JP2007312738A - Method for predicting growth of microorganism in food and drink - Google Patents

Method for predicting growth of microorganism in food and drink Download PDF

Info

Publication number
JP2007312738A
JP2007312738A JP2006148674A JP2006148674A JP2007312738A JP 2007312738 A JP2007312738 A JP 2007312738A JP 2006148674 A JP2006148674 A JP 2006148674A JP 2006148674 A JP2006148674 A JP 2006148674A JP 2007312738 A JP2007312738 A JP 2007312738A
Authority
JP
Japan
Prior art keywords
microorganisms
growth
food
drink
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148674A
Other languages
Japanese (ja)
Inventor
Katsunori Tsuchiya
勝規 土屋
Hirotaka Imai
廣敬 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikkoman Corp
Original Assignee
Kikkoman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikkoman Corp filed Critical Kikkoman Corp
Priority to JP2006148674A priority Critical patent/JP2007312738A/en
Publication of JP2007312738A publication Critical patent/JP2007312738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a system for constructing a prediction model for the growth of microorganisms and predicting the growth of the microorganisms in a soy sauce-containing food and drink on the basis of the model according to a method for judging and analyzing using qualitative data related to component analytical values in the food and drink and the presence or absence of the growth of the microorganisms in the food and drink. <P>SOLUTION: The method for predicting the growth of the microorganisms in the food and drink is provided. The method for predicting the growth of the microorganisms from the component analytical values of the food and drink on the basis of the prediction model is carried out as follows. The component analytical values are obtained as quantitative data for the food and drink and the presence or absence of the growth of the microorganisms is further obtained as the qualitative data of either of the presence of the proliferation of the microorganisms and the absence of the proliferation of the microorganisms. Both the obtained data are analyzed according to the method for judging and analyzing and the prediction model for predicting the growth of the microorganisms from the analytical values of the food and drink is constructed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、飲食品中における微生物の生育性判別法に係わるものである。   The present invention relates to a method for discriminating the growth of microorganisms in food and drink.

従来より、飲食品等の成分分析から、飲食品中の微生物生育の危険を予測することが行われていた。   Conventionally, the risk of microbial growth in food and drink has been predicted from component analysis of food and drink.

従来技術は、pHや食塩濃度、水分活性などといった微生物の生育性への影響が大きい1因子の中での生育性を調べて生育限界を求めて生育性予測に利用したり、また生育性への影響が大きい2因子の組み合わせを二次元グラフ化して微生物の生育性をマッピングし、可視化して生育性予測に利用することが多い(非特許文献1等を参照)。しかし、実際の食品中における危害微生物の生育性には、ハードル理論に代表されるように多様な因子が関与しているため、上述のような従来技術では精度の高い予測を行うには多くの因子が不足している。微生物の増殖モデルとしてロジスティック曲線やGompertz曲線に代表されるような数学モデルを利用した方法があるが、これらはモデル増殖速度に基づいた予測方法であるため、ある一定条件下で最初に菌数が分かれば一定時間後の菌数を予測できるというものである。よって、食品の分析値が異なっている場合にも拡張したい場合、予測を行いたい分析値における微生物の増殖速度を調べておく必要があるため、試験が未実施である分析値の食品中における微生物の増殖予測は難しい(非特許文献2、非特許文献3を参照)。信太ら(非特許文献4を参照)は、食塩分、糖分、醤油由来の窒素量、pHなど分析値が異なる「つゆ」を用い、微生物の増殖を重回帰分析により予測するモデルを提案しているが、これらのモデルを作成するためにもやはり増殖速度を調べておく必要があることから菌数を経時的に測定して増殖速度を算出しなければならず、試験数が膨大となる。Ratkowskyら(非特許文献5を参照)は、水分活性やpH、温度が異なる条件下における微生物の増殖を予測するための数学モデルを提案している。このモデル作成には、各成分分析値ごとに生育限界(生育性の有無)の境界線を事前に細かく調べておく必要があるが、この境界線の精度が数式モデルの予測精度に影響を与えるため、多成分になればなるほど必然的に試験数が多くなる。また、この数学モデルは理論に基づいて導出されたものではないため、該食品に対して常に適用できる確証はなく、事前に確認する必要がある。また、分析値の種類が増加すると数学モデルが複雑になること、拡張された数学モデルが該食品に適用できるか確認する必要があることなど、長い検討期間や膨大な実験数を必要とするため、モデル作成は非常に困難であった。上記のような理由から、現状では熟練者が過去に試験を行った食品中で微生物の生育性に与える影響の比較的大きい因子(pH、Aw、保存料濃度、etc)とその際の生育性可否との関係を利用して、経験的に未知サンプルにおける当該微生物の生育性を判定している場合が多かった。しかしながら、この方法では、予測精度及び客観性に乏しかった。   In the conventional technology, the growth limit of a factor that has a large influence on the growth of microorganisms, such as pH, salt concentration, and water activity, is investigated and used for growth prediction to determine the growth limit. In many cases, a combination of two factors having a large influence is mapped into a two-dimensional graph to map the growth of microorganisms, visualized, and used for prediction of growth (see Non-Patent Document 1, etc.). However, since various factors are involved in the growth of harmful microorganisms in actual foods, as represented by the hurdle theory, there are many ways to make highly accurate predictions using the above-mentioned conventional technology. There are insufficient factors. There are methods that use mathematical models such as logistic curves and Gompertz curves as growth models for microorganisms, but these are prediction methods based on the model growth rate. If you know, you can predict the number of bacteria after a certain time. Therefore, when it is desired to expand even when the analytical value of food is different, it is necessary to investigate the growth rate of the microorganism at the analytical value to be predicted. Is difficult to predict (see Non-Patent Document 2 and Non-Patent Document 3). Shinta et al. (See Non-Patent Document 4) proposed a model that predicts the growth of microorganisms by multiple regression analysis using “tsuyu” with different analytical values such as salt, sugar, soy sauce-derived nitrogen content, and pH. However, since it is necessary to check the growth rate in order to create these models, the number of bacteria must be measured over time to calculate the growth rate, and the number of tests becomes enormous. Ratkowsky et al. (See Non-Patent Document 5) have proposed a mathematical model for predicting the growth of microorganisms under different water activity, pH, and temperature. In order to create this model, it is necessary to examine the boundary line of the growth limit (presence or absence of growth) in advance for each component analysis value, but the accuracy of this boundary line affects the prediction accuracy of the mathematical model. Therefore, the number of tests inevitably increases as the number of components increases. In addition, since this mathematical model is not derived based on theory, there is no confirmation that can be always applied to the food, and it is necessary to confirm in advance. In addition, as the number of types of analysis values increases, the mathematical model becomes complicated, and it is necessary to confirm whether the extended mathematical model can be applied to the food. Model creation was very difficult. For the reasons described above, currently, factors that have a relatively large effect on the growth of microorganisms in foods that have been tested by experts in the past (pH, Aw, preservative concentration, etc.) and the growth potential at that time In many cases, the viability of the microorganism in an unknown sample has been determined empirically using the relationship with availability. However, this method has poor prediction accuracy and objectivity.

