JP2007313390A - Phillipsite type zeolite composite membrane and its manufacturing method - Google Patents

Phillipsite type zeolite composite membrane and its manufacturing method Download PDF

Info

Publication number
JP2007313390A
JP2007313390A JP2006143047A JP2006143047A JP2007313390A JP 2007313390 A JP2007313390 A JP 2007313390A JP 2006143047 A JP2006143047 A JP 2006143047A JP 2006143047 A JP2006143047 A JP 2006143047A JP 2007313390 A JP2007313390 A JP 2007313390A
Authority
JP
Japan
Prior art keywords
zeolite
phi
membrane
porous support
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006143047A
Other languages
Japanese (ja)
Other versions
JP5051816B2 (en
Inventor
Hironobu Shirataki
浩伸 白瀧
Masayoshi O
王  正宝
Kensuke Aoki
謙介 青木
Yoshimichi Kiyozumi
嘉道 清住
Yasuhisa Hasegawa
泰久 長谷川
Takako Nagase
多加子 長瀬
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Kasei Corp
Priority to JP2006143047A priority Critical patent/JP5051816B2/en
Publication of JP2007313390A publication Critical patent/JP2007313390A/en
Application granted granted Critical
Publication of JP5051816B2 publication Critical patent/JP5051816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrophilic PHI zeolite membrane having a high acidification-resistance and a high permeation flow flux in a high membrane-manufacturing yield. <P>SOLUTION: In the composite membrane, the zeolite membrane comprising a crystalline layer of phillipsite (PHI) type zeolite is formed on a surface of a hollow cylindrical porous support having a porous layer comprising an organic polymer and a zeolite fine particle. The zeolite membrane is obtained by contacting the hollow cylindrical porous support having the porous layer comprising the organic polymer and the zeolite fine particle with a raw material synthesis liquid containing a constitution substance of the phillipsite (PHI) type zeolite and applying hydrothermal synthesis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ゼオライト膜に関するものであり、更に詳しくは、そのゼオライトがPHIllipsite(フィリップサイト、PHI:英文字3文字で表記)であることを特徴とするフィリップサイト型ゼオライト膜、その製造方法及び用途に関するものである。   The present invention relates to a zeolite membrane. More specifically, the zeolite is PHIlipsite (PHILPITE, PHI: expressed in three letters of English), a manufacturing method and use thereof. It is about.

ゼオライトは、規則的に配列したミクロ孔を有し、一般に、耐熱性が高く、化学的にも安定なものが数多く得られることから、様々な分野で利用されている。このゼオライトは、その骨格構造が、Siの一部がAlに置換したアルミノシリケートであり、分子オーダー(3−10Å程度)の細孔を有し、立体選択的な吸着作用を持つことより、モレキュラーシーブ(分子ふるい)としての機能を有する。数十種類の天然に産出するゼオライトの他に、これまでに、150種類以上のゼオライトが合成されており、固体酸触媒、分離吸着剤、及びイオン交換剤等の分野で幅広く用いられている。   Zeolites have regularly arranged micropores, and are generally used in various fields because many heat resistant and chemically stable materials can be obtained. This zeolite is an aluminosilicate in which a part of Si is substituted with Al, has a pore of molecular order (about 3-10Å), and has a stereoselective adsorption action. It functions as a sieve (molecular sieve). In addition to dozens of naturally occurring zeolites, more than 150 types of zeolites have been synthesized so far and are widely used in fields such as solid acid catalysts, separated adsorbents, and ion exchangers.

このゼオライトは、可塑性に乏しいため、膜化する場合、ほとんどの場合は水熱合成法により、基板上にゼオライト膜を合成している。すなわち、大量の水とアルミニウム源、シリカ源、アルカリ金属、アミン類等の有機結晶化調整剤を適宜目的の生成物のゼオライト組成になるように調合し、オートクレーブ等の圧力容器にそれらを封じ込めて、アルミナやムライト等の多孔質基板やチューブを共存させて加熱することにより、それらの基板上にゼオライト膜を合成している。   Since this zeolite is poor in plasticity, when it is formed into a film, in most cases, the zeolite film is synthesized on a substrate by a hydrothermal synthesis method. That is, a large amount of water and an organic crystallization regulator such as an aluminum source, a silica source, an alkali metal, and amines are appropriately formulated to have a desired product zeolite composition and sealed in a pressure vessel such as an autoclave. A zeolite membrane is synthesized on these substrates by heating in the presence of a porous substrate such as alumina or mullite or a tube.

これまでに、例えば、MFI、MEL、LTA、ANA、CHA、FAU、SOD、MOR、ERI、BEA、LTL、DDRといったゼオライト膜が合成されており、それぞれのゼオライトの性質(例えば、細孔径・親和性)から、分離対象を適宜選択している。また、先行文献には、ゼオライト種結晶を塗布した後、更に、水熱合成することにより欠陥のないゼオライト膜を合成する方法が開示されており(特許文献1)、また、これらの手法で合成されたゼオライト膜は、気体又は液体混合物からの分離・濃縮等に利用されることが開示されている(特許文献2)。   So far, for example, zeolite membranes such as MFI, MEL, LTA, ANA, CHA, FAU, SOD, MOR, ERI, BEA, LTL, DDR have been synthesized, and the properties of each zeolite (for example, pore size / affinity) The separation target is appropriately selected. In addition, the prior literature discloses a method of synthesizing a zeolite membrane having no defect by hydrothermal synthesis after applying a zeolite seed crystal (Patent Document 1). The disclosed zeolite membrane is disclosed to be used for separation / concentration from a gas or liquid mixture (Patent Document 2).

近年、ゼオライト膜の合成技術の向上により、蒸溜法に代る分離法として実用化された例として、A型ゼオライトの親水性を利用したアルコール水溶液からの水選択透過による、アルコールの濃縮方法等がある(特許文献3)。このA型ゼオライトは、耐酸性が、他の高シリカ型ゼオライトと比較して劣るため(酸と接触するとその構造が破壊される)、酸性の混合物と水の分離には使用することが困難であるという課題があった。そこで、T型ゼオライト(特許文献4)、モルデナイトやシリカライト等の高シリカ型ゼオライト膜による分離・濃縮が提案されている。   In recent years, due to improvements in zeolite membrane synthesis technology, an example of practical use as a separation method instead of a distillation method is a method for concentrating alcohol by selective water permeation from an aqueous alcohol solution utilizing the hydrophilicity of A-type zeolite. Yes (Patent Document 3). This type A zeolite is inferior in acid resistance to other high silica type zeolites (its structure is destroyed when it comes into contact with an acid), so it is difficult to use it for separation of an acidic mixture from water. There was a problem that there was. Therefore, separation / concentration using a T-type zeolite (Patent Document 4), a high silica type zeolite membrane such as mordenite and silicalite has been proposed.

支持体上にゼオライト結晶膜を形成する場合、従来の種結晶法では、擦り付けあるいは浸漬等の方法により、支持体表面に種を付与し、その後に水熱合成によりゼオライト結晶膜を製膜する。この際、種の付与の不均一や、付与量の不適切を完全に抑制することは困難であり、更には振動や摩擦により支持体表面に付与された種結晶の脱離も起こりやすい。この結果、水熱合成後の結晶膜に欠陥が生じやすく、分離性能の低下や製膜収率の低下が生じるという問題があった。   In the case of forming a zeolite crystal film on a support, in the conventional seed crystal method, seeds are imparted to the support surface by a method such as rubbing or dipping, and then a zeolite crystal film is formed by hydrothermal synthesis. At this time, it is difficult to completely suppress the nonuniformity of the seed application and the inappropriate application amount, and the seed crystal applied to the surface of the support due to vibration and friction tends to be detached. As a result, there is a problem that defects are likely to occur in the crystal film after hydrothermal synthesis, resulting in a decrease in separation performance and a decrease in film production yield.

