がメイン通路3を開放したときに、メイン通路3の通路抵抗が小さいことから、排圧が急激に低下し、気筒内の残留ガス量も急激に減少してしまい、そのままでは瞬間的にトルクが上昇してトルク段差が発生する。   Here, when the flow path switching valve 5 opens the main passage 3 as described above, since the passage resistance of the main passage 3 is small, the exhaust pressure rapidly decreases, and the residual gas amount in the cylinder also sharply increases. If it is left as it is, the torque increases instantaneously and a torque step occurs.

そこで、この発明では、流路切換弁5が開くときに、排気弁の閉弁時期を進角側に補正して気筒内の残留ガスを閉じ込めることで、メイン通路3内の圧力降下が急激に起こったとしても、気筒内の残流ガス量の急激な変化を抑制し、瞬間的なトルクの上昇を防止する。   Therefore, in the present invention, when the flow path switching valve 5 is opened, the pressure drop in the main passage 3 is rapidly increased by confining the residual gas in the cylinder by correcting the valve closing timing of the exhaust valve to the advance side. Even if it occurs, a sudden change in the amount of residual gas in the cylinder is suppressed, and an instantaneous torque increase is prevented.

図2は、本発明の第1実施形態における種々の動作を説明するためのタイミングチャートであり、図中、実線は本発明の第1実施形態における特性線であり、破線は流路切換弁5を全閉状態から全開状態に切り換える際に排気弁の閉弁時期を進角側に補正せずに気筒内の残留ガス量がステップ状に変化する第1比較例の特性である。尚、内燃機関の発生トルクの特性線における一点鎖線は、上述した第1実施形態において流路切換弁5を開弁させる際に、吸気通路に配置されたスロットル弁(図示せず)の弁開度を図2中の点線のように閉弁方向に大きく(本発明の制御に比べて)補正した場合の発生トルクの特性を示すものである。   FIG. 2 is a timing chart for explaining various operations in the first embodiment of the present invention. In the figure, the solid line is the characteristic line in the first embodiment of the present invention, and the broken line is the flow path switching valve 5. This is a characteristic of the first comparative example in which the residual gas amount in the cylinder changes stepwise without correcting the valve closing timing of the exhaust valve to the advance side when switching from fully closed to fully open. The alternate long and short dash line in the generated torque characteristic line of the internal combustion engine indicates that the throttle valve (not shown) arranged in the intake passage is opened when the flow path switching valve 5 is opened in the first embodiment. FIG. 3 shows the characteristics of the generated torque when the degree is corrected large (in comparison with the control of the present invention) in the valve closing direction as indicated by the dotted line in FIG.

暖機が完了した段階で、流路切換弁5に対する制御指令は全閉指令から全開指令に切り換わり、この切り換わりのタイミングで流路切換弁5が開き始める。このとき、気筒内の残留ガス量が一定に維持されるように、排気弁の閉弁時期を進角側に補正すると共に、上記スロットル弁の弁開度を閉弁側に補正する。つまり、流路切換弁5が全閉状態から全開状態に切り換わる際には、気筒内の残留ガス量が一定に維持されるように、排気弁の閉弁時期の進角側への補正と上記スロットル弁の弁開度の閉弁側への補正とが行われる。   When the warm-up is completed, the control command for the flow path switching valve 5 is switched from a fully closed command to a full open command, and the flow path switching valve 5 starts to open at the timing of this switching. At this time, the valve closing timing of the exhaust valve is corrected to the advance side so that the residual gas amount in the cylinder is kept constant, and the valve opening of the throttle valve is corrected to the valve closing side. In other words, when the flow path switching valve 5 is switched from the fully closed state to the fully open state, the exhaust valve closing timing is corrected to the advance side so that the residual gas amount in the cylinder is maintained constant. Correction of the valve opening of the throttle valve to the valve closing side is performed.

これにより、流路切換弁5が全閉状態から開き始める際に、気筒内の残留ガス量が維持され、内燃機関の発生トルクはトルク段差のない平坦な特性を得ることができる。尚、切り換え直後の上記スロットル弁の補正量は、排気弁の閉弁時期を補正しない場合に比べて少なくなっている。   Thereby, when the flow path switching valve 5 starts to open from the fully closed state, the residual gas amount in the cylinder is maintained, and the generated torque of the internal combustion engine can have a flat characteristic without a torque step. Note that the correction amount of the throttle valve immediately after switching is smaller than that in the case where the closing timing of the exhaust valve is not corrected.

そして、流路切換弁5が全開状態となると、進角側に補正されている排気弁の閉弁時期を遅角側に戻しながら、上記スロットル弁の弁開度を閉弁方向に徐々に変更する。換言すれば、進角側へ変更された排気弁のバルブタイミングは、流路切換弁5が開状態になってから上記スロットル弁と協調して遅角側に戻される。このように、上記排気弁側動弁機構により気筒内の残留ガス量をコントロールすることで、気筒内の残留ガス量の変化を緩やかにすることができ、トルク段差の発生を防止することができる。つまり、流路切換弁5のバルブ開閉速度(切り換え速度)に影響されることなく、気筒内の残留ガス量をコントロールすることが可能となるため、例えば、バルブ開閉速度がコントロールができない駆動方式のアクチュエータを流路切換弁5の駆動源として採用することが可能となり、流路切換弁5の駆動源となるアクチュエータの選択の自由度が大きくなり、コスト低減を図ることができる。   When the flow path switching valve 5 is fully opened, the valve opening of the throttle valve is gradually changed in the closing direction while returning the closing timing of the exhaust valve corrected to the advance side to the retard side. To do. In other words, the valve timing of the exhaust valve changed to the advance side is returned to the retard side in cooperation with the throttle valve after the flow path switching valve 5 is opened. In this way, by controlling the residual gas amount in the cylinder by the exhaust valve side valve operating mechanism, the change in the residual gas amount in the cylinder can be moderated and the occurrence of a torque step can be prevented. . In other words, the residual gas amount in the cylinder can be controlled without being influenced by the valve opening / closing speed (switching speed) of the flow path switching valve 5, and therefore, for example, a drive system in which the valve opening / closing speed cannot be controlled. An actuator can be employed as the drive source of the flow path switching valve 5, and the degree of freedom in selecting the actuator that becomes the drive source of the flow path switching valve 5 is increased, thereby reducing costs.

尚、上述した第1実施形態においては、流路切換弁5を開くときに、排気弁の閉弁時期を進角側に補正しているが、排気弁の閉弁時期を進角側に補正する代わりに、吸気弁の開弁時期を進角側に補正するようにしても、上述の第1実施形態と同様の作用効果を得ることができる。この場合には、吸気弁を駆動する吸気弁側動弁機構が、吸気弁のバルブリフトにおけるリフト中心角を遅進させる位相可変手段を備えてなるよう構成され、流路切換弁5が全開状態になると、吸気弁の開弁時期が吸気通路に配置されたスロットル弁(図示せず)と協調して遅角側に戻されることになる。吸気弁を閉じる時期は、筒内吸気効率に影響するので、残留ガス維持によるトルク抑制効果を打ち消すほどに筒内吸気効率が増大してしまわないような閉弁時期に保ちつつ、吸気弁の開弁時期を進角側に補正する。例えば、少なくとも吸気弁の閉弁時期を補正前の下死点からの角度に比べて補正後の下死点からの角度が小さくならないようにしながら、吸気弁の開弁時期を進角側に補正する。   In the first embodiment described above, when the flow path switching valve 5 is opened, the closing timing of the exhaust valve is corrected to the advance side. However, the closing timing of the exhaust valve is corrected to the advance side. Instead of this, even if the valve opening timing of the intake valve is corrected to the advance side, the same effect as in the first embodiment can be obtained. In this case, the intake valve side valve operating mechanism for driving the intake valve is configured to include phase variable means for delaying the lift center angle in the valve lift of the intake valve, and the flow path switching valve 5 is fully opened. Then, the opening timing of the intake valve is returned to the retard side in cooperation with a throttle valve (not shown) arranged in the intake passage. Since the timing when the intake valve is closed affects the in-cylinder intake efficiency, the intake valve is opened while the in-cylinder intake efficiency is not increased to the extent that the torque suppression effect due to residual gas maintenance is negated. Correct the valve timing to the advance side. For example, correct the valve opening timing of the intake valve to the advance side while keeping the angle from the bottom dead center after correction at least as compared with the angle from the bottom dead center before correction. To do.