中村成寿他、「醤油関連調味料における微生物学的安全性評価法について」 醤研 Vo.23, No.1, 1997, p.1-8NAKAMURA Naruhisa et al., “On the microbiological safety evaluation method for soy sauce-related seasonings”, Soken Lab., Vol.23, No.1, 1997, p.1-8 清水潮著、幸書房発行、「食品微生物1−基礎編、食品微生物の科学」 p.162-170(予測微生物学)Shimizu Shio, published by Sachi Shobo, "Food Microorganism 1-Basics, Science of Food Microbiology" p.162-170 (Predictive Microbiology) 清水潮、「予測微生物学」食衛誌 Vol.42,No.6,p317-323Shimizu Shio, “Predictive Microbiology”, Edible Magazine Vol.42, No.6, p317-323 信太治他、「ストレートつゆ製品の微生物耐性度の数値化とその応用」、醤研 Vol.31, No.1, 2005, p.17-21Shintaji et al., “Numericalization of microbial resistance of straight soup products and its application”, Soken Vol.31, No.1, 2005, p.17-21 D.A.Ratkowsky et al., 「Modelling the bacterial growth/no growth interface」 Letters in Applied Microbaiology 1995, 20, 29-33D.A.Ratkowsky et al., `` Modeling the bacterial growth / no growth interface '' Letters in Applied Microbaiology 1995, 20, 29-33

本発明は、飲食品中の成分分析値と該飲食品中における微生物の生育の有無に関する定性データを用いて、判別分析法により、微生物の生育性予測モデルを構築し、該モデルに基づいて飲食品中の微生物の生育性を予測する方法の提供を目的とする。   The present invention uses a component analysis value in food and drink and qualitative data on the presence or absence of microbial growth in the food and drink to construct a microorganism growth predictive model by a discriminant analysis method. The object is to provide a method for predicting the growth of microorganisms in products.

本発明者等は、多様な飲食品中にて特定の危害微生物の生育性を迅速、的確に予測する方法について検討した。その結果、多数の分析値を同時にデータ解析する手法として、判別分析法に注目し、これを用いて判別式を作成した。これを利用することにより、特定微生物の生育性既知の食品のデータが多数あれば、飲食品中において多因子を加味した比較的精度の高い客観的な微生物の生育性予測が可能となることを見出し、本発明を完成させた。   The present inventors examined a method for quickly and accurately predicting the growth of specific harmful microorganisms in various foods and drinks. As a result, we focused on the discriminant analysis method as a method for analyzing data of a large number of analysis values simultaneously, and created a discriminant using this method. By using this, if there is a lot of data on foods with known growth of specific microorganisms, it is possible to objectively predict the growth of microorganisms with relatively high accuracy in consideration of multiple factors in foods and drinks. The headline and the present invention were completed.

すなわち本発明は、食品中にて危害を与えうる危害微生物を接種した場合にその生育性が既知の食品について、微生物の生育性に影響を及ぼすと考えられる分析値とそのときの生育性の可否との関係から飲食物の成分分析値と微生物の生育の有無を関連付けた判別式を求め、予測モデルとし、この判別式を記憶装置に記憶させる。そこへ上記微生物の生育性が未知の飲食品サンプルの分析値を調べて上記判別式を用いて演算し、微生物の生育性を予測することを特徴とする微生物の生育予測方法である。   That is, the present invention relates to analytical values that are considered to have an effect on the growth of microorganisms and the possibility of growth at that time for foods whose growth is known when inoculated with harmful microorganisms that can cause harm in food. From this relationship, a discriminant that associates the component analysis value of food and drink with the presence or absence of growth of microorganisms is obtained, is used as a prediction model, and this discriminant is stored in the storage device. There is a method for predicting the growth of a microorganism characterized in that the analysis value of a food or beverage sample whose microorganism growth is unknown is examined and calculated using the above discriminant to predict the growth of the microorganism.

具体的には、本発明は以下の通りである。
[1] 飲食品中での微生物の生育性を予測する方法であって、飲食品について成分分析値を定量データとして取得し、さらに微生物の生育性の有無を微生物の増殖有りまたは微生物の増殖無のいずれかの定性データとして取得し、取得した両データを判別分析法により解析し、飲食品分析値から微生物の生育性を予測するための予測モデルを構築し、該予測モデルに基づいて飲食品の成分分析値から飲食品の微生物生育性を予測する方法。
[2] 飲食品が醤油含有液状飲食品である[1]の飲食品の微生物生育性を予測する方法。
Specifically, the present invention is as follows.
[1] A method for predicting the growth of microorganisms in foods and drinks, wherein the component analysis values of the foods and drinks are obtained as quantitative data, and the presence or absence of the growth of microorganisms is determined with or without the growth of microorganisms. Is obtained as one of the qualitative data, and both the obtained data are analyzed by a discriminant analysis method, and a prediction model for predicting the growth of microorganisms from the food and drink analysis value is constructed, and the food and drink based on the prediction model Of predicting microbial viability of food and drink from component analysis values of food.
[2] The method for predicting the microbial growth of a food or drink according to [1], wherein the food or drink is a soy sauce-containing liquid food or drink.

[3] 微生物の生育性の有無についての定性データを、以下の工程により取得する[1]または[2]の飲食品の微生物生育性を予測する方法:
(i) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断し、微生物の増殖が認められた場合に、微生物の増殖有と判定し、
(ii) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断した場合に微生物の増殖が認められない場合に、さらに菌数を測定し、初発菌数に対して10倍を超えている場合に、微生物の増殖有と判定し、
(iii) 上記(i)および(ii)の工程で、微生物の増殖有と判定されなかった場合に、微生物の増殖無と判定する。
[3] A method for predicting microbial growth of a food or drink according to [1] or [2], wherein qualitative data on the presence or absence of microbial growth is obtained by the following steps:
(i) Inoculate the food and drink with microorganisms, and after a certain temperature and a certain period, determine the presence or absence of growth of microorganisms from the change in appearance, and if growth of microorganisms is observed, determine that there is growth of microorganisms,
(ii) Inoculate the food and drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from the change in appearance, and if the growth of microorganisms is not observed, further measure the number of bacteria, If it exceeds 10 times the initial number of bacteria, it is determined that the microorganism has proliferated,
(iii) If it is not determined in the steps (i) and (ii) that the microorganism has grown, it is determined that the microorganism has not grown.

[4] 飲食品についての成分分析値が、飲食品中のpH値、食塩濃度、Brix、水分活性値、アルコール濃度、全窒素分および酢酸濃度からなる群から選択される3つ以上の値である[1]〜[3]のいずれかの飲食品の微生物の生育性を予測する方法。
[5] 飲食品についての成分分析値が、飲食品中のpH値、食塩濃度、Brix、アルコール濃度である[4]の飲食品の微生物の生育性を予測する方法。
[6] 予測モデルの構築に用いる微生物が酵母、乳酸菌、カビ、芽胞細菌、黄色ブドウ状球菌および大腸菌からなる群から選択される一つである[1]〜[5]のいずれかの飲食品の微生物の生育性を予測する方法。
[4] Component analysis values for foods and drinks are three or more values selected from the group consisting of pH value, salt concentration, Brix, water activity value, alcohol concentration, total nitrogen content and acetic acid concentration in foods and drinks. A method for predicting the growth of microorganisms in a food or drink according to any one of [1] to [3].
[5] The method for predicting the growth of microorganisms in a food or drink according to [4], wherein the component analysis values for the food or drink are the pH value, salt concentration, Brix, and alcohol concentration in the food and drink.
[6] The food or drink according to any one of [1] to [5], wherein the microorganism used for constructing the prediction model is one selected from the group consisting of yeast, lactic acid bacteria, mold, spore bacteria, Staphylococcus aureus, and Escherichia coli. Of predicting the growth of microorganisms.