特開2003−159518号公報JP 2003-159518 A 特開2003−144871号公報JP 2003-144871 A 特許第3431973号明細書Japanese Patent No. 3431973 特開2000−042387号公報JP 2000-042387 A

このような状況下にあって、本発明者らは、これまでに実用化の報告がされていないPHI(フィリップサイト:酸素8員環構造を有し、3.8×3.8Å:[100], 3.0×4.3Å[010], 3.3×3.2Å[001]の細孔径)膜に着目した。本発明は、従来、合成された例がない、高耐酸性を有する親水性PHIゼオライト膜を高い成膜収率で合成し、高い透過流束を有する膜として提供することを目的とする。本発明によると、PHIゼオライト膜を合成するにあたり、通常の二次成長による製膜のために必要な種結晶の擦り付けや浸漬による基板への担持を行うことなく、1回の水熱処理により、基板上にゼオライト結晶膜を製膜することが可能である。更に、本発明は、気体又は液体混合物からの分離・濃縮と同時に、反応を行える触媒膜として使用できるゼオライト膜を提供することを目的とするものである。   Under such circumstances, the present inventors have developed a PHI (Philipsite: oxygen 8-membered ring structure having no report of practical use until now, 3.8 × 3.8 mm: [100 ], 3.0 × 4.3 mm [010], 3.3 × 3.2 mm [001] pore diameter). An object of the present invention is to synthesize a hydrophilic PHI zeolite membrane having high acid resistance, which has not been synthesized conventionally, with a high deposition yield, and to provide a membrane having a high permeation flux. According to the present invention, in synthesizing a PHI zeolite membrane, the substrate can be obtained by a single hydrothermal treatment without rubbing the seed crystal necessary for film formation by normal secondary growth or supporting the substrate by dipping. A zeolite crystal film can be formed thereon. Furthermore, an object of the present invention is to provide a zeolite membrane that can be used as a catalyst membrane capable of performing a reaction simultaneously with separation / concentration from a gas or liquid mixture.

本発明者らは、高製膜収率及び高実用性のPHI膜を開発すべく鋭意検討を行った結果、有機高分子とゼオライト微粒子よりなる中空円筒状の多孔質支持体を予め形成し、そこに新たに種を付与するという操作を行うことなく、水熱合成を施すことにより、極めて高い収率で、しかも簡便に、結晶完全性の高いPHIゼオライト結晶膜を有する複合膜を得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to develop a high film-forming yield and a highly practical PHI film, the present inventors previously formed a hollow cylindrical porous support composed of an organic polymer and zeolite fine particles, A composite membrane having a PHI zeolite crystal membrane with a very high yield and a high crystal integrity can be obtained easily by performing hydrothermal synthesis without performing a new seeding operation. As a result, the present invention has been completed.

すなわち、本発明は以下のとおりである。
(1)有機高分子とゼオライト微粒子よりなる多孔質層を有する、中空円筒状の多孔質支持体の表面に、フィリップサイト(PHI)型ゼオライトの結晶層よりなるゼオライト膜が形成されていることを特徴とする複合膜。
(2)ゼオライト微粒子がフィリップサイト(PHI)型又はフォージャサイト(FAU)型のゼオライト微粒子であることを特徴とする、上記(1)に記載の複合膜。
(3)有機高分子が、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリイミド、ポリアミド、ポリエステル、ポリジメチルシロキサンよりなる群から選ばれたものであることを特徴とする上記(1)又は(2)に記載の複合膜。
(4)有機高分子とゼオライト微粒子よりなる多孔質層を有する、中空円筒状の多孔質支持体を、フィリップサイト(PHI)型ゼオライトの構成物質を含む原料合成液に接触させ、水熱合成を施すことにより、多孔質支持体の内表面及び外表面の少なくとも一方の表面にフィリップサイト(PHI)型ゼオライト結晶層を形成することを特徴とする複合膜の製造方法。
That is, the present invention is as follows.
(1) A zeolite membrane comprising a crystalline layer of Philipsite (PHI) type zeolite is formed on the surface of a hollow cylindrical porous support having a porous layer comprising organic polymer and zeolite fine particles. Characteristic composite membrane.
(2) The composite membrane according to (1) above, wherein the zeolite fine particles are Philipsite (PHI) type or faujasite (FAU) type zeolite fine particles.
(3) The organic polymer is selected from the group consisting of polyethersulfone, polysulfone, polyethylene, polyimide, polyamide, polyester, and polydimethylsiloxane, as described in (1) or (2) above Composite membrane.
(4) A hollow cylindrical porous support having a porous layer made of organic polymer and zeolite fine particles is brought into contact with a raw material synthesis solution containing a constituent of Philipsite (PHI) type zeolite, and hydrothermal synthesis is performed. A method for producing a composite membrane, comprising: forming a philipsite (PHI) type zeolite crystal layer on at least one of an inner surface and an outer surface of a porous support.

本発明により、次のような効果が奏される。
(1)現在までに報告されていないPHI膜を多孔質支持体上に合成した高耐酸性の特性を有する親水性PHIゼオライト膜を提供できる。
(2)高耐酸性の特性を有する親水性ゼオライト膜の合成方法を提供できる。
(3)本発明のPHIゼオライト膜は、例えば、耐酸性の脱水膜、分離膜、分離と反応を同時に行えるメンブレンリアクター、触媒膜等として利用できる。
(4)本発明のPHIゼオライト膜は、高い水分離性能を有し、酸性条件下での分離膜として好適に使用することができる。
(5)脱水精製プロセス、蒸留プロセスにPHIゼオライト膜による分離手段を併用することにより、熱源や設備の省コスト化が実現できる。
The following effects are exhibited by the present invention.
(1) It is possible to provide a hydrophilic PHI zeolite membrane having a high acid resistance property by synthesizing a PHI membrane that has not been reported so far on a porous support.
(2) A method for synthesizing a hydrophilic zeolite membrane having high acid resistance can be provided.
(3) The PHI zeolite membrane of the present invention can be used as, for example, an acid-resistant dehydration membrane, a separation membrane, a membrane reactor capable of performing separation and reaction simultaneously, a catalyst membrane, and the like.
(4) The PHI zeolite membrane of the present invention has high water separation performance and can be suitably used as a separation membrane under acidic conditions.
(5) By using the separation means by the PHI zeolite membrane together with the dehydration purification process and the distillation process, the cost of the heat source and equipment can be reduced.

次に、本発明について更に詳細に説明する。
本発明の複合膜は、有機高分子とゼオライト微粒子よりなる中空円筒状の多孔質支持体の、外表面及び内表面の少なくとも一方の表面に、PHIゼオライト結晶層が形成された構造である。本発明の多孔質支持体にゼオライト結晶層を製膜するためには、新たに種結晶を擦り付け等により担持させることなく、オートクレーブ中に移し、水熱合成法により多孔質支持体の表面から直接ゼオライト結晶を二次成長させることにより、極めて簡単にPHI結晶層を製膜することができる。
Next, the present invention will be described in more detail.
The composite membrane of the present invention has a structure in which a PHI zeolite crystal layer is formed on at least one of an outer surface and an inner surface of a hollow cylindrical porous support made of an organic polymer and zeolite fine particles. In order to form a zeolite crystal layer on the porous support of the present invention, a seed crystal is newly supported by rubbing or the like, transferred to an autoclave, and directly from the surface of the porous support by a hydrothermal synthesis method. By secondary growth of zeolite crystals, a PHI crystal layer can be formed very easily.

