JP2007313484A - Crystallization method and crystallizer - Google Patents

Crystallization method and crystallizer Download PDF

Info

Publication number
JP2007313484A
JP2007313484A JP2006148521A JP2006148521A JP2007313484A JP 2007313484 A JP2007313484 A JP 2007313484A JP 2006148521 A JP2006148521 A JP 2006148521A JP 2006148521 A JP2006148521 A JP 2006148521A JP 2007313484 A JP2007313484 A JP 2007313484A
Authority
JP
Japan
Prior art keywords
crystallization
stirring
seed crystal
solution
paddles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148521A
Other languages
Japanese (ja)
Inventor
Hisao Sato
久雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2006148521A priority Critical patent/JP2007313484A/en
Publication of JP2007313484A publication Critical patent/JP2007313484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallization method suppressing the occurrence of secondary cores, and depositing crystal of a large average particle size using a small amount of seed crystal. <P>SOLUTION: In this crystallization method, a solution containing the seed crystal and a compound is supplied to a crystallization tank 200, the solution is agitated with an agitation device 500 provided in the crystallization tank 200, to deposit crystal of the compound on the surfaces of the seed crystal. The agitation device 500 is provided with an agitation means having two flat agitation paddles, and a torque transmitting means receiving torque from a rotary drive means and transmitting it to the agitation means side by reversely rotating two parallel torque outputting shafts to each other. A link mechanism is composed for causing the two agitation paddles to perform figure-of-8 paddle movement in a state of respective angular speeds of the two rotating torque outputting shafts varying complementally. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶液中に溶解した化合物を結晶化して析出させる晶析方法及び晶析装置に関する。   The present invention relates to a crystallization method and a crystallization apparatus for crystallizing and precipitating a compound dissolved in a solution.

従来、化合物(結晶として取り出したい化合物)の溶解した溶液中に種晶を入れ、種晶に化合物を析出させて結晶を得る晶析が行われている。尚、晶析とは、主に液相より結晶を析出させ、液相から特定成分を分離または濃縮することを言う。
結晶の析出には、冷却晶析、蒸発晶析、反応晶析などの手法がある。工業的に結晶を得る装置として、晶析槽内にプロペラ型攪拌機を設けたDTB型晶析装置やDP型晶析装置が知られている(非特許文献1の508頁の図9.18や図9.19など)。
かかる晶析装置は、ドラフトチューブとプロペラ型攪拌機が晶析槽内に設けられ、プロペラ式攪拌機の駆動によって、ドラフトチューブで仕切られた空間に溶液を循環させ、晶析を行うものである。なお、該非特許文献1の晶析装置は、連続式蒸発晶析装置として記載されているが、回分式(バッチ式)の晶析装置に於いても、プロペラ式攪拌機によって槽内の溶液を循環させるものが公知である。
Conventionally, crystallization is performed in which a seed crystal is placed in a solution in which a compound (compound to be taken out as a crystal) is dissolved, and the compound is precipitated in the seed crystal. Crystallization mainly means that crystals are precipitated from the liquid phase, and specific components are separated or concentrated from the liquid phase.
Crystal precipitation includes methods such as cooling crystallization, evaporation crystallization, and reaction crystallization. As an apparatus for obtaining crystals industrially, a DTB type crystallizer and a DP type crystallizer provided with a propeller type agitator in a crystallizer are known (see Fig. 9.18 on page 508 of Non-Patent Document 1). Figure 9.19).
In this crystallization apparatus, a draft tube and a propeller type stirrer are provided in a crystallization tank, and the solution is circulated in a space partitioned by the draft tube by driving of the propeller type stirrer to perform crystallization. Although the crystallizer of Non-Patent Document 1 is described as a continuous evaporation crystallizer, the solution in the tank is circulated by a propeller-type stirrer even in a batch-type crystallizer. What is to be made is known.

しかしながら、上記従来の溶液循環型の晶析装置では、二次核発生(結晶が崩れて小さな結晶に細分化したり、崩れた種晶に化合物が結晶化して小さな結晶ができること)が生じる割合が高く、このため種晶比率を高くしなければならないという問題がある。尚、種晶比率は、種晶添加率ともいう。
また、平均粒径が比較的大きい結晶を得にくいという問題もある。
However, in the above conventional solution circulation type crystallizer, there is a high rate of occurrence of secondary nucleation (the crystals break down and break up into small crystals, or the broken seed crystals crystallize the compound into small crystals). Therefore, there is a problem that the seed crystal ratio must be increased. The seed crystal ratio is also referred to as a seed crystal addition rate.
There is also a problem that it is difficult to obtain crystals having a relatively large average particle diameter.

化学工学便覧(改訂六版)の第508頁、平成11年2月25日発行、編者:社団法人化学工学会、発行所:丸善株式会社。Page 508 of Chemical Engineering Handbook (6th revised edition), issued February 25, 1999, editor: Japan Society for Chemical Engineering, publisher: Maruzen Co., Ltd.

そこで、本発明は、二次核発生を抑制し、少ない種晶で以て平均粒径の大きい結晶を析出させることができる晶析方法及び晶析装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a crystallization method and a crystallization apparatus capable of suppressing generation of secondary nuclei and depositing a crystal having a large average particle diameter with a small number of seed crystals.

本発明は、種晶と化合物を含む溶液を晶析槽に供給し、晶析槽内に設けられた攪拌装置によって該溶液を攪拌し、種晶の表面に化合物の結晶を析出させる晶析方法において、攪拌装置として、偏平状の2つの攪拌パドルを有する攪拌手段と、回転駆動手段からの回転力を受けて2本の平行な回転出力軸を互いに反対方向へ回転させて攪拌手段側に伝達する回転力伝達手段とを備え、2つの攪拌パドルをそれぞれの厚さ方向へ貫通された各支持軸が互に直交する向きに配されるように互いに一体的に連結し、両回転出力軸の各出力端部にそれぞれ枢支連結された2つの揺動部材の各先端部に攪拌パドルの各支持軸をそれぞれ枢支連結して、両攪拌パドル、両揺動部材および両支持軸により、回転中の2本の回転出力軸の各角速度が補完的に変化する状態で2つの攪拌パドルに8の字形のパドル運動を行わせるリンク機構を構成した攪拌装置を用いる晶析方法を提供する。   The present invention provides a crystallization method in which a solution containing a seed crystal and a compound is supplied to a crystallization tank, the solution is stirred by a stirrer provided in the crystallization tank, and a compound crystal is precipitated on the surface of the seed crystal , The stirring means having two flat stirring paddles as the stirring device and the two parallel rotation output shafts rotated in opposite directions in response to the rotational force from the rotation driving means and transmitted to the stirring means side A rotating force transmitting means for connecting the two agitation paddles to each other so that the support shafts penetrating in the thickness direction are arranged in directions orthogonal to each other, The support shafts of the stirring paddles are pivotally connected to the respective tip portions of the two swinging members pivotally connected to the output ends, respectively, and rotated by both the stirring paddles, the swinging members, and the support shafts. The angular velocities of the two rotating output shafts change in a complementary manner. Using a stirrer which constitute a link mechanism for causing the paddle motion-eight to two mixing paddle in a state that provides a crystallization method.