[7] 醤油含有液状飲食品中での微生物の生育性を予測する方法であって、醤油含有液状飲食品について飲食品中のpH値、食塩濃度、Brix、およびアルコール濃度についての成分分析値を定量データとして取得し、微生物の生育性の有無についての定性データを、
(i) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断し、微生物の増殖が認められた場合に、微生物の増殖ありと判定し、
(ii) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断した場合に微生物の増殖が認められない場合に、さらに菌数を測定し、初発菌数に対して10倍を超えている場合に、微生物の増殖有と判定し、
(iii) 上記(i)および(ii)の工程で、微生物の増殖有と判定されなかった場合に、微生物の増殖無と判定する、
ことを含む工程により取得し、取得した両データを判別分析法により解析し、醤油含有液状飲食品の成分分析値から微生物の生育性を予測する予測モデルを構築し、該予測モデルに基づいて前記醤油含有液状飲食品中の成分分析値から該醤油含有液状飲食品の微生物生育性を予測する方法。
[7] A method for predicting the growth of microorganisms in a soy sauce-containing liquid food or drink, wherein the component analysis values for the pH value, salt concentration, Brix, and alcohol concentration in the food or drink for the soy sauce-containing liquid food or drink Qualitative data about the presence or absence of microbial growth, obtained as quantitative data,
(i) Inoculate the food and drink with microorganisms, and after a certain temperature and period, judge the presence or absence of growth of microorganisms from the change in appearance, and if proliferation of microorganisms is observed, determine that there is proliferation of microorganisms,
(ii) Inoculate the food and drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from the change in appearance, and if the growth of microorganisms is not observed, further measure the number of bacteria, If it exceeds 10 times the initial number of bacteria, it is determined that the microorganism has proliferated,
(iii) If it is not determined that the microorganism has proliferated in the steps (i) and (ii), it is determined that the microorganism has not proliferated.
And analyzing both of the acquired data by discriminant analysis, constructing a prediction model for predicting the growth of microorganisms from the component analysis value of the soy sauce-containing liquid food and drink, and based on the prediction model A method for predicting microbial growth of a soy sauce-containing liquid food or drink from component analysis values in the soy sauce-containing liquid food or drink.

[8] [1]〜[6]のいずれかの飲食品の微生物の生育性を予測する方法を行うための飲食品中の微生物生育性予測システムであって、
(a) 微生物の生育性が未知の飲食品の成分分析値を入力する手段、
(b) 構築した微生物生育性予測モデルを記憶している記憶手段、
(c) (a)の入力手段を用いて入力した成分分析値を(b)の記憶手段に記憶されている微生物生育性予測モデルに適用して、微生物の生育性の有無を予測するデータ処理手段、および
(d) 予測された微生物の選択性の有無を出力する出力手段、
を含む飲食品中の微生物生育性予測システム。
[8] A system for predicting microbial growth in a food or drink for performing a method for predicting the growth of microorganisms in the food or drink according to any one of [1] to [6],
(a) means for inputting component analysis values of foods and drinks whose microbial growth is unknown;
(b) storage means for storing the constructed microbial growth prediction model;
(c) Data processing for predicting the presence or absence of microbial growth by applying the component analysis value input using the input means of (a) to the microbial growth prediction model stored in the storage means of (b) Means, and
(d) an output means for outputting the presence or absence of the predicted microbial selectivity,
For predicting the growth of microorganisms in foods and drinks.

本発明の方法により、醤油含有飲食品等の飲食品における危害微生物の生育性を高い精度で予測することができる。   By the method of the present invention, the viability of harmful microorganisms in foods and drinks such as soy sauce-containing foods and drinks can be predicted with high accuracy.

従来の方法においては、例えば、微生物の増殖速度を変数として予測モデルを構築していたため、長い試験期間や膨大な実験数を必要とし、予測モデルの構築は困難であった。本発明の手法は、微生物の生育性を増殖有または増殖無という定性的データとして得て予測モデルを構築するため、予測システムを容易に構築することができる。また、飲食品中には多数の成分が含まれており、どの成分が微生物の生育に影響を与えるかを判定するのは困難であり、正確な予測モデルを作成するためには、試行錯誤が必要である。本発明は、微生物の増殖速度を測定することなく、微生物の定性データを取得することにより予測モデルを構築することができるので、短期間で容易に多数のデータを取得することができるので、予測モデルの構築も容易にできる。   In the conventional method, for example, since a prediction model is constructed using the growth rate of microorganisms as a variable, a long test period and an enormous number of experiments are required, and the construction of the prediction model is difficult. Since the method of the present invention obtains the growth of microorganisms as qualitative data indicating whether or not there is proliferation, and constructs a prediction model, a prediction system can be easily constructed. In addition, many ingredients are included in food and drink, and it is difficult to determine which ingredients affect the growth of microorganisms. To create an accurate prediction model, trial and error is necessary. is necessary. Since the present invention can construct a prediction model by acquiring qualitative data of microorganisms without measuring the growth rate of microorganisms, a large number of data can be easily acquired in a short period of time. Model building is also easy.

実施例に示すように、本発明の方法による予測の予測精度は顕著に高く、信頼性の高い微生物生育性の予測を可能にする。   As shown in the Examples, the prediction accuracy of the prediction according to the method of the present invention is remarkably high, and enables reliable prediction of microbial growth.

本発明において、飲食品とは醤油含有飲食品、レトルト食品(容器包装詰加圧加熱殺菌食品)、紅茶、緑茶などの茶飲料、コーヒー、果汁飲料、炭酸飲料、スポーツ飲料、アミノ酸飲料等の清涼飲料、ホットベンダー用飲料、アルコール飲料、乳飲料等の乳製品、乳酸菌飲料、冷蔵飲食品等飲食品として流通しているあらゆるものを含む。この中でも醤油含有飲食品、特に醤油含有液状飲食品が好ましく、醤油、めんつゆ(ストレートつゆ製品等)、だし、かえし、たれ、ポン酢、だし入り醤油、ラーメンスープ、調味液等が含まれる。   In the present invention, foods and drinks include soy sauce-containing foods and drinks, retort foods (container and packaging, pressurized and heat sterilized foods), tea drinks such as tea and green tea, coffee, fruit juice drinks, carbonated drinks, sports drinks, amino acid drinks and the like. This includes all products distributed as dairy products such as beverages, beverages for hot vendors, alcoholic beverages, milk beverages, lactic acid bacteria beverages, refrigerated foods and beverages. Among them, soy sauce-containing foods and drinks, particularly soy sauce-containing liquid foods and drinks are preferable, and soy sauce, noodle soup (straight soy sauce products and the like), dashi, maple, sauce, ponzu, soy sauce with soup, ramen soup, seasoning and the like are included.