多孔質支持体の原料となるゼオライト微粒子は、予め水熱合成により合成したPHIゼオライト結晶の微粒子が好ましく用いられるが、FAUゼオライト結晶の微粒子あるいはこれらの混合物も原料として好適である。ゼオライト微粒子の寸法は、多孔質支持体内での均一分散性、機械的強度の観点から、0.01μm以上、10μm以下であることが好ましく、より好ましくは0.01μm以上、5μm以下である。
多孔質支持体の原料となる有機高分子は、製膜の際の水熱合成の条件で融解しないものとして、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリイミド、ポリアミド、ポリエステル、ポリジメチルシロキサン等が例示される。
As fine particles of zeolite used as a raw material for the porous support, fine particles of PHI zeolite crystals synthesized in advance by hydrothermal synthesis are preferably used, but fine particles of FAU zeolite crystals or a mixture thereof are also suitable as raw materials. The size of the zeolite fine particles is preferably 0.01 μm or more and 10 μm or less, more preferably 0.01 μm or more and 5 μm or less, from the viewpoint of uniform dispersibility in the porous support and mechanical strength.
The organic polymer used as the raw material for the porous support is exemplified by polyethersulfone, polysulfone, polyethylene, polyimide, polyamide, polyester, polydimethylsiloxane, etc. as those that do not melt under the hydrothermal synthesis conditions during film formation. The

多孔質支持体に占めるゼオライト微粒子の有機高分子に対する重量比は、特に定める必要はないが、多孔質支持体の機械的強度の観点から、90%未満であることが望ましい。
水熱合成時に欠陥のないゼオライト結晶膜を形成するという観点から、ゼオライト結晶膜が形成される多孔質支持体の表面には、水熱合成を施す前の状態で、表面の1%以上の面積を、原料であるゼオライト微粒子が占めていることが望ましい。ゼオライト微粒子が表面を占める面積の割合に上限はない。ゼオライト微粒子は、多孔質支持体の全体に均一に分散していても良いし、表面のみに偏在していても構わない。
The weight ratio of zeolite fine particles to the organic polymer in the porous support is not particularly required, but is preferably less than 90% from the viewpoint of the mechanical strength of the porous support.
From the viewpoint of forming a zeolite crystal film having no defects during hydrothermal synthesis, the surface of the porous support on which the zeolite crystal film is formed has an area of 1% or more of the surface in a state before hydrothermal synthesis. It is desirable that the raw material zeolite fine particles occupy. There is no upper limit to the proportion of the area occupied by the zeolite fine particles. The zeolite fine particles may be uniformly dispersed throughout the porous support, or may be unevenly distributed only on the surface.

本発明の複合膜に用いられる中空円筒状の多孔質支持体の空孔率は、複合膜の透過流束の観点から10%以上、機械的強度の観点から95%以下が好ましい。より好ましくは30%以上90%以下、最も好ましくは40%以上90%以下である。   The porosity of the hollow cylindrical porous support used in the composite membrane of the present invention is preferably 10% or more from the viewpoint of the permeation flux of the composite membrane and 95% or less from the viewpoint of mechanical strength. More preferably, it is 30% or more and 90% or less, and most preferably 40% or more and 90% or less.

多孔質支持体の細孔径は、分離膜として使用する際に、分離する分子の移動が阻害され、透過流束が減少しない大きさが必要である。具体的には、細孔径は、透過流束の観点から、2nm以上、水熱合成時のゼオライト結晶膜を均一にするという観点から、2μm以下であることが好ましい。より好ましくは5nm以上、1μm以下である。   When used as a separation membrane, the pore size of the porous support needs to be large enough to prevent the movement of molecules to be separated and to reduce the permeation flux. Specifically, the pore diameter is preferably 2 nm or more from the viewpoint of permeation flux and 2 μm or less from the viewpoint of making the zeolite crystal membrane uniform during hydrothermal synthesis. More preferably, it is 5 nm or more and 1 μm or less.

本発明に用いられる多孔質支持体は、中空円筒状即ち、中空糸状、管状であり、さらにレンコン状、ハニカム状の形状のものも含まれる。多孔質支持体の大きさは特に限定されないが、例えば中空糸状並びに管状の場合、外径は0.5mmから10cmの範囲が好ましく、壁の厚さは、0.05mmから2cmの範囲が好ましい。   The porous support used in the present invention has a hollow cylindrical shape, that is, a hollow fiber shape and a tubular shape, and also includes a lotus root shape and a honeycomb shape. The size of the porous support is not particularly limited. For example, in the case of a hollow fiber shape and a tubular shape, the outer diameter is preferably in the range of 0.5 mm to 10 cm, and the wall thickness is preferably in the range of 0.05 mm to 2 cm.

本発明に用いられる多孔質支持体の製造方法は特に限定しないが、湿式紡糸による方法が好ましい。米国特許第4222977号明細書、特開昭62−52185号公報には、有機ポリマーと無機微粒子の混合物よりなる中空糸を湿式紡糸によって得る方法が開示されている。本発明に用いる多孔質支持体は、この方法に従い、無機微粒子としてゼオライト微粒子を用いて、湿式紡糸により得られる多孔質の中空円筒状支持体を用いることが望ましい。   The method for producing the porous support used in the present invention is not particularly limited, but a method by wet spinning is preferred. U.S. Pat. No. 4,222,777 and JP-A-62-52185 disclose a method of obtaining a hollow fiber comprising a mixture of an organic polymer and inorganic fine particles by wet spinning. The porous support used in the present invention is desirably a porous hollow cylindrical support obtained by wet spinning using zeolite fine particles as inorganic fine particles according to this method.

湿式紡糸以外の方法による、有機ポリマーとゼオライト微粒子とよりなる多孔質支持体も、本発明における多孔質支持体として用いることができる。例えば特開平11−100283号公報には、射出成形により有機ポリマーとセラミック粒子よりなる多孔体を得る方法が開示されている。この方法に従ってセラミック粒子の代わりにゼオライト微粒子を添加することによって、本発明に用いる多孔質支持体を得ることもできる。   A porous support composed of an organic polymer and zeolite fine particles by a method other than wet spinning can also be used as the porous support in the present invention. For example, Japanese Patent Application Laid-Open No. 11-100302 discloses a method for obtaining a porous body made of an organic polymer and ceramic particles by injection molding. By adding zeolite fine particles instead of ceramic particles according to this method, the porous support used in the present invention can also be obtained.

更にアルミナ、ムライト、ジルコニア等のセラミックス、ステンレス、アルミニウム等の金属、よりなる無機多孔体の表面に、有機高分子とゼオライト微粒子よりなる多孔質層を形成したものも、本発明での多孔質支持体として用いることができる。   Furthermore, the porous support in the present invention is also formed by forming a porous layer made of organic polymer and zeolite fine particles on the surface of an inorganic porous body made of ceramics such as alumina, mullite, zirconia, metals such as stainless steel and aluminum. Can be used as a body.