上記晶析方法は、8の字形のパドル運動を行う2つの攪拌パドルを有する攪拌装置を用いて溶液を流動させる。該攪拌装置は、晶析槽内の溶液の流れをゆっくりとした大きな渦流とすることができるため、結晶や種晶の崩壊を抑制でき、少ない種晶でも平均粒径の大きい結晶を得ることが可能となる。一般に、粒径や形状などが揃った種晶を準備するためには、コストがかかり、このため、多量の種晶を使用すると、製品コストが上がる。この点、本発明によれば、種晶が比較的少量で済むため、安価に所望の結晶を得ることができる。   In the crystallization method, the solution is flowed using a stirring device having two stirring paddles that perform an 8-shaped paddle motion. Since the stirring device can make the flow of the solution in the crystallization tank into a large large vortex, it can suppress the collapse of crystals and seed crystals, and can obtain crystals with a large average particle diameter even with a small number of seed crystals. It becomes possible. In general, it is costly to prepare seed crystals having a uniform particle size, shape, and the like. For this reason, use of a large amount of seed crystals increases the product cost. In this respect, according to the present invention, since a relatively small amount of seed crystal is sufficient, a desired crystal can be obtained at low cost.

また、本発明は、種晶と化合物を含む溶液を入れる晶析槽と、晶析槽内に設けられ且つ晶析槽内の溶液を流動させる攪拌装置と、を有し、攪拌装置が、偏平状の2つの攪拌パドルを有する攪拌手段と、回転駆動手段からの回転力を受けて2本の平行な回転出力軸を互いに反対方向へ回転させて攪拌手段側に伝達する回転力伝達手段とを備え、2つの攪拌パドルをそれぞれの厚さ方向へ貫通された各支持軸が互に直交する向きに配されるように互いに一体的に連結し、両回転出力軸の各出力端部にそれぞれ枢支連結された2つの揺動部材の各先端部に攪拌パドルの各支持軸をそれぞれ枢支連結して、両攪拌パドル、両揺動部材および両支持軸により、回転中の2本の回転出力軸の各角速度が補完的に変化する状態で2つの攪拌パドルに8の字形のパドル運動を行わせるリンク機構を構成している晶析装置を提供する。
本発明の好ましい態様では、上記晶析槽内にドラフトチューブが設けられ、攪拌装置が、ドラフトチューブ内に配置されている上記晶析装置を提供する。
The present invention also includes a crystallization tank for containing a seed crystal and a solution containing a compound, and a stirring device provided in the crystallization tank and allowing the solution in the crystallization tank to flow. A stirring means having two shaped stirring paddles, and a rotational force transmitting means for receiving the rotational force from the rotational driving means and rotating two parallel rotational output shafts in opposite directions to transmit them to the stirring means side. Two agitation paddles are integrally connected to each other so that the support shafts penetrating in the thickness direction are arranged in directions orthogonal to each other, and pivoted to the output ends of the rotary output shafts, respectively. The support shafts of the stirring paddles are pivotally connected to the respective tip portions of the two swing members that are connected to each other, and the two rotating outputs during rotation by both the stirring paddles, both the swing members, and both the support shafts. Figure 8 on two stirring paddles with each shaft angular velocity changing in a complementary manner Providing a crystallizer constituting the link mechanism for causing the paddle movement.
In a preferred embodiment of the present invention, there is provided the crystallization apparatus, wherein a draft tube is provided in the crystallization tank, and a stirring device is disposed in the draft tube.

上記晶析装置は、8の字形のパドル運動を行う2つの攪拌パドルを有する攪拌装置を有する。該攪拌装置は、晶析槽内の溶液をゆっくりとした大きな渦流とすることができるため、結晶や種晶の崩壊を抑制でき、少ない種晶でも平均粒径の大きい結晶を得ることが可能となる。   The crystallizer has a stirrer having two stir paddles that perform an 8-shaped paddle motion. The stirrer can make the solution in the crystallization tank into a slowly large vortex, so that the crystals and seed crystals can be prevented from collapsing, and a crystal having a large average particle diameter can be obtained even with a small number of seed crystals. Become.

本発明に係る晶析方法及び晶析装置は、二次核発生を抑制でき、比較的少量の種晶で、平均粒径の大きい結晶を得ることができる。従って、粒径の大きい結晶を安価に製造することができる。   The crystallization method and the crystallization apparatus according to the present invention can suppress the generation of secondary nuclei, and can obtain a crystal having a large average particle diameter with a relatively small amount of seed crystals. Therefore, a crystal having a large particle size can be produced at a low cost.

以下、本発明について、図面を参照しつつ具体的に説明する。
図1は、晶析装置の概略図を示す。100は、晶析装置を示し、200は、晶析槽を示し、300は、ドラフトチューブを示し、500は、パドル式攪拌装置を示す。本発明の晶析装置100は、回分式或いは連続式の何れにも適用することができる。
晶析槽200は、種晶及び化合物(結晶化させる対象)の溶解した溶液が入れられる槽であり、例えば、胴部がほぼ円筒状の容体にて構成されている。
該晶析槽200には、冷却または加熱手段が具備されている。冷却または加熱手段は、特に限定されないが、例えば、晶析槽200の外面周囲に冷媒または熱媒体を循環させる熱交換器101などが晶析槽200に具備されている。
尚、成長させた結晶を含む溶液を取り出すため、排出路102が晶析槽100の底面部に設けられている。また、溶液を晶析槽200に入れるための導入路103や、種晶を入れるための導入路104が晶析槽200の上方に設けられている。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 shows a schematic diagram of a crystallizer. Reference numeral 100 denotes a crystallization apparatus, 200 denotes a crystallization tank, 300 denotes a draft tube, and 500 denotes a paddle type stirring apparatus. The crystallization apparatus 100 of the present invention can be applied to either a batch type or a continuous type.
The crystallization tank 200 is a tank in which a solution in which a seed crystal and a compound (a target to be crystallized) are dissolved, and has, for example, a body part formed of a substantially cylindrical container.
The crystallization tank 200 is provided with cooling or heating means. The cooling or heating means is not particularly limited. For example, the crystallization tank 200 includes a heat exchanger 101 that circulates a refrigerant or a heat medium around the outer surface of the crystallization tank 200.
In addition, in order to take out the solution containing the grown crystal | crystallization, the discharge path 102 is provided in the bottom face part of the crystallization tank 100. FIG. An introduction path 103 for introducing the solution into the crystallization tank 200 and an introduction path 104 for introducing the seed crystal are provided above the crystallization tank 200.

ドラフトチューブ300は、略円筒状の部材からなり、晶析槽200の略中央部に取り付けられている。尚、晶析槽200の溶液は、該ドラフトチューブ300を液没させるまで入れられる。ドラフトチューブ300は、晶析槽200内の溶液を一方向に循環させる循環流を形成させる仕切壁として機能する。
ドラフトチューブ300は、容易に変形しない材質、例えば、金属、硬質プラスチックなどで形成されている。
The draft tube 300 is made of a substantially cylindrical member, and is attached to a substantially central portion of the crystallization tank 200. The solution in the crystallization tank 200 is added until the draft tube 300 is submerged. The draft tube 300 functions as a partition wall that forms a circulating flow for circulating the solution in the crystallization tank 200 in one direction.
The draft tube 300 is made of a material that does not easily deform, for example, metal, hard plastic, or the like.

ドラフトチューブ300の直径D3は、晶析槽200の大きさに応じて適宜設定される。ドラフトチューブ300の直径D3は、晶析槽200の胴部の直径D2の0.5倍〜0.8倍程度が好ましく、更に、0.5倍〜0.55倍程度がより好ましい。ドラフトチューブ300の直径が余りに大きいと、ドラフトチューブ300の外面と晶析槽200の内面の間の間隔が狭くなって溶液の循環が悪く、一方、余りに小さいと、ドラフトチューブ300内の溶液の循環が悪くなるからである。
また、ドラフトチューブ300の高さ(上下長さ)も同様に晶析槽200の大きさ(液面高さ)に応じて適宜設定される。ドラフトチューブ300の高さH3は、晶析槽200に入れられる溶液の液面高さH2の0.3倍〜0.7倍程度が好ましく、更に、0.45倍〜0.6倍程度がより好ましい。晶析槽200内に於いて溶液を良好に循環させるためである。
上記ドラフトチューブ300の晶析槽200に対する固定位置としては、ドラフトチューブ300の下端から晶析槽200の底面までの高さh3が、上記液面高さH2の0.2倍〜0.4倍程度が好ましく、更に、0.3倍〜0.35倍程度がより好ましい。なぜなら、攪拌翼によって送出される水流が、ドラフトチューブ300の外面と晶析槽200の内面との間に於いて、好ましい上昇流として変換されるからである。
The diameter D3 of the draft tube 300 is appropriately set according to the size of the crystallization tank 200. The diameter D3 of the draft tube 300 is preferably about 0.5 to 0.8 times the diameter D2 of the body portion of the crystallization tank 200, and more preferably about 0.5 to 0.55 times. If the diameter of the draft tube 300 is too large, the distance between the outer surface of the draft tube 300 and the inner surface of the crystallization tank 200 becomes narrow and the circulation of the solution is poor. On the other hand, if the diameter is too small, the circulation of the solution in the draft tube 300 is performed. Because it gets worse.
Similarly, the height (vertical length) of the draft tube 300 is appropriately set according to the size (liquid level height) of the crystallization tank 200. The height H3 of the draft tube 300 is preferably about 0.3 to 0.7 times the liquid surface height H2 of the solution put in the crystallization tank 200, and further about 0.45 to 0.6 times. More preferred. This is because the solution can be circulated well in the crystallization tank 200.
As a fixing position of the draft tube 300 with respect to the crystallization tank 200, the height h3 from the lower end of the draft tube 300 to the bottom surface of the crystallization tank 200 is 0.2 to 0.4 times the liquid level height H2. The degree is preferable, and about 0.3 to 0.35 times is more preferable. This is because the water flow delivered by the stirring blade is converted as a preferable upward flow between the outer surface of the draft tube 300 and the inner surface of the crystallization tank 200.

ドラフトチューブ300内には、パドル式攪拌装置500が取り付けられている。
攪拌装置500は、図1の矢印に示すように、溶液がドラフトチューブ300の下方開口部から晶析槽200の底面部へと流れる下降循環流を作る。
該攪拌装置500の取り付け位置は、チューブ300の略上端から略下端の間であれば特に限定されないが、好ましくは、ドラフトチューブ300の上下方向中央部よりも下方側が好ましい。なぜなら、攪拌翼から送出される水が、ドラフトチューブ300に影響されることなく、強い水流とすることができるからである。
In the draft tube 300, a paddle type stirring device 500 is attached.
The stirrer 500 creates a downward circulating flow in which the solution flows from the lower opening of the draft tube 300 to the bottom of the crystallization tank 200, as indicated by the arrows in FIG.
The mounting position of the stirrer 500 is not particularly limited as long as it is between the substantially upper end and the substantially lower end of the tube 300, but is preferably lower than the vertical center of the draft tube 300. This is because the water sent out from the stirring blade can be a strong water flow without being affected by the draft tube 300.

本発明に用いられるパドル式攪拌装置500は、例えば、特開2005−324109号公報や特許第3370988号公報に記載の攪拌装置を用いることができる。
具体的には、該パドル式攪拌装置500は、図2〜図5に示すように、装置本体1と、攪拌手段2と、回転駆動装置3と、回転力伝達手段4とを備えている。
As the paddle type stirring device 500 used in the present invention, for example, the stirring device described in Japanese Patent Application Laid-Open No. 2005-324109 or Japanese Patent No. 3370988 can be used.
Specifically, as shown in FIGS. 2 to 5, the paddle type stirring device 500 includes a device main body 1, a stirring means 2, a rotation driving device 3, and a rotational force transmitting means 4.

装置本体1は、上部基体11と下部基体12とからなり、この装置本体1には、左右両端部にそれぞれ位置して、上部および下部軸受け13,14がそれぞれ固定されている。
左側の上部および下部軸受け13,14間には、第1の回転出力軸15が回転自在に支承され、また、右側の上部および下部軸受け13,14間には、第1の回転出力軸15に平行な第2の回転出力軸16が回転自在に支承されている。
また、装置本体1の後部には、略中央に位置して回転駆動装置としての1台のモータ3が配置されており、このモータ3の回転軸17aには、駆動源伝達軸18が連結されている。
The apparatus main body 1 includes an upper base body 11 and a lower base body 12, and upper and lower bearings 13 and 14 are respectively fixed to the apparatus main body 1 at the left and right ends.
A first rotation output shaft 15 is rotatably supported between the left upper and lower bearings 13 and 14, and a first rotation output shaft 15 is provided between the right upper and lower bearings 13 and 14. A parallel second rotation output shaft 16 is rotatably supported.
In addition, a single motor 3 serving as a rotational drive device is disposed at the rear portion of the apparatus main body 1 at a substantially central position, and a drive source transmission shaft 18 is coupled to the rotation shaft 17a of the motor 3. ing.

前記攪拌手段2は、第1の回転出力軸15の先端部(出力端部)に固定された第1の軸支部材21と、第2の回転出力軸16の先端部(出力端部)に固定された第2の軸支部材22と、第1の軸支部材21の先端部に軸体23を介して揺動可能に枢支された第1の揺動部材24と、第2の軸支部材22の先端部に軸体25を介して揺動可能に枢支された第2の揺動部材26と、両揺動部材24,26との間に跨がって設けられた攪拌体27とを備えている。
攪拌体27は、厚さ方向が互いに直交する方向に配設された2つの偏平状の攪拌パドル27A,27Bを有し、これら両攪拌パドル27A,27Bは、連結部27Cを介して一体化されている。勿論、両攪拌パドル27A,27Bを別体の連結部材で結合したものであってもよい。
The agitation means 2 is connected to the first shaft support member 21 fixed to the tip end (output end) of the first rotation output shaft 15 and the tip end (output end) of the second rotation output shaft 16. A fixed second shaft support member 22, a first swing member 24 pivotally supported by a tip end portion of the first shaft support member 21 via a shaft body 23, and a second shaft A stirrer provided between the second swinging member 26 pivotally supported at the tip end portion of the support member 22 via the shaft 25 and the swinging members 24 and 26. 27.
The stirrer 27 has two flat stirring paddles 27A and 27B arranged in directions perpendicular to each other in the thickness direction, and these stirring paddles 27A and 27B are integrated via a connecting portion 27C. ing. Of course, both stirring paddles 27A and 27B may be joined by separate connecting members.

前記第1および第2の揺動部材24,26は、それぞれ先端側が二股状部に形成されている。第1の揺動部材24の二股部24a,24bには、第1の攪拌パドル27Aを、その厚さ方向へ貫通した第1の支持軸28が枢支・連結されている。また、第2の揺動部材26の二股部26a,26bには、第2の攪拌パドル27Bを、その厚さ方向へ貫通した第2の支持軸29が枢支・連結されている。この第1の支持軸28と第2の支持軸29は、互いに直交する向きに配されている。   Each of the first and second swinging members 24 and 26 has a bifurcated portion on the tip side. A first support shaft 28 penetrating the first stirring paddle 27A in the thickness direction is pivotally supported and connected to the bifurcated portions 24a and 24b of the first swing member 24. A second support shaft 29 penetrating the second stirring paddle 27B in the thickness direction is pivotally supported and connected to the bifurcated portions 26a and 26b of the second swing member 26. The first support shaft 28 and the second support shaft 29 are arranged in directions orthogonal to each other.

第1および第2の揺動部材24,26、第1および第2の支持軸28,29および前記パドル体27により、図5に示すように、90°ねじれた構造で、2つの攪拌パドル27A,27Bを8の字の軌跡に沿って運動させるリンク機構30が構成されている。リンク機構30は、回転中の2本の回転出力軸15,16の各角速度が補完的に変化する状態で2つの攪拌パドル27A,27Bに8の字形のパドル運動を行わせる。
第1および第2の回転出力軸15,16の各下端部には、それぞれ出力かさ歯車31,32が固定されている。
As shown in FIG. 5, two stirring paddles 27A are twisted by 90 ° by the first and second swinging members 24, 26, the first and second support shafts 28, 29, and the paddle body 27, as shown in FIG. , 27B is moved along an 8-shaped trajectory. The link mechanism 30 causes the two agitation paddles 27A and 27B to perform an 8-shaped paddle motion in a state where the angular velocities of the two rotating output shafts 15 and 16 that are rotating complementarily change.
Output bevel gears 31 and 32 are fixed to the lower ends of the first and second rotary output shafts 15 and 16, respectively.

前記回転力伝達部4は、左右一対の差動歯車出力軸41,42を有する差動歯車機構から構成されており、左側の差動歯車出力軸41の外端部には、前記第1の回転出力軸15側の従動かさ歯車31に噛合する原動かさ歯車43が固定される一方、右側の差動歯車出力軸42の外端部には、前記第2の回転出力軸16側の従動かさ歯車32に噛合する原動かさ歯車44が固定されている。   The rotational force transmission unit 4 includes a differential gear mechanism having a pair of left and right differential gear output shafts 41 and 42, and the first end of the left differential gear output shaft 41 has the first An original drive gear 43 that meshes with the driven gear 31 on the rotation output shaft 15 side is fixed, while the outer end of the right differential gear output shaft 42 is driven on the second rotation output shaft 16 side. An original bevel gear 44 that meshes with the gear 32 is fixed.

前記差動歯車機構は、図4に示すように、前記駆動源伝達軸18に連結された減速小かさ歯車45と、この減速小かさ歯車45に噛合する減速大かさ歯車46と、この大かさ歯車46に一体連結された歯車ボックス47とを備えている。
減速大かさ歯車46は、軸受け48を介して前記左側の差動歯車出力軸41に回転自在に支持されており、また、前記歯車ボックス47は、軸受け49を介して前記右側の差動歯車出力軸42に回転自在に支持されている。
歯車ボックス47には、前記左側の差動歯車出力軸41の内端部に固定された左部かさ歯車50と、前記右側の差動歯車出力軸42の内端部に固定された右部かさ歯車51と、軸受け52を介して回転自在に支承された軸53に固定されて、前記左部および右部かさ歯車50,51にそれぞれ噛合する第1の仲立ち用差動かさ歯車54と、軸受け55を介して回転自在に支承された軸56に固定されて、前記左部および右部かさ歯車50,51にそれぞれ噛合する第2の仲立ち用差動かさ歯車57とを備えている。
As shown in FIG. 4, the differential gear mechanism includes a reduction bevel gear 45 connected to the drive source transmission shaft 18, a reduction bevel gear 46 meshing with the reduction bevel gear 45, and a large bevel. And a gear box 47 integrally connected to the gear 46.
The reduction bevel gear 46 is rotatably supported on the left differential gear output shaft 41 via a bearing 48, and the gear box 47 is supported on the right differential gear output via a bearing 49. The shaft 42 is rotatably supported.
The gear box 47 includes a left bevel gear 50 fixed to the inner end portion of the left differential gear output shaft 41 and a right portion bevel fixed to the inner end portion of the right differential gear output shaft 42. A first differential bevel gear 54 for fixing, which is fixed to a gear 53, a shaft 53 rotatably supported via a bearing 52, and meshes with the left and right bevel gears 50 and 51, respectively, and a bearing 55. And a second differential bevel gear 57 for intermediary engagement with the left and right bevel gears 50 and 51, respectively.

上記構成のパドル式攪拌装置500は、下記のように動作する。
モータ3の回転力は、駆動源伝達軸18を介して前記差動歯車機構4に伝達される。そして、差動歯車機構4における減速小かさ歯車45が図4矢印方向aに回転することにより、減速大かさ歯車46が歯車ボックス47と一体に矢印b方向へ回転する。この歯車ボックス47の回転により、第1および第2の仲立ち用差動かさ歯車54,57も一体に回転するので、これら第1および第2の仲立ち用差動かさ歯車54,57に噛合している左部および右部かさ歯車50,51及び左右の差動歯車出力軸41,42も一体に矢印b方向へ回転し、左右の原動かさ歯車43,44が回転する。
The paddle type stirring apparatus 500 having the above-described configuration operates as follows.
The rotational force of the motor 3 is transmitted to the differential gear mechanism 4 via the drive source transmission shaft 18. Then, when the reduction small bevel gear 45 in the differential gear mechanism 4 rotates in the arrow direction a in FIG. 4, the reduction large bevel gear 46 rotates in the arrow b direction integrally with the gear box 47. The rotation of the gear box 47 also causes the first and second intermediate differential bevel gears 54 and 57 to rotate together, so that the left and the second intermediate differential bevel gears 54 and 57 mesh with each other. The right and left bevel gears 50 and 51 and the left and right differential gear output shafts 41 and 42 also rotate together in the direction of the arrow b, and the left and right original moving gears 43 and 44 rotate.

左部原動かさ歯車43の回転により、従動かさ歯車31を介して左部の回転出力軸15が矢印c方向へ回転駆動される一方、右部原動かさ歯車44の回転により、従動かさ歯車32を介して右部の回転出力力軸16が前記回転出力軸15とは反対方向の矢印d方向へ回転駆動される。   The rotation output shaft 15 on the left side is driven to rotate in the direction of the arrow c through the driven gear 31 by the rotation of the left driving gear 43, while the driven gear 32 is rotated by the rotation of the right driving gear 44. Accordingly, the rotation output force shaft 16 on the right side is rotationally driven in the direction of the arrow d opposite to the rotation output shaft 15.

これら第1および第2の回転出力軸15,16の回転により、前記軸支部材21,22を介して前記リンク機構30に伝達されるので、前記2つの攪拌パドル27A,27Bは、8の字軌跡を描きながらパドル運動を行う。この8の字軌跡の運動の詳細については、特許第3370988号に開示されているので、その説明は省略する。
尚、かかるパドル式攪拌装置の具体例としては、野村マイクロ・サイエンス(株)製の「渦創流機 オクタジット」(商品名)などが挙げられる。
Since the rotation of the first and second rotation output shafts 15 and 16 is transmitted to the link mechanism 30 via the shaft support members 21 and 22, the two agitation paddles 27A and 27B are formed in an 8-character shape. Paddle exercise is performed while drawing the trajectory. Details of the movement of the figure 8 locus are disclosed in Japanese Patent No. 3370988, and the description thereof will be omitted.
A specific example of such a paddle type agitator is “Vortex Generator Octagit” (trade name) manufactured by Nomura Micro Science Co., Ltd.

次に、本発明の晶析方法について説明する。
析出対象の化合物が溶解された溶液を、晶析槽に入れ、ここに種晶を投入する。溶液は、化合物の飽和溶液(所定温度)を用いることが好ましい。好ましくは、この所定温度の飽和溶液を、加熱手段によって昇温させ、未溶解の化合物を完全に溶解させる。
次に、攪拌装置を作動させる。攪拌装置の作動により、溶液の流れは、ドラフトチューブの内側からドラフトチューブの下方開口部に流れ、晶析槽の底面部で外側に流れ、晶析槽の胴部とドラフトチューブの外側の間から上昇し、ドラフトチューブの上方開口部へ流れる循環流となる(図1に示す矢印)。上記パドル式攪拌装置によって形成される晶析槽内の溶液の流れは、ゆっくりとした大きな渦流となり、結晶や種晶の崩壊を抑制できる。
そして、溶液を晶析槽内で循環させつつ、冷却手段によって溶液を冷却することにより、過飽和となった化合物が種晶の表面に結晶化していく。
Next, the crystallization method of the present invention will be described.
A solution in which a compound to be precipitated is dissolved is placed in a crystallization tank, and seed crystals are charged therein. The solution is preferably a saturated solution (predetermined temperature) of the compound. Preferably, the saturated solution at a predetermined temperature is heated by a heating means to completely dissolve the undissolved compound.
Next, the stirring device is activated. Due to the operation of the stirring device, the flow of the solution flows from the inside of the draft tube to the lower opening of the draft tube, flows outward at the bottom of the crystallization tank, and from between the body of the crystallization tank and the outside of the draft tube. It rises and becomes a circulating flow that flows to the upper opening of the draft tube (arrow shown in FIG. 1). The flow of the solution in the crystallization tank formed by the paddle type stirring device becomes a slow and large vortex and can suppress the collapse of crystals and seed crystals.
Then, by circulating the solution in the crystallization tank and cooling the solution by the cooling means, the supersaturated compound is crystallized on the surface of the seed crystal.

パドル式攪拌装置の回転数は、溶液の量などに応じて適宜設定される。例えば、溶液の量が、100リットルの場合には、150〜200rpmが好ましく、また、溶液の量が、400リットルの場合には、70〜100rpmが好ましい。   The rotation speed of the paddle type stirring device is appropriately set according to the amount of the solution and the like. For example, 150 to 200 rpm is preferable when the amount of the solution is 100 liters, and 70 to 100 rpm is preferable when the amount of the solution is 400 liters.

パドル式攪拌装置による攪拌時間は、溶液の量、対象となる化合物の種類、種晶の量などに応じて適宜設定される。冷却速度についても、対象となる化合物の溶解度曲線などに応じて適宜設定される。尚、例えば、化合物としてカリ明礬(KAl(SO・18HO)を析出させる場合には、3時間の間に50℃から20℃まで冷却することが例示される。 The stirring time by the paddle type stirring device is appropriately set according to the amount of the solution, the type of the target compound, the amount of seed crystals, and the like. The cooling rate is also appropriately set according to the solubility curve of the target compound. For example, when potassium alum (KAl (SO 4 ) 2 · 18H 2 O) is precipitated as a compound, cooling from 50 ° C. to 20 ° C. is exemplified for 3 hours.

種晶の比率は、特に限定されないが、一般的には、理想成長曲線を考慮して適宜設計される。
尚、理想成長曲線については、「最近の化学工学 晶析光学・晶析プロセスの進展」(2001年10月30日発行、編者:社団法人化学工学会関東支部、発行所:社団法人化学工学会)の第5頁〜第6頁に記載されている。
本発明では、種晶の比率を少なくしても、比較的大きな粒径の結晶を得ることができる。ここで、種晶比率は、種晶投入量[kg]/理想的晶析量[kg]で求められる。
本発明では、結晶の表面積が同じである場合、投入する種晶の量は、プロペラ式攪拌装置で晶析する方法の、1/4〜1/2倍でも、良好な結果を得ることができる。
尚、種晶の大きさ、形状は、特に限定されず、得ようとする結晶の大きさや形状に応じて適宜設定されるものである。
The ratio of the seed crystal is not particularly limited, but is generally designed appropriately in consideration of an ideal growth curve.
For the ideal growth curve, see “Recent Progress in Chemical Engineering Crystallization Optics and Crystallization Process” (issued October 30, 2001, edited by the Kanto Branch of the Chemical Society of Japan, Publisher: Chemical Society of Japan) ) Pages 5-6.
In the present invention, a crystal having a relatively large particle size can be obtained even if the ratio of seed crystals is reduced. Here, the seed crystal ratio is obtained by seed crystal input amount [kg] / ideal crystallization amount [kg].
In the present invention, when the surface area of the crystal is the same, good results can be obtained even when the amount of seed crystal to be added is 1/4 to 1/2 times that of the method of crystallization with a propeller type stirring device. .
The size and shape of the seed crystal are not particularly limited, and are appropriately set according to the size and shape of the crystal to be obtained.

以下、実施例及び比較例により、本発明を更に詳述する。但し、本発明は、下記実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

(実施例1)
直径40cm×高さ65cmのステンレス製の有底円筒状のタンクと、直径25cm×高さ35cmのプラスチック製の円筒状のドラフトチューブと、2つの攪拌パドル(パドルの両端部の長さ13cm)が直交方向に配されたパドル式攪拌装置(野村マイクロ・サイエンス(株)製、商品名: オクタジット、型式:OT−10S型)とを準備した。図6(a)に示すように、このタンクA内にドラフトチューブBを、タンクAの胴部内面A1から7.5cm、タンクAの底面A2から20cmの間隔となるように、固定した。このドラフトチューブB内に攪拌装置Cを、そのパドルの下端C1がドラフトチューブBの下端B1から15cmの位置となるように、固定した。尚、パドル式攪拌装置Cは、上方から下方側へと溶液を流動させるように設置した。
このタンク内に、カリ明礬の35℃飽和溶液を80リットル入れると共に、カリ明礬の種晶(種晶の平均粒径:75μm。種晶比率:0.007)を入れ、このものを50℃まで昇温した後、パドル式攪拌装置を回転させながら(回転速度:180rpm)、3時間かけて20℃まで徐々に冷却することにより、晶析を行った。
Example 1
A bottomed cylindrical tank made of stainless steel with a diameter of 40 cm and a height of 65 cm, a plastic cylindrical draft tube with a diameter of 25 cm and a height of 35 cm, and two stirring paddles (the length of both ends of the paddle is 13 cm) A paddle type stirring device (manufactured by Nomura Micro Science Co., Ltd., trade name: Octagit, model: OT-10S type) arranged in an orthogonal direction was prepared. As shown in FIG. 6A, the draft tube B was fixed in the tank A so as to have a distance of 7.5 cm from the inner surface A1 of the trunk portion of the tank A and 20 cm from the bottom surface A2 of the tank A. The stirring device C was fixed in the draft tube B so that the lower end C1 of the paddle was 15 cm from the lower end B1 of the draft tube B. The paddle type stirring device C was installed so as to flow the solution from the upper side to the lower side.
In this tank, 80 liters of 35 ° C. saturated solution of potassium alum is added and seeds of potassium alum (average grain size of seed crystal: 75 μm, seed crystal ratio: 0.007) are added up to 50 ° C. After raising the temperature, crystallization was performed by gradually cooling to 20 ° C. over 3 hours while rotating the paddle type stirring device (rotation speed: 180 rpm).

(実施例2)
平均粒径125μmの種晶を用い、種晶比率を0.024としたこと以外は、上記実施例1と同様にして、晶析を行った。
(Example 2)
Crystallization was performed in the same manner as in Example 1 except that seed crystals having an average particle diameter of 125 μm were used and the seed crystal ratio was 0.024.

(実施例3)
平均粒径150μmの種晶を用い、種晶比率を0.035としたこと以外は、上記実施例1と同様にして、晶析を行った。
(Example 3)
Crystallization was performed in the same manner as in Example 1 except that seed crystals having an average particle diameter of 150 μm were used and the seed crystal ratio was set to 0.035.

(比較例1−1)
直径40cm×高さ65cmの有底円筒状のタンクの胴部に、幅5cm×高さ40cmのバッフル板を周方向に4本等間隔で固定したタンクと、3枚のプロペラが1本の回転軸に同一方向に傾けた状態で固定された(プロペラの両端部の長さ20cm)プロペラ式攪拌装置(アズワン株式会社(ASONE)製、商品名:ポータブル攪拌機、型番:P82−V90S−11)とを準備した。図6(b)に示すように、このバッフル板Dの付いたタンクA内の中央部に、プロペラ式攪拌装置Cを、そのプロペラの下端C1がタンクAの底面A2から20cmの間隔となるように、固定した。尚、プロペラ式攪拌装置は、上方から下方側へと溶液を流動させるように設置した。
このタンク内に、カリ明礬の35℃飽和溶液を80リットル入れると共に、カリ明礬の種晶(種晶の平均粒径:75μm。種晶比率:0.007)を入れ、このものを50℃まで昇温した後、プロペラ式攪拌装置を回転させながら(回転速度:420rpm)、3時間かけて20℃まで徐々に冷却することにより、晶析を行った。
(Comparative Example 1-1)
A tank in which a baffle plate with a width of 5 cm and a height of 40 cm is fixed at equal intervals in the circumferential direction on a barrel portion of a cylindrical tank with a diameter of 40 cm and a height of 65 cm, and three propellers rotate one Propeller type stirring device (manufactured by ASONE Co., Ltd., trade name: portable stirrer, model number: P82-V90S-11) fixed in a state tilted in the same direction on the shaft Prepared. As shown in FIG. 6B, the propeller type stirring device C is placed at the center of the tank A with the baffle plate D so that the lower end C1 of the propeller is at a distance of 20 cm from the bottom surface A2 of the tank A. Fixed. The propeller type stirring device was installed so that the solution could flow from the upper side to the lower side.
In this tank, 80 liters of 35 ° C. saturated solution of potassium alum is added and seeds of potassium alum (average grain size of seed crystal: 75 μm, seed crystal ratio: 0.007) are added up to 50 ° C. After the temperature was raised, crystallization was performed by gradually cooling to 20 ° C. over 3 hours while rotating the propeller type stirring device (rotational speed: 420 rpm).

(比較例1−2)
平均粒径125μmの種晶を用い、種晶比率を0.024としたこと以外は、上記比較例1−1と同様にして、晶析を行った。
(Comparative Example 1-2)
Crystallization was performed in the same manner as Comparative Example 1-1 except that seed crystals having an average particle diameter of 125 μm were used and the seed crystal ratio was 0.024.

(比較例1−3)
平均粒径150μmの種晶を用い、種晶比率を0.035としたこと以外は、上記比較例1−1と同様にして、晶析を行った。
(Comparative Example 1-3)
Crystallization was performed in the same manner as in Comparative Example 1-1 except that seed crystals having an average particle diameter of 150 μm were used and the seed crystal ratio was 0.035.

(比較例2−1)
直径40cm×高さ65cmの有底円筒状のタンクと、直径25cm×高さ35cmの円筒状のドラフトチューブと、比較例1−1と同じプロペラ式攪拌装置とを準備した。図6(c)に示すように、このタンクA内にドラフトチューブBを、タンクAの胴部内面A1から7.5cm、タンクAの底面A2から20cmの間隔となるように、固定した。このドラフトチューブB内に攪拌装置Cを、そのプロペラの下端C1がドラフトチューブBの下端B1から20cmの位置となるように、固定した。尚、プロペラ式攪拌装置は、上方から下方側へと溶液を流動させるように設置した。
このタンク内に、カリ明礬の35℃飽和溶液を80リットル入れると共に、カリ明礬の種晶(種晶の平均粒径:75μm。種晶比率:0.007)を入れ、このものを50℃まで昇温した後、プロペラ式攪拌装置を回転させながら(回転速度:300rpm)、3時間かけて20℃まで徐々に冷却することにより、晶析を行った。
(Comparative Example 2-1)
A bottomed cylindrical tank having a diameter of 40 cm and a height of 65 cm, a cylindrical draft tube having a diameter of 25 cm and a height of 35 cm, and the same propeller-type stirring device as Comparative Example 1-1 were prepared. As shown in FIG. 6 (c), the draft tube B was fixed in the tank A so as to have a distance of 7.5 cm from the body inner surface A 1 of the tank A and 20 cm from the bottom surface A 2 of the tank A. The stirring device C was fixed in the draft tube B so that the lower end C1 of the propeller was 20 cm from the lower end B1 of the draft tube B. The propeller type stirring device was installed so that the solution could flow from the upper side to the lower side.
In this tank, 80 liters of 35 ° C. saturated solution of potassium alum is added and seeds of potassium alum (average grain size of seed crystal: 75 μm, seed crystal ratio: 0.007) are added up to 50 ° C. After raising the temperature, crystallization was carried out by gradually cooling to 20 ° C. over 3 hours while rotating the propeller type stirring device (rotational speed: 300 rpm).

(比較例2−2)
平均粒径125μmの種晶を用い、種晶比率を0.024としたこと以外は、上記比較例2−1と同様にして、晶析を行った。
(Comparative Example 2-2)
Crystallization was performed in the same manner as Comparative Example 2-1, except that seed crystals having an average particle diameter of 125 μm were used and the seed crystal ratio was 0.024.

(比較例2−3)
平均粒径150μmの種晶を用い、種晶比率を0.035としたこと以外は、上記比較例2−1と同様にして、晶析を行った。
(Comparative Example 2-3)
Crystallization was performed in the same manner as in Comparative Example 2-1, except that a seed crystal having an average particle diameter of 150 μm was used and the seed crystal ratio was 0.035.

<結果>
上記実施例及び比較例で得られた結晶の評価を図7に示す。図7において、縦軸は、理想成長比と得られた結晶の成長比を示し、横軸は、種晶比率を示す。
種晶の粒径が75μmで且つ種晶比率が0.007である実施例1と、これに対応する比較例1−1及び比較例2−1とを対比すると、実施例1の方が理想成長比に近く、良好な結晶が得られたことが確認された。
種晶の粒径が125μmで且つ種晶比率が0.024である実施例2と、これに対応する比較例1−2及び比較例2−2とを対比しても、同様であり、種晶の粒径が150μmで且つ種晶比率が0.035である実施例3と、これに対応する比較例1−3及び比較例2−3とを対比しても、同様に良好な結晶が得られたことが確認された。
<Result>
The evaluation of the crystals obtained in the above Examples and Comparative Examples is shown in FIG. In FIG. 7, the vertical axis represents the ideal growth ratio and the growth ratio of the obtained crystal, and the horizontal axis represents the seed crystal ratio.
When Example 1 having a seed crystal grain size of 75 μm and a seed crystal ratio of 0.007 is compared with Comparative Examples 1-1 and 2-1 corresponding thereto, Example 1 is more ideal. It was confirmed that good crystals were obtained near the growth ratio.
Even if Example 2 in which the seed crystal grain size is 125 μm and the seed crystal ratio is 0.024 is compared with Comparative Example 1-2 and Comparative Example 2-2 corresponding thereto, the same is true. Even when Example 3 having a crystal grain size of 150 μm and a seed crystal ratio of 0.035 was compared with Comparative Examples 1-3 and 2-3 corresponding thereto, excellent crystals were similarly obtained. It was confirmed that it was obtained.

尚、理想成長比、得られた結晶の成長比及び種晶比率は、それぞれ下記式で求められる。
・理想成長比=Lsp/Ls
・結晶の成長比=Lwp/Ls
・種晶比率=Ws/Wth
ただし、「Lsp」は、理想的結晶粒径[m]を、「Ls」は、種晶平均粒径[m]を、「Lwp」は、得られた結晶の平均粒径[m]を、「Ws」は、種晶投入量[kg]を、「Wth」は、理想的晶析量[kg]を示す。
また、上記式は、下記式から導き出すことができる。
・Ls={Ws/(p×Kv×Ns)}1/3
・Lsp={(Ws+Wth)/(p×Kv×Ns)}1/3
・Lsp/Ls={(1+Cs)/Cs}1/3
・Wth=(カリ明礬の35℃の溶解度−同20℃の溶解度)×溶媒量[kg]
・Lwp={(Ws+Wp)/(p×Kv×Np)}1/3
ただし、「Ws」は、種晶投入量[kg]を、「Wth」は、理想的晶析量[kg]を、「p」は、結晶密度[kg/m]を、「kv」は、体積形状係数を、「Ns」は、結晶個数を、「Cs」は、種晶比率を、それぞれ示す。
The ideal growth ratio, the growth ratio of the obtained crystal, and the seed crystal ratio can be obtained by the following equations, respectively.
-Ideal growth ratio = Lsp / Ls
-Crystal growth ratio = Lwp / Ls
-Seed crystal ratio = Ws / Wth
However, “Lsp” is an ideal crystal grain size [m], “Ls” is a seed crystal average grain size [m], and “Lwp” is an average grain size [m] of the obtained crystal, “Ws” represents the seed crystal input [kg], and “Wth” represents the ideal crystallization amount [kg].
Further, the above formula can be derived from the following formula.
Ls = {Ws / (p × Kv × Ns)} 1/3
Lsp = {(Ws + Wth) / (p × Kv × Ns)} 1/3
Lsp / Ls = {(1 + Cs) / Cs} 1/3
Wth = (35 ° C. solubility of potassium alum -20 ° C. solubility) × solvent amount [kg]
Lwp = {(Ws + Wp) / (p × Kv × Np)} 1/3
However, “Ws” is the seed crystal input [kg], “Wth” is the ideal crystallization amount [kg], “p” is the crystal density [kg / m 3 ], and “kv” is , “Ns” represents the number of crystals, and “Cs” represents the seed crystal ratio.

次に、図8は、実施例1、比較例1−1及び比較例2−1で得られた結晶の粒径分布を、図9は、実施例2、比較例1−2及び比較例2−2で得られた結晶の粒径分布を、図10は、実施例3、比較例1−3及び比較例2−3で得られた結晶の粒径分布を、示す。
各図に示す通り、実施例1〜3は、結晶粒径の大きな結晶が得られたことがわかる。
Next, FIG. 8 shows the particle size distribution of the crystals obtained in Example 1, Comparative Example 1-1, and Comparative Example 2-1, and FIG. 9 shows Example 2, Comparative Example 1-2, and Comparative Example 2. FIG. 10 shows the particle size distribution of the crystals obtained in Example-2, Comparative Example 1-3, and Comparative Example 2-3.
As shown in each figure, it can be seen that in Examples 1 to 3, crystals having a large crystal grain size were obtained.

晶析装置の一実施形態を示す概略図。Schematic which shows one Embodiment of a crystallization apparatus. パドル式攪拌装置を示す正面断面図。Front sectional drawing which shows a paddle type stirring apparatus. 同攪拌装置を示す右側面断面図。The right side sectional view showing the agitator. 回転伝達手段を示す断面図。Sectional drawing which shows a rotation transmission means. リンク機構を説明する参考図。Reference drawing explaining the link mechanism. (a)は、実施例1〜3で用いた装置の概略図、(b)は、比較例1−1〜1−3で用いた装置の概略図、(c)は、比較例2−1〜2−3で用いた装置の概略図。(A) is the schematic of the apparatus used in Examples 1-3, (b) is the schematic of the apparatus used in Comparative Examples 1-1 to 1-3, (c) is Comparative Example 2-1. Schematic of the device used in ~ 2-3. 各実施例及び各比較例で得られた結晶の成長比を示すグラフ図。The graph which shows the growth ratio of the crystal | crystallization obtained by each Example and each comparative example. 実施例及び各比較例で得られた結晶の粒径分布を示すグラフ図。The graph which shows the particle size distribution of the crystal | crystallization obtained by the Example and each comparative example. 同上のグラフ図。The graph figure same as the above. 同上のグラフ図。The graph figure same as the above.

符号の説明Explanation of symbols

100…晶析装置、200…晶析槽、300…ドラフトチューブ、500…パドル式攪拌装置
DESCRIPTION OF SYMBOLS 100 ... Crystallizer, 200 ... Crystallization tank, 300 ... Draft tube, 500 ... Paddle type stirring apparatus

Claims (3)

種晶と化合物を含む溶液を晶析槽に供給し、晶析槽内に設けられた攪拌装置によって該溶液を攪拌し、種晶の表面に化合物の結晶を析出させる晶析方法において、
前記攪拌装置として、偏平状の2つの攪拌パドルを有する攪拌手段と、回転駆動手段からの回転力を受けて2本の平行な回転出力軸を互いに反対方向へ回転させて攪拌手段側に伝達する回転力伝達手段とを備え、2つの攪拌パドルをそれぞれの厚さ方向へ貫通された各支持軸が互に直交する向きに配されるように互いに一体的に連結し、両回転出力軸の各出力端部にそれぞれ枢支連結された2つの揺動部材の各先端部に攪拌パドルの各支持軸をそれぞれ枢支連結して、両攪拌パドル、両揺動部材および両支持軸により、2つの攪拌パドルに8の字形のパドル運動を行わせるリンク機構を構成した攪拌装置を用いることを特徴とする晶析方法。
In a crystallization method in which a solution containing a seed crystal and a compound is supplied to a crystallization tank, the solution is stirred by a stirrer provided in the crystallization tank, and a crystal of the compound is precipitated on the surface of the seed crystal.
As the stirring device, the stirring means having two flat stirring paddles and the rotational force from the rotation driving means are rotated to rotate the two parallel rotation output shafts in opposite directions to transmit to the stirring means side. A rotational force transmission means, and integrally connected to each other so that the respective support shafts penetrating the two stirring paddles in the respective thickness directions are arranged in directions orthogonal to each other; The respective support shafts of the stirring paddles are pivotally connected to the respective tip portions of the two swinging members pivotally connected to the output ends, respectively, and two stirring paddles, both swinging members and both support shafts are used to A crystallization method characterized by using a stirrer having a link mechanism for causing a stirring paddle to perform a paddle motion of an eight-shape.
種晶と化合物を含む溶液を入れる晶析槽と、晶析槽内に設けられ且つ晶析槽内の溶液を流動させる攪拌装置と、を有し、
前記攪拌装置が、偏平状の2つの攪拌パドルを有する攪拌手段と、回転駆動手段からの回転力を受けて2本の平行な回転出力軸を互いに反対方向へ回転させて攪拌手段側に伝達する回転力伝達手段とを備え、2つの攪拌パドルをそれぞれの厚さ方向へ貫通された各支持軸が互に直交する向きに配されるように互いに一体的に連結し、両回転出力軸の各出力端部にそれぞれ枢支連結された2つの揺動部材の各先端部に攪拌パドルの各支持軸をそれぞれ枢支連結して、両攪拌パドル、両揺動部材および両支持軸により、2つの攪拌パドルに8の字形のパドル運動を行わせるリンク機構を構成していることを特徴とする晶析装置。
A crystallization tank in which a solution containing a seed crystal and a compound is placed, and a stirring device provided in the crystallization tank and flowing the solution in the crystallization tank,
The agitator receives the rotational force from the agitating means having two flat agitating paddles and the rotational driving means, and rotates two parallel rotation output shafts in opposite directions to transmit to the agitating means side. A rotational force transmission means, and integrally connected to each other so that the respective support shafts penetrating the two stirring paddles in the respective thickness directions are arranged in directions orthogonal to each other; The respective support shafts of the stirring paddles are pivotally connected to the respective tip portions of the two swinging members pivotally connected to the output ends, respectively, and two stirring paddles, both swinging members and both support shafts are used to A crystallizer characterized in that it comprises a link mechanism that causes a stirring paddle to perform a paddle motion of an eight-shape.
晶析槽内にドラフトチューブが設けられ、前記攪拌装置が、ドラフトチューブ内に配置されている請求項2に記載の晶析装置。
The crystallization apparatus according to claim 2, wherein a draft tube is provided in the crystallization tank, and the stirring device is disposed in the draft tube.
JP2006148521A 2006-05-29 2006-05-29 Crystallization method and crystallizer Pending JP2007313484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148521A JP2007313484A (en) 2006-05-29 2006-05-29 Crystallization method and crystallizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148521A JP2007313484A (en) 2006-05-29 2006-05-29 Crystallization method and crystallizer

Publications (1)

Publication Number Publication Date
JP2007313484A true JP2007313484A (en) 2007-12-06

Family

ID=38847826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148521A Pending JP2007313484A (en) 2006-05-29 2006-05-29 Crystallization method and crystallizer

Country Status (1)

Country Link
JP (1) JP2007313484A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338579A1 (en) 2009-12-11 2011-06-29 JGC Corporation Crystallization method and crystallization apparatus
CN105771303A (en) * 2016-03-18 2016-07-20 孟建红 Chemical two-stage crystalizing tank
CN108686398A (en) * 2018-07-18 2018-10-23 浙江优源科技有限公司 A kind of swinging crystallizer
CN109896536A (en) * 2017-12-11 2019-06-18 江苏苏盐井神股份有限公司 A kind of technique that powder salt turns brilliant production certified products product salt

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338579A1 (en) 2009-12-11 2011-06-29 JGC Corporation Crystallization method and crystallization apparatus
US8425625B2 (en) 2009-12-11 2013-04-23 Jgc Corporation Crystallization method and crystallization apparatus
CN105771303A (en) * 2016-03-18 2016-07-20 孟建红 Chemical two-stage crystalizing tank
CN109896536A (en) * 2017-12-11 2019-06-18 江苏苏盐井神股份有限公司 A kind of technique that powder salt turns brilliant production certified products product salt
CN109896536B (en) * 2017-12-11 2021-09-07 江苏苏盐井神股份有限公司 Process for producing quality salt product by powder salt crystal transformation
CN108686398A (en) * 2018-07-18 2018-10-23 浙江优源科技有限公司 A kind of swinging crystallizer

Similar Documents

Publication Publication Date Title
JP4876208B2 (en) Apparatus and method for crystallization by hydrodynamic cavitation
JP2007313484A (en) Crystallization method and crystallizer
JP4560308B2 (en) Group III nitride crystal manufacturing method
CN213434437U (en) Mixing reaction kettle with scraping device
CN1148247C (en) Crystallization apparatus and crystallization method
KR20180108641A (en) Apparatus for producing particles and method for producing particles
JPH1024230A (en) Agitator
JPH02167817A (en) Apparatus for forming silver halide particle
US10179758B2 (en) Method for enhancing uniformity of crystallized succinic acid and purified succinic acid produced by the same
JP2016028559A (en) Rice agitation device
CN206392051U (en) A kind of floating agent synthesis reaction vessel
CN206404762U (en) A kind of turbulation device for reactor
TW200407191A (en) Tank type scraped surface cooling crystallizer
CN216755445U (en) Cooling crystallization stirring device
CN210874193U (en) Medicine production is with high-efficient crystallization kettle
CN209362487U (en) A kind of reaction kettle for beneficiation reagent production
CN213533228U (en) Cement compounding agitating unit
JP2000072436A (en) Production of coarse ammonium sulfate crystal
CN209438581U (en) Thiocarbohydrazide produces agitating paddle
CN112191131A (en) New material agitated vessel with defoaming function
CN213348658U (en) Heating and stirring equipment for producing metal surface cleaning agent
CN214913522U (en) Anti-scaling device based on high-yield potassium nitrate
CN220111059U (en) Stirring device and reaction kettle comprising same
TW200407192A (en) Magma circulation type crystallizer
CN212758610U (en) Puddler for chemical reaction