本発明において、飲食品の成分とは、微生物の生育に影響を与え得る因子のことをいう。本発明の方法において分析する成分は、微生物の生育に影響を与えうる成分(微生物制御因子)であり、飲食品の種類により異なるが、pH、食塩(NaCl)濃度、Brix、アルコール濃度、全窒素分、水分活性(Aw)、酢酸濃度、糖分濃度、実効酸度等がある。飲食品が醤油含有液状飲食品の場合、pH、食塩(NaCl)濃度、Brix、水分活性値、アルコール濃度、全窒素分および酢酸濃度が重要である。本発明の方法においては、これらの成分のうち少なくとも3つ以上の成分を分析し、数値データとして定量的データを取得し、予測モデルの構築に用いる。これらの値の測定は、公知の方法で行うことができ、例えば醤油試験法(財団法人日本醤油研究所、1985)に基づいて測定することができる。   In the present invention, a component of a food or drink means a factor that can affect the growth of microorganisms. The components to be analyzed in the method of the present invention are components (microorganism control factors) that can affect the growth of microorganisms, and vary depending on the type of food or drink, but pH, salt (NaCl) concentration, Brix, alcohol concentration, total nitrogen Minute, water activity (Aw), acetic acid concentration, sugar concentration, effective acidity and the like. When the food or drink is a liquid food or drink containing soy sauce, pH, sodium chloride (NaCl) concentration, Brix, water activity value, alcohol concentration, total nitrogen content and acetic acid concentration are important. In the method of the present invention, at least three of these components are analyzed, quantitative data is acquired as numerical data, and is used to construct a prediction model. These values can be measured by a known method, for example, based on the soy sauce test method (Japan Soy Sauce Research Institute, 1985).

予測モデルを構築するときに用いる微生物の種類は、飲食品の種類により異なり、各飲食品において、増殖が問題となり得る危害微生物を用いればよい。具体的な微生物として、産膜酵母等の酵母、乳酸菌、かび、芽胞細菌(セレウス菌、枯草菌など)、黄色ブドウ状球菌及び大腸菌等を用いることができる。飲食品が醤油含有液状飲食品の場合は、産膜酵母等の酵母が好ましい。   The type of microorganism used when constructing the prediction model differs depending on the type of food and drink, and a harmful microorganism that may cause a problem in growth may be used in each food and drink. As specific microorganisms, yeasts such as film-producing yeast, lactic acid bacteria, fungi, spore bacteria (Cereus bacteria, Bacillus subtilis, etc.), Staphylococcus aureus, Escherichia coli, and the like can be used. When the food or drink is a soy sauce-containing liquid food or drink, a yeast such as a film-producing yeast is preferred.

本発明の方法において、まず、予測モデルを構築する必要がある。予測モデルを構築するためには、まず被験飲食品を複数準備する。複数の被験飲食品としては、スペックの異なる同種の飲食品が挙げられる。スペックの異なる同種の飲食品とは、例えば風味や塩分濃度等の成分の種類または各成分の含有量を変えて製造した飲食品をいう。例えば、醤油含有液状飲食品の予測モデルを構築する場合、醤油を含有している、淡口醤油、濃口醤油、減塩醤油、あさ塩醤油、そうめんつゆ、そばつゆ、うどんだし、焼肉のたれ、焼き鳥のたれ、どんぶりのたれ、ぽん酢、だしいり醤油、醤油含有各種調味液が対象となる。   In the method of the present invention, first, it is necessary to construct a prediction model. In order to construct a prediction model, first, a plurality of test foods and drinks are prepared. Examples of the plurality of test foods and drinks include the same kind of foods and drinks having different specifications. The same kind of foods and drinks with different specifications refers to foods and drinks manufactured by changing the types of components such as flavor and salt concentration or the content of each component. For example, when building a prediction model for soy sauce-containing liquid foods and drinks, soy sauce containing light mouth soy sauce, dark mouth soy sauce, low salt soy sauce, asa salt soy sauce, somen soup, soba soup, udonashi, grilled meat sauce, yakitori sauce Sauce, bowl of sauce, ponzu, dairy soy sauce, various seasoning liquids containing soy sauce are targeted.

これらの、無菌処理された被験飲食品を無菌的に密閉可能な容器に分注し、そこへ一定量(一定菌数)の上記の微生物を接種する。被験飲食品の無菌処理方法は限定されないが、例えば、加熱により行えばよい。このときに用いる飲食品の量、および微生物の接種量には限定はなく、適宜決定することができる。その後、容器を密閉し、一定期間、一定温度に置く。期間に限定はないが、温度は流通上で温度が限定される場合はその中で最も微生物の増殖に適した温度、常温流通のように限定されない場合、用いる微生物の増殖に適した温度、例えば、30℃〜37℃とすればよい。また、置いておく期間は、用いる微生物が増殖するのに十分な期間であり、微生物により適宜決定することができる。例えば、数日から数ヶ月おけばよい。   These aseptically treated test foods and drinks are dispensed into aseptically sealable containers, and a certain amount (a certain number of bacteria) is inoculated there. The aseptic processing method of the test food or drink is not limited, but may be performed by heating, for example. There is no limitation on the amount of food and drink used at this time and the inoculation amount of microorganisms, which can be appropriately determined. The container is then sealed and placed at a constant temperature for a certain period. Although there is no limitation on the period, the temperature is the most suitable temperature for the growth of microorganisms when the temperature is limited on the circulation, the temperature suitable for the growth of microorganisms to be used when not limited to the normal temperature circulation, for example, 30 ° C. to 37 ° C. In addition, the period to be set is a period sufficient for the microorganisms to be used to grow, and can be appropriately determined depending on the microorganisms. For example, it may be several days to several months.

一定期間、一定温度で置いた後、飲食品中の微生物の増殖を判定する。微生物の判定は、まず目視等により外見上の変化を確認する試験により行う。微生物の増殖の有無の判定は、微生物の種類により異なるが、飲食品中のコロニーの存在、飲食品の色の変化、飲食品の白濁等の濁りの有無、ガスの発生、アルコール臭等の異臭の発生の有無、微生物に特有な産膜等の有無等により判定することができる。また、微生物によっては、酸を産生する場合があり、この場合は飲食品のpHの変化を測定してもよい。上記の判定により、微生物の増殖が認められた場合、微生物の増殖有(+)と判定する。   After being placed at a constant temperature for a certain period of time, the growth of microorganisms in the food and drink is determined. Microorganisms are first determined by a test for confirming changes in appearance by visual observation or the like. The determination of the presence or absence of microbial growth differs depending on the type of microorganism, but the presence of colonies in food and drink, the color change of food and drink, the presence or absence of turbidity such as white turbidity of food and drink, the generation of gas, and the smell of alcohol It can be determined by the presence / absence of the occurrence of, the presence / absence of a film or the like peculiar to microorganisms. In addition, some microorganisms may produce acid, and in this case, the change in pH of the food or drink may be measured. If the growth of the microorganism is recognized by the above determination, it is determined that the microorganism has grown (+).

上記の判定によっても微生物の増殖が認められない場合は、さらに飲食品中の微生物数を測定する。微生物の測定は、微生物の種類により種々の公知の方法で行うことができ、例えば、平板培地法を用いて測定すればよい。本検討では、測定した微生物の数(密度)が接種したときの初発数の10倍以上になっている場合に、微生物の増殖有(+)と判定する。   If the growth of microorganisms is not recognized by the above determination, the number of microorganisms in the food or drink is further measured. The microorganism can be measured by various known methods depending on the type of the microorganism. For example, the microorganism may be measured using a plate medium method. In this examination, when the number (density) of the measured microorganism is 10 times or more of the initial number at the time of inoculation, it is determined that the microorganism has proliferated (+).

目視等の官能試験および計数によっても微生物の増殖有と判定されない場合、微生物の増殖無(−)と判定する。後のデータ処理の便宜のため、微生物の増殖有と微生物の増殖無の場合とで異なる記号を割り当てる。予測モデル構築は、統計的解析により行われるので、数値を割り当てるのが好ましく、例えば、微生物の増殖有の場合に「1」を割り当て、微生物の増殖無の場合に「2」を割り当てればよい。   If it is not determined that the microorganisms have grown even by visual sensory tests or counting, it is determined that the microorganisms have not grown (-). For the convenience of later data processing, different symbols are assigned depending on whether the microorganism is grown or not. Since the prediction model construction is performed by statistical analysis, it is preferable to assign a numerical value. For example, “1” is assigned when microorganisms are grown, and “2” is assigned when microorganisms are not grown. .

なお、本発明の方法において、微生物の増殖速度を測定する必要はない。本発明においては、微生物の増殖に関するデータは、微生物の増殖有または微生物の増殖無の二者択一の定性データとして得られる。すなわち、微生物の増殖を定性的に判断する。   In the method of the present invention, it is not necessary to measure the growth rate of microorganisms. In the present invention, data relating to the growth of microorganisms is obtained as alternative qualitative data with or without the growth of microorganisms. That is, the growth of microorganisms is qualitatively determined.

このような工程を経て、各飲食品の分析値に対して、微生物の定性データが割り当てられる。これらのデータを用いて、判別分析手法を用いた3因子以上の多因子分析により予測モデルを構築する。   Through such steps, qualitative data of microorganisms is assigned to the analysis value of each food and drink. Using these data, a prediction model is constructed by multifactor analysis of three or more factors using a discriminant analysis technique.

判別分析は、2群以上の母集団から抽出した標本データを得て、どの母集団に属するか不明のサンプルデータがある場合に、このサンプルデータがどの母集団に属するか調べる方法であり、本発明においては飲食品の成分分析値からなる多変量データ(x1、x2、X3、・・・)を説明変数として用い、微生物の生育の有無を目的変数(基準変数)とする。すなわち、微生物が生育するか、生育しないかを判別することができる。   Discriminant analysis is a method of obtaining sample data extracted from two or more populations and examining which population the sample data belongs to when there is unknown sample data belonging to which population. In the invention, multivariate data (x1, x2, X3,...) Consisting of component analysis values of food and drink are used as explanatory variables, and the presence or absence of the growth of microorganisms is set as an objective variable (reference variable). That is, it can be determined whether the microorganism grows or does not grow.

このような判別分析の手法は公知であり、最も代表的な判別分析に線形判別関数による判別がある。これは市販の統計解析ソフトウェアを用いて行うことができる。   Such discriminant analysis techniques are well known, and the most typical discriminant analysis includes discrimination by a linear discriminant function. This can be done using commercially available statistical analysis software.

判別分析により、目的変数を判別することのできる境界線として、判別式(判別関数) Z=a1・x1+a2・x2+・・・+an・xn+a0を得ることができる。該判別式を予測モデル(予測式)として用いることができる。この式は判別したい2つのエリアの境界線であるため、この境界線上ではZ=0となる。また、境界線上にない分析値を判別式に代入すると、0>Z、もしくは0<Zの値を得る。調べたい飲食品の分析値を代入したときに、Zが正、負どちらの値をとるかにより、所属するエリアを予測できる。なお、Zの値の絶対値が大きいほど、そのエリアに属する可能性が高いことを示している。判別式の評価は、判別的中率により評価することができる。本発明の予測モデルにおいて、判別的中率は80%以上、好ましくは85%以上である。判別的中率が低い場合は、判別に寄与していない成分を取り除く、判別に使用している成分が相互作用している場合どちらかの成分を判別分析に利用しない、異常値を取り除く、などを行うことにより判別的中率を上げることができる。 By discriminant analysis, a discriminant (discriminant function) Z = a 1 · x 1 + a 2 · x 2 +... + An · xn + a 0 can be obtained as a boundary line from which the objective variable can be discriminated. The discriminant can be used as a prediction model (prediction equation). Since this equation is a boundary line between two areas to be distinguished, Z = 0 on this boundary line. If an analysis value that is not on the boundary line is substituted into the discriminant, a value of 0> Z or 0 <Z is obtained. When the analysis value of the food or drink to be examined is substituted, the area to which it belongs can be predicted depending on whether Z takes a positive value or a negative value. Note that the larger the absolute value of Z, the higher the possibility of belonging to the area. The discriminant can be evaluated by a discriminant probability. In the prediction model of the present invention, the discriminant predictive value is 80% or more, preferably 85% or more. If the discriminant predictive value is low, remove components that do not contribute to discrimination, if the components used for discrimination interact, do not use either component for discriminant analysis, remove abnormal values, etc. It is possible to increase the discriminatory probability by performing.

次に、微生物の生育性が未知であり、微生物の生育性を予測しようとする飲食品の成分分析データを取得し、該分析データを予測モデルに適用、すなわち、判別式の変数に代入することにより得られる判別得点から予測結果を得ることができる。予測結果は、微生物の生育が予測される場合は「1」、予測されない場合は「2」のように出る。   Next, acquiring component analysis data of foods and beverages for which the growth of microorganisms is unknown and predicting the growth of microorganisms, and applying the analysis data to the prediction model, that is, substituting it into the variables of the discriminant The prediction result can be obtained from the discrimination score obtained by the above. The prediction result is “1” when the growth of the microorganism is predicted, and “2” when the growth is not predicted.

予測に用いた飲食品に実際に微生物を接種し、微生物が増殖するかどうかを調べ、予測精度を得ることができる。この予測精度を調べることが本発明においては非常に重要である。必要最低限の予測精度は使用目的により変わってくるが、本発明の方法において、予測精度は好ましくは80%以上である。   The food and drink used for the prediction can be actually inoculated with microorganisms to determine whether or not the microorganisms can grow, and the prediction accuracy can be obtained. It is very important in the present invention to examine the prediction accuracy. The minimum required prediction accuracy varies depending on the purpose of use, but in the method of the present invention, the prediction accuracy is preferably 80% or more.

以下、飲食品が醤油含有調味液の場合を例にとって、より詳しく本発明の微生物の生育性の予測を説明する。   Hereinafter, taking as an example the case where the food or drink is a soy sauce-containing seasoning liquid, the prediction of the growth of microorganisms of the present invention will be described in more detail.

まず調味液は滅菌済みの無色透明なフィルム状袋容器、PTパウチ(酒見医科器械舗)に無菌的に分注され、そこへ一定量の微生物を接種する。その後、シーラーにて開口部を密封し、一定温度、一定期間、微生物の増殖の有無を確認する。   First, the seasoning solution is aseptically dispensed into a sterilized colorless and transparent film-like bag container, PT pouch (Sakami Medical Instrument Co.), and a certain amount of microorganisms is inoculated there. Thereafter, the opening is sealed with a sealer, and the presence or absence of growth of microorganisms is confirmed for a certain temperature and for a certain period.

図1は調味液において試験的に微生物を接種し、一定温度、一定時間保存し、微生物の増殖の有無を確認する試験(以下生育性試験)の概略図である。   FIG. 1 is a schematic diagram of a test (hereinafter referred to as a viability test) in which microorganisms are inoculated experimentally in a seasoning liquid, stored at a constant temperature for a fixed time, and checked for the presence or absence of microbial growth.

増殖の有無の判定方法は、(1)産膜の発生、白濁、ガスの発生等外見上に変化が確認された場合、増殖有とし、それらが確認されなかった場合、(2)菌数を測定して判定する。菌数を測定した場合、初発菌数に対して1O倍を超えた場合を増殖有とし、10倍を超えなかった場合は増殖無とする。   The method for determining the presence or absence of growth is as follows: (1) When there is a change in appearance such as production of film, cloudiness, gas generation, etc., if there is growth, and if they are not confirmed, (2) Measure and judge. When the number of bacteria is measured, if the number exceeds 1O times the number of the first bacteria, it is regarded as proliferating, and if it does not exceed 10 times, it is regarded as no growth.

上記のような試験を多数行い、その際の調味液の分析値(pH、食塩濃度、Brix、水分活性、アルコール濃度、etc)のデータとそれに対応する微生物の生育性(有=1、無=2)を抽出して一覧表にし、これらデータの関係を判別分析により解析する。判別分析にあたっては、線形判別関数による判別を利用する。その結果として得られる判別式(判別関数)は生育有、無を分ける直線であり、生育性未知のサンプルの分析値を上記判別式に入力すると、そのとき得られた値(判別得点)が生育有のエリア、もしくは生育無のエリアのどちらに分類されるかにより生育性の可否が判定される。この関数をパソコンにインプットし、分析値の入力を行うと、自動的に判別得点の計算から微生物の生育性を予測するシステムを構築し、簡易運用化を実現できる。   A number of tests as described above were conducted, and the analysis values (pH, salt concentration, Brix, water activity, alcohol concentration, etc.) of the seasoning liquid at that time and the viability of microorganisms corresponding thereto (Yes = 1, No =) Extract 2) into a list, and analyze the relationship between these data by discriminant analysis. In discriminant analysis, discrimination by a linear discriminant function is used. The resulting discriminant (discriminant function) is a straight line that separates the presence or absence of growth, and when the analytical value of a sample with unknown growth is input to the above discriminant, the value (discriminant score) obtained at that time grows. Whether it is viable or not is determined depending on whether it is classified as an area with or without growth. When this function is input to a personal computer and an analysis value is input, a system for automatically predicting the growth of microorganisms from the calculation of the discrimination score can be constructed, and a simple operation can be realized.

本発明は本発明の微生物生育性予測方法により、微生物の生育性予測を行うシステムを包含する。   The present invention includes a system for predicting the growth of microorganisms by the method for predicting the growth of microorganisms of the present invention.

本発明の飲食品中の微生物生育性予測システムは、
(a) 微生物の生育性が未知の飲食品の成分分析値を入力する手段、
(b) 構築した微生物生育性予測モデルを記憶している記憶手段、
(c) (a)の入力手段を用いて入力した成分分析値を(b)の記憶手段に記憶されている微生物生育性予測モデルに適用して、微生物の生育性の有無を予測するデータ処理手段、および
(d) 予測された微生物の選択性の有無を出力する出力手段、
とを含むシステムである。
The system for predicting microbial growth in foods and beverages of the present invention,
(a) means for inputting component analysis values of foods and drinks whose microbial growth is unknown;
(b) storage means for storing the constructed microbial growth prediction model;
(c) Data processing for predicting the presence or absence of microbial growth by applying the component analysis value input using the input means of (a) to the microbial growth prediction model stored in the storage means of (b) Means, and
(d) an output means for outputting the presence or absence of the predicted microbial selectivity,
It is a system including.

(a)の分析値を入力する手段は、キーボードまたは成分分析値を記憶した外部記憶装置等を含む。(b)の記憶手段はハードディスク等を含む。データ処理手段は、記憶手段から予測モデルを受け取るとともに、入力された成分分析値を処理して、処理結果を出力手段に送り、出力手段で処理結果が表示される。データ処理手段は、データを演算処理する中央演算処理装置(CPU)等を含む。また、出力手段は、結果を表示するモニタやプリンタを含む。   The means for inputting the analysis value in (a) includes a keyboard or an external storage device storing the component analysis value. The storage means (b) includes a hard disk or the like. The data processing means receives the prediction model from the storage means, processes the input component analysis value, sends the processing result to the output means, and the processing result is displayed by the output means. The data processing means includes a central processing unit (CPU) that performs arithmetic processing on data. The output means includes a monitor and a printer for displaying the result.

本発明の飲食品中の微生物生育性予測システムは、市販のパーソナルコンピュータ等を用いて構築することが可能である。   The system for predicting microbial growth in foods and drinks according to the present invention can be constructed using a commercially available personal computer or the like.

以下、実施例に基づき更に詳細に本発明を説明する。   Hereinafter, the present invention will be described in more detail based on examples.

実施例1 各種調味液中における酵母の生育性判別
試験方法の概略を図1に示した。表1に示した各種調味液75種類について、試験に供する前にあらかじめ分析値としてpH、食塩濃度、Brix、アルコール濃度をそれぞれ測定した。その分析値の特徴については表2に示した。試験は調味液をPTパウチ中に無菌的に分注し、産膜酵母Zygosaccharomyces rouxiiを接種することにより行った。上記酵母は耐塩性が高く、食塩濃度の高い調味液中でも良く増殖する菌である。産膜酵母を接種後、30℃で静置保管し、1ヶ月後、産膜酵母の生育の有無を観察し、液中の菌数を測定することにより判定した。試験結果について、生育有は1、生育無は2として表1のようにまとめた。
Example 1 Discrimination of the viability of yeast in various seasonings The outline of the test method is shown in FIG. About 75 kinds of seasoning liquids shown in Table 1, pH, salt concentration, Brix, and alcohol concentration were measured in advance as analytical values before being subjected to the test. The characteristics of the analysis values are shown in Table 2. The test was performed by aseptically dispensing the seasoning liquid into a PT pouch and inoculating the film-forming yeast Zygosaccharomyces rouxii. The yeast is a bacterium that has a high salt tolerance and grows well even in a seasoning solution having a high salt concentration. After inoculation with the film-forming yeast, it was stored at 30 ° C., and after one month, the presence or absence of growth of the film-forming yeast was observed, and the number of bacteria in the liquid was measured. The test results were summarized as shown in Table 1 with 1 being grown and 2 being not grown.

Figure 2007312738
Figure 2007312738
Figure 2007312738
Figure 2007312738
Figure 2007312738
Figure 2007312738

Figure 2007312738
Figure 2007312738

上記のようにして得られた結果を調味液の各分析値(pH、食塩濃度、Brix、アルコール濃度)とその液における酵母の生育性結果(生育可、生育不可)とを判別分析(線形判別関数による判別)により解析し、以下の式1で表される判別式Zを得た。解析にあたっては市販の統計解析ソフト(SPSS Base12.O;エス・ピー・エス・エス株式会社)を使用した。   Discriminant analysis (linear discriminant) of the results obtained as described above for each analysis value (pH, salt concentration, Brix, alcohol concentration) of the seasoning liquid and the viability result of the yeast (growable, not viable) in that liquid The discriminant Z represented by the following formula 1 was obtained. In the analysis, commercially available statistical analysis software (SPSS Base12.O; SPS Corporation) was used.

判別式 式1
Z=-O.186×pH+O.281×NaCl+O.092×Brix+0.916×A1c-9.465
Discriminant Formula 1
Z = -O.186 × pH + O.281 × NaCl + O.092 × Brix + 0.916 × A1c-9.465

得られた判別式の評価について、判別的中率により評価した。判別的中率の算出例を図2に示す。得られた判別式の判別的中率を計算したところ88%の高い値を示した(表3)。   About evaluation of the obtained discriminant, it evaluated by the discriminant middle rate. An example of calculating the discriminant probability is shown in FIG. When the discriminant probability of the obtained discriminant was calculated, it showed a high value of 88% (Table 3).

Figure 2007312738
Figure 2007312738

得られた判別式の未知サンプルに対する予測精度を検証するため、判別式に用いたサンプルと異なるサンプルを用いて検証した。   In order to verify the prediction accuracy of the obtained discriminant for an unknown sample, verification was performed using a sample different from the sample used for the discriminant.

用いたサンプルの分析値、判別式による予測結果、および実際の試験の結果を表4に示す。   Table 4 shows the analysis values of the samples used, the prediction results based on the discriminant, and the actual test results.

Figure 2007312738
Figure 2007312738

この結果、予測精度は84.6%と非常に高い値を示し、信頼性の高い予測ができていることが確認できた。   As a result, the prediction accuracy was as high as 84.6%, and it was confirmed that the prediction was highly reliable.

危害微生物の接種試験方法の概略を示す図である。It is a figure which shows the outline of the inoculation test method of a harmful microorganism. 判別分析の模式図と判別的中率の算出例を示す図である。It is a figure which shows the schematic diagram of a discriminant analysis, and the example of calculation of discriminant intermediate rate.

Claims (8)

飲食品中での微生物の生育性を予測する方法であって、飲食品について成分分析値を定量データとして取得し、さらに微生物の生育性の有無を微生物の増殖有または微生物の増殖無のいずれかの定性データとして取得し、取得した両データを判別分析法により解析し、飲食品分析値から微生物の生育性を予測するための予測モデルを構築し、該予測モデルに基づいて飲食品の成分分析値から飲食品の微生物生育性を予測する方法。   A method for predicting the growth of microorganisms in foods and drinks, wherein the component analysis values for foods and drinks are obtained as quantitative data, and the presence or absence of the growth of microorganisms is either with or without proliferation of microorganisms Qualitative data, analyze both of the acquired data by discriminant analysis, build a prediction model for predicting the growth of microorganisms from the analysis value of food and drink, and analyze the ingredients of food and drink based on the prediction model A method for predicting the microbial viability of food and drink from the value. 飲食品が醤油含有液状飲食品である請求項1記載の飲食品の微生物生育性を予測する方法。   The method for predicting microbial growth of a food or drink according to claim 1, wherein the food or drink is a soy sauce-containing liquid food or drink. 微生物の生育性の有無についての定性データを、以下の工程により取得する請求項1または2に記載の飲食品の微生物生育性を予測する方法:
(i) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断し、微生物の増殖が認められた場合に、微生物の増殖有と判定し、
(ii) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断した場合に微生物の増殖が認められない場合に、さらに菌数を測定し、初発菌数に対して10倍を超えている場合に、微生物の増殖有と判定し、
(iii) 上記(i)および(ii)の工程で、微生物の増殖有と判定されなかった場合に、微生物の増殖無と判定する。
The method for predicting the microbial growth of a food or drink according to claim 1 or 2, wherein qualitative data on the presence or absence of microbial growth is obtained by the following steps:
(i) Inoculate the food or drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from changes in appearance, and if growth of microorganisms is observed, determine that microorganisms have grown,
(ii) Inoculate the food and drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from the change in appearance, and if the growth of microorganisms is not observed, further measure the number of bacteria, If it exceeds 10 times the initial number of bacteria, it is determined that the microorganism has proliferated,
(iii) If it is not determined in the steps (i) and (ii) that the microorganism has grown, it is determined that the microorganism has not grown.
飲食品についての成分分析値が、飲食品中のpH値、食塩濃度、Brix、水分活性値、アルコール濃度、全窒素分および酢酸濃度からなる群から選択される3つ以上の値である請求項1〜3のいずれか1項に記載の飲食品の微生物の生育性を予測する方法。   The component analysis value for the food or drink is three or more values selected from the group consisting of pH value, salt concentration, Brix, water activity value, alcohol concentration, total nitrogen content and acetic acid concentration in the food and drink. The method of estimating the growth property of the microorganisms of the food-drinks of any one of 1-3. 飲食品についての成分分析値が、飲食品中のpH値、食塩濃度、Brix、およびアルコール濃度である請求項4記載の飲食品の微生物の生育性を予測する方法。   The method for predicting the growth of microorganisms in food and drink according to claim 4, wherein the component analysis values of the food and drink are pH value, salt concentration, Brix and alcohol concentration in the food and drink. 予測モデルの構築に用いる微生物が酵母、乳酸菌、カビ、芽胞細菌、黄色ブドウ状球菌および大腸菌からなる群から選択される一つである請求項1〜5のいずれか1項に記載の飲食品の微生物の生育性を予測する方法。   The microorganism used for construction of the prediction model is one selected from the group consisting of yeast, lactic acid bacteria, mold, spore bacteria, Staphylococcus aureus, and Escherichia coli. A method for predicting the growth of microorganisms. 醤油含有液状飲食品中での微生物の生育性を予測する方法であって、醤油含有液状飲食品について飲食品中のpH値、食塩濃度、Brix、およびアルコール濃度についての成分分析値を定量データとして取得し、微生物の生育性の有無についての定性データを、
(i) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断し、微生物の増殖が認められた場合に、微生物の増殖有と判定し、
(ii) 微生物を飲食品に接種し、一定温度および一定期間後に、微生物の生育の有無を外見上の変化から判断した場合に微生物の増殖が認められない場合に、さらに菌数を測定し、初発菌数に対して10倍を超えている場合に、微生物の増殖有と判定し、
(iii) 上記(i)および(ii)の工程で、微生物の増殖ありと判定されなかった場合に、微生物の増殖無と判定する、
ことを含む工程により取得し、取得した両データを判別分析法により解析し、醤油含有液状飲食品の成分分析値から微生物の生育性を予測する予測モデルを構築し、該予測モデルに基づいて前記醤油含有液状飲食品中の成分分析値から該醤油含有液状飲食品の微生物生育性を予測する方法。
A method for predicting the growth of microorganisms in soy sauce-containing liquid foods and drinks, and for the soy sauce-containing liquid foods and drinks, the component analysis values for the pH value, salt concentration, Brix, and alcohol concentration in the foods and drinks are used as quantitative data Qualitative data about the presence or absence of microbial growth
(i) Inoculate the food or drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from changes in appearance, and if growth of microorganisms is observed, determine that microorganisms have grown,
(ii) Inoculate the food and drink with microorganisms, and after a certain temperature and period, determine the presence or absence of growth of microorganisms from the change in appearance, and if the growth of microorganisms is not observed, further measure the number of bacteria, If it exceeds 10 times the initial number of bacteria, it is determined that the microorganism has proliferated,
(iii) If it is not determined in the steps (i) and (ii) that the microorganism has grown, it is determined that the microorganism has not grown.
And analyzing both of the acquired data by discriminant analysis, constructing a prediction model for predicting the growth of microorganisms from the component analysis value of the soy sauce-containing liquid food and drink, and based on the prediction model A method for predicting microbial growth of a soy sauce-containing liquid food or drink from component analysis values in the soy sauce-containing liquid food or drink.
請求項1〜6のいずれか1項に記載の飲食品の微生物の生育性を予測する方法を行うための飲食品中の微生物生育性予測システムであって、
(a) 微生物の生育性が未知の飲食品の成分分析値を入力する手段、
(b) 構築した微生物生育性予測モデルを記憶している記憶手段、
(c) (a)の入力手段を用いて入力した成分分析値を(b)の記憶手段に記憶されている微生物生育性予測モデルに適用して、微生物の生育性の有無を予測するデータ処理手段、および
(d) 予測された微生物の選択性の有無を出力する出力手段、
を含む飲食品中の微生物生育性予測システム。
A system for predicting microbial growth in foods and drinks for performing the method for predicting the growth of microorganisms in foods and drinks according to any one of claims 1 to 6,
(a) means for inputting component analysis values of foods and drinks whose microbial growth is unknown;
(b) storage means for storing the constructed microbial growth prediction model;
(c) Data processing for predicting the presence or absence of microbial growth by applying the component analysis value input using the input means of (a) to the microbial growth prediction model stored in the storage means of (b) Means, and
(d) an output means for outputting the presence or absence of the predicted microbial selectivity,
For predicting the growth of microorganisms in foods and drinks.
JP2006148674A 2006-05-29 2006-05-29 Method for predicting growth of microorganism in food and drink Pending JP2007312738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148674A JP2007312738A (en) 2006-05-29 2006-05-29 Method for predicting growth of microorganism in food and drink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148674A JP2007312738A (en) 2006-05-29 2006-05-29 Method for predicting growth of microorganism in food and drink

Publications (1)

Publication Number Publication Date
JP2007312738A true JP2007312738A (en) 2007-12-06

Family

ID=38847174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148674A Pending JP2007312738A (en) 2006-05-29 2006-05-29 Method for predicting growth of microorganism in food and drink

Country Status (1)

Country Link
JP (1) JP2007312738A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963589A (en) * 2010-08-19 2011-02-02 中国人民解放军第三〇二医院 Method for detecting activity of antivirus medicament and application thereof
KR101209404B1 (en) 2012-03-29 2012-12-06 군산대학교산학협력단 Apparatus and method for determine and prediction of risk level using statistic approaches on pathogenic microorganism in food
WO2013129655A2 (en) * 2012-03-02 2013-09-06 株式会社明治 Method for predicting proliferation of microbial count
JP2015143653A (en) * 2014-01-31 2015-08-06 アサヒ飲料株式会社 Bacteriostatic density function generation method, and lactic fruit juice drink including bacteriostatic, and production method thereof
CN111127239A (en) * 2020-01-13 2020-05-08 吉林大学 Method for establishing staphylococcus aureus growth prediction model in spinach juice
CN114291417A (en) * 2021-12-31 2022-04-08 成都市食品检验研究院 Microorganism and biotoxin tracing system
WO2023080010A1 (en) * 2021-11-02 2023-05-11 東洋製罐グループホールディングス株式会社 Food contamination prediction device, inference device, machine learning device, food contamination prediction method, inference method, and machine learning method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109386A (en) * 1998-10-01 2000-04-18 Asahi Kankyo System Kk Composting method of organic waste and evaluation method of composted material thereby
WO2001007907A1 (en) * 1999-07-23 2001-02-01 Cyrano Sciences, Inc. Food applications of artificial olfactometry
JP2005176791A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Substrate plate for detecting oceanic microorganism and method for monitoring ocean

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109386A (en) * 1998-10-01 2000-04-18 Asahi Kankyo System Kk Composting method of organic waste and evaluation method of composted material thereby
WO2001007907A1 (en) * 1999-07-23 2001-02-01 Cyrano Sciences, Inc. Food applications of artificial olfactometry
JP2005176791A (en) * 2003-12-22 2005-07-07 Mitsubishi Heavy Ind Ltd Substrate plate for detecting oceanic microorganism and method for monitoring ocean

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101963589A (en) * 2010-08-19 2011-02-02 中国人民解放军第三〇二医院 Method for detecting activity of antivirus medicament and application thereof
WO2013129655A2 (en) * 2012-03-02 2013-09-06 株式会社明治 Method for predicting proliferation of microbial count
WO2013129655A3 (en) * 2012-03-02 2013-10-31 株式会社明治 Method for predicting proliferation of microbial count
JP5456219B1 (en) * 2012-03-02 2014-03-26 株式会社明治 Method for predicting the growth of the number of microorganisms in food and drink
CN104136624A (en) * 2012-03-02 2014-11-05 株式会社明治 Method for predicting proliferation of microbial count
KR101209404B1 (en) 2012-03-29 2012-12-06 군산대학교산학협력단 Apparatus and method for determine and prediction of risk level using statistic approaches on pathogenic microorganism in food
JP2015143653A (en) * 2014-01-31 2015-08-06 アサヒ飲料株式会社 Bacteriostatic density function generation method, and lactic fruit juice drink including bacteriostatic, and production method thereof
CN111127239A (en) * 2020-01-13 2020-05-08 吉林大学 Method for establishing staphylococcus aureus growth prediction model in spinach juice
CN111127239B (en) * 2020-01-13 2022-09-06 吉林大学 Method for establishing staphylococcus aureus growth prediction model in spinach juice
WO2023080010A1 (en) * 2021-11-02 2023-05-11 東洋製罐グループホールディングス株式会社 Food contamination prediction device, inference device, machine learning device, food contamination prediction method, inference method, and machine learning method
JP2023068247A (en) * 2021-11-02 2023-05-17 東洋製罐グループホールディングス株式会社 Food pollution prediction device, inference device, machine learning device, food pollution prediction method, inference method, and machine learning method
JP7355098B2 (en) 2021-11-02 2023-10-03 東洋製罐グループホールディングス株式会社 Food contamination prediction device, inference device, machine learning device, food contamination prediction method, inference method, and machine learning method
CN114291417A (en) * 2021-12-31 2022-04-08 成都市食品检验研究院 Microorganism and biotoxin tracing system

Similar Documents

Publication Publication Date Title
McKellar et al. Modeling microbial responses in food
Falasconi et al. Electronic nose for microbiological quality control of food products
Havelaar et al. Future challenges to microbial food safety
Chen et al. Application of linear/non-linear classification algorithms in discrimination of pork storage time using Fourier transform near infrared (FT-NIR) spectroscopy
Papadopoulou et al. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis
Concina et al. Early detection of microbial contamination in processed tomatoes by electronic nose
Fletcher et al. Advances in meat spoilage detection: A short focus on rapid methods and technologies
Diao et al. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679
JP2007312738A (en) Method for predicting growth of microorganism in food and drink
Wang et al. Early detection of Zygosaccharomyces Rouxii—spawned spoilage in apple juice by electronic nose combined with chemometrics
Sahar et al. Use of Fourier transform-infrared spectroscopy to predict spoilage bacteria on aerobically stored chicken breast fillets
Gu et al. Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors
Stahl et al. Safety and quality assessment of ready-to-eat pork products in the cold chain
Kowalik et al. Analysis and mathematical modelling of the behaviour of Escherichia coli in the mascarpone cheese during cold storage
CN109852677A (en) Quality intelligent detecting method and system in a kind of cold chain meat and meat products logistics progress
Tarlak et al. Development and validation of a one-step modelling approach for the determination of chicken meat shelf-life based on the growth kinetics of Pseudomonas spp
JP5456219B1 (en) Method for predicting the growth of the number of microorganisms in food and drink
Deak et al. Use of indirect conductimetry to predict the growth of spoilage yeasts, with special consideration of Zygosaccharomyces bailii
Rasch Experimental design and data collection
Albrecht et al. A multi-model approach to implement a dynamic shelf life criterion in meat supply chains
Legan et al. Modelling the growth, survival and death of bacterial pathogens in foods
Gardini et al. A head space gas chromatographic approach for the monitoring of the microbial cell activity and the cell viability evaluation
Koutchma et al. General principles and approaches of food process validation
Fan et al. Microbial quality assessment methods for fresh-cut fruits and vegetables
Georgalis et al. A Protocol for Predictive Modeling of Microbial Inactivation Based on Experimental Data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A02 Decision of refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A02