本発明において、多孔質支持体の原料となるゼオライト微粒子の合成条件としては、PHI型ゼオライトの構成物質を含む原料合成液を用いる。出発原料として、水及び水酸化カリウム(又は水酸化ナトリウム)、アルミナ、コロイダルシリカ等を用いて、0.5−3NaO(又はKO):Al:2−10SiO:20−300HOのモル組成(好ましくは、2−2.5NaO(又はKO):Al:4−5SiO:80−100HO)になるように出発原料を調製する。 In the present invention, as a synthesis condition of the zeolite fine particles used as the raw material of the porous support, a raw material synthesis solution containing a constituent material of PHI type zeolite is used. As a starting material, water and potassium hydroxide (or sodium hydroxide), alumina, by using a colloidal silica, 0.5-3Na 2 O (or K 2 O): Al 2 O 3: 2-10SiO 2: 20 The starting material is prepared so as to have a molar composition of −300H 2 O (preferably 2-2.5Na 2 O (or K 2 O): Al 2 O 3 : 4-5SiO 2 : 80-100H 2 O). .

このアルミナ源としては、市販の活性アルミナやベーマイト、塩化アルミニウム、アルミン酸ナトリウム等適当なアルミナ原料であれば使用可能である。シリカ源としては、コロイダルシリカや水ガラス、市販粉末シリカ、ヒュームドシリカ、アルコキシド等適当なシリカ原料であれば使用可能である。アルカリ源としては、KOH、NaOH等が使用できる。この出発原料を、オートクレーブ等の圧力容器内に移し、80〜200℃で3時間以上、好ましくは100〜120℃では5〜7日間、150〜200℃では4〜12時間、水熱合成することによりPHI結晶よりなるゼオライト微粒子を得ることができる。こうして得られたゼオライト微粒子を本発明の多孔質支持体の原料として用いる。   As the alumina source, any suitable alumina raw material such as commercially available activated alumina, boehmite, aluminum chloride, or sodium aluminate can be used. As the silica source, any suitable silica raw material such as colloidal silica, water glass, commercially available powder silica, fumed silica, and alkoxide can be used. As the alkali source, KOH, NaOH or the like can be used. This starting material is transferred into a pressure vessel such as an autoclave and hydrothermally synthesized at 80 to 200 ° C. for 3 hours or longer, preferably 100 to 120 ° C. for 5 to 7 days, and 150 to 200 ° C. for 4 to 12 hours. Thus, zeolite fine particles composed of PHI crystals can be obtained. The zeolite fine particles thus obtained are used as a raw material for the porous support of the present invention.

本発明においては、水熱合成法により前述の多孔質支持体にゼオライトを製膜する。
本発明の多孔質支持体表面にPHIゼオライト結晶層を形成する条件としては、2−2.5KO(又はNaO):Al:2−4SiO:80−100HOのモル組成に調整した溶液中に多孔質支持体を接触させ、150〜200℃で3−20時間水熱合成処理を行うことで、多孔質支持体表面に存在するゼオライト微粒子を直接二次成長させて膜厚2〜100μm好ましくは膜厚5〜50μm程度の連続膜とすることができる。
In the present invention, a zeolite is formed on the porous support by the hydrothermal synthesis method.
The conditions for forming the PHI zeolite crystal layer on the surface of the porous support of the present invention are as follows: 2-2.5K 2 O (or Na 2 O): Al 2 O 3 : 2-4SiO 2 : 80-100H 2 O A porous support is brought into contact with a solution adjusted to a molar composition, and hydrothermal synthesis treatment is performed at 150 to 200 ° C. for 3 to 20 hours, whereby zeolite fine particles existing on the surface of the porous support are directly secondary grown. Thus, a continuous film having a thickness of 2 to 100 μm, preferably about 5 to 50 μm can be formed.

PHIはその骨格構造から酸素8員環を有し(3.8×3.8Å:[100], 3.0×4.3Å[010], 3.3×3.2Å[001]:Atlas of Zeolite Framework Types, IZA,Ch.Baerlocher, W.M.Meier, D.H.Olson, ELSEVIER編)、Si/Al比=1.5前後であり親水性である。PHI膜は、その3次元細孔構造と比較的小さな細孔径を有することから、低分子ガス、例えば、COとCHの分離に好適に使用することが可能である。また、Si/Al比から親水性膜であることから、水/アルコール分離にも応用できるが、特に耐薬品性がLTAやFAU型ゼオライトに比較して優れていることから、例えば、酢酸濃縮等の分離プロセスへの応用が可能である。 PHI has an oxygen 8-membered ring due to its skeleton structure (3.8 × 3.8Å: [100], 3.0 × 4.3 × [010], 3.3 × 3.2Å [001]: Atlas of Zeolite Framework Types, IZA, Ch. Baerlocher, WMMeier, DHOlson, ELSEVIER), Si / Al ratio = 1.5 and hydrophilic. Since the PHI membrane has a three-dimensional pore structure and a relatively small pore diameter, it can be suitably used for separation of a low molecular gas such as CO 2 and CH 4 . In addition, since it is a hydrophilic membrane from the Si / Al ratio, it can be applied to water / alcohol separation. However, since its chemical resistance is superior to LTA and FAU type zeolite, for example, acetic acid concentration, etc. Can be applied to the separation process.

本発明のフィリップサイト型ゼオライト複合膜は、高性能・高選択な液体及び気体分離膜に応用できる。特に、耐酸性の脱水膜として使用できる。また、分離と反応を同時に行える触媒膜、メンブレンリアクター等として利用できる。   The philipsite-type zeolite composite membrane of the present invention can be applied to high performance and highly selective liquid and gas separation membranes. In particular, it can be used as an acid-resistant dehydration membrane. It can also be used as a catalyst membrane, membrane reactor, etc. that can simultaneously perform separation and reaction.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例等によって何ら限定されるものではない。
[実施例1]
(PHI型ゼオライト微粒子の作製)
イオン交換水99.0gにNaOH(和光純薬(株)製)1.53gを加えて、完全に溶解した。更に、この溶液にKOH(和光純薬(株)製)1.90gを加えて、完全に溶解するまで攪拌した。次に、アルミン酸ナトリウム(関東化学(株)製)12.6gを加えて、完全に溶解するまで攪拌した。この溶液を、CataloidSI−30(触媒化成(株)製、コロイダルシリカ、SiO:30wt%、HO:70wt%)67.0gに徐々に加えて均一なゲル溶液を得た。
このゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、100℃で7日間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。生成物を100℃で24時間乾燥した後、粉末X線回折を行ったところ、PHIの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。このようにして得られたPHI結晶粒子を、乳鉢で1〜2分程度すり潰し、粒径0.5〜3μmのPHI型ゼオライト微粒子を得た。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.
[Example 1]
(Preparation of PHI type zeolite fine particles)
To 99.0 g of ion-exchanged water, 1.53 g of NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added and completely dissolved. Further, 1.90 g of KOH (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this solution and stirred until it was completely dissolved. Next, 12.6 g of sodium aluminate (manufactured by Kanto Chemical Co., Inc.) was added and stirred until completely dissolved. This solution, CataloidSI-30 (Shokubai Kasei Co., Ltd., colloidal silica, SiO 2: 30wt%, H 2 O: 70wt%) was obtained gradually added to a homogeneous gel solution 67.0 g.
The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (inner volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 100 ° C. for 7 days. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7. The product was dried at 100 ° C. for 24 hours, and then powder X-ray diffraction was performed. 2001)). The PHI crystal particles thus obtained were ground in a mortar for about 1 to 2 minutes to obtain PHI type zeolite fine particles having a particle size of 0.5 to 3 μm.

(多孔質支持体の作成)
ポリエーテルスルホン(BASF製、Ultrason E6020P)25gにジメチルアセトアミド250gを加え、均一に溶解するまで攪拌した。ここにテトラエチレングリコール15gを添加し更に均一透明な高分子溶液が得られるまで攪拌した。この高分子溶液に、PHI型ゼオライト微粒子75gを加え、2時間攪拌することにより均一な高分子溶液スラリーを得た。
このスラリーを紡糸原液として、内径0.5mm、外形1.5mmの二重環状ノズルから内部凝固液とともに押出し、エアギャップ2cmを通過させた後、外部凝固液に浸漬し、中空円筒状の多孔体を得た。ここで内部凝固液、外部凝固液ともに水を用いた。上記方法によって紡糸後乾燥することにより、外径1.8mm、内径1.0mmの有機高分子とゼオライト微粒子よりなる中空糸が得られ、これを多孔質支持体として使用した。水銀圧入法によって求められたこの多孔質支持体の平均細孔径は0.4μm、空孔率は47%であった。
(Creation of porous support)
250 g of dimethylacetamide was added to 25 g of polyethersulfone (manufactured by BASF, Ultrason E6020P) and stirred until it was uniformly dissolved. To this, 15 g of tetraethylene glycol was added and further stirred until a uniform transparent polymer solution was obtained. To this polymer solution, 75 g of PHI type zeolite fine particles were added and stirred for 2 hours to obtain a uniform polymer solution slurry.
This slurry was extruded as a spinning dope from a double annular nozzle having an inner diameter of 0.5 mm and an outer diameter of 1.5 mm together with the internal coagulating liquid, passed through an air gap of 2 cm, immersed in the external coagulating liquid, and hollow cylindrical porous body Got. Here, water was used for both the internal coagulating liquid and the external coagulating liquid. By spinning after spinning by the above method, a hollow fiber composed of an organic polymer having an outer diameter of 1.8 mm and an inner diameter of 1.0 mm and zeolite fine particles was obtained, and this was used as a porous support. The average pore diameter of this porous support determined by mercury porosimetry was 0.4 μm, and the porosity was 47%.

(PHI型ゼオライト結晶膜の形成)
得られた多孔質支持体の両端をテフロン(登録商標)テープで閉じた後、SUS製のオートクレーブ(内容積120cc)内にテフロン(登録商標)製の治具に固定して縦方向に設置した。水ガラス(小宗化学、3号SiO 28%,NaO 9〜10%)と塩化アルミニウム6水和物(ナカライ)をアンモニアで共沈、洗浄して調製したSi/Al=2のモル比に調製した含水酸化物をNaOH水溶液に2.5NaO:Al:4SiO:80HOのモル組成となる様に混合して調整した溶液をこのオートクレーブ内に移し、200℃で3時間半温風式オーブン内で静置して水熱処理し、PHIゼオライト複合膜を製膜した。水熱処理後オートクレーブを水冷し、多孔質支持体を取り出してイオン交換水を用いて十分に水洗した後、60℃で3時間乾燥した。
(Formation of PHI type zeolite crystal film)
Both ends of the obtained porous support were closed with Teflon (registered trademark) tape, then fixed in a Teflon (registered trademark) jig in a SUS autoclave (internal volume 120 cc) and installed in the vertical direction. . Si / Al = 2 mole prepared by co-precipitation with water glass (Koso Chemical, No. 3 SiO 2 28%, Na 2 O 9-10%) and aluminum chloride hexahydrate (Nacalai) and washing. A solution prepared by mixing the hydrated oxide prepared in a ratio with a NaOH aqueous solution so as to have a molar composition of 2.5Na 2 O: Al 2 O 3 : 4SiO 2 : 80H 2 O was transferred into this autoclave, and 200 ° C. The mixture was left standing in a warm air oven for 3 hours and hydrothermally treated to form a PHI zeolite composite membrane. After the hydrothermal treatment, the autoclave was cooled with water, the porous support was taken out, sufficiently washed with ion-exchanged water, and dried at 60 ° C. for 3 hours.

このようにして合成したPHIゼオライト複合膜をトールシール(ニラコ(株)製)で片端を封止し、もう一方の側から0.2MPaの圧力で空気を送り込み、複合膜を水の中に浸して、空気によるリーク試験を行ったところ、乾燥後の膜では空気が透過しなかった。また、得られた複合膜表面のX線回折測定(XRD)を行ったところ、PHIの回折パターンが得られたことから、複合膜表面はPHI膜のみで覆われていることが確認された。さらに複合膜表面及び断面の走査型電子顕微鏡(SEM)観察の結果、多孔質支持体の表面に厚さ約8−10μmのゼオライト結晶による緻密膜が確認された。これらの結果から、複合膜の表面にはPHIゼオライトによる緻密膜が形成されていることを確認した。   The PHI zeolite composite membrane synthesized in this way is sealed at one end with a tall seal (manufactured by Niraco Co., Ltd.), air is fed from the other side at a pressure of 0.2 MPa, and the composite membrane is immersed in water. When a leak test using air was performed, air did not permeate through the dried film. Further, when the X-ray diffraction measurement (XRD) of the obtained composite film surface was performed, a PHI diffraction pattern was obtained. Thus, it was confirmed that the composite film surface was covered only with the PHI film. Furthermore, as a result of scanning electron microscope (SEM) observation of the composite membrane surface and cross section, a dense membrane of zeolite crystals having a thickness of about 8-10 μm was confirmed on the surface of the porous support. From these results, it was confirmed that a dense film made of PHI zeolite was formed on the surface of the composite film.

得られたPHI膜の浸透気化法による分離特性を調べた。供給液にはエタノール90wt%の水溶液を用いて、75℃で測定した結果、透過流束(Q)=2.1kg/m・h、分離係数α(HO/EtOH)=2635であった。このことから、本発明で得られたPHI膜は水選択透過膜であることが明らかとなった。 The separation characteristics of the obtained PHI membrane by the pervaporation method were examined. As a result of measuring at 75 ° C. using an aqueous solution of 90 wt% ethanol as the feed solution, the permeation flux (Q) = 2.1 kg / m 2 · h and the separation factor α (H 2 O / EtOH) = 2635. It was. From this, it became clear that the PHI membrane obtained in the present invention is a water permselective membrane.

更に、耐酸性を調べる目的で、PHI種晶、FAU(フォージャサイト、Y型及びX型)を各0.5g採り、0.1Nの塩酸水溶液で85℃・1時間及び10wt%のNaOH水溶液で室温・7日間処理した後、水洗・乾燥した各種ゼオライト試料の粉末X線回折を測定したところ、PHIは、他のゼオライトに比較してピーク強度の低下やピークブロードが観察されなかったことから、耐酸性並びに耐アルカリ性に優れていることがわかった。同様にして、PHI膜が高耐酸性並びに高耐アルカリ性を有していることを確認した。   Furthermore, for the purpose of examining acid resistance, 0.5 g each of PHI seed crystals and FAU (Faujasite, Y-type and X-type) were taken, 85 ° C. for 1 hour and 10 wt% NaOH aqueous solution in 0.1N hydrochloric acid aqueous solution. After measuring the powder X-ray diffraction of various zeolite samples that had been treated at room temperature for 7 days, washed with water, and dried, PHI showed no decrease in peak intensity or peak broadening compared to other zeolites. The acid resistance and alkali resistance were found to be excellent. Similarly, it was confirmed that the PHI film has high acid resistance and high alkali resistance.

[実施例2]
ポリスルホン(Aldrich製、Mn=16000)3gにジメチルアセトアミド25.5gを加え、均一に溶解するまで攪拌した。ここにポリエチレングリコール400(和光純薬製)1.5gを添加し更に均一透明な高分子溶液が得られるまで攪拌した。この高分子溶液に、実施例1で用いたPHI型ゼオライト微粒子6gを加え、2時間攪拌することにより均一な高分子溶液スラリーを得た。
ムライトチューブ(ニッカトー(株)製、PMチューブ、Al=65%、SiO=33%、平均細孔径1.8μm、かさ密度1.70g/cc、気孔率44.7%、外径6mm、内径3mm、長さ80mm)をポリエチレングリコール#2000(関東化学製)の40%水溶液に1分間浸漬した後、60℃のオーブンにて2時間乾燥させた。このムライトチューブの両端開口部をテフロン(登録商標)テープで封止して内側に溶液が接触しないようにした上で、上記のスラリー中に10秒間浸漬し、60℃オーブンにて1分間乾燥させた後、水に3分間浸漬してポリスルホンを凝固させた。次にテフロン(登録商標)テープを取り外し、60℃の水に3時間浸漬してポリエチレングリコールを抽出した後、断面の走査型電子顕微鏡観察により、ムライトチューブの外表面には厚さ約5μmのポリスルホンとゼオライト微粒子よりなる多孔質層が形成されていた。
[Example 2]
25.5 g of dimethylacetamide was added to 3 g of polysulfone (manufactured by Aldrich, Mn = 16000) and stirred until it was uniformly dissolved. Here, 1.5 g of polyethylene glycol 400 (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred until a uniform transparent polymer solution was obtained. To this polymer solution, 6 g of PHI type zeolite fine particles used in Example 1 were added and stirred for 2 hours to obtain a uniform polymer solution slurry.
Mullite tube (manufactured by Nikkato Co., Ltd., PM tube, Al 2 O 3 = 65%, SiO 2 = 33%, average pore diameter 1.8 μm, bulk density 1.70 g / cc, porosity 44.7%, outer diameter 6 mm, an inner diameter of 3 mm, and a length of 80 mm) were immersed in a 40% aqueous solution of polyethylene glycol # 2000 (manufactured by Kanto Chemical) for 1 minute and then dried in an oven at 60 ° C. for 2 hours. Both ends of the mullite tube are sealed with Teflon (registered trademark) tape to prevent the solution from coming into contact with the mullite tube, soaked in the slurry for 10 seconds, and dried in a 60 ° C. oven for 1 minute. After that, the polysulfone was solidified by dipping in water for 3 minutes. Next, after removing the Teflon (registered trademark) tape and immersing it in water at 60 ° C. for 3 hours to extract polyethylene glycol, the outer surface of the mullite tube is observed on the outer surface of the mullite tube by a polysulfone having a thickness of about 5 μm. A porous layer made of zeolite fine particles was formed.

こうして得られた多孔質支持体を実施例1と同じ条件で水熱処理することにより、ポリスルホンとゼオライト微粒子の多孔質層の表面にPHIゼオライト結晶層が製膜されている複合膜を得た。
得られたPHI膜の浸透気化法による分離特性を調べた。供給液には実施例1と同様に、エタノール90wt%の水溶液を用いて、75℃で測定した結果、透過流束(Q)=1.4kg/m・h、分離係数α(HO/EtOH)=1675であった。このことから、本発明で得られたPHI膜は水選択透過膜であることが明らかとなった。
The porous support thus obtained was hydrothermally treated under the same conditions as in Example 1 to obtain a composite membrane in which a PHI zeolite crystal layer was formed on the surface of the porous layer of polysulfone and zeolite fine particles.
The separation characteristics of the obtained PHI membrane by the pervaporation method were examined. As in Example 1, the feed solution was an ethanol 90 wt% aqueous solution and measured at 75 ° C. As a result, the permeation flux (Q) = 1.4 kg / m 2 · h, the separation factor α (H 2 O / EtOH) = 1675. From this, it became clear that the PHI membrane obtained in the present invention is a water permselective membrane.

[実施例3]
イオン交換水70.0gにアルミン酸ナトリウム(関東化学(株)製)8.6gを加えて完全に溶解するまで攪拌した。次にイオン交換水20.0gにNaOH(和光純薬(株)製)6gを加えて完全に溶解し、前述のアルミン酸ナトリウム水溶液に添加して均一になるまで攪拌した。次にこの溶液に、Cataloid SI−30 40.0gを徐々に加えて均一なゲル溶液を得た。
このゲル溶液を室温にて約30分攪拌した後、テフロン(登録商標)内筒つきのオートクレーブ(内容積200mL)に移し、150℃で6時間水熱処理した。水熱処理後、オートクレーブ中の生成物を濾過し、イオン交換水にてpHが7程度になるまで洗浄した。
生成物を60℃で24時間乾燥した後、粉末X線回折を行ったところ、FAUの回折パターン(Collection of Simulated XRD Powder Patterns for Zeolites, M.M.J.Treacy and J.B.Higgins, IZA編集、ISBN 044507027, ELSEVIER p230,231(2001))と同一であった。このようにして得られたFAU結晶粒子を、乳鉢で1〜2分程度すり潰し、粒径0.5〜3μmのFAU型ゼオライト微粒子を得た。
得られたFAU型ゼオライト微粒子を用いて、実施例1と同様に多孔質支持体を作成した後、さらに実施例1と同様に水熱合成を施すことにより、PHIゼオライト複合膜を得た。
得られたPHI膜の浸透気化法による分離特性を調べた。供給液には実施例1と同様に、エタノール90wt%の水溶液を用いて、75℃で測定した結果、透過流束(Q)=1.1kg/m・h、分離係数α(HO/EtOH)=1113であった。
[Example 3]
8.6 g of sodium aluminate (manufactured by Kanto Chemical Co., Inc.) was added to 70.0 g of ion-exchanged water and stirred until it was completely dissolved. Next, 6 g of NaOH (manufactured by Wako Pure Chemical Industries, Ltd.) 6 g was added to 20.0 g of ion-exchanged water and completely dissolved, added to the aqueous sodium aluminate solution and stirred until uniform. Next, 40.0 g of Cataloid SI-30 was gradually added to this solution to obtain a uniform gel solution.
The gel solution was stirred at room temperature for about 30 minutes, then transferred to an autoclave (internal volume 200 mL) with a Teflon (registered trademark) inner cylinder, and hydrothermally treated at 150 ° C. for 6 hours. After the hydrothermal treatment, the product in the autoclave was filtered and washed with ion-exchanged water until the pH reached about 7.
The product was dried at 60 ° C. for 24 hours, and then powder X-ray diffraction was performed. 2001)). The FAU crystal particles thus obtained were ground in a mortar for about 1 to 2 minutes to obtain FAU type zeolite fine particles having a particle size of 0.5 to 3 μm.
A porous support was prepared using the obtained FAU type zeolite fine particles in the same manner as in Example 1, and then hydrothermal synthesis was performed in the same manner as in Example 1 to obtain a PHI zeolite composite membrane.
The separation characteristics of the obtained PHI membrane by the pervaporation method were examined. As in Example 1, an aqueous solution of 90 wt% ethanol was used as the supply liquid, and the measurement was performed at 75 ° C. As a result, the permeation flux (Q) = 1.1 kg / m 2 · h, the separation factor α (H 2 O / EtOH) = 1113.

[実施例4]
実施例1で得られたPHI複合膜の耐酸性を調べる目的で、酸性溶液からの浸透気化法による分離特性を調べた。供給液にはエタノール90重量部に0.1Nの塩酸水溶液10重量部を混合して得られた水溶液を用いた。75℃で浸透気化による分離特性を測定した結果、測定開始から1時間後の透過流束(Q)=2.2kg/m・h、分離係数α(HO/EtOH)=2497であり、実施例1で得られた結果と殆んど同じであった。この結果より、PHI複合膜は酸性水溶液からの分離特性に優れていることが示された。
[Example 4]
For the purpose of examining the acid resistance of the PHI composite membrane obtained in Example 1, the separation characteristics by the pervaporation method from an acidic solution were examined. An aqueous solution obtained by mixing 90 parts by weight of ethanol with 10 parts by weight of a 0.1N hydrochloric acid aqueous solution was used as the supply liquid. As a result of measuring the separation characteristics by osmotic vaporization at 75 ° C., the permeation flux (Q) after one hour from the start of measurement = 2.2 kg / m 2 · h and the separation factor α (H 2 O / EtOH) = 2497. The results obtained in Example 1 were almost the same. From this result, it was shown that the PHI composite membrane is excellent in separation characteristics from acidic aqueous solution.

[比較例1]
実施例1において多孔質支持体の作成時にPHI型ゼオライト微粒子を加える代わりに、A型ゼオライト微粒子(水澤化学社製シルトン−B、粒径0.8μm)を用いて多孔質支持体を作成した。
得られた多孔質支持体の両端をテフロン(登録商標)テープで閉じた後、SUS製のオートクレーブ(内容積120cc)内にテフロン(登録商標)製の治具に固定して縦方向に設置し、水熱合製法により多孔質支持体表面に、A型ゼオライト結晶からなる層を形成させた。合成液は水、ケイ酸ナトリウム、アルミン酸ナトリウムおよび水酸化ナトリウムを、NaO:SiO:Al:HO=2:2:1:125のモル比に配合したスラリーを用い、このスラリー入れたテフロン(登録商標)製の容器に、上記の多孔質支持体を浸漬して、この容器をオートクレーブに入れ、100℃で3時間15分、水熱合成反応を行った。
[Comparative Example 1]
In Example 1, instead of adding PHI-type zeolite fine particles during the production of the porous support, a porous support was prepared using A-type zeolite fine particles (Silton-B manufactured by Mizusawa Chemical Co., Ltd., particle size 0.8 μm).
After closing both ends of the obtained porous support with Teflon (registered trademark) tape, it is fixed in a Teflon (registered trademark) jig in a SUS autoclave (internal volume 120 cc) and installed in the vertical direction. Then, a layer made of A-type zeolite crystals was formed on the surface of the porous support by a hydrothermal synthesis method. The synthesis solution used was a slurry in which water, sodium silicate, sodium aluminate and sodium hydroxide were mixed in a molar ratio of Na 2 O: SiO 2 : Al 2 O 3 : H 2 O = 2: 2: 1: 125. The porous support was immersed in a Teflon (registered trademark) container containing the slurry, and the container was placed in an autoclave and subjected to a hydrothermal synthesis reaction at 100 ° C. for 3 hours and 15 minutes.

反応後、多孔質支持体を取り出し、十分水洗した後、60℃で3時間乾燥させた。乾燥後の多孔質支持体の断面を電子顕微鏡により観察したところ、合成液に接触した側の表面に厚さ約5μmの結晶層が生成しており、これを広角X線回折によって解析した結果、A型ゼオライト結晶による緻密な層が形成されていることが確認され、A型ゼオライトによる複合膜が得られた。
A型ゼオライト複合膜の耐酸性を調べるため、実施例3と同じ酸性水溶液を用いて、75℃で浸透気化による分離特性を測定した。測定開始直後の透過流束(Q)=5.2kg/m・h、分離係数α(HO/EtOH)=7850であったが、測定開始から1時間後の透過流束(Q)=7.2kg/m・hであり、分離係数α(HO/EtOH)=24しかなかった。この結果より、A型ゼオライト膜は耐酸性が低く、酸性水溶液からの分離特性が得られないのに対し、PHI複合膜は高い耐酸性が得られることが示された。
After the reaction, the porous support was taken out, sufficiently washed with water, and dried at 60 ° C. for 3 hours. When the cross section of the porous support after drying was observed with an electron microscope, a crystal layer having a thickness of about 5 μm was formed on the surface in contact with the synthesis solution. As a result of analyzing this by wide-angle X-ray diffraction, It was confirmed that a dense layer of A-type zeolite crystals was formed, and a composite membrane of A-type zeolite was obtained.
In order to investigate the acid resistance of the A-type zeolite composite membrane, the same acidic aqueous solution as in Example 3 was used to measure the separation characteristics by pervaporation at 75 ° C. The permeation flux (Q) immediately after the start of measurement was 5.2 kg / m 2 · h and the separation factor α (H 2 O / EtOH) was 7850, but the permeation flux (Q) after 1 hour from the start of the measurement. = 7.2 kg / m 2 · h, and the separation factor α (H 2 O / EtOH) was only 24. From these results, it was shown that the A-type zeolite membrane has low acid resistance, and separation characteristics from an acidic aqueous solution cannot be obtained, whereas the PHI composite membrane has high acid resistance.

以上詳述したように、本発明は、フィリップサイト(PHI)型ゼオライト膜及びその製造方法に係るものであり、本発明により、現在までに報告されていないPHI膜を多孔質支持体に合成できることが明らかになった。本発明によれば、耐酸性、耐薬品性に優れた親水性ゼオライト膜が合成可能であり、工業的な液体及びガス分離プロセス等に採用され得るゼオライト膜を、簡便に、かつ短期間で製造することが可能である。また、石油化学工業において、分離と触媒作用を持ち合わせたメンブレンリアクターとしても応用可能である。   As described above in detail, the present invention relates to a Philipsite (PHI) type zeolite membrane and a method for producing the same. According to the present invention, a PHI membrane that has not been reported so far can be synthesized into a porous support. Became clear. According to the present invention, a hydrophilic zeolite membrane excellent in acid resistance and chemical resistance can be synthesized, and a zeolite membrane that can be employed in industrial liquid and gas separation processes, etc. is produced simply and in a short period of time. Is possible. In the petrochemical industry, it can also be applied as a membrane reactor having both separation and catalytic action.

Claims (4)

有機高分子とゼオライト微粒子よりなる多孔質層を有する、中空円筒状の多孔質支持体の表面に、フィリップサイト(PHI)型ゼオライトの結晶層よりなるゼオライト膜が形成されていることを特徴とする複合膜。   A zeolite membrane comprising a crystalline layer of a philipsite (PHI) type zeolite is formed on the surface of a hollow cylindrical porous support having a porous layer comprising an organic polymer and zeolite fine particles. Composite membrane. ゼオライト微粒子がフィリップサイト(PHI)型又はフォージャサイト(FAU)型のゼオライト微粒子であることを特徴とする請求項1記載の複合膜。   The composite membrane according to claim 1, wherein the zeolite fine particles are Philipsite (PHI) type or faujasite (FAU) type zeolite fine particles. 有機高分子が、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリイミド、ポリアミド、ポリエステル及びポリジメチルシロキサンよりなる群から選ばれたものであることを特徴とする請求項1又は2記載の複合膜。   The composite film according to claim 1 or 2, wherein the organic polymer is selected from the group consisting of polyethersulfone, polysulfone, polyethylene, polyimide, polyamide, polyester, and polydimethylsiloxane. 有機高分子とゼオライト微粒子よりなる多孔質層を有する、中空円筒状の多孔質支持体を、フィリップサイト(PHI)型ゼオライトの構成物質を含む原料合成液に接触させ、水熱合成を施すことにより、多孔質支持体の内表面及び外表面の少なくとも一方の表面にフィリップサイト(PHI)型ゼオライト結晶層を形成することを特徴とする複合膜の製造方法。 By bringing a hollow cylindrical porous support having a porous layer made of organic polymer and zeolite fine particles into contact with a raw material synthesis solution containing a constituent material of Philipsite (PHI) type zeolite, and performing hydrothermal synthesis A method for producing a composite membrane, comprising forming a philipsite (PHI) type zeolite crystal layer on at least one of an inner surface and an outer surface of a porous support.
JP2006143047A 2006-05-23 2006-05-23 Philipsite type zeolite composite membrane and method for producing the same Expired - Fee Related JP5051816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143047A JP5051816B2 (en) 2006-05-23 2006-05-23 Philipsite type zeolite composite membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143047A JP5051816B2 (en) 2006-05-23 2006-05-23 Philipsite type zeolite composite membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007313390A true JP2007313390A (en) 2007-12-06
JP5051816B2 JP5051816B2 (en) 2012-10-17

Family

ID=38847736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143047A Expired - Fee Related JP5051816B2 (en) 2006-05-23 2006-05-23 Philipsite type zeolite composite membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP5051816B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045462A (en) * 2010-08-25 2012-03-08 Mitsubishi Chemicals Corp Voc recovery apparatus
JP2012066241A (en) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp Porous support-zeolite membrane complex and separation method using the same
CN105413483A (en) * 2009-02-27 2016-03-23 三菱化学株式会社 Inorganic porous support-zeolite membrane complex, method for producing same and separation method using same
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
JP2019018124A (en) * 2017-07-12 2019-02-07 旭化成株式会社 Separation membrane
JP2020032419A (en) * 2014-04-18 2020-03-05 三菱ケミカル株式会社 Porous support-zeolite film complex, and method for producing porous support-zeolite film complex
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
CN113877436A (en) * 2021-08-31 2022-01-04 北京理工大学 Preparation method of silicone rubber modified honeycomb MOF nanosheet membrane
WO2023085371A1 (en) * 2021-11-12 2023-05-19 日本碍子株式会社 Zeolite membrane composite body, membrane reaction device, and method for producing zeolite membrane composite body
WO2023153135A1 (en) * 2022-02-08 2023-08-17 日本碍子株式会社 Membrane reactor and method for operating membrane reactor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320896A (en) * 2005-04-22 2006-11-30 Asahi Kasei Chemicals Corp Compound membrane, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320896A (en) * 2005-04-22 2006-11-30 Asahi Kasei Chemicals Corp Compound membrane, and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
CN105413483B (en) * 2009-02-27 2018-05-22 三菱化学株式会社 Inorganic porous support-zeolite membrane complex, its manufacturing method and use its separation method
CN105413483A (en) * 2009-02-27 2016-03-23 三菱化学株式会社 Inorganic porous support-zeolite membrane complex, method for producing same and separation method using same
JP2012045462A (en) * 2010-08-25 2012-03-08 Mitsubishi Chemicals Corp Voc recovery apparatus
JP2017221945A (en) * 2010-08-26 2017-12-21 三菱ケミカル株式会社 Porous support-zeolite membrane composite body and separation method using the same
JP2016168595A (en) * 2010-08-26 2016-09-23 三菱化学株式会社 Porous support-zeolite membrane complex and separation method using the same
JP2012066241A (en) * 2010-08-26 2012-04-05 Mitsubishi Chemicals Corp Porous support-zeolite membrane complex and separation method using the same
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
JP2020032419A (en) * 2014-04-18 2020-03-05 三菱ケミカル株式会社 Porous support-zeolite film complex, and method for producing porous support-zeolite film complex
JP7107296B2 (en) 2014-04-18 2022-07-27 三菱ケミカル株式会社 Porous support-zeolite membrane composite and method for producing porous support-zeolite membrane composite
JP2019018124A (en) * 2017-07-12 2019-02-07 旭化成株式会社 Separation membrane
CN113877436A (en) * 2021-08-31 2022-01-04 北京理工大学 Preparation method of silicone rubber modified honeycomb MOF nanosheet membrane
CN113877436B (en) * 2021-08-31 2023-07-04 北京理工大学 Preparation method of silicon rubber modified honeycomb MOF nanosheet film
WO2023085371A1 (en) * 2021-11-12 2023-05-19 日本碍子株式会社 Zeolite membrane composite body, membrane reaction device, and method for producing zeolite membrane composite body
WO2023153135A1 (en) * 2022-02-08 2023-08-17 日本碍子株式会社 Membrane reactor and method for operating membrane reactor

Also Published As

Publication number Publication date
JP5051816B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5051816B2 (en) Philipsite type zeolite composite membrane and method for producing the same
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
US10639594B2 (en) Zeolite membrane, production method therefor, and separation method using same
JP7060042B2 (en) Method for Producing Porous Support-Zeolite Membrane Complex and Porous Support-Zeolite Membrane Complex
Wenten et al. LTA zeolite membranes: current progress and challenges in pervaporation
JP6523516B2 (en) Method of regenerating zeolite membrane
JP5569901B2 (en) Zeolite membrane, separation membrane module and manufacturing method thereof
JP5324067B2 (en) Method for producing zeolite membrane
JP4204273B2 (en) DDR type zeolite membrane composite and method for producing the same
EP1995215A1 (en) Process for producing ddr type zeolite membrane
US10933382B2 (en) Supported zeolite membranes
JP5599777B2 (en) Method for producing DDR type zeolite membrane
JP6171151B2 (en) Zeolite membrane and method for producing the same
JP2003144871A (en) Mordenite type zeolite film composite and method for manufacturing the same and thickening method using the composite
EP2172426A1 (en) Template-free clathrasils and clathrasil membranes
JP4204270B2 (en) Method for producing DDR type zeolite membrane
US10953364B2 (en) Method for separating carbon dioxide and apparatus for separating carbon dioxide
US8263179B2 (en) Process for producing zeolite separation membrane
JP4759724B2 (en) Zeolite membrane and method for producing the same
JP5481075B2 (en) Method for producing zeolite membrane
JP4728122B2 (en) Gas separator and method for producing the same
JP4820631B2 (en) Philipsite type zeolite membrane and method for producing the same
JP7321260B2 (en) Zeolite membrane composite, manufacturing method thereof, and fluid separation method
JP4599144B2 (en) MARLINOITE TYPE ZEOLITE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP5366189B2 (en) Method for producing zeolite material comprising zeolite or zeolite membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120720

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees