JP2007314553A - Hyaluronidase activity inhibitor - Google Patents

Hyaluronidase activity inhibitor Download PDF

Info

Publication number
JP2007314553A
JP2007314553A JP2007183072A JP2007183072A JP2007314553A JP 2007314553 A JP2007314553 A JP 2007314553A JP 2007183072 A JP2007183072 A JP 2007183072A JP 2007183072 A JP2007183072 A JP 2007183072A JP 2007314553 A JP2007314553 A JP 2007314553A
Authority
JP
Japan
Prior art keywords
solution
acerola
extract
mass
seed extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007183072A
Other languages
Japanese (ja)
Other versions
JP4264456B2 (en
Inventor
Kenichi Nagamine
賢一 永峰
Miki Hayashi
美希 林
Kaori Yamazaki
かおり 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirei Biosciences Inc
Original Assignee
Nichirei Biosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirei Biosciences Inc filed Critical Nichirei Biosciences Inc
Priority to JP2007183072A priority Critical patent/JP4264456B2/en
Publication of JP2007314553A publication Critical patent/JP2007314553A/en
Application granted granted Critical
Publication of JP4264456B2 publication Critical patent/JP4264456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Saccharide Compounds (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellently safe hyaluronidase activity inhibitor effectively utilizing acerola seeds which have hitherto been mostly subjected to waste disposal and exhibiting an excellent hyaluronidase inhibitory activity by utilization in external preparations for skin, cosmetics, etc. <P>SOLUTION: The hyaluronidase activity inhibitor comprises a solvent extract of the acerola seeds containing quercitrin and having ≤25 wt.% content of the quercitrin as an active ingredient. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アセロラ種子の抽出物を有効成分とするヒアルロニダーゼ活性阻害剤に関し、皮膚外用剤、化粧料に利用できる。   The present invention relates to an inhibitor of hyaluronidase activity containing an extract of acerola seed as an active ingredient, and can be used for an external preparation for skin and cosmetics.

食品、化粧品、医薬品等の物品において油脂類を含む場合、その貯蔵、保存、加工の過程において最も問題になるのは、空気中の酸素による油脂成分等の酸化や過酸化である。とりわけ、油脂中に含まれるリノール酸、リノレン酸等の不飽和脂肪酸は、酸素により容易に過酸化されて過酸化脂質やフリーラジカルを生成し、更には発癌性物質をも生成することが知られている。このような酸化や過酸化が起こると、着色、変色、変性、異臭あるいは栄養価の有効性の低下ばかりか、毒物の生成等が生じ、製品の品質の劣化を招く。
そこで、前述の不飽和脂肪酸の酸化及び過酸化を抑制し、製品の品質の劣化を防ぐために従来から種々の抗酸化剤が用いられている。抗酸化剤は、酸化の際に生ずるペルオキシドラジカルに作用し、酸化の連鎖反応を停止させるか、あるいはフリーラジカルに作用して酸化反応を停止させる。抗酸化剤としては、従来から、例えば、ブチルヒドロキシアニソール(BHA)やブチルヒドロキシトルエン(BHT)等の合成抗酸化剤が一般に用いられている。ところが、近年、合成抗酸化剤の使用が増えるにつれその安全性が問題にされ、消費者の拒否反応が強くなってきていると共にその使用量も減っている。また、これら合成抗酸化剤は、油溶性であるため水溶液への使用が困難である。
一方、安全性の高い天然物由来の抗酸化剤としては、例えば、天然ビタミンE(α-トコフェロール)、ビタミンC等が知られている。しかし、これら天然物由来の抗酸化剤は、極端な脂溶性又は水溶性という性質を有しているため、その利用には限度が生じる。また、その活性が長時間安定に持続しない等の欠点もある。
従って、抗酸化活性が強く、水への溶解性に富み、しかも抗酸化活性が長時間安定である天然物由来の抗酸化剤が強く求められている。
また、皮膚の水分保持、柔軟性、弾力性に作用する物質として、コラーゲンやヒアルロン酸などが知られている。コラーゲンは、皮膚では真皮の90%を占め、真皮全体に分布しており、皮膚に適度な弾性及び強度を保持させる。また、ヒアルロン酸は、皮膚、関節液、硝子体、靭帯など生体に広く分布しており、皮膚において、細胞の接着、細胞の保護、皮膚組織の形成、組織の水分保持、柔軟性の維持などを担っている。生体内でコラーゲンを分解する酵素としてコラゲナーゼ、ヒアルロン酸を分解する酵素としてヒアルロニダーゼが知られているが、これらによってコラーゲンやヒアルロン酸が分解されその量が減少すると、皮膚の潤い、ハリがなくなり、皮膚の老化現象であるシワやたるみが起こるといわれている。
そこで、皮膚外用剤や各種化粧料に、皮膚の老化防止やしわ防止作用等を期待してこれら酵素の活性を阻害する物質等を配合することが提案され、従来、様々なコラゲナーゼ活性阻害剤やヒアルロニダーゼ活性阻害剤が開発されている。
In the case of including fats and oils in articles such as foods, cosmetics and pharmaceuticals, the most serious problem in the process of storage, storage and processing is oxidation and peroxidation of fats and oils components by oxygen in the air. In particular, it is known that unsaturated fatty acids such as linoleic acid and linolenic acid contained in fats and oils are easily peroxidized by oxygen to produce lipid peroxides and free radicals, and also carcinogenic substances. ing. When such oxidation or peroxidation occurs, not only coloring, discoloration, denaturation, off-flavor, or a decrease in nutritional value effectiveness, but also the production of toxic substances, etc., leading to deterioration of product quality.
Therefore, various antioxidants have been conventionally used in order to suppress the oxidation and peroxidation of the unsaturated fatty acid and prevent the quality of the product from deteriorating. Antioxidants act on peroxide radicals generated during oxidation and stop the chain reaction of oxidation, or act on free radicals to stop the oxidation reaction. Conventionally, synthetic antioxidants such as butylhydroxyanisole (BHA) and butylhydroxytoluene (BHT) are generally used as the antioxidant. However, in recent years, as the use of synthetic antioxidants has increased, its safety has become a problem, and consumer rejection has become stronger and the amount used has also decreased. Moreover, since these synthetic antioxidants are oil-soluble, they are difficult to use in aqueous solutions.
On the other hand, natural vitamin E (α-tocopherol), vitamin C and the like are known as highly safe antioxidants derived from natural products. However, since these natural-derived antioxidants have extremely fat-soluble or water-soluble properties, their use is limited. In addition, there is a disadvantage that the activity does not last stably for a long time.
Therefore, there is a strong demand for antioxidants derived from natural products that have strong antioxidant activity, are highly soluble in water, and are stable for a long time.
Further, collagen, hyaluronic acid, and the like are known as substances that affect skin moisture retention, flexibility, and elasticity. Collagen accounts for 90% of the dermis in the skin and is distributed throughout the dermis, allowing the skin to retain moderate elasticity and strength. Hyaluronic acid is widely distributed in living bodies such as skin, joint fluid, vitreous, and ligaments. In the skin, cell adhesion, cell protection, skin tissue formation, tissue moisture retention, flexibility maintenance, etc. Is responsible. Collagenase is known as an enzyme that degrades collagen in the living body, and hyaluronidase is known as an enzyme that degrades hyaluronic acid. However, when collagen and hyaluronic acid are degraded by these substances and the amount thereof is reduced, the skin becomes moisturized and firm. It is said that wrinkles and sagging are occurring.
Therefore, it has been proposed to add substances that inhibit the activity of these enzymes to prevent skin aging and wrinkle prevention, etc. in skin preparations and various cosmetics. Conventionally, various collagenase activity inhibitors, Hyaluronidase activity inhibitors have been developed.

ところで、アセロラの果実は、豊富なビタミンCを含む植物として近年知られるようになり、現在では世界各国で飲料や健康食品として用いられている。また、豊富なビタミンCを含むアセロラの果実は、その抽出物に含まれるビタミンCによる抗酸化作用等を期待して化粧料等に用いられるようになっている(例えば、特許文献1〜4参照)。
しかし、アセロラの果実において化粧品や食料品に利用されているのは、ビタミンCを多く含む果肉のみであり、その種子は、有効利用の途がほとんど見出されておらず、大部分が廃棄されているのが現状である。最近、アセロラ種子を含む植物の種子を水蒸気蒸留法により処理して得られる水蒸気蒸留水を、皮膚感触改善効果を期待して化粧料に配合した組成物が提案されている(例えば、特許文献5参照)が、更なる有効利用の途が望まれている。
また、このようなアセロラの種子は、その含有成分、及びその作用等についてもほとんど知られていない。
特許第2814094号明細書 特開2000-212026号公報 特開2000-212027号公報 特開2000-212032号公報 特開2001-226218号公報
By the way, acerola fruit has recently become known as a plant containing abundant vitamin C, and is now used as a drink or health food in various countries around the world. In addition, acerola fruit containing abundant vitamin C has come to be used in cosmetics and the like in anticipation of the antioxidant effect of vitamin C contained in the extract (see, for example, Patent Documents 1 to 4). ).
However, the fruits of acerola are used for cosmetics and foodstuffs only in the pulp containing a lot of vitamin C, and the seeds have hardly been found for effective use, and most of them are discarded. This is the current situation. Recently, a composition has been proposed in which steam distilled water obtained by treating plant seeds including acerola seeds by a steam distillation method is blended in cosmetics with the expectation of an effect of improving skin feel (for example, Patent Document 5). However, there is a need for further effective use.
In addition, such acerola seeds are hardly known in terms of their components and their action.
Patent No. 2814094 specification JP 2000-212026 A JP 2000-212027 A JP 2000-212032 A JP 2001-226218 A

本発明の目的は、従来、そのほとんどが廃棄処理されていたアセロラ種子の有効利用が可能となり、安全性に優れ、皮膚外用剤や各種化粧料等に利用して優れたヒアルロニダーゼ活性阻害作用を示すヒアルロニダーゼ活性阻害剤を提供することにある。   The object of the present invention is to enable effective use of acerola seeds, most of which have been disposed of in the past, and is excellent in safety and exhibits an excellent hyaluronidase activity inhibitory action when used in skin external preparations and various cosmetics. It is to provide a hyaluronidase activity inhibitor.

本発明者らは、上記課題を解決するために、まず、従来、果汁の圧搾後、廃棄されていたアセロラ種子の有用性について鋭意検討した。その結果、アセロラ種子から得られる抽出物が、強力な抗酸化能、コラゲナーゼ活性阻害能及びヒアルロニダーゼ活性阻害能を有することを見出し、本発明を完成するに至った。
すなわち、本発明によれば、クェルシトリンを含み、且つクェルシトリン含有量が25重量%以下である、アセロラ種子の溶媒抽出物を有効成分として含むアセロラ種子の抽出物を有効成分として含むヒアルロニダーゼ活性阻害剤が提供される。
In order to solve the above-mentioned problems, the present inventors first studied diligently about the usefulness of acerola seeds that have been conventionally discarded after pressing fruit juice. As a result, the inventors have found that an extract obtained from acerola seeds has strong antioxidant ability, collagenase activity inhibition ability and hyaluronidase activity inhibition ability, and has completed the present invention.
That is, according to the present invention, there is provided a hyaluronidase activity inhibitor comprising, as an active ingredient, an acerola seed extract containing quercitrin and having a quercitrin content of 25% by weight or less as an active ingredient. Provided.

本発明のヒアルロニダーゼ活性阻害剤は、アセロラ種子の抽出物を有効成分とし、安全性に優れ、且つ強力なヒアルロニダーゼ阻害活性を有する。本発明のヒアルロニダーゼ活性阻害剤は、皮膚外用剤、化粧料に利用し、抗老化作用、しわ防止作用が得られる。加えて、産業廃棄物であったアセロラ種子の有効な利用も可能となる。   The hyaluronidase activity inhibitor of the present invention uses an extract of acerola seeds as an active ingredient, is excellent in safety, and has a strong hyaluronidase inhibitory activity. The hyaluronidase activity inhibitor of the present invention can be used in an external preparation for skin and cosmetics to obtain an anti-aging action and an anti-wrinkle action. In addition, it is possible to effectively use the acerola seed that was an industrial waste.

以下、本発明について詳細に説明する。
本発明のヒアルロニダーゼ活性阻害剤は、アセロラ種子の溶媒抽出物を有効成分として含む。
アセロラ種子は、大西洋のカリブ海西インド諸島を原産とするアセロラ(Acerola、学名:Malpighia emarginata DC)の種子である。
アセロラの果肉はビタミンCが豊富であることが知られ、食料品、化粧品等に利用されているが、その種子は、その有効利用の途がほとんど見出されていない。
Hereinafter, the present invention will be described in detail.
The hyaluronidase activity inhibitor of the present invention contains a solvent extract of acerola seed as an active ingredient.
Acerola seeds are seeds of Acerola (scientific name: Malpighia emarginata DC) native to the Caribbean West Indies of the Atlantic Ocean.
Acerola pulp is known to be rich in vitamin C and is used in foods, cosmetics, etc., but its seeds have hardly been found for effective use.

アセロラ種子の溶媒抽出物は、例えば、抽出溶媒を用いて抽出したものであれば特に限定されず、リノール酸自動酸化抑制能やDPPHラジカル消去作用等の抗酸化機能を有しておれば、その抽出方法や条件は特に限定されない。また、アセロラ種子の生産地及び品種についても何ら制限されず、例えば、生産地としては、沖縄、ブラジルが挙げられる。   The solvent extract of acerola seed is not particularly limited as long as it is extracted using an extraction solvent, for example, and has an antioxidant function such as a linoleic acid autooxidation inhibiting ability and a DPPH radical scavenging action. The extraction method and conditions are not particularly limited. Moreover, there is no restriction | limiting about the production place and kind of acerola seed, for example, Okinawa and Brazil are mentioned as a production place.

アセロラ種子の溶媒抽出物は、例えば、生のアセロラ種子、その乾燥物、或いは凍結物を、粉砕等して加工し、水及び/又は有機溶媒を加えて抽出した抽出物、得られた抽出物を濃縮した濃縮物、また、前記抽出物や濃縮物を更に液液抽出やカラムクロマトグラフィー等で分画した分画物、これらの乾固物の総称であって、クェルシトリンを含み、且つクェルシトリン含有量が25重量%以下であるものを意味し、その形態は液状、ペースト状、固体のいずれも含む意である。   The solvent extract of acerola seed is, for example, an extract obtained by processing raw acerola seed, its dried product or frozen product by pulverization, etc., and adding water and / or an organic solvent, and the obtained extract A concentrate obtained by concentrating the above-mentioned extract, a fraction obtained by further fractionating the extract or the concentrate by liquid-liquid extraction or column chromatography, etc., and a general term for these dried solids, containing quercitrin and containing quercitrin It means that the amount is 25% by weight or less, and its form includes any of liquid, paste, and solid.

前記抽出物を得るために用いる有機溶媒は、親水性有機溶媒、疎水性有機溶媒のいずれでもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、グリセリン、プロピレングリコール、1,3-ブチレングリコール等のアルコール;アセトン、テトラヒドロフラン、アセトニトリル、1,4-ジオキサン、ピリジン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、酢酸等の公知の有機溶媒が挙げられる。疎水性有機溶媒としては、例えば、ヘキサン、シクロヘキサン、四塩化炭素、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、ジエチルエーテル、酢酸エチル、ベンゼン、トルエン等の公知の有機溶媒が挙げられる。これらの有機溶媒は使用に際しては1種又は2種以上を組み合わせて用いることができる。中でも、水及び/又は親水性有機溶媒、特に、メタノール、エタノール、1,3-ブチレングリコール、水又はこれらの混合物や組合せが好ましい。   The organic solvent used for obtaining the extract may be either a hydrophilic organic solvent or a hydrophobic organic solvent. Examples of the hydrophilic organic solvent include alcohols such as methyl alcohol, ethyl alcohol, glycerin, propylene glycol, and 1,3-butylene glycol; acetone, tetrahydrofuran, acetonitrile, 1,4-dioxane, pyridine, dimethyl sulfoxide, N, N -Known organic solvents such as dimethylformamide and acetic acid. Examples of the hydrophobic organic solvent include known organic solvents such as hexane, cyclohexane, carbon tetrachloride, chloroform, dichloromethane, 1,2-dichloroethane, diethyl ether, ethyl acetate, benzene, and toluene. These organic solvents can be used alone or in combination of two or more. Among these, water and / or a hydrophilic organic solvent, particularly methanol, ethanol, 1,3-butylene glycol, water, or a mixture or combination thereof is preferable.

抽出条件は特に限定されないが、例えば、温度は5〜95℃、好ましくは10〜90℃、更に好ましくは15〜85℃で、常温でも好適に抽出できる。温度が高い方が、抽出効率が高くなる傾向がある。抽出時間は、数時間〜数日間であり、また、抽出に使用する溶媒量は、原料に対して質量比で通常1〜20倍量、好ましくは2〜10倍量である。
抽出操作も特に限定的ではなく、常法に従って行えばよい。抽出効率を向上させるため、振とう抽出や、撹拌機等を備えた抽出機を用いても抽出することができる。例えば、アセロラ種子を抽出溶媒に浸漬するか、若しくは浸漬せずに、抽出溶媒と共に撹拌、振とうする抽出処理を行い、処理液を、濾過、遠心分離又はデカンテーション等によって抽出液と抽出残渣に分離することにより抽出処理を行うことができ、抽出残渣は更に同様な抽出処理に付しても良い。得られる抽出液はそのまま用いても良いが、必要により、更に濃縮処理及び/又は分画処理することもできる。
Although extraction conditions are not specifically limited, For example, temperature is 5-95 degreeC, Preferably it is 10-90 degreeC, More preferably, it is 15-85 degreeC, and it can extract suitably also at normal temperature. The higher the temperature, the higher the extraction efficiency. The extraction time is several hours to several days, and the amount of the solvent used for extraction is usually 1 to 20 times, preferably 2 to 10 times the mass of the raw material.
The extraction operation is not particularly limited, and may be performed according to a conventional method. In order to improve the extraction efficiency, the extraction can be performed using a shake extraction or an extractor equipped with a stirrer or the like. For example, the acerola seed is immersed in the extraction solvent, or without being immersed, the extraction solution is stirred and shaken with the extraction solvent, and the processing solution is separated into the extraction solution and the extraction residue by filtration, centrifugation, decantation, etc. Extraction processing can be performed by separating, and the extraction residue may be further subjected to similar extraction processing. Although the obtained extract may be used as it is, it can be further subjected to concentration treatment and / or fractionation treatment if necessary.

前記濃縮処理は特に限定されず、例えば、溶媒除去、水及び/又は有機溶媒に対する溶解性を利用した可溶分回収処理、不溶分回収処理、水−疎水性有機溶媒での液液分配処理、再結晶処理、再沈澱処理、冷却により生じた析出物を回収する処理等、若しくはこれらから選択される2種以上の処理を組合せる方法等が挙げられる。
前記分画処理も特に限定されず、例えば、順相及び/又は逆相クロマトグラフィーによる処理等が挙げられる。
The concentration treatment is not particularly limited, for example, solvent removal, soluble content recovery processing utilizing solubility in water and / or organic solvent, insoluble content recovery processing, liquid-liquid distribution processing with water-hydrophobic organic solvent, Examples thereof include a recrystallization process, a reprecipitation process, a process for recovering precipitates generated by cooling, or a method of combining two or more kinds of processes selected from these.
The fractionation treatment is also not particularly limited, and examples thereof include normal phase and / or reverse phase chromatography treatment.

本発明のヒアルロニダーゼ活性阻害剤の有効成分としてのアセロラ種子の溶媒抽出物は、クェルシトリンを含む。
本発明のヒアルロニダーゼ活性阻害剤において、有効成分であるアセロラ種子の溶媒抽出物の使用量は、使用形態等により適宜選択することができる。
The solvent extract of acerola seeds as an active ingredient of the hyaluronidase activity inhibitor of the present invention contains quercitrin.
In the hyaluronidase activity inhibitor of the present invention, the amount of the solvent extract of acerola seed, which is an active ingredient, can be appropriately selected depending on the form of use.

本発明のヒアルロニダーゼ活性阻害剤は、皮膚外用剤及び化粧料に利用できる。前記化粧料の種類は特に限定されず、例えば、化粧水、乳液、クリーム、パック、洗浄料等のスキンケア化粧料;口紅、ファンデーション等のメーキャップ化粧料;頭髪用化粧料等が挙げられ、その剤型は特に制限されず任意である。また、皮膚外用剤としては、軟膏、各種皮膚用薬剤等が挙げられる。
皮膚外用剤及び化粧料において、本発明のヒアルロニダーゼ活性阻害剤の配合割合は、その種類及び配合される他の成分の種類や量、形態等に応じて適宜選択できるが、通常、皮膚外用剤又は化粧料全量に対して、アセロラ種子抽出物の乾燥物換算で0.001〜20質量%、好ましくは0.01〜10質量%である。
The hyaluronidase activity inhibitor of the present invention can be used for external preparations for skin and cosmetics. The type of the cosmetic is not particularly limited, and examples thereof include skin care cosmetics such as skin lotions, emulsions, creams, packs, and cleaning agents; makeup cosmetics such as lipsticks and foundations; and cosmetics for hair. The type is not particularly limited and is arbitrary. Examples of the external preparation for skin include ointments and various skin drugs.
In the external preparation for skin and cosmetics, the mixing ratio of the hyaluronidase activity inhibitor of the present invention can be appropriately selected according to the type and the type, amount, form, etc. of other components to be mixed. It is 0.001-20 mass% in conversion of the dry substance of acerola seed extract with respect to cosmetics whole quantity, Preferably it is 0.01-10 mass%.

前記皮膚外用剤又は化粧料には、通常、皮膚外用剤原料や化粧料原料として用いられる種々の他の成分を配合することができる。他の成分としては、例えば、水、油剤、界面活性剤、潤滑剤、アルコール類、水溶性高分子剤、ゲル化剤、保湿剤、緩衝剤、防腐剤、抗炎症剤、増粘剤、香料、ビタミン類、抗酸化剤等が挙げられ、使用に際しては、これらから1種又は2種以上を適宜選択して配合することができる。   The skin external preparation or cosmetic can be blended with various other components that are usually used as skin external preparation raw materials or cosmetic raw materials. Other components include, for example, water, oils, surfactants, lubricants, alcohols, water-soluble polymer agents, gelling agents, moisturizers, buffers, preservatives, anti-inflammatory agents, thickeners, and fragrances. Vitamins, antioxidants, and the like. In use, one or more of these can be appropriately selected and blended.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらに限定されない。
製造例1
洗浄したアセロラ種子を乾燥後、破砕して得られた粉砕物6140gに7倍質量のメタノールを加え、室温で一晩撹拌した。全量を遠心後、ろ過し、ろ液を濃縮乾固して抽出物(A)を225.89g得た。
この抽出物(A)に水2000mlを加え、更にヘキサン1200mlを加えて振とうした後、分液された水層を回収した。この水層に対し、ヘキサンを用いた同様の振とうを更に2回繰り返した。ヘキサン層を除いて得られた水層に、酢酸エチル1200 mlを加えて振とうすることを10回繰り返し、分液された酢酸エチル層を集めて濃縮乾固し、濃縮物(A)を11.48g得た。次に、濃縮物(A)を、シリカゲル(ワコーシルC-300:和光純薬社製)を充填したカラムを用いたシリカゲルカラムクロマトグラフィーで分画した。クロロホルム、クロロホルム:メタノール(97:3、9:1、8:2、6:4、4:6、2:8)、メタノールで順次溶出させた。クロロホルム溶出部を15の画分に分け(画分1〜15)、その後のクロロホルム:メタノール溶出部をそれぞれ、画分16(97:3)、17(9:1)、18(8:2)、19(6:4)、20(4:6)とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these.
Production Example 1
The washed acerola seeds were dried and then crushed and 6140 g of the pulverized product was added with 7 times mass of methanol and stirred overnight at room temperature. The whole amount was centrifuged and filtered, and the filtrate was concentrated to dryness to obtain 225.89 g of extract (A).
To this extract (A), 2000 ml of water was added, 1200 ml of hexane was further added and shaken, and then the separated aqueous layer was recovered. The same shaking using hexane was further repeated twice for this aqueous layer. To the aqueous layer obtained by removing the hexane layer, adding 1200 ml of ethyl acetate and shaking was repeated 10 times. The separated ethyl acetate layers were collected and concentrated to dryness, and the concentrate (A) was added to 11.48. g got. Next, the concentrate (A) was fractionated by silica gel column chromatography using a column packed with silica gel (Wakosil C-300: manufactured by Wako Pure Chemical Industries, Ltd.). Elution was successively performed with chloroform, chloroform: methanol (97: 3, 9: 1, 8: 2, 6: 4, 4: 6, 2: 8) and methanol. Divide the chloroform eluate into 15 fractions (fractions 1-15), and then separate the chloroform: methanol eluate into fractions 16 (97: 3), 17 (9: 1), 18 (8: 2), respectively. 19 (6: 4), 20 (4: 6).

各画分の抗酸化活性を、薄層クロマトグラフィー(TLC)を用いた評価法により確認した。すなわち、各画分の試料をシリカゲル薄層プレートに塗付し、展開溶媒により展開した。この際、蛍光指示薬を含有するプレートを用い(K5F Silica Gel 150Å:Whatman社製)、展開後、乾燥したプレートに紫外線を照射することで、UV吸収をもつ試料のスポットを検出した。その後、プレートに安定なラジカルであるDiphenyl-p-picrylhydradil(DPPH)の6×10-4Mメタノール溶液を噴霧した。DPPH溶液は紫色を呈しているが、ラジカルが消去されるとその色を失う。このため、ラジカル消去活性をもつ物質のスポット部分では、DPPHラジカルが消去されることでスポット部分が白く抜けて見える。
画分1〜20をシリカゲルプレートに塗付し、クロロホルム:メタノール=9:1の溶媒でプレート先端まで展開した後、DPPH溶液を噴霧した。結果を図1に示す。図1より、アセロラ種子抽出物には、抗酸化活性を有する多数の物質が含まれていることがわかる。
Antioxidant activity of each fraction was confirmed by an evaluation method using thin layer chromatography (TLC). That is, a sample of each fraction was applied to a silica gel thin layer plate and developed with a developing solvent. At this time, a plate containing a fluorescent indicator (K5F Silica Gel 150 Gel: manufactured by Whatman) was used, and after development, the dried plate was irradiated with ultraviolet rays to detect a spot of the sample having UV absorption. Thereafter, a 6 × 10 −4 M methanol solution of Diphenyl-p-picrylhydradil (DPPH), which is a stable radical, was sprayed on the plate. The DPPH solution is purple, but loses its color when radicals are eliminated. For this reason, in the spot portion of the substance having radical scavenging activity, the spot portion appears to be white as the DPPH radical is erased.
Fractions 1 to 20 were applied to a silica gel plate, developed to the tip of the plate with a solvent of chloroform: methanol = 9: 1, and then sprayed with a DPPH solution. The results are shown in Figure 1. As can be seen from FIG. 1, the acerola seed extract contains a large number of substances having antioxidant activity.

このうち、画分19を、逆相系高速液体クロマトグラフィー(HPLC)により更に精製した。まず下記溶出条件で粗精製し、更に以下の条件を行うことで精製した。HPLC条件を以下に示す。
カラム:Hydrosphere C-18[20×250mm](YMC)、流速:5ml/分、温度:35℃
検出:UV at 254nm、Eluent:30%メタノール(0-2min)、30-100%メタノール(2-32min、linear)、100%メタノール(32-40min)、30%メタノール(40-50min)の条件で粗精製した後、アセトニトリル/水(30/70)で最終精製を行って、分画精製物72mgを得た。
得られた分画精製物に対し、各種スペクトル測定を行った。得られたデータを以下に示す。
マススペクトル:[M-H]- 447
紫外線吸収スペクトル:(EtOH) 256.5nm、352.00nm、H-NMRケミカルシフト:500MHz 溶媒CD3OD、0.94ppm(d:J=6.1Hz)、6.91ppm(d:J=8.2Hz)、7.31ppm(d, d:J=8.2,2.1Hz)、7.34 ppm(d:J=2.1Hz)、6.20ppm(d:J=2.1Hz)、6.37ppm(d:J=2.1 Hz)、3.33ppm(m:J= 9.5,9.3Hz)、3.41ppm(m:J= 9.5Hz)、3.74ppm(d,d:J=9.3,3.3 Hz)、4.21ppm(d,d:J= 3.3Hz)、5.35ppm(d:J=1.7Hz)、C-NMR ケミカルシフト:125.8MHz 溶媒CD3OD、17.7ppm、72.0ppm、72.1ppm、72.2ppm、73.3ppm、94.8ppm、99.9ppm、103.6ppm、106.0ppm、116.4ppm、117.0ppm、122.9ppm、123.1ppm、136.3ppm、146.5ppm、149.9ppm、158.6ppm、159.4ppm、163.3ppm、166.0ppm、179.7ppm。
マススペクトルにおいて、脱プロトン化分子と考えられるイオンがm/z447に観測され、分子量は448と考えられた。H-NMRでは、0.94ppmはCH3、6.91ppm、7.31ppm、7.34ppmは1,2,4-置換ベンゼン、6.20ppm、6.37ppmは1,2,3,5-置換ベンゼンの1Hに帰属された。3.33〜5.35ppmには5種類のピークが観測された。また、13C-NMRスペクトルでは21本のピークが観測され、70-74ppmの4本のピークは>CH-O-と考えられ、179.7ppmには共役カルボニルに帰属できるピークが観測された。これらデータよりケルセチン配糖体の可能性が示唆されたため、更に高分解能マススペクトルの測定及び、ケルセチン配糖体で分子量448であるクェルシトリン標品のNMRスペクトルとの比較を行った。高分解能マススペクトル測定を行った結果、精密質量447.0917が得られ、C、H、Oを元素種として組成計算を行った。その結果、13C-NMRスペクトルで観測された炭素数21を満足する組成式C21H19O11が算出され、分子式はC21H19O11と決定された。更にNMRスペクトルを、クェルシトリン(ケルセチン-3-ラムノシド)標品のスペクトルと比較した結果、一致したため、アセロラ種子の抽出物より分離精製された物質はクェルシトリンであると同定した。
Among these, fraction 19 was further purified by reverse phase high performance liquid chromatography (HPLC). First, it was roughly purified under the following elution conditions, and further purified under the following conditions. The HPLC conditions are shown below.
Column: Hydrosphere C-18 [20 x 250 mm] (YMC), flow rate: 5 ml / min, temperature: 35 ° C
Detection: UV at 254nm, Eluent: 30% methanol (0-2min), 30-100% methanol (2-32min, linear), 100% methanol (32-40min), 30% methanol (40-50min) After crude purification, final purification was performed with acetonitrile / water (30/70) to obtain 72 mg of a purified fraction.
Various spectrum measurements were performed with respect to the obtained fraction purified product. The data obtained is shown below.
Mass spectrum: [MH] -447
UV absorption spectrum: (EtOH) 256.5 nm, 352.00 nm, H-NMR chemical shift: 500 MHz Solvent CD 3 OD, 0.94 ppm (d: J = 6.1 Hz), 6.91 ppm (d: J = 8.2 Hz), 7.31 ppm ( d, d: J = 8.2,2.1Hz), 7.34 ppm (d: J = 2.1 Hz), 6.20 ppm (d: J = 2.1 Hz), 6.37 ppm (d: J = 2.1 Hz), 3.33 ppm (m: J = 9.5,9.3Hz), 3.41ppm (m: J = 9.5Hz), 3.74ppm (d, d: J = 9.3,3.3 Hz), 4.21ppm (d, d: J = 3.3Hz), 5.35ppm ( d: J = 1.7Hz), C-NMR Chemical shift: 125.8MHz Solvent CD 3 OD, 17.7ppm, 72.0ppm, 72.1ppm, 72.2ppm, 73.3ppm, 94.8ppm, 99.9ppm, 103.6ppm, 106.0ppm, 116.4ppm 117.0ppm, 122.9ppm, 123.1ppm, 136.3ppm, 146.5ppm, 149.9ppm, 158.6ppm, 159.4ppm, 163.3ppm, 166.0ppm, 179.7ppm.
In the mass spectrum, an ion considered to be a deprotonated molecule was observed at m / z 447, and the molecular weight was considered to be 448. In H-NMR, 0.94 ppm is attributed to 1 H of CH 3 , 6.91 ppm, 7.31 ppm, 7.34 ppm, 1,2,4-substituted benzene, 6.20 ppm, 6.37 ppm, 1,2,3,5-substituted benzene It was done. Five peaks were observed between 3.33 and 5.35 ppm. In the 13 C-NMR spectrum, 21 peaks were observed, 4 peaks at 70-74 ppm were considered to be> CH—O—, and a peak attributable to conjugated carbonyl was observed at 179.7 ppm. Since these data suggested the possibility of quercetin glycosides, we further measured high-resolution mass spectra and compared them with the NMR spectra of quercitrin preparations with a molecular weight of 448 for quercetin glycosides. As a result of high-resolution mass spectrum measurement, an accurate mass of 447.0917 was obtained, and a composition calculation was performed using C, H, and O as elemental species. As a result, the composition formula C 21 H 19 O 11 satisfying the carbon number 21 observed in the 13 C-NMR spectrum was calculated, and the molecular formula was determined to be C 21 H 19 O 11 . Further, the NMR spectrum was compared with the spectrum of the quercitrin (quercetin-3-rhamnoside) preparation. As a result, it was found that the substance separated and purified from the acerola seed extract was identified as quercitrin.

クェルシトリンは、フラボノイドの一つで自然界に広く分布しており、特にドクダミに豊富に含まれることが知られている。以上の結果から、アセロラ種子にクェルシトリンが含まれ、該クェルシトリンが抽出物中の抗酸化活性に関与する物質の1つであることが判った。   Quercitrin is one of the flavonoids and is widely distributed in nature, and is known to be particularly abundant in Dokudami. From the above results, it was found that quercitrin is contained in acerola seeds and that quercitrin is one of the substances involved in the antioxidant activity in the extract.

製造例2
洗浄したアセロラ種子100gを破砕し、3倍体積の水を加え、室温で一晩振とうした。全量をガラスフィルター、0.65μmフィルター及び0.22μmフィルターでろ過後、ろ液を濃縮乾固して抽出物1gを得た。
次に、リノール酸を用いた抗酸化活性測定(ロダン鉄法)により得られた抽出物の抗酸化活性を測定した。
即ち、2.5%(w/v)リノール酸(99.5%エタノール溶液)2ml及び0.05Mリン酸緩衝液(pH7.0)4mlの反応液に、アセロラ種子の抽出物0.4mg、99.5%エタノール2ml及び蒸留水2mlからなる混液を混合し、褐色ネジ口瓶に入れ10mlの試験液を調製した。また、アセロラ種子抽出物の代わりにα-トコフェロール又はBHAを用い、反応液中にアセロラ種子の抽出物と同量含まれるように同様の操作を行い、各々試験液を調製し、これらを正の対照とした。コントロールにはアセロラ種子抽出物を添加せず、99.5%エタノール2ml及び蒸留水2mlのみを反応液に添加した試験液を用いた。得られた各試験液を暗所にて40℃で保存したものを本検、4℃で保存したものを盲検として、経時的に被検物を取り出し以下の方法により測定を行った。試験は14日間行った。
Production Example 2
100 g of the washed acerola seeds were crushed, 3 times the volume of water was added, and shaken overnight at room temperature. The whole amount was filtered through a glass filter, a 0.65 μm filter and a 0.22 μm filter, and the filtrate was concentrated to dryness to obtain 1 g of an extract.
Next, the antioxidant activity of the extract obtained by measuring the antioxidant activity using linoleic acid (the Rhodan iron method) was measured.
That is, 2 ml of 2.5% (w / v) linoleic acid (99.5% ethanol solution) and 4 ml of 0.05M phosphate buffer (pH 7.0), 0.4 mg of acerola seed extract, 2 ml of 99.5% ethanol and distilled A mixture of 2 ml of water was mixed and placed in a brown screw mouth bottle to prepare a 10 ml test solution. In addition, α-tocopherol or BHA was used instead of acerola seed extract, and the same operation was carried out so that the same amount of acerola seed extract was contained in the reaction solution. As a control. As a control, a test solution in which only 2 ml of 99.5% ethanol and 2 ml of distilled water were added to the reaction solution without using an acerola seed extract was used. Each test solution obtained was stored at 40 ° C. in the dark, and the test was stored at 4 ° C., and the test solution was taken out over time and measured by the following method. The test was conducted for 14 days.

まず、被検物0.1ml、75%エタノール9.7ml、30%ロダンアンモニウム水溶液0.1mlの混液に、2×10-2Mの塩化第一鉄(3.5%塩酸溶液)0.1mlを加えてから正確に3分後500nmにおける吸光度を測定した。盲検についても同様に測定し、Δ吸光度=(本検の吸光度)−(盲検の吸光度)とした。試料の酸化が始まると吸光度は上昇し、最高点に達した後、酸化されるべき試料が少なくなるにつれて吸光度は減少する。従って、吸光度のピークが早くできはじめるほど抗酸化活性は弱いといえる。また、酸化率を用いて各試験液の抗酸化活性を比較した。酸化率は、コントロールの酸化(Δ吸光度)を100%として、以下の式で求めた。酸化率が高いほど抗酸化活性が低いことを意味する。
酸化率(%)=([試料のΔ吸光度]/[コントロールのΔ吸光度])×100
吸光度の経時的変化の結果を図2に、試験開始後14日目の各試料溶液の酸化率を図3に示す。
First, add 0.1 ml of 2 × 10 -2 M ferrous chloride (3.5% hydrochloric acid solution) to a mixture of 0.1 ml of the test substance, 9.7 ml of 75% ethanol, and 0.1 ml of 30% aqueous rhodammonium solution. After 3 minutes, the absorbance at 500 nm was measured. The same measurement was performed for the blind test, and Δ absorbance = (absorbance of main test) − (absorbance of blind test) was set. As the sample begins to oxidize, the absorbance increases, and after reaching the highest point, the absorbance decreases as fewer samples are to be oxidized. Therefore, it can be said that the antioxidant peak becomes weaker as the peak of absorbance starts. Moreover, the antioxidant activity of each test solution was compared using the oxidation rate. The oxidation rate was determined by the following formula, assuming the control oxidation (Δ absorbance) as 100%. Higher oxidation rate means lower antioxidant activity.
Oxidation rate (%) = ([Δ absorbance of sample] / [Δ absorbance of control]) × 100
FIG. 2 shows the results of changes in absorbance over time, and FIG. 3 shows the oxidation rate of each sample solution 14 days after the start of the test.

製造例3
洗浄したアセロラ種子100gを破砕し、3倍体積の、エタノール含量が25体積%の含水エタノール水溶液を加え、室温で一晩振とうした。全量を製造例2と同様なフィルターでろ過後、ろ液を濃縮乾固して抽出物を1.69g得た。
得られた抽出物を用いて製造例2と同様に抗酸化活性を測定した。吸光度の経時的変化の結果を図2に、試験開始後14日目の各試料溶液の酸化率を図3に示す。
Production Example 3
100 g of the washed acerola seeds were crushed, 3 times volume of aqueous ethanol aqueous solution with an ethanol content of 25% by volume was added and shaken overnight at room temperature. The whole amount was filtered through the same filter as in Production Example 2, and the filtrate was concentrated to dryness to obtain 1.69 g of an extract.
The antioxidant activity was measured in the same manner as in Production Example 2 using the obtained extract. FIG. 2 shows the results of changes in absorbance over time, and FIG. 3 shows the oxidation rate of each sample solution 14 days after the start of the test.

製造例4
洗浄したアセロラ種子100gを破砕し、3倍体積の、エタノール含量が50体積%の含水エタノール水溶液を加え、室温で一晩振とうした。全量を製造例2と同様なフィルターでろ過後、ろ液を濃縮乾固して抽出物2.27gを得た。
得られた抽出物を用いて製造例2と同様に抗酸化活性を測定した。吸光度の経時的変化の結果を図2に、試験開始後14日目の各試料溶液の酸化率を図3に示す。
Production Example 4
100 g of the washed acerola seeds were crushed, 3 times volume of aqueous ethanol aqueous solution with 50% ethanol content was added and shaken overnight at room temperature. The whole amount was filtered through the same filter as in Production Example 2, and the filtrate was concentrated to dryness to obtain 2.27 g of extract.
The antioxidant activity was measured in the same manner as in Production Example 2 using the obtained extract. FIG. 2 shows the results of changes in absorbance over time, and FIG. 3 shows the oxidation rate of each sample solution 14 days after the start of the test.

製造例5
洗浄したアセロラ種子100gを破砕し、3倍体積の、エタノール含量が75体積%の含水エタノール水溶液を加え、室温で一晩振とうした。全量を製造例2と同様なフィルターでろ過後、ろ液を濃縮乾固して抽出物2.50gを得た。
得られた抽出物を用いて製造例2と同様に抗酸化活性を測定した。吸光度の経時的変化の結果を図2に、試験開始後14日目の各試料溶液の酸化率を図3に示す。
図2及び3より、アセロラ種子の抽出物には明らかにリノール酸の酸化抑制効果があり、またその強さは代表的抗酸化剤であるα-トコフェロール、BHAと比較して、同等又は同等以上であることが判った。更に、製造例2〜5の結果より、抽出溶媒として用いる含水エタノール中のエタノールの割合を変化させることで、抗酸化活性の強さをコントロールできることが判る。
Production Example 5
100 g of the washed acerola seeds were crushed, and a 3-fold volume of aqueous ethanol solution containing 75% ethanol by volume was added and shaken overnight at room temperature. The whole amount was filtered through the same filter as in Production Example 2, and the filtrate was concentrated to dryness to obtain 2.50 g of an extract.
Antioxidant activity was measured in the same manner as in Production Example 2 using the obtained extract. FIG. 2 shows the results of changes in absorbance over time, and FIG. 3 shows the oxidation rate of each sample solution 14 days after the start of the test.
2 and 3, the acerola seed extract clearly has an inhibitory effect on the oxidation of linoleic acid, and its strength is equivalent to or better than that of typical antioxidants α-tocopherol and BHA. It turned out that. Furthermore, it turns out that the intensity | strength of antioxidant activity is controllable from the result of manufacture examples 2-5 by changing the ratio of ethanol in the water-containing ethanol used as an extraction solvent.

製造例6
洗浄したアセロラ種子760gを破砕し、5倍質量のメタノールを加え、室温で一晩撹拌した。全量を遠心後、ろ過し、ろ液を濃縮乾固して抽出物12.36g得た。この抽出物に水300mlを加え、更にヘキサン100mlを加えて振とうした後、分液された水層を回収した。この水層に対し、ヘキサンを用いた同様の振とうを更に3回繰り返した。ヘキサン層を除いて得られた水層に、酢酸エチル100mlを加えて振とうすることを6回繰り返し、分液された酢酸エチル層を集めて濃縮乾固し、固形分0.41gを得た。
得られたアセロラ種子の抽出物の抗酸化活性を製造例2と同様にロダン鉄法により測定した。この際、試験期間は20日間とした。試験開始後20日目の各試料溶液の酸化率を図4に示す。
図4より、アセロラ種子の抽出物の酢酸エチル画分には、抽出物そのものと同様に明らかにリノール酸の酸化抑制効果があり、またその強さは、α-トコフェロールよりも強いことが判った。
Production Example 6
The washed acerola seeds (760 g) were crushed, 5 times the mass of methanol was added, and the mixture was stirred overnight at room temperature. The whole amount was centrifuged and filtered, and the filtrate was concentrated to dryness to obtain 12.36 g of an extract. To this extract, 300 ml of water was added, and 100 ml of hexane was further added and shaken, and then the separated aqueous layer was recovered. The same shaking using hexane was further repeated 3 times for this aqueous layer. To the aqueous layer obtained by removing the hexane layer, adding 100 ml of ethyl acetate and shaking was repeated 6 times, and the separated ethyl acetate layers were collected and concentrated to dryness to obtain 0.41 g of solid content.
The antioxidant activity of the obtained acerola seed extract was measured by the rodan iron method in the same manner as in Production Example 2. At this time, the test period was 20 days. FIG. 4 shows the oxidation rate of each sample solution on the 20th day after the start of the test.
From Fig. 4, it was found that the ethyl acetate fraction of the extract of acerola seeds clearly has the effect of inhibiting the oxidation of linoleic acid as the extract itself, and its strength is stronger than α-tocopherol. .

製造例7
洗浄したアセロラ種子70gを破砕し、4倍質量の、1,3-ブチレングリコール含量が30質量%の1,3-ブチレングリコール水溶液を加え、室温で一晩撹拌した。全量を遠心後、上清を0.22μmフィルターでろ過し、アセロラ種子の抽出物を溶液として124.12g得た。
得られたアセロラ種子の抽出物の抗酸化活性を以下のDPPHラジカル消去による方法により測定した。結果を表1に示す。
250mM酢酸緩衝液(pH=5.5)1600μlにエタノール1200μl、検体400μl(任意の濃度に調製)を混合し、30℃、5分間プレインキュベートした。この液に500μM DPPH/エタノール溶液を800μl添加混合し、30℃、30分間放置後、517nmの吸光度を測定した。α-トコフェロールについても同様の操作を行い、これを正の対照とした。コントロールには、試料溶液の代わりにその溶媒を用いて同様の操作を行ったものを用いた。測定された吸光度から、次式によりラジカル消去率を算出した。
消去率(%)=(1−[試料の吸光度]/[コントロールの吸光度])×100
試料溶液の試料濃度を段階的に変更して上記消去率の測定を行い、DPPHラジカルの消去率が50%になる試料溶液の濃度を求め、DPPHラジカル50%消去濃度とした。よって、この数値が低いほどラジカル消去能が高いことを意味する。
Production Example 7
70 g of the washed acerola seeds were crushed and a 4-fold mass of 1,3-butylene glycol aqueous solution having a 1,3-butylene glycol content of 30 mass% was added and stirred overnight at room temperature. After centrifuging the whole amount, the supernatant was filtered through a 0.22 μm filter to obtain 124.12 g of an acerola seed extract as a solution.
Antioxidant activity of the obtained acerola seed extract was measured by the following DPPH radical scavenging method. The results are shown in Table 1.
1600 μl of 250 mM acetate buffer (pH = 5.5) was mixed with 1200 μl of ethanol and 400 μl of sample (prepared to an arbitrary concentration), and pre-incubated at 30 ° C. for 5 minutes. To this solution, 800 μl of 500 μM DPPH / ethanol solution was added and mixed, and after standing at 30 ° C. for 30 minutes, the absorbance at 517 nm was measured. The same operation was performed for α-tocopherol, and this was used as a positive control. As a control, a sample obtained by performing the same operation using the solvent instead of the sample solution was used. From the measured absorbance, the radical scavenging rate was calculated by the following formula.
Erase rate (%) = (1− [absorbance of sample] / [absorbance of control]) × 100
The above-mentioned erasure rate was measured by changing the sample concentration of the sample solution stepwise, and the concentration of the sample solution at which the DPPH radical erasure rate was 50% was determined to obtain the DPPH radical 50% erasure concentration. Therefore, the lower this value, the higher the radical scavenging ability.

Figure 2007314553
表1より、製造例7の抽出物はα-トコフェロールと同等のラジカル消去能を有することが判った。
Figure 2007314553
From Table 1, it was found that the extract of Production Example 7 had the same radical scavenging ability as α-tocopherol.

製造例8
洗浄したアセロラ種子1500gを破砕し、2倍質量の、1,3-ブチレングリコール含量が30質量%の1,3-ブチレングリコール水溶液を加え、室温で一晩撹拌した。全量を遠心後、上清を0.22μmフィルターでろ過し、アセロラ種子抽出物を溶液として2327g得た。
得られたアセロラ種子抽出物の抗酸化活性を、製造例2と同様にロダン鉄法により測定した。但し、アセロラ種子抽出物は溶液であることから、水とエタノールを用いて必要濃度に希釈して添加し、アセロラ種子抽出液のコントロールには、添加したアセロラ種子抽出液と同様の溶媒組成でアセロラ種子抽出物を含まないものを用いた。また、試験期間は7日とした。
吸光度の経時的変化の結果を図5に、試験開始後7日目の各試料溶液の酸化率を図6に示す。
図5及び6より、アセロラ種子抽出物には明らかにリノール酸の酸化抑制効果があり、またその強さは、α-トコフェロール、BHAと比較して、同等又は同等以上であることが判った。
Production Example 8
1500 g of the washed acerola seeds were crushed, and a 2-fold mass of 1,3-butylene glycol aqueous solution having a 1,3-butylene glycol content of 30% by mass was added and stirred overnight at room temperature. After centrifuging the whole amount, the supernatant was filtered through a 0.22 μm filter to obtain 2327 g of an acerola seed extract as a solution.
The antioxidant activity of the obtained acerola seed extract was measured by the rodan iron method in the same manner as in Production Example 2. However, since the acerola seed extract is a solution, it is diluted with water and ethanol to the required concentration, and the acerola seed extract is controlled with the same solvent composition as the added acerola seed extract. What did not contain a seed extract was used. The test period was 7 days.
FIG. 5 shows the results of changes in absorbance with time, and FIG. 6 shows the oxidation rate of each sample solution on the seventh day after the start of the test.
From FIGS. 5 and 6, it was found that the acerola seed extract clearly has an inhibitory effect on the oxidation of linoleic acid, and its strength is equivalent to or higher than that of α-tocopherol and BHA.

ところで、従来よりビタミンCが抗酸化作用を有することが知られているので、上記で調製したアセロラ種子抽出液中のビタミンC量を測定し、上記アセロラ種子抽出液における抗酸化作用が含有されるビタミンCのみによるものか否かを検討した。
まず、上記で調製したアセロラ種子抽出液100g中に含有されるビタミンC量を測定したところ、57mg/100g(酸化型ビタミンC:56mg/100g+還元型ビタミンC:1mg/100g)であった。そこで、上記で調製したアセロラ種子抽出液100gを蒸発乾固したところ、固形分975mgが得られた。次いで、製造例2と同様にロダン鉄法により抗酸化活性を測定した。この際、本実施例のアセロラ種子抽出物は溶液であることから、上記と同様、反応液中に固形分として0.4mg含まれるように希釈して添加した。またコントロールにも上記と同様、添加したアセロラ種子抽出液と同様の溶媒組成でアセロラ種子抽出物を含まないものを用いた。なお、測定は7日間で行った。対照として、該固形分0.4mg中に含まれるビタミンC 0.023mg (0.4mg×(57mg/975mg))を用いて同様に抗酸化活性を測定した。
試験開始後7日目の酸化率は、アセロラ種子抽出物が1.9%であったのに対して、ビタミンC単独のものは115.8%であった。
以上の結果より、アセロラ種子抽出物中に含まれるビタミンCは、該抽出物の抗酸化作用にはほとんど寄与していないことが判った。
By the way, since it is known that vitamin C has an antioxidant effect, the amount of vitamin C in the acerola seed extract prepared above is measured, and the antioxidant effect in the acerola seed extract is contained. We examined whether it was due to vitamin C alone.
First, when the amount of vitamin C contained in 100 g of the acerola seed extract prepared above was measured, it was 57 mg / 100 g (oxidized vitamin C: 56 mg / 100 g + reduced vitamin C: 1 mg / 100 g). Therefore, when 100 g of the acerola seed extract prepared above was evaporated to dryness, a solid content of 975 mg was obtained. Subsequently, the antioxidant activity was measured by the rodan iron method in the same manner as in Production Example 2. At this time, since the acerola seed extract of this example was a solution, it was diluted and added so as to contain 0.4 mg as a solid content in the reaction solution as described above. In the same manner as described above, a control having the same solvent composition as the added acerola seed extract and containing no acerola seed extract was also used as a control. The measurement was performed for 7 days. As a control, the antioxidant activity was similarly measured using 0.023 mg (0.4 mg × (57 mg / 975 mg)) of vitamin C contained in 0.4 mg of the solid content.
The oxidation rate on the 7th day after the start of the test was 1.9% for the acerola seed extract, and 115.8% for the vitamin C alone.
From the above results, it was found that vitamin C contained in the acerola seed extract hardly contributed to the antioxidant action of the extract.

更に、本発明におけるアセロラ種子抽出物において、製造例1で確認した抗酸化作用を示す物質の1つであるクェルシトリンについて、上記で調製したアセロラ種子抽出物中に含有されるか否かを製造例1と同様に測定した。その結果、クェルシトリンを含有していることが判った。
ところで、従来、例えば、特開平7-300581号公報において、クェルシトリンが抗酸化作用を有することが提案されている。そこで、上記アセロラ種子抽出液における抗酸化作用が含有されるクェルシトリンのみによるものか否かを以下の方法で検討した。
まず、クェルシトリンはポリフェノールの1種であるので、上記で調製したアセロラ種子抽出液中のポリフェノール量をFolin-Denis法により測定したところ、抽出液100g中の固形分975mgに占めるポリフェノールの割合は25%であった。従って、上記で調製したアセロラ種子抽出液の固形分中に含まれるクェルシトリン量は、最大でも25%である。この結果に基づいて、上記ビタミンCとの比較試験と同様に、実施例2と同様にロダン鉄法により抗酸化活性を測定した。この際、測定は7日間で行った。対照として、該固形分0.4mg中にクェルシトリンが32%(最大量でも25%であるので、それ以上の量)含まれると仮定した場合のクェルシトリン0.128mgを用いて同様に抗酸化活性を測定した。
その結果、試験開始後7日目の酸化率は、アセロラ種子抽出物が1.9%であったのに対して、クェルシトリン単独のものは6.9%であった。
以上の結果より、アセロラ種子抽出物中に含まれるクェルシトリンは、該抽出物の抗酸化作用の有効成分の1つではあるが、該抽出物の抗酸化作用はクェルシトリンのみの作用ではなく、しかも、アセロラ種子抽出物は、クェルシトリン単独による抗酸化作用よりも優れていることが判った。
Further, in the acerola seed extract of the present invention, whether or not quercitrin, which is one of the substances showing the antioxidant action confirmed in Production Example 1, is contained in the acerola seed extract prepared as described above is a production example. Measurement was performed in the same manner as in 1. As a result, it was found that quercitrin was contained.
By the way, conventionally, for example, JP-A-7-300581 has proposed that quercitrin has an antioxidant action. Therefore, the following method was used to examine whether the antioxidant action in the acerola seed extract was solely due to quercitrin containing it.
First, since quercitrin is a kind of polyphenol, when the amount of polyphenol in the acerola seed extract prepared above was measured by the Folin-Denis method, the proportion of polyphenol in the solid content of 975 mg in 100 g of the extract was 25%. Met. Therefore, the amount of quercitrin contained in the solid content of the acerola seed extract prepared above is at most 25%. Based on this result, the antioxidant activity was measured by the rodan iron method in the same manner as in Example 2 in the same manner as in the comparative test with vitamin C. At this time, the measurement was performed for 7 days. As a control, the antioxidant activity was measured in the same manner using 0.128 mg of quercitrin, assuming that quercitrin was contained in 32 mg of the solid content of 0.4 mg (the maximum amount was 25%, which is more than that). .
As a result, the oxidation rate on the seventh day after the start of the test was 1.9% for the acerola seed extract, whereas it was 6.9% for quercitrin alone.
From the above results, quercitrin contained in the acerola seed extract is one of the active ingredients of the extract's antioxidant action, but the antioxidant action of the extract is not the action of quercitrin alone, Acerola seed extract was found to be superior to the antioxidant effect of quercitrin alone.

試験例1
製造例2〜5で調製した各アセロラ種子抽出物について、以下の方法によりコラゲナーゼ活性阻害作用を測定した。
測定方法
〔試薬の調製〕
基質溶液:Pz-ペプチド(BACHEM社製)0.39mgを、0.1Mトリス塩酸緩衝液(pH7.1、含20mM塩化カルシウム)1mlに溶解して使用した(0.5mMに相当)。
酵素溶液:コラゲナーゼ(TYPE IV、シグマ社製)5mgを蒸留水1mlに溶解させ100μlずつ分注し、−20℃で保管する。使用時に蒸留水で50倍に希釈して反応に用いた。
Test example 1
About each acerola seed extract prepared in Production Examples 2 to 5, the collagenase activity inhibitory action was measured by the following method.
Measurement method (reagent preparation)
Substrate solution: 0.39 mg of Pz-peptide (manufactured by BACHEM) was dissolved in 1 ml of 0.1 M Tris-HCl buffer (pH 7.1, containing 20 mM calcium chloride) and used (corresponding to 0.5 mM).
Enzyme solution: 5 mg of collagenase (TYPE IV, manufactured by Sigma) is dissolved in 1 ml of distilled water, dispensed in 100 μl aliquots, and stored at −20 ° C. At the time of use, it was diluted 50 times with distilled water and used for the reaction.

〔コラゲナーゼ活性阻害作用測定法〕
製造例2の抽出物は15mg/ml、製造例3、4、5の抽出物は0.5mg/mlの濃度となるように、それぞれの抽出溶媒で溶解して調製を行い、これらを試料溶液とした。これらの試料溶液50μl、コラゲナーゼ溶液50μl及び基質溶液400μlを混合し、37℃で30分間インキュベーションした。次いで、25mMクエン酸溶液1mlで反応を停止し、酢酸エチル5mlで抽出した。遠心分離(3000rpm、10分間)後、酢酸エチルを対照として、酢酸エチル層の波長320nmにおける吸光度を測定した。対照には、試料溶液の代わりに各抽出溶媒を用い、また、それぞれのブランクとして、酵素溶液の代わりに蒸留水を加えて同様の操作を行った。
これらの値からコラゲナーゼ活性阻害率を次式により算出した。
阻害率(%)=〔1−(A−B)/(C−D)〕×100
但し、A:試料溶液の320nmにおける吸光度、B:試料溶液ブランクの320nmにおける吸光度、C:対照溶液の320nmにおける吸光度、D:対照溶液ブランクの320nmにおける吸光度である。
上記方法で製造例2〜5の抽出物のコラゲナーゼ活性阻害率を求めた。結果を表2に示す。
[Method for measuring collagenase activity inhibitory action]
The extract of Production Example 2 was prepared by dissolving in each extraction solvent so that the extract of Production Examples 3, 4 and 5 had a concentration of 0.5 mg / ml. did. These sample solutions (50 μl), collagenase solution (50 μl) and substrate solution (400 μl) were mixed and incubated at 37 ° C. for 30 minutes. The reaction was then stopped with 1 ml of 25 mM citric acid solution and extracted with 5 ml of ethyl acetate. After centrifugation (3000 rpm, 10 minutes), the absorbance of the ethyl acetate layer at a wavelength of 320 nm was measured using ethyl acetate as a control. For the control, each extraction solvent was used in place of the sample solution, and as each blank, distilled water was added instead of the enzyme solution, and the same operation was performed.
From these values, the collagenase activity inhibition rate was calculated by the following equation.
Inhibition rate (%) = [1− (A−B) / (C−D)] × 100
A: Absorbance at 320 nm of the sample solution, B: Absorbance at 320 nm of the sample solution blank, C: Absorbance at 320 nm of the control solution, D: Absorbance at 320 nm of the control solution blank.
The collagenase activity inhibition rate of the extracts of Production Examples 2 to 5 was determined by the above method. The results are shown in Table 2.

Figure 2007314553
Figure 2007314553

試験例2
製造例8で調製したアセロラ種子抽出物について、試験例1と同様の方法によりコラゲナーゼ活性阻害作用を測定した。但し、製造例8の抽出物は溶液であることから、アセロラ種子抽出物が固形物として0.5mg/mlの濃度となるように抽出溶媒である30質量%1,3-ブチレングリコール水溶液で希釈したものを試料溶液とした。このようにして製造例8の抽出物のコラゲナーゼ活性阻害率を求めた結果、71.5%であった。
Test example 2
For the acerola seed extract prepared in Production Example 8, the collagenase activity inhibitory action was measured by the same method as in Test Example 1. However, since the extract of Production Example 8 was a solution, it was diluted with a 30% by mass 1,3-butylene glycol aqueous solution as an extraction solvent so that the acerola seed extract had a concentration of 0.5 mg / ml as a solid. This was used as a sample solution. Thus, as a result of calculating | requiring the collagenase activity inhibition rate of the extract of manufacture example 8, it was 71.5%.

実施例1
製造例8で調製した抽出物のヒアルロニダーゼ活性阻害作用を測定した。ヒアルロニダーゼ活性阻害測定は、Morgan-Elson法を応用した前田有美恵らの方法(食衛誌、31巻、233-237、1990年)にて行った。
測定方法
〔試薬の調製〕
酵素溶液:牛精巣ヒアルロニダーゼ(和光純薬工業(株)製)を0.1M酢酸緩衝液(pH=4.0)に溶解し最終酵素活性を400ユニット/mlに調整した。
酵素活性化溶液:compound 48/80(シグマ社製)を0.1M酢酸緩衝液(pH=4.0)に溶解し最終濃度を0.1mg/mlに調整した。
基質溶液:ヒアルロン酸カリウム(和光純薬工業(株)製)を0.1M酢酸緩衝液(pH=4.0)に溶解し最終濃度を0.4mg/mlに調整した。
ホウ酸溶液:ホウ酸4.95gに水50mlを加え、1N水酸化ナトリウム溶液でpH=9.1にし、水を加えて100mlに調整した。
p-ジメチルアミノベンズアルデヒド(p-DAB)試薬:10N塩酸12.5mlと酢酸87.5mlの混液にp-DAB(和光純薬工業(株)製)を10g溶解し冷蔵保存する。使用直前に酢酸で10倍希釈して用いた。
Example 1
The hyaluronidase activity inhibitory action of the extract prepared in Production Example 8 was measured. Hyaluronidase activity inhibition was measured by the method of Yumi Maeda et al. Using the Morgan-Elson method (Eisho Journal, Vol. 31, 233-237, 1990).
Measurement method (reagent preparation)
Enzyme solution: Cow testicular hyaluronidase (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 0.1 M acetate buffer (pH = 4.0) to adjust the final enzyme activity to 400 units / ml.
Enzyme activation solution: Compound 48/80 (manufactured by Sigma) was dissolved in 0.1 M acetate buffer (pH = 4.0) to adjust the final concentration to 0.1 mg / ml.
Substrate solution: Potassium hyaluronate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 0.1 M acetic acid buffer (pH = 4.0) to adjust the final concentration to 0.4 mg / ml.
Boric acid solution: 50 ml of water was added to 4.95 g of boric acid, adjusted to pH = 9.1 with 1N sodium hydroxide solution, and adjusted to 100 ml with water.
p-Dimethylaminobenzaldehyde (p-DAB) reagent: 10 g of p-DAB (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in a mixture of 12.5 ml of 10N hydrochloric acid and 87.5 ml of acetic acid and stored in the refrigerator. Immediately before use, diluted 10-fold with acetic acid was used.

〔ヒアルロニダーゼ活性阻害作用測定法〕
製造例8の抽出物は溶液であることから、アセロラ種子抽出物が固形物として1mg/mlの濃度となるように抽出溶媒である30質量%1,3-ブチレングリコール水溶液で希釈したものを試料溶液とした。この試料溶液0.2mlに酵素溶液0.1mlを加えて、37℃で20分間放置した。次に、酵素活性化溶液0.2mlを加えて37℃で20分間加温し、さらに基質溶液0.5mlを加えて37℃で40分間反応させた後、0.4Nの水酸化ナトリウム水溶液を0.2ml加えるとともに氷冷して反応を停止させた。ホウ酸溶液0.2mlを加えてホットブロックバス(TOYO SEISAKUSHO、MODEL TPB-32)により100〜120℃で5分間加熱後氷冷し、p-DAB試薬6mlを加えて37℃で20分間加温して発色させ、585nmにおける吸光度を蒸留水を対照として測定した。対照には、試料溶液の代わりに抽出溶媒を用い、またそれぞれのブランクとして、酵素溶液の代わりに0.1M酢酸緩衝液(pH=4.0)を加えて同様の操作を行った。
これらの値からヒアルロニダーゼ活性阻害率を次式により算出した。
阻害率(%)=〔1−(A−B)/(C−D)〕×100
但し、A:試料溶液の585nmにおける吸光度、B:試料溶液ブランクの585nmにおける吸光度、C:対照溶液の585nmにおける吸光度、D:対照溶液ブランクの585nmにおける吸光度である。
上記方法で製造例8の抽出物のヒアルロニダーゼ活性阻害率を求めた結果、94.5%であった。
[Measurement of hyaluronidase activity inhibitory action]
Since the extract of Production Example 8 is a solution, a sample diluted with a 30% by mass 1,3-butylene glycol aqueous solution as an extraction solvent so that the acerola seed extract has a solid concentration of 1 mg / ml It was set as the solution. To 0.2 ml of this sample solution, 0.1 ml of enzyme solution was added and left at 37 ° C. for 20 minutes. Next, add 0.2 ml of enzyme activation solution and warm at 37 ° C for 20 minutes. Add 0.5 ml of substrate solution and react at 37 ° C for 40 minutes, then add 0.2 ml of 0.4N sodium hydroxide aqueous solution. The reaction was stopped by cooling with ice. Add 0.2 ml of boric acid solution and heat in a hot block bath (TOYO SEISAKUSHO, MODEL TPB-32) at 100-120 ° C for 5 minutes, then cool on ice, add 6 ml of p-DAB reagent, and warm at 37 ° C for 20 minutes. The color was developed and the absorbance at 585 nm was measured using distilled water as a control. For the control, an extraction solvent was used instead of the sample solution, and 0.1 M acetate buffer (pH = 4.0) was added instead of the enzyme solution as each blank, and the same operation was performed.
From these values, the inhibition rate of hyaluronidase activity was calculated by the following formula.
Inhibition rate (%) = [1− (A−B) / (C−D)] × 100
Where A: absorbance at 585 nm of the sample solution, B: absorbance at 585 nm of the sample solution blank, C: absorbance at 585 nm of the control solution, and D: absorbance at 585 nm of the control solution blank.
As a result of obtaining the hyaluronidase activity inhibition rate of the extract of Production Example 8 by the above method, it was 94.5%.

試験例3
平成9年3月26日付厚生省令第21号「医薬品の安全性に関する非臨床試験の実施の基準に関する省令」に従ってアセロラ種子抽出物の安全性試験を行なった。アセロラ種子抽出物としては、製造例8で調製したアセロラ種子抽出物を用いた。結果を表3に示す。
ラットを用いる単回経口投与毒性試験
ラット2群(対照群、投与群)に対して、雌雄各5匹/群にて試験を行い、投与群には体重あたり2g/kg投与した。
モルモットを用いる皮膚一次刺激性試験
モルモット3匹の健常皮膚に24時間閉塞貼付を行い、投与後24時間、48時間及び72時間に、それぞれ皮膚の状態を観察して判定を行った。
モルモットを用いる14日間皮膚累積刺激性試験
モルモット3匹の健常皮膚に、14日間連続の開放系で1日1回塗布を行い、試験期間中の毎日、塗布前及び塗布後24時間に、それぞれ皮膚の状態を観察して判定を行った。
モルモットを用いる皮膚感作性試験
モルモット3群(対照群、塗布群、DNCB群)に対して、5匹/群にてAdjuvant and Patch Test法に準じて試験を行い、塗布後24時間及び48時間に、それぞれ皮膚の状態を観察して判定を行った。
モルモットを用いる皮膚光毒性試験
モルモット10匹の背部皮膚に森川藤凰らの方法に準じて試験を行い、紫外線照射後24時間、48時間及び72時間にそれぞれ皮膚の状態を観察して判定を行った。
Test example 3
According to the Ministry of Health and Welfare Ordinance No. 21, “Ministerial Ordinance on Standards for Implementation of Non-clinical Studies on Drug Safety” dated March 26, 1997, the safety test of acerola seed extract was conducted. As the acerola seed extract, the acerola seed extract prepared in Production Example 8 was used. The results are shown in Table 3.
Single Oral Dose Toxicity Test Using Rats Two groups of rats (control group, administration group) were tested in males and females at 5 animals / group, and the administration group was administered at 2 g / kg body weight.
Skin primary irritation test using guinea pigs Three healthy guinea pigs were occluded for 24 hours, and the skin condition was observed at 24 hours, 48 hours, and 72 hours after administration to make a judgment.
14-day cumulative skin irritation test using guinea pigs Three healthy guinea pigs were applied once a day in an open system for 14 consecutive days, and each day during the test period, before application, and 24 hours after application. Judgment was made by observing the state of
Skin sensitization test using guinea pigs Five groups / group of guinea pigs (control group, application group, DNCB group) were tested according to the Adjuvant and Patch Test method, and 24 and 48 hours after application. In addition, each skin condition was observed and judged.
Skin phototoxicity test using guinea pigs The test was performed on the back skin of 10 guinea pigs according to the method of Fujikawa et al., And the skin condition was observed at 24 hours, 48 hours and 72 hours after UV irradiation, respectively. It was.

モルモットを用いる皮膚光感作性試験
モルモット3群(対照群、投与群、TCSA群)に対して、5匹/群にてAjuvant and Strip法に準じて試験を行い、紫外線照射後24時間及び48時間に、それぞれ皮膚の状態を観察して判定を行った。
ウサギを用いる眼粘膜刺激性試験
ウサギ2群(非洗眼群、洗眼群)に対して、3匹/群にて試験を行った。点眼後、非洗眼群はそのままにし、洗眼群は微温の生理食塩水で約1分間洗浄し、その後1時間、24時間、48時間及び72時間後に、角膜、虹彩及び結膜の状態について観察し、AFNORの区分から判定を行った。
細菌を用いる復帰突然変異試験
プレインキュベーション法により、S9mix無添加とS9mix添加の場合について測定を行った。
・使用菌株:Salmonella typhimurium TA100、TA98、TA1535、TA1537
・使用菌株:Escherichia coli WP2uvrA
哺乳類の培養細胞を用いる染色体異常試験
哺乳類の培養細胞(CHL/IU細胞)を用いて3群(陰性対照群、被検物質群、陽性対照群)に対して、短時間処理法(6時間処理:S9mix無添加及びS9mix添加)及び連続処理法(24時間及び48時間処理)で検討を行った。
Skin photosensitization test using guinea pigs Three groups of guinea pigs (control group, administration group, TCSA group) were tested in 5 animals / group according to the Ajuvant and Strip method. At each time, the skin condition was observed and judged.
Ocular mucosal irritation test using rabbits Two rabbits (non-eyewash group, eyewash group) were tested at 3 animals / group. After instillation, leave the non-eyewash group as it is, wash the eyewash group with mild saline for about 1 minute, and then observe the condition of cornea, iris and conjunctiva after 1 hour, 24 hours, 48 hours and 72 hours, Judgment was made from the AFNOR category.
The reverse mutation test using bacteria was measured by the preincubation method in the case of no addition of S9mix and the addition of S9mix.
・ Strain used: Salmonella typhimurium TA100, TA98, TA1535, TA1537
・ Strain used: Escherichia coli WP2uvrA
Chromosome aberration test using mammalian cultured cells Three groups (negative control group, test substance group, positive control group) using mammalian cultured cells (CHL / IU cells) are treated for a short time (6 hours treatment) : S9mix non-added and S9mix added) and a continuous treatment method (24 hours and 48 hours treatment).

Figure 2007314553
Figure 2007314553

処方例1
グリチルリチン酸ジカリウム0.20質量部、クエン酸0.10質量部、クエン酸ナトリウム0.30質量部、製造例7で調製したアセロラ種子の抽出物5.00質量部及び1,3-ブチレングリコール5.00質量部を混合して、精製水を加えて全体量を80.0質量部にして50℃で撹拌しながら溶解して抽出物含有水溶液を調製した。
次いで、テトラオレイン酸POE(60)ソルビトール0.90質量部、モノオレイン酸ソルビタン0.10質量部、適量の防腐剤及びエタノール10.00質量部を混合して、50℃で撹拌しながら溶解した。続いて、得られた溶液を、最初に調製した抽出物含有水溶液に少量ずつ加えて、50℃で混和撹拌した。均一に混和したら、更に撹拌しながら50℃から30℃に液温を下げ、30℃になったらところで撹拌を止め、適量の香料及び精製水を加えて全体量を100.00質量部にした。再度、混和撹拌し、均一に混和させて化粧水を調製した。
Formulation Example 1
Purified by mixing 0.20 parts by mass of dipotassium glycyrrhizinate, 0.10 parts by mass of citric acid, 0.30 parts by mass of sodium citrate, 5.00 parts by mass of the acerola seed extract prepared in Production Example 7 and 5.00 parts by mass of 1,3-butylene glycol. Water was added to make a total amount of 80.0 parts by mass, and the mixture was dissolved with stirring at 50 ° C. to prepare an extract-containing aqueous solution.
Next, 0.90 part by mass of POE (60) sorbitol tetraoleate, 0.10 part by mass of sorbitan monooleate, an appropriate amount of preservative and 10.00 parts by mass of ethanol were mixed and dissolved at 50 ° C. with stirring. Subsequently, the obtained solution was added little by little to the initially prepared extract-containing aqueous solution and mixed and stirred at 50 ° C. When uniformly mixed, the liquid temperature was lowered from 50 ° C. to 30 ° C. with further stirring. When 30 ° C. was reached, stirring was stopped, and appropriate amounts of fragrance and purified water were added to make the total amount 100.00 parts by mass. The mixture was stirred again and mixed uniformly to prepare a lotion.

処方例2
スクワレン10.00質量部及び適量の防腐剤を混合し、精製水を加えて全体量を70.00質量部に調整し、80℃に加温して溶液(1)を調製した。また、カルボキシビニルポリマー0.10質量部及びキサンタンガム0.20質量部を適量の精製水に常温で撹拌溶解し溶液(2)を調製した。更に、トリエタノールアミン0.10質量部及び1,3-ブチレングリコール5.00質量部を適量の精製水に常温で撹拌溶解し溶液(3)を調製した。更にまた、ヒアルロン酸ナトリウム2.00質量部及び製造例8で調製したアセロラ種子の抽出物5.00質量部を適量の精製水に常温で撹拌溶解し溶液(4)を調製した。
次いで、適量の精製水に溶液(1)を少量ずつ加え、80℃で混和撹拌し、更に撹拌しながら、溶液(2)を加え、続いて溶液(3)を加えた。均一に混和したら、撹拌しながら溶液を50℃に下げて、50℃になったところで、溶液(4)を加え、更に精製水を加えて全体量を100質量部に調整した。溶液が30℃になるまで再度撹拌し、30℃になったところで撹拌を止め、均一に混和された乳液を調製した。
Formulation Example 2
10.00 parts by mass of squalene and an appropriate amount of an antiseptic were mixed, purified water was added to adjust the total amount to 70.00 parts by mass, and the mixture was heated to 80 ° C. to prepare solution (1). Further, 0.10 parts by mass of carboxyvinyl polymer and 0.20 parts by mass of xanthan gum were stirred and dissolved in an appropriate amount of purified water at room temperature to prepare a solution (2). Furthermore, 0.10 parts by mass of triethanolamine and 5.00 parts by mass of 1,3-butylene glycol were stirred and dissolved in an appropriate amount of purified water at room temperature to prepare a solution (3). Furthermore, 2.00 parts by mass of sodium hyaluronate and 5.00 parts by mass of the acerola seed extract prepared in Production Example 8 were stirred and dissolved in an appropriate amount of purified water at room temperature to prepare solution (4).
Next, the solution (1) was added little by little to an appropriate amount of purified water, mixed and stirred at 80 ° C., the solution (2) was added with further stirring, and then the solution (3) was added. When uniformly mixed, the solution was lowered to 50 ° C. while stirring, and when it reached 50 ° C., the solution (4) was added, and purified water was further added to adjust the total amount to 100 parts by mass. Stirring was continued until the solution reached 30 ° C. When the temperature reached 30 ° C, stirring was stopped and a uniformly mixed emulsion was prepared.

処方例3
POE(20)ソルビタンモノステアレート2.00質量部、POEソルビタンテトラオレエート0.50質量部、モノステアリン酸グリセリル0.50質量部、ステアリン酸7.00質量部、セチルアルコール3.00質量部、パルミチン酸セチル3.00質量部、ホホバ油7.00質量部、パラフィン3.00質量部及び適量の防腐剤を混合して、80℃で撹拌しながら溶解し溶液(1)を調製した。一方、製造例8で調製したアセロラ種子の抽出物5.00質量部、1,3-ブチレングリコール7.00質量部及び精製水62質量部を混合して、80℃で撹拌しながら溶解し溶液(2)を調製した。
次いで、溶液(2)に溶液(1)を少量ずつ加え、乳化し、撹拌しながら冷却して40℃に降温したところで撹拌を止め、均一に混和されたクリームを調製した。
Formulation Example 3
POE (20) sorbitan monostearate 2.00 parts by mass, POE sorbitan tetraoleate 0.50 parts by mass, glyceryl monostearate 0.50 parts by mass, stearic acid 7.00 parts by mass, cetyl alcohol 3.00 parts by mass, cetyl palmitate 3.00 parts by mass, jojoba oil 7.00 parts by mass, 3.00 parts by mass of paraffin and an appropriate amount of an antiseptic were mixed and dissolved at 80 ° C. with stirring to prepare a solution (1). On the other hand, 5.00 parts by mass of the acerola seed extract prepared in Production Example 8, 7.00 parts by mass of 1,3-butylene glycol and 62 parts by mass of purified water were mixed and dissolved with stirring at 80 ° C. to obtain a solution (2). Prepared.
Next, the solution (1) was added little by little to the solution (2), emulsified, cooled with stirring and cooled to 40 ° C., and the stirring was stopped to prepare a uniformly mixed cream.

製造例1で調製したアセロラ種子抽出物をカラムクロマトグラフィーで分画した各画分の抗酸化活性を薄層クロマトグラフィーを用いて測定した結果を示す写真の写しである。It is a copy of the photograph which shows the result of having measured the antioxidant activity of each fraction which fractionated the acerola seed extract prepared in manufacture example 1 by column chromatography using thin layer chromatography. 製造例2〜5で調製したアセロラ種子抽出物の酸化率測定のための吸光度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change of the light absorbency for the oxidation rate measurement of the acerola seed extract prepared by manufacture examples 2-5. 製造例2〜5で調製したアセロラ種子抽出物の14日目の酸化率を示すグラフである。It is a graph which shows the oxidation rate of the 14th day of the acerola seed extract prepared by manufacture examples 2-5. 製造例6で調製したアセロラ種子抽出物の20日目の酸化率を示すグラフである。It is a graph which shows the oxidation rate on the 20th day of the acerola seed extract prepared in Production Example 6. 製造例8で調製したアセロラ種子抽出物の酸化率測定のための吸光度の経時的変化を示すグラフである。It is a graph which shows the time-dependent change of the light absorbency for the oxidation rate measurement of the acerola seed extract prepared in manufacture example 8. 製造例8で調製したアセロラ種子抽出物の7日目の酸化率を示すグラフである。6 is a graph showing the oxidation rate on day 7 of an acerola seed extract prepared in Production Example 8.

Claims (2)

クェルシトリンを含み、且つクェルシトリン含有量が25重量%以下である、アセロラ種子の溶媒抽出物を有効成分として含むアセロラ種子の抽出物を有効成分として含むヒアルロニダーゼ活性阻害剤。 A hyaluronidase activity inhibitor containing an acerola seed extract as an active ingredient, which contains a solvent extract of acerola seeds containing quercitrin and having a quercitrin content of 25% by weight or less. 溶媒が、水、親水性有機溶媒、疎水性有機溶媒又はこれらの組み合わせであることを特徴とする請求項1記載のヒアルロニダーゼ活性阻害剤。 The hyaluronidase activity inhibitor according to claim 1, wherein the solvent is water, a hydrophilic organic solvent, a hydrophobic organic solvent, or a combination thereof.
JP2007183072A 2007-07-12 2007-07-12 Hyaluronidase activity inhibitor Expired - Lifetime JP4264456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183072A JP4264456B2 (en) 2007-07-12 2007-07-12 Hyaluronidase activity inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183072A JP4264456B2 (en) 2007-07-12 2007-07-12 Hyaluronidase activity inhibitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002341191A Division JP4088829B2 (en) 2002-11-25 2002-11-25 Antioxidants, cosmetics and food

Publications (2)

Publication Number Publication Date
JP2007314553A true JP2007314553A (en) 2007-12-06
JP4264456B2 JP4264456B2 (en) 2009-05-20

Family

ID=38848734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183072A Expired - Lifetime JP4264456B2 (en) 2007-07-12 2007-07-12 Hyaluronidase activity inhibitor

Country Status (1)

Country Link
JP (1) JP4264456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070644A (en) * 2014-05-20 2018-05-10 海南美合泰バイオテクノロジー カンパニー リミテッド Composition of natural vitamin c and collagen peptide and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070644A (en) * 2014-05-20 2018-05-10 海南美合泰バイオテクノロジー カンパニー リミテッド Composition of natural vitamin c and collagen peptide and preparation method thereof

Also Published As

Publication number Publication date
JP4264456B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP3635081B2 (en) Whitening agents, antioxidants, collagenase activity inhibitors, hyaluronidase activity inhibitors, anti-aging agents, external preparations for skin, cosmetics and foods
JP4088829B2 (en) Antioxidants, cosmetics and food
JP5701480B2 (en) Antioxidant
KR20150132754A (en) A preparation method of an extract of Saliconia Herbacea L having antioxidant and antimicrobial activity
JP4264456B2 (en) Hyaluronidase activity inhibitor
JP4164383B2 (en) Compound, production method and use thereof
JP2007031287A (en) Cosmetic
JP4701211B2 (en) Collagenase activity inhibitor
JP2001181197A (en) Olive extract
JP2009269842A (en) External preparation for skin
JP2021095343A (en) Active oxygen scavenger, collagen production promoter, hyaluronic acid production promoter, wrinkle improver, pharmaceutical, or internal preparation
JP2009067747A (en) Skin cosmetic and food/drink
KR20150132753A (en) A preparation method of a leaf extract of Morus alba having antioxidant and antimicrobial activity
JP6281761B2 (en) External preparation or internal preparation containing Hidakami Sebaya extract
KR102051581B1 (en) Cosmetic Composition For Skin Improvement Comprising Freekeh Extracts And Fractions As Active Component
JP3597067B2 (en) Antioxidant and composition containing the same
JP5600421B2 (en) Skin preparation
JP2000044483A (en) Lipid peroxide production inhibitor and composition containing the same
JP2000198715A (en) Lipid peroxide formation inhibitor and composition containing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4264456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term