また、流路切換弁5を開くときに、排気弁の閉弁時期を進角側に補正すると同時に、吸気弁の開弁時期を進角側に補正するようにしても、上述の第1実施形態と同様の作用効果を得ることができる。この場合には、吸気弁を駆動する吸気弁側動弁機構と排気弁を駆動する排気弁側動弁機構の双方が、バルブリフトにおけるリフト中心角が遅進させる位相可変手段をそれぞれ備えてなるよう構成され、流路切換弁5が全開状態になると、排気弁の閉時期及び吸気弁の開弁時期の双方が吸気通路に配置されたスロットル弁(図示せず)と協調して遅角側に戻されることになる。   Further, when the flow path switching valve 5 is opened, the closing timing of the exhaust valve is corrected to the advance side, and at the same time, the opening timing of the intake valve is corrected to the advance side. The same effect as the form can be obtained. In this case, both the intake valve side valve mechanism for driving the intake valve and the exhaust valve side valve mechanism for driving the exhaust valve are each provided with phase varying means for delaying the lift center angle in the valve lift. When the flow path switching valve 5 is fully opened, both the exhaust valve closing timing and the intake valve opening timing are retarded in cooperation with a throttle valve (not shown) arranged in the intake passage. Will be returned to.

図3は、本発明の第2実施形態における種々の動作を説明するためのタイミングチャートであり、図中、実線は本発明の第2実施形態における特性線であり、破線は流路切換弁5を全閉状態から全開状態に切り換える際に排気弁の閉弁時期を進角側に補正せずに気筒内の残留ガス量がステップ状に変化する第2比較例の特性線である。   FIG. 3 is a timing chart for explaining various operations in the second embodiment of the present invention. In the figure, the solid line is the characteristic line in the second embodiment of the present invention, and the broken line is the flow path switching valve 5. 6 is a characteristic line of a second comparative example in which the residual gas amount in the cylinder changes stepwise without correcting the valve closing timing of the exhaust valve to the advance side when switching from fully closed to fully open.

この第2実施形態は、上述した第1実施形態と略同様に制御されているが、上記排気弁側動弁機構の上記排気弁側位相制御用アクチュエータの応答性を考慮して、流路切換弁5に対する制御指令が全閉指令から全開指令に切り換わると、流路切換弁5の実際の開弁動作に先立って、上記排気弁側位相制御用アクチュエータに対する作動デューティが予め上げられたものである。すなわち、流路切換弁5を開弁動作させる際に、上記排気弁側位相制御用アクチュエータに対する作動デューティが予め上げられているので、上述した第1実施形態の作用効果に加えて、排気弁の閉弁時期の進角側への補正(切り換え)の応答性を向上させることができ、気筒内の残留ガス量変化がより一層低減され、トルク段差の発生をより確実に防止することができる。   The second embodiment is controlled in substantially the same manner as the first embodiment described above, but the flow path is switched in consideration of the responsiveness of the exhaust valve side phase control actuator of the exhaust valve side valve operating mechanism. When the control command for the valve 5 is switched from the fully closed command to the fully opened command, the operating duty for the exhaust valve side phase control actuator is increased in advance prior to the actual valve opening operation of the flow path switching valve 5. is there. That is, when the flow path switching valve 5 is opened, the operating duty for the exhaust valve side phase control actuator is increased in advance, so that in addition to the effects of the first embodiment described above, Responsiveness of correction (switching) to the advance side of the valve closing timing can be improved, the change in the residual gas amount in the cylinder is further reduced, and the occurrence of a torque step can be prevented more reliably.

尚、この第2実施形態においては、流路切換弁5を開くときに、排気弁の閉弁時期を進角側に補正しているが、排気弁の閉弁時期を進角側に補正する代わりに、吸気弁の開弁時期を進角側に補正するようにしても、上述の第2実施形態と同様の作用効果を得ることができる。この場合には、吸気弁を駆動する吸気弁側動弁機構が、吸気弁のバルブリフトにおけるリフト中心角を遅進させる位相可変手段を備えてなるよう構成され、流路切換弁5が全開状態になると、吸気弁の開弁時期が吸気通路に配置されたスロットル弁(図示せず)と協調して遅角側に戻されることになる。   In the second embodiment, when the flow path switching valve 5 is opened, the closing timing of the exhaust valve is corrected to the advance side. However, the closing timing of the exhaust valve is corrected to the advance side. Instead, even if the valve opening timing of the intake valve is corrected to the advance side, the same effect as the second embodiment can be obtained. In this case, the intake valve side valve operating mechanism for driving the intake valve is configured to include phase variable means for delaying the lift center angle in the valve lift of the intake valve, and the flow path switching valve 5 is fully opened. Then, the opening timing of the intake valve is returned to the retard side in cooperation with a throttle valve (not shown) arranged in the intake passage.

また、流路切換弁5を開くときに、排気弁の閉弁時期を進角側に補正すると同時に、吸気弁の開弁時期を進角側に補正するようにしても、上述の第2実施形態と同様の作用効果を得ることができる。この場合には、吸気弁を駆動する吸気弁側動弁機構と排気弁を駆動する排気弁側動弁機構の双方が、バルブリフトにおけるリフト中心角が遅進させる位相可変手段をそれぞれ備えてなるよう構成され、流路切換弁5が全開状態になると、排気弁の閉時期及び吸気弁の開弁時期の双方が吸気通路に配置されたスロットル弁(図示せず)と協調して遅角側に戻されることになる。   Further, when the flow path switching valve 5 is opened, the closing timing of the exhaust valve is corrected to the advance side, and at the same time, the opening timing of the intake valve is corrected to the advance side. The same effect as the form can be obtained. In this case, both the intake valve side valve mechanism for driving the intake valve and the exhaust valve side valve mechanism for driving the exhaust valve are each provided with phase varying means for delaying the lift center angle in the valve lift. When the flow path switching valve 5 is fully opened, both the exhaust valve closing timing and the intake valve opening timing are retarded in cooperation with a throttle valve (not shown) disposed in the intake passage. Will be returned to.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、上記流路切換弁が閉状態から開状態へ切り換わるときに排気弁閉時期を早める。これによって、排気弁の閉弁時期を制御することにより気筒内の残留ガス量をコントロールし、流路切換弁が閉弁状態から開弁状態に切り替えられた際の上記残留ガス量の変化を抑え、かつ緩やかな上記残留ガス量のコントロールを可能とすることで、トルク段差を発生を防ぐことができる。   (1) A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. An exhaust system for an internal combustion engine, comprising: a bypass catalytic converter; and an upstream portion of the main passage that is bypassed by the bypass passage, the passage switching valve closing the main passage. When the valve switches from the closed state to the open state, the exhaust valve closing timing is advanced. This controls the residual gas amount in the cylinder by controlling the closing timing of the exhaust valve, and suppresses the change in the residual gas amount when the flow path switching valve is switched from the closed state to the open state. In addition, it is possible to prevent the occurrence of a torque step by enabling a gradual control of the residual gas amount.

(2) 上記(1)に記載の内燃機関の排気装置は、具体的には、排気弁閉時期を早めるために、排気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備える。   (2) Specifically, the exhaust system for an internal combustion engine according to the above (1) is a phase variable means for correcting the phase of the center angle of the lift of the exhaust valve to the advance side in order to advance the exhaust valve closing timing. Is provided.

(3) メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、上記流路切換弁が閉状態から開状態へ切り換わるときに吸気弁開時期を早める。   (3) A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. An exhaust system for an internal combustion engine, comprising: a bypass catalytic converter; and an upstream portion of the main passage that is bypassed by the bypass passage, the passage switching valve closing the main passage. When the engine switches from the closed state to the open state, the intake valve opening timing is advanced.

(4) 上記(3)に記載の内燃機関の排気装置は、具体的には、吸気弁開時期を早めるために、吸気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備える。   (4) Specifically, the exhaust system for an internal combustion engine according to (3) described above is a phase variable means for correcting the phase of the center angle of the lift of the intake valve to the advance side in order to advance the opening timing of the intake valve. Is provided.

(5) メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、上記流路切換弁が閉状態から開状態へ切り換わるときに排気弁閉時期及び吸気弁開時期を早める。   (5) A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. An exhaust system for an internal combustion engine, comprising: a bypass catalytic converter; and an upstream portion of the main passage bypassed by the bypass passage, the passage switching valve closing the main passage. When the engine is switched from the closed state to the open state, the exhaust valve closing timing and the intake valve opening timing are advanced.

(6) 上記(5)に記載の内燃機関の排気装置は、具体的には、排気弁閉時期及び吸気弁開時期を早めるために、排気弁及び吸気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備える。   (6) Specifically, the exhaust system for an internal combustion engine according to (5) described above advances the phase of the central angle of the lift of the exhaust valve and the intake valve in order to advance the exhaust valve closing timing and the intake valve opening timing. Phase variable means for correcting the angle side is provided.

(7) 上記(2)、(4)、(6)のいずれかに記載の内燃機関の排気装置において、上記流路切換弁を閉状態から開状態へ切り換える流路切換弁切換指令が出された際には、上記流路切換弁の開弁動作に先立って、上記位相可変手段に対する作動デューティが予め上げられる。これによって、排気弁の閉弁時期の進角側への切り換えの応答性を向上させることができ、気筒内の残留ガス量変化がより一層低減され、トルク段差の発生をより確実に防止することができる。   (7) In the exhaust system for an internal combustion engine according to any one of (2), (4), and (6), a flow path switching valve switching command for switching the flow path switching valve from a closed state to an open state is issued. In this case, prior to the opening operation of the flow path switching valve, the operation duty for the phase variable means is increased in advance. As a result, the responsiveness of switching the exhaust valve closing timing to the advance side can be improved, the change in the residual gas amount in the cylinder can be further reduced, and the occurrence of a torque step can be prevented more reliably. Can do.

(8) 上記(1)〜(7)のいずれかに記載の内燃機関の排気装置において、進角側へ変更されたバルブタイミングは、上記流路切換弁が開状態になってからスロットル弁と協調して遅角側に戻される。これにより、流路切換弁のバルブ開閉速度(切り換え速度)に影響されることなく、気筒内の残留ガス量をコントロールすることが可能となるため、例えば、バルブ開閉速度がコントロールができない駆動方式のアクチュエータを流路切換弁5の駆動源として採用することが可能となり、流路切換弁の駆動源となるアクチュエータの選択の自由度が大きくなり、コスト低減を図ることができる。   (8) In the exhaust system for an internal combustion engine according to any one of (1) to (7), the valve timing changed to the advance side is the same as that of the throttle valve after the flow path switching valve is opened. It returns to the retarded angle side in cooperation. As a result, the residual gas amount in the cylinder can be controlled without being influenced by the valve opening / closing speed (switching speed) of the flow path switching valve. An actuator can be employed as the drive source of the flow path switching valve 5, and the degree of freedom in selecting the actuator that becomes the drive source of the flow path switching valve is increased, thereby reducing the cost.

本発明に係る内燃機関の排気装置の全体の配管レイアウトを示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the piping layout of the whole exhaust apparatus of the internal combustion engine which concerns on this invention. 本発明の第1実施形態における種々の動作を説明するためのタイミングチャート。The timing chart for demonstrating the various operation | movement in 1st Embodiment of this invention. 本発明の第2実施形態における種々の動作を説明するためのタイミングチャート。The timing chart for demonstrating the various operation | movement in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

3…メイン通路
4…メイン触媒コンバータ
5…流路切換弁
6…分岐点
7…バイパス通路
8…バイパス触媒コンバータ
12…合流点
DESCRIPTION OF SYMBOLS 3 ... Main passage 4 ... Main catalytic converter 5 ... Flow path switching valve 6 ... Branch point 7 ... Bypass passage 8 ... Bypass catalytic converter 12 ... Junction point

Claims (8)

メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、
上記流路切換弁が閉状態から開状態へ切り換わるときに排気弁閉時期を早めることを特徴とする内燃機関の排気装置。
A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. And an exhaust device for an internal combustion engine comprising a flow path switching valve that closes the main passage at the upstream portion bypassed by the bypass passage among the main passages,
An exhaust system for an internal combustion engine, wherein the exhaust valve closing timing is advanced when the flow path switching valve is switched from a closed state to an open state.
排気弁閉時期を早めるために、排気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備えたことを特徴とする請求項1に記載の内燃機関の排気装置。   2. An exhaust system for an internal combustion engine according to claim 1, further comprising phase varying means for correcting the phase of the central angle of the lift of the exhaust valve to the advance side in order to advance the closing timing of the exhaust valve. メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、
上記流路切換弁が閉状態から開状態へ切り換わるときに吸気弁開時期を早めることを特徴とする内燃機関の排気装置。
A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. And an exhaust device for an internal combustion engine comprising a flow path switching valve that closes the main passage at the upstream portion bypassed by the bypass passage among the main passages,
An exhaust system for an internal combustion engine, wherein the intake valve opening timing is advanced when the flow path switching valve switches from a closed state to an open state.
吸気弁開時期を早めるために、吸気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備えたことを特徴とする請求項3に記載の内燃機関の排気装置。   4. An exhaust system for an internal combustion engine according to claim 3, further comprising phase varying means for correcting the phase of the central angle of the lift of the intake valve to the advance side in order to advance the opening timing of the intake valve. メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列に総断面積が上記メイン通路の総断面積に対して相対的に小さなバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパスされる上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気装置において、
上記流路切換弁が閉状態から開状態へ切り換わるときに排気弁閉時期及び吸気弁開時期を早めることを特徴とする内燃機関の排気装置。
A bypass passage having a relatively small total cross-sectional area relative to the total cross-sectional area of the main passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side. And an exhaust device for an internal combustion engine comprising a flow path switching valve that closes the main passage at the upstream portion bypassed by the bypass passage among the main passages,
An exhaust system for an internal combustion engine, wherein the exhaust valve closing timing and the intake valve opening timing are advanced when the flow path switching valve is switched from a closed state to an open state.
排気弁閉時期及び吸気弁開時期を早めるために、排気弁及び吸気弁のリフトの中心角の位相を進角側に補正する位相可変手段を備えたことを特徴とする請求項5に記載の内燃機関の排気装置。   6. The phase varying means for correcting the phase of the central angle of the lift of the exhaust valve and the intake valve to the advance side in order to advance the exhaust valve closing timing and the intake valve opening timing. An exhaust system for an internal combustion engine. 上記流路切換弁を閉状態から開状態へ切り換える流路切換弁切換指令が出された際には、上記流路切換弁の開弁動作に先立って、上記位相可変手段に対する作動デューティが予め上げられることを特徴とする請求項2、4、6のいずれかに記載の内燃機関の排気装置。   When a flow path switching valve switching command for switching the flow path switching valve from the closed state to the open state is issued, the operating duty for the phase variable means is increased in advance prior to the opening operation of the flow path switching valve. An exhaust system for an internal combustion engine according to any one of claims 2, 4, and 6. 進角側へ変更されたバルブタイミングは、上記流路切換弁が開状態になってからスロットル弁と協調して遅角側に戻されることを特徴とする請求項1〜7のいずれかに記載の内燃機関の排気装置。   8. The valve timing changed to the advance side is returned to the retard side in cooperation with the throttle valve after the flow path switching valve is opened. Exhaust device for internal combustion engine.
JP2006147801A 2006-05-29 2006-05-29 Exhaust device for internal combustion engine Expired - Fee Related JP4802862B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006147801A JP4802862B2 (en) 2006-05-29 2006-05-29 Exhaust device for internal combustion engine
US11/752,990 US7845161B2 (en) 2006-05-29 2007-05-24 Internal combustion engine and control method for internal combustion engine
DE602007011686T DE602007011686D1 (en) 2006-05-29 2007-05-25 Improvements to or in connection with internal combustion engines
EP07108936A EP1865163B1 (en) 2006-05-29 2007-05-25 Improvements in or relating to internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147801A JP4802862B2 (en) 2006-05-29 2006-05-29 Exhaust device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007315341A true JP2007315341A (en) 2007-12-06
JP4802862B2 JP4802862B2 (en) 2011-10-26

Family

ID=38849426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147801A Expired - Fee Related JP4802862B2 (en) 2006-05-29 2006-05-29 Exhaust device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4802862B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321643A (en) * 1992-05-26 1993-12-07 Mazda Motor Corp Exhaust device of engine having turbo supercharger
JPH09228826A (en) * 1996-02-23 1997-09-02 Nissan Motor Co Ltd Emission control device for internal combustion engine
JPH10220257A (en) * 1997-02-05 1998-08-18 Denso Corp Valve timing controller for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321643A (en) * 1992-05-26 1993-12-07 Mazda Motor Corp Exhaust device of engine having turbo supercharger
JPH09228826A (en) * 1996-02-23 1997-09-02 Nissan Motor Co Ltd Emission control device for internal combustion engine
JPH10220257A (en) * 1997-02-05 1998-08-18 Denso Corp Valve timing controller for internal combustion engine

Also Published As

Publication number Publication date
JP4802862B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4462100B2 (en) Exhaust device for internal combustion engine and control method for internal combustion engine
JP4793103B2 (en) Internal combustion engine
US8033098B2 (en) Control apparatus and control method for internal combustion engine
JP2007100607A (en) Starting control device of internal combustion engine
JP4479774B2 (en) Control device for internal combustion engine
US7845161B2 (en) Internal combustion engine and control method for internal combustion engine
JP4802862B2 (en) Exhaust device for internal combustion engine
JP2010223064A (en) Intake control device of internal combustion engine for vehicle
JP4654977B2 (en) Internal combustion engine
JP4706463B2 (en) Control device for internal combustion engine
JP4206967B2 (en) Valve control device for internal combustion engine
JP2009293537A (en) Control device for internal combustion engine
JP4020065B2 (en) Control device for internal combustion engine
JP5447095B2 (en) Exhaust system for multi-cylinder engine
JP2004052677A (en) Intake controlling equipment for internal combustion engine
JP5071172B2 (en) Control device for internal combustion engine
JP4816300B2 (en) Internal combustion engine and control method for internal combustion engine
EP2584163B1 (en) Internal combustion engine control device
JP4021384B2 (en) Control method for internal combustion engine
JP6021509B2 (en) Control device for internal combustion engine
JP2007239571A (en) Controller of internal combustion engine
JP4807155B2 (en) Variable valve gear
JP3826850B2 (en) Control device for spark ignition engine
JP2007113398A (en) Control device for engine
JP2005291188A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees