JP2007309274A - Combustion condition determining device for internal combustion engine - Google Patents

Combustion condition determining device for internal combustion engine Download PDF

Info

Publication number
JP2007309274A
JP2007309274A JP2006140932A JP2006140932A JP2007309274A JP 2007309274 A JP2007309274 A JP 2007309274A JP 2006140932 A JP2006140932 A JP 2006140932A JP 2006140932 A JP2006140932 A JP 2006140932A JP 2007309274 A JP2007309274 A JP 2007309274A
Authority
JP
Japan
Prior art keywords
charge amount
detection
combustion state
ion current
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140932A
Other languages
Japanese (ja)
Inventor
Eiji Takakuwa
栄司 高桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006140932A priority Critical patent/JP2007309274A/en
Publication of JP2007309274A publication Critical patent/JP2007309274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably prevent false determination of a combustion state due to noise, in a system for detecting an ion current generated along with combustion of air fuel mixture inside a combustion chamber of an internal combustion engine via an electrode of an ignition plug and determining the combustion state based on the detection value. <P>SOLUTION: Detection charge amount Qi is determined by time quadrature of an ion current detection value i within a predetermined detection section set corresponding to a generation section of noise (corona discharge), and noise charge amount Qn is determined by multiplying charge part capacity Cp and charge voltage Vp of the ignition plug 27. When the detection charge amount Qi is compared with the noise charge amount Qn, if the detection charge amount Qi exceeds the noise charge amount Qn, it is determined that determination of the combustion state by a combustion ion current is possible, and the determination of the combustion state is permitted. If the detection charge amount Qi is smaller than the noise charge amount Qn, it is determined that determination of the combustion state by the combustion ion current is difficult due to much noise, and the determination of the combustion state is prohibited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の燃焼室内で混合気の燃焼に伴って発生するイオン電流を点火プラグの電極を介して検出し、その検出値に基づいて燃焼状態を判定する内燃機関の燃焼状態判定装置に関する発明である。   The present invention detects an ionic current generated by combustion of an air-fuel mixture in a combustion chamber of an internal combustion engine through an electrode of a spark plug, and determines a combustion state based on the detected value. It is invention regarding.

近年、内燃機関の筒内で混合気が燃焼する際にイオンが発生する特性に着目して、点火毎に筒内で発生するイオン電流を点火プラグの電極を介して検出し、そのイオン電流検出値に基づいて燃焼状態を判定する技術が開発されている。例えば、特許文献1(特開2005−155634号公報)では、点火動作区間と燃焼区間とでイオン電流のピーク値と積分値のいずれかを検出し、その検出値に基づいて不完全燃焼や点火故障を判定するようにしている。   In recent years, focusing on the characteristics that ions are generated when the air-fuel mixture burns in the cylinder of an internal combustion engine, the ion current generated in the cylinder at each ignition is detected via the electrode of the ignition plug, and the ion current is detected. A technique for determining a combustion state based on a value has been developed. For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2005-155634), either an ion current peak value or an integral value is detected in an ignition operation period and a combustion period, and incomplete combustion or ignition is performed based on the detected value. The failure is judged.

ところで、点火プラグのくすぶり汚損(不完全燃焼時に発生するカーボンが点火プラグのガイシ部表面に付着した状態)が回復する過程で、点火プラグの中心電極ガイシ部表面に残っているカーボンと中心電極との間でコロナ放電が発生することが知られている。このコロナ放電発生時には、イオン電流信号に重畳するコロナ放電ノイズを燃焼によるイオン電流と誤判定して燃焼状態の判定を行うことになってしまい、その結果、実際に失火や不完全燃焼が発生してもそれを検出できない可能性がある。   By the way, in the process of smoldering fouling of the spark plug (the state where carbon generated during incomplete combustion adheres to the insulator surface of the spark plug), the carbon remaining on the insulator surface of the spark plug and the center electrode It is known that corona discharge occurs between the two. When this corona discharge occurs, the corona discharge noise superimposed on the ion current signal is misjudged as an ionic current due to combustion, and the combustion state is judged. As a result, misfire or incomplete combustion actually occurs. However, it may not be detected.

この対策として、特許文献2(特開平10−300634号公報)に示すように、点火プラグの中心電極ガイシ部表面の電位を検出するガイシ電位検出電極を設け、このガイシ電位検出電極により検出した電位の変化からノイズの発生の有無を判定し、ノイズ発生時に燃焼状態の判定を禁止することで、ノイズによる燃焼状態の誤判定を防止するようにしたものがある。
特開2005−155634号公報(第4頁〜第5頁等) 特開平10−300634号公報(第2頁〜第3頁等)
As a countermeasure against this, as shown in Patent Document 2 (Japanese Patent Laid-Open No. 10-300634), a insulator potential detection electrode for detecting the potential of the surface of the center electrode insulator of the spark plug is provided, and the potential detected by the insulator potential detection electrode is provided. In some cases, the presence or absence of noise is determined from the change in the noise and the determination of the combustion state is prohibited when noise is generated, thereby preventing erroneous determination of the combustion state due to noise.
JP-A-2005-155634 (pages 4 to 5 etc.) Japanese Patent Laid-Open No. 10-300634 (pages 2 to 3 etc.)

しかし、上記特許文献2の技術では、点火プラグの中心電極ガイシ部表面の電位の変化からノイズの発生の有無を判定するが、本発明者の実験結果によれば、中心電極ガイシ部表面の電位の変化は、エンジン運転状態(エンジン回転速度、負荷率等)の変化によっても発生するため、中心電極ガイシ部表面の電位の変化からノイズの発生の有無を判定すると、エンジン運転状態の変化による中心電極ガイシ部表面の電位の変化をノイズによる変化と誤判定する可能性があり、その結果、正常な燃焼状態のイオン電流検出値をノイズと誤判定する可能性がある。   However, in the technique disclosed in Patent Document 2, the presence or absence of noise is determined from the change in potential on the surface of the center electrode insulator of the spark plug. According to the results of experiments by the inventors, the potential on the surface of the center electrode insulator is determined. Change also occurs due to changes in the engine operating state (engine speed, load factor, etc.). Therefore, if the presence or absence of noise is determined from the change in potential on the surface of the center electrode insulator, the center due to the change in engine operating state There is a possibility that a change in potential on the surface of the electrode insulator is erroneously determined as a change due to noise, and as a result, an ion current detection value in a normal combustion state may be erroneously determined as noise.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、エンジン運転状態の変化の影響を受けずに、ノイズによる燃焼状態の誤判定を安定して防止することができ、燃焼状態の判定精度を向上することができる内燃機関の燃焼状態判定装置を提供することにある。   The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to be able to stably prevent misjudgment of the combustion state due to noise without being affected by changes in the engine operating state. Another object of the present invention is to provide a combustion state determination device for an internal combustion engine that can improve the determination accuracy of the combustion state.

上記目的を達成するために、請求項1に係る発明は、内燃機関の燃焼室内で混合気の燃焼に伴って発生するイオン電流を点火プラグの電極を介して検出するイオン電流検出手段と、前記イオン電流検出手段のイオン電流検出値に基づいて燃焼状態を判定する燃焼状態判定手段とを備えた内燃機関の燃焼状態判定装置において、前記イオン電流検出手段のイオン電流検出値に重畳するノイズの発生区間に対応して設定した所定の検出区間内で前記イオン電流検出値を時間積分して検出電荷量を求める電荷量検出手段と、前記点火プラグの帯電部容量と帯電電圧とに基づいてノイズ電荷量を算出するノイズ電荷量算出手段とを備え、前記燃焼状態判定手段は、前記検出電荷量を前記ノイズ電荷量と比較して前記イオン電流検出値に基づく燃焼状態判定の実行許可/禁止又は燃焼状態判定結果の有効/無効を判定するようにしたものである。   In order to achieve the above object, an invention according to claim 1 is directed to an ion current detection means for detecting an ion current generated by combustion of an air-fuel mixture in a combustion chamber of an internal combustion engine through an electrode of a spark plug; In a combustion state determination device for an internal combustion engine comprising a combustion state determination unit that determines a combustion state based on an ion current detection value of an ion current detection unit, generation of noise superimposed on the ion current detection value of the ion current detection unit A charge amount detecting means for obtaining a detected charge amount by time-integrating the detected ion current value within a predetermined detection interval set corresponding to the interval, and a noise charge based on a charging portion capacity and a charging voltage of the spark plug A noise charge amount calculating means for calculating a quantity, wherein the combustion state determining means compares the detected charge amount with the noise charge amount and is based on the detected ion current value. It is obtained so as to determine the validity / invalidity of the constant execution enable / disable or combustion state determination result.

一般に、イオン電流検出値に重畳する主要なノイズは、コロナ放電によって発生し、コロナ放電の電荷量が多くなるほど、ノイズが大きくなって燃焼状態を誤判定しやすくなるという関係がある。ここで、コロナ放電の電荷量は、点火プラグの帯電部(中心電極ガイシ部)に帯電する電荷量に依存するため、点火プラグの帯電部の電荷量からコロナ放電の電荷量ひいてはノイズ電荷量を推定することができる。点火プラグの帯電部の電荷量は、帯電部容量と帯電電圧との積で算出される。
帯電部の電荷量=帯電部容量×帯電電圧
In general, the main noise superimposed on the detected ion current value is generated by corona discharge, and there is a relationship that as the amount of charge of corona discharge increases, the noise becomes larger and it becomes easier to erroneously determine the combustion state. Here, since the charge amount of the corona discharge depends on the charge amount charged in the charging portion (center electrode insulator portion) of the spark plug, the charge amount of the corona discharge and hence the noise charge amount is calculated from the charge amount of the charging portion of the spark plug. Can be estimated. The charge amount of the charging part of the spark plug is calculated by the product of the charging part capacity and the charging voltage.
Charge amount of charging part = charging part capacity x charging voltage

このような事情を考慮して、本発明では、ノイズの発生区間に対応して設定した所定の検出区間内でイオン電流検出値を時間積分して検出電荷量を求めると共に、点火プラグの帯電部容量と帯電電圧とに基づいてノイズ電荷量を算出し、検出電荷量をノイズ電荷量と比較してイオン電流検出値に基づく燃焼状態判定の実行許可/禁止又は燃焼状態判定結果の有効/無効を判定するようにしたものである。このようにすれば、コロナ放電の電荷量(ノイズ電荷量)を基準にして燃焼イオンの電荷量を正当に評価して、ノイズの発生状態を判定することが可能となり、エンジン運転状態の変化の影響を受けずに、ノイズによる燃焼状態の誤判定を安定して防止することができ、燃焼状態の判定精度を向上することができる。   In view of such circumstances, the present invention obtains the detected charge amount by time-integrating the ion current detection value within a predetermined detection interval set corresponding to the noise generation interval, The noise charge amount is calculated based on the capacity and the charging voltage, and the detection charge amount is compared with the noise charge amount to enable / disable the combustion state determination based on the ion current detection value or to enable / disable the combustion state determination result. Judgment is made. In this way, it becomes possible to judge the charge generation state of the combustion ions based on the charge amount of the corona discharge (noise charge amount), and to determine the noise generation state, and to change the engine operating state. Without being affected, it is possible to stably prevent erroneous determination of the combustion state due to noise, and improve the determination accuracy of the combustion state.

ところで、図2に示すように、コロナ放電の発生パターンには、点火直後の筒内圧力が高い時期に連続的に発生する“連続コロナ放電”と、筒内圧力が低下してから間欠的に発生する“スパイクコロナ放電”とがある。一般に、連続コロナ放電の発生区間は、点火後からATDC60℃A付近までの区間であり、スパイクコロナ放電の発生区間は、ATDC60℃A以降の区間である。   By the way, as shown in FIG. 2, the generation pattern of the corona discharge includes “continuous corona discharge” continuously generated when the in-cylinder pressure immediately after ignition is high, and intermittently after the in-cylinder pressure decreases. There is a “spike corona discharge” that occurs. In general, the continuous corona discharge generation section is a section from after ignition to the vicinity of ATDC 60 ° C. A, and the spike corona discharge generation section is a section after ATDC 60 ° C. A.

このようなコロナ放電の発生パターンを考慮して、請求項2のように、前記検出電荷量を検出する検出区間を、連続コロナ放電の発生区間に対応する第1検出区間と、スパイクコロナ放電の発生区間に対応する第2検出区間とに分割して、各検出区間毎に前記イオン電流検出値を時間積分することで第1検出電荷量と第2検出電荷量を求め、前記第1検出区間における第1ノイズ電荷量と前記第2検出区間における第2ノイズ電荷量をそれぞれ各検出区間における前記点火プラグの帯電部容量と帯電電圧とに基づいて算出し、前記第1検出区間で検出した前記第1検出電荷量が前記第1ノイズ電荷量以下で、且つ、前記第2検出区間で検出した前記第2検出電荷量が前記第2ノイズ電荷量以下と判定される場合のみ、前記イオン電流検出値に基づく燃焼状態の判定を禁止又は燃焼状態判定結果を無効とし、前記第1検出区間と前記第2検出区間の両方又はいずれか一方で検出電荷量がノイズ電荷量よりも多いと判定されれば、前記イオン電流検出値に基づく燃焼状態の判定を実行してその燃焼状態判定結果を有効とするようにしても良い。   In consideration of such a corona discharge generation pattern, as in claim 2, the detection interval for detecting the detected charge amount includes a first detection interval corresponding to a continuous corona discharge generation interval, and spike corona discharge. A first detection charge amount and a second detection charge amount are obtained by time-integrating the ion current detection value for each detection interval by dividing into a second detection interval corresponding to the generation interval, and the first detection interval. And the second noise charge amount in the second detection interval is calculated based on the charging portion capacity and the charging voltage of the ignition plug in each detection interval, and detected in the first detection interval. Only when it is determined that the first detected charge amount is less than or equal to the first noise charge amount and the second detected charge amount detected in the second detection section is less than or equal to the second noise charge amount, the ion current detection. In value If the determination of the combustion state is prohibited or the combustion state determination result is invalidated, and it is determined that the detected charge amount is larger than the noise charge amount in one or both of the first detection interval and the second detection interval, A combustion state determination based on the detected ion current value may be executed to validate the combustion state determination result.

このように、連続コロナ放電の発生区間に対応する第1検出区間と、スパイクコロナ放電の発生区間に対応する第2検出区間とに分割すれば、各検出区間毎にノイズ電荷量ひいてはノイズの発生状態を精度良く評価することができ、ノイズ/燃焼イオンの判別精度をより向上させることができる。しかも、2つの検出区間に分けて各検出区間毎に検出電荷量とノイズ電荷量とを比較するため、一般的な従来のピーク値判定では失火を検出できない領域でも、失火を検出することが可能となり、失火検出可能領域を従来より拡大することができる。   As described above, when the detection period is divided into the first detection period corresponding to the generation period of the continuous corona discharge and the second detection period corresponding to the generation period of the spike corona discharge, the noise charge amount and the generation of noise are generated for each detection period. The state can be evaluated with high accuracy, and the noise / combustion ion discrimination accuracy can be further improved. Moreover, since the detection charge amount and the noise charge amount are compared for each detection section divided into two detection sections, misfire can be detected even in a region where misfire cannot be detected by general conventional peak value determination. Thus, the misfire-detectable region can be expanded as compared with the conventional case.

また、請求項3のように、検出電荷量とノイズ電荷量との比較結果から前記イオン電流検出値に基づく燃焼状態の判定を禁止又は燃焼状態判定結果を無効と判定した場合は、失火又は不完全燃焼と判断するようにすれば良い。これにより、失火又は不完全燃焼を精度良く検出することができる。   Further, as in claim 3, when it is determined that the combustion state determination based on the detected ion current value is prohibited or the combustion state determination result is invalid from the comparison result between the detected charge amount and the noise charge amount, It may be determined that the combustion is complete. Thereby, misfire or incomplete combustion can be detected with high accuracy.

ところで、内燃機関の始動後、暖機が十分に行われるまでは、点火プラグの帯電部(中心電極ガイシ部)表面のカーボンの付着領域が拡大して、くすぶり汚損が進行していくが、その後、内燃機関の暖機が完了して、点火プラグの温度が十分に高温になるに従って、点火プラグの帯電部表面に付着したカーボンが徐々に焼失してその焼失領域を拡大していき、くすぶり汚損が徐々に回復していく。このくすぶり汚損の回復過程の期間(カーボンがほぼ焼き切られるまでの期間)は、点火プラグの帯電部容量が通常よりも大きくなって、点火プラグの帯電部表面に残っているカーボンと中心電極との間でコロナ放電が発生しやすくなる。   By the way, after the start of the internal combustion engine, until the warm-up is sufficiently performed, the carbon adhesion region on the surface of the charging portion (center electrode insulator portion) of the spark plug is expanded and smoldering fouling proceeds. As the internal combustion engine warms up and the spark plug temperature becomes sufficiently high, the carbon adhering to the surface of the charged part of the spark plug gradually burns out and expands the burnout area. Gradually recovers. During this smoldering fouling recovery period (the period until carbon is almost burned out), the charged part capacity of the spark plug is larger than usual, and the carbon remaining on the charged part surface of the spark plug and the center electrode Corona discharge is likely to occur between the two.

この点を考慮して、請求項4のように、ノイズ電荷量を算出する際に用いる点火プラグの帯電部容量は、新品時(くすぶり無し時)の帯電部の標準的な容量を基準として設定し、点火プラグのくすぶり汚損の回復過程の所定期間(カーボンがほぼ焼き切られるまでの期間)は、点火プラグの帯電部容量を増加するようにすると良い。このようにすれば、点火プラグのくすぶり状態に応じた帯電部容量を容易に設定できると共に、コロナ放電が発生しやすいくすぶり回復過程で、ノイズ電荷量を精度良く算出することができ、ノイズ/燃焼イオンの判別精度をより向上させることができる。   In consideration of this point, the charged part capacity of the spark plug used for calculating the noise charge amount is set based on the standard capacity of the charged part when new (no smoldering). The charging plug capacity of the spark plug is preferably increased during a predetermined period (a period until the carbon is almost burned out) in the recovery process of the smoldering contamination of the spark plug. In this way, it is possible to easily set the charged portion capacity according to the smoldering state of the spark plug, and to accurately calculate the noise charge amount during the smolder recovery process in which corona discharge is likely to occur. Ion discrimination accuracy can be further improved.

本発明は、例えば特許文献2(特開平10−300634号公報)に記載された電圧検出方法で、点火プラグの帯電電圧を実測するようにしても良いが、この場合、検出電極や、電圧検出回路を新たに設ける必要があるため、製造コストが増加して、低コスト化の要求を満たすことができない。   In the present invention, the charging voltage of the spark plug may be actually measured by the voltage detection method described in, for example, Patent Document 2 (Japanese Patent Laid-Open No. Hei 10-300494). Since it is necessary to newly provide a circuit, the manufacturing cost increases and the demand for cost reduction cannot be satisfied.

そこで、点火プラグの帯電電圧が内燃機関の運転状態に応じて変化するという特性を考慮して、請求項5のように、点火プラグの帯電電圧を内燃機関の運転状態に応じて設定してノイズ電荷量を算出するようにすると良い。このようにすれば、特許文献2のような検出電極や、電圧検出回路を新たに設ける必要がなく、低コスト化の要求を満たすことができる。   Therefore, in consideration of the characteristic that the charging voltage of the spark plug changes according to the operating state of the internal combustion engine, the charging voltage of the spark plug is set according to the operating state of the internal combustion engine as in claim 5 to reduce noise. It is preferable to calculate the charge amount. In this way, it is not necessary to newly provide a detection electrode and a voltage detection circuit as in Patent Document 2, and the cost reduction requirement can be satisfied.

また、請求項6のように、第2検出区間における点火プラグの帯電電圧を第1検出区間よりも高く設定するようにしても良い。これにより、各検出区間の帯電電圧を精度良く設定することができる。   Further, the charging voltage of the spark plug in the second detection section may be set higher than that in the first detection section. Thereby, the charging voltage in each detection section can be set with high accuracy.

以下、本発明を実施するための最良の形態を具体化した2つの実施例1,2を説明する。   Hereinafter, two Examples 1 and 2, which embody the best mode for carrying out the present invention, will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいて点火制御系の回路構成を説明する。
点火コイル21の一次コイル22の一端はバッテリ23に接続され、該一次コイル22の他端は、イグナイタ24に内蔵されたパワートランジスタ25のコレクタに接続されている。二次コイル26の一端は点火プラグ27に接続され、該二次コイル26の他端は、2つのツェナーダイオード28,29を介してグランドに接続されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, the circuit configuration of the ignition control system will be described with reference to FIG.
One end of the primary coil 22 of the ignition coil 21 is connected to the battery 23, and the other end of the primary coil 22 is connected to the collector of the power transistor 25 built in the igniter 24. One end of the secondary coil 26 is connected to a spark plug 27, and the other end of the secondary coil 26 is connected to the ground via two Zener diodes 28 and 29.

2つのツェナーダイオード28,29は互いに逆向きに直列接続され、一方のツェナーダイオード28にコンデンサ30が並列に接続され、他方のツェナーダイオード29にイオン電流検出抵抗31が並列に接続されている。コンデンサ30とイオン電流検出抵抗31との間の電位Vinが抵抗32を介して反転増幅回路33の反転入力端子(−)に入力されて反転増幅され、この反転増幅回路33の出力電圧Vがイオン電流検出信号としてエンジン制御回路34に入力される。イオン電流検出回路35は、ツェナーダイオード28,29、コンデンサ30、イオン電流検出抵抗31、反転増幅回路33等から構成され、このイオン電流検出回路35とエンジン制御回路34とによってイオン電流検出装置(イオン電流検出手段)が構成されている。   The two Zener diodes 28 and 29 are connected in series in opposite directions, a capacitor 30 is connected in parallel to one Zener diode 28, and an ion current detection resistor 31 is connected in parallel to the other Zener diode 29. A potential Vin between the capacitor 30 and the ionic current detection resistor 31 is input to the inverting input terminal (−) of the inverting amplifier circuit 33 via the resistor 32 and is inverted and amplified. The output voltage V of the inverting amplifier circuit 33 is ionized. The current detection signal is input to the engine control circuit 34. The ion current detection circuit 35 includes Zener diodes 28 and 29, a capacitor 30, an ion current detection resistor 31, an inverting amplification circuit 33, and the like. The ion current detection circuit 35 and the engine control circuit 34 are used to detect an ion current detection device (ion ion). Current detection means).

エンジン運転中は、エンジン制御回路34からイグナイタ24に送信される点火信号の立ち上がり/立ち下がりでパワートランジスタ25がオン/オフする。パワートランジスタ25がオンすると、バッテリ23から一次コイル22に一次電流が流れ、その後、パワートランジスタ25がオフすると、一次コイル22の一次電流が遮断されて、二次コイル26に高電圧が電磁誘導され、この高電圧によって点火プラグ27の電極36,37間に火花放電が発生する。この火花放電電流は、点火プラグ27の接地電極37から中心電極36へ流れ、二次コイル26を経てコンデンサ30に充電されると共に、ツェナーダイオード28,29を経てグランド側に流れる。コンデンサ30の充電後は、ツェナーダイオード28のツェナー電圧によって規制されるコンデンサ30の充電電圧を電源としてイオン電流検出回路35が駆動され、後述するようにしてイオン電流が検出される。   During engine operation, the power transistor 25 is turned on / off at the rise / fall of the ignition signal transmitted from the engine control circuit 34 to the igniter 24. When the power transistor 25 is turned on, a primary current flows from the battery 23 to the primary coil 22. After that, when the power transistor 25 is turned off, the primary current of the primary coil 22 is cut off and a high voltage is electromagnetically induced in the secondary coil 26. This high voltage causes spark discharge between the electrodes 36 and 37 of the spark plug 27. This spark discharge current flows from the ground electrode 37 of the spark plug 27 to the center electrode 36, is charged to the capacitor 30 via the secondary coil 26, and flows to the ground side via the Zener diodes 28 and 29. After the capacitor 30 is charged, the ion current detection circuit 35 is driven using the charging voltage of the capacitor 30 regulated by the Zener voltage of the Zener diode 28 as a power source, and the ion current is detected as described later.

これに対して、イオン電流は、火花放電電流とは反対方向に流れる。つまり、点火終了後は、コンデンサ30の充電電圧によって点火プラグ27の電極36,37間に電圧が印加されるため、気筒内で混合気が燃焼する際に発生するイオンによって電極36,37間にイオン電流が流れるが、このイオン電流は、中心電極36から接地電極37へ流れ、更に、グランド側からイオン電流検出抵抗31を通ってコンデンサ30に流れる。この際、イオン電流検出抵抗31に流れるイオン電流の変化に応じて反転増幅回路33の入力電位Vinが変化し、反転増幅回路33の出力端子からイオン電流に応じた電圧Vがエンジン制御回路34に出力される。この反転増幅回路33の出力電圧Vからイオン電流が検出される。   On the other hand, the ion current flows in the opposite direction to the spark discharge current. In other words, after ignition is finished, a voltage is applied between the electrodes 36 and 37 of the spark plug 27 by the charging voltage of the capacitor 30, so that ions generated when the air-fuel mixture burns in the cylinder are connected between the electrodes 36 and 37. Although an ionic current flows, the ionic current flows from the center electrode 36 to the ground electrode 37, and further flows from the ground side through the ion current detection resistor 31 to the capacitor 30. At this time, the input potential Vin of the inverting amplifier circuit 33 changes according to the change of the ionic current flowing through the ionic current detection resistor 31, and the voltage V corresponding to the ionic current is output to the engine control circuit 34 from the output terminal of the inverting amplifier circuit 33. Is output. An ion current is detected from the output voltage V of the inverting amplifier circuit 33.

エンジン制御回路34は、マイクロコンピュータを主体として構成され、回転角検出センサ38(クランク角センサ)、負荷検出センサ39(吸入空気量検出センサ、吸気圧検出センサ)等により検出した運転状態に応じて燃料噴射制御や点火時期制御を行うと共に、イオン電流検出回路35の出力を利用して、所定の燃焼イオン検出区間におけるイオン電流のピーク値Ii 、積分値Qi 、イオン出力時間Ti 等を検出して燃焼状態(失火、プレイグニッション、ノッキング等)を判定する。   The engine control circuit 34 is mainly composed of a microcomputer, and corresponds to an operating state detected by a rotation angle detection sensor 38 (crank angle sensor), a load detection sensor 39 (intake air amount detection sensor, intake pressure detection sensor) and the like. While performing fuel injection control and ignition timing control, the output of the ion current detection circuit 35 is used to detect the peak value Ii, integral value Qi, ion output time Ti, etc. of the ion current in a predetermined combustion ion detection section. Determine the combustion state (misfire, preignition, knocking, etc.).

次に、イオン電流検出回路35で検出するイオン電流波形が、正常燃焼時とコロナ放電発生時にどの様に変化するかを図2を用いて説明する。   Next, how the ion current waveform detected by the ion current detection circuit 35 changes during normal combustion and when corona discharge occurs will be described with reference to FIG.

図2(d)に示すように、点火コイル21の一次側巻線22への通電開始直後(点火信号OFF→ON切換直後)に、短い時間幅のパルス状のノイズ電流が誘起され、点火直後(点火信号ON→OFF切換直後)に、点火コイル21の二次側の残留磁気エネルギによってLC共振が発生し、その後、正常燃焼時には燃焼により発生したイオン(以下「燃焼イオン」という)の電流波形が現れる。本実施例1では、LC共振後に現れる燃焼イオンのピーク値Ii 、積分値Qi 、イオン電流出力時間Ti の少なくとも1つに基づいて燃焼状態(失火、プレイグニッション、ノッキング等)を判定する。   As shown in FIG. 2 (d), immediately after the start of energization of the primary winding 22 of the ignition coil 21 (immediately after the ignition signal is switched from OFF to ON), a pulse-like noise current having a short time width is induced. LC resonance is generated by the residual magnetic energy on the secondary side of the ignition coil 21 (immediately after the ignition signal is switched from ON to OFF), and thereafter, a current waveform of ions (hereinafter referred to as “combustion ions”) generated by combustion during normal combustion. Appears. In the first embodiment, the combustion state (misfire, preignition, knocking, etc.) is determined based on at least one of the peak value Ii, the integral value Qi, and the ion current output time Ti of the combustion ions that appear after LC resonance.

一方、点火プラグ27のくすぶり汚損(不完全燃焼時に発生するカーボンが点火プラグ27のガイシ部表面に付着した状態)が回復する過程等で発生するコロナ放電の発生パターンには、図2(e)に示すように、点火直後の筒内圧力が高い時期に連続的に発生する“連続コロナ放電”と、図2(f)に示すように、筒内圧力が低下してから間欠的に発生する“スパイクコロナ放電”とがある。一般に、連続コロナ放電の発生区間は、点火後からATDC60℃A付近までの区間であり、スパイクコロナ放電の発生区間は、ATDC60℃A以降の区間である。   On the other hand, the generation pattern of corona discharge that occurs in the process of smoldering fouling of the spark plug 27 (the state in which carbon generated during incomplete combustion adheres to the insulator portion surface of the spark plug 27) is shown in FIG. As shown in FIG. 2, “continuous corona discharge” continuously generated when the in-cylinder pressure immediately after ignition is high, and intermittently after the in-cylinder pressure decreases as shown in FIG. There is “spike corona discharge”. In general, the continuous corona discharge generation section is a section from after ignition to the vicinity of ATDC 60 ° C. A, and the spike corona discharge generation section is a section after ATDC 60 ° C. A.

このようなコロナ放電によるノイズを燃焼イオンとして検出すると、実際に失火や不完全燃焼が発生してもそれを検出できない可能性がある。   If such noise due to corona discharge is detected as combustion ions, it may not be detected even if misfire or incomplete combustion actually occurs.

そこで、本実施例1では、連続コロナ放電の発生区間とスパイクコロナ放電の発生区間を一括して含む1つの検出区間(点火後から例えばATDC180℃Aまでの区間)を設定し、この検出区間内でイオン電流検出値iを時間積分して検出電荷量Qi を求める。
Qi =∫idt
Therefore, in the first embodiment, one detection interval (interval from after ignition to ATDC 180 ° C. A) including the continuous corona discharge generation interval and the spike corona discharge generation interval is set. The ion current detection value i is integrated over time to obtain the detected charge amount Qi.
Qi = ∫idt

更に、点火プラグ27の帯電部(中心電極ガイシ部)の容量Cp と帯電電圧Vp とを乗算して、ノイズ電荷量Qn (コロナ放電の電荷量)を求める。
Qn =Cp ×Vp
Furthermore, the noise charge amount Qn (corona discharge charge amount) is obtained by multiplying the capacitance Cp of the charging portion (center electrode insulator portion) of the spark plug 27 by the charging voltage Vp.
Qn = Cp x Vp

そして、検出電荷量Qi をノイズ電荷量Qn と比較して、検出電荷量Qi がノイズ電荷量Qn 以上であれば、燃焼イオン電流による燃焼状態の判定が可能であると判断して、燃焼状態の判定を許可する(又は燃焼状態判定結果を有効するようにしても良い)。もし、検出電荷量Qi がノイズ電荷量Qn よりも少なければ、ノイズが多くて燃焼イオン電流による燃焼状態の判定が困難であると判断して、燃焼状態の判定を禁止する(又は燃焼状態判定結果を無効とするようにしても良い)。   Then, the detected charge amount Qi is compared with the noise charge amount Qn, and if the detected charge amount Qi is equal to or greater than the noise charge amount Qn, it is determined that the combustion state can be determined by the combustion ion current, and the combustion state The determination is permitted (or the combustion state determination result may be validated). If the detected charge amount Qi is less than the noise charge amount Qn, it is determined that it is difficult to determine the combustion state by the combustion ion current due to the noise, and the determination of the combustion state is prohibited (or the combustion state determination result) May be invalidated).

ところで、エンジン始動後、暖機が十分に行われるまでは、点火プラグ27の帯電部のカーボンの付着領域が拡大して、くすぶり汚損が進行していくが、その後、エンジンの暖機が完了して、点火プラグ27の温度が十分に高温になるに従って、点火プラグ27の帯電部に付着したカーボンが徐々に焼失してその焼失領域を拡大していき、くすぶり汚損が徐々に回復していく。このくすぶり汚損の回復過程の期間(カーボンがほぼ焼き切られるまでの期間)は、点火プラグ27の帯電部容量が通常よりも大きくなって、点火プラグ27の帯電部表面に残っているカーボンと中心電極との間でコロナ放電が発生しやすくなる。   By the way, after the engine is started, until the warm-up is sufficiently performed, the carbon adhesion region of the charging portion of the spark plug 27 is expanded and smoldering fouling progresses, but after that, the warm-up of the engine is completed. As the temperature of the spark plug 27 becomes sufficiently high, the carbon adhering to the charged portion of the spark plug 27 gradually burns out and expands the burned area, and the smoldering fouling gradually recovers. During this smoldering fouling recovery period (a period until the carbon is almost burned out), the charged portion capacity of the spark plug 27 becomes larger than usual, and the carbon remaining on the charged portion surface of the spark plug 27 and the center Corona discharge easily occurs between the electrodes.

この点を考慮して、本実施例1では、ノイズ電荷量Qn を算出する際に用いる点火プラグ27の帯電部の容量Cp は、新品時(くすぶり無し時)の帯電部の標準的な容量(例えば5pF)を基準として設定し、点火プラグ27のくすぶり汚損の回復過程の所定期間(カーボンがほぼ焼き切られるまでの期間)は、点火プラグ27の帯電部容量Cp を例えば9pFに増加して設定するようにしている。   In consideration of this point, in the first embodiment, the capacity Cp of the charging portion of the spark plug 27 used when calculating the noise charge amount Qn is the standard capacity of the charging portion (when no smoldering is present) For example, 5 pF) is set as a reference, and a predetermined period (a period until the carbon is almost burned out) of the recovery process of the smoldering contamination of the spark plug 27 is set by increasing the charged portion capacitance Cp of the spark plug 27 to, for example, 9 pF. Like to do.

また、点火プラグ27の帯電電圧Vp の検出については、例えば特許文献2(特開平10−300634号公報)に記載された電圧検出方法で、点火プラグ27の帯電電圧Vp を実測するようにしても良いが、この場合、検出電極や、電圧検出回路を新たに設ける必要があるため、製造コストが増加して、低コスト化の要求を満たすことができない。   As for the detection of the charging voltage Vp of the spark plug 27, the charging voltage Vp of the spark plug 27 may be actually measured by a voltage detection method described in, for example, Japanese Patent Application Laid-Open No. 10-300634. However, in this case, since it is necessary to newly provide a detection electrode and a voltage detection circuit, the manufacturing cost increases, and the demand for cost reduction cannot be satisfied.

そこで、本実施例1では、点火プラグ27の帯電電圧Vp がエンジン運転状態に応じて変化するという特性を考慮して、点火プラグ27の帯電電圧Vp をエンジン運転状態(例えばエンジン回転速度と負荷率)に応じてマップ等により算出するようにしている。   Therefore, in the first embodiment, the charging voltage Vp of the spark plug 27 is changed to the engine operating state (for example, the engine speed and the load factor) in consideration of the characteristic that the charging voltage Vp of the spark plug 27 changes according to the engine operating state. ) Is calculated using a map or the like.

以上説明した本実施例1の燃焼状態の判定は、エンジン制御回路34によって図3及び図4の燃焼状態判定ルーチンに従って次のように実行される。本ルーチンは、エンジン運転中に所定周期で実行され、特許請求の範囲でいう燃焼状態判定手段としての役割を果たす。   The determination of the combustion state of the first embodiment described above is executed as follows by the engine control circuit 34 according to the combustion state determination routine of FIGS. 3 and 4. This routine is executed at a predetermined cycle during engine operation, and serves as a combustion state determination means in the claims.

本ルーチンが起動されると、まずステップ101で、回転角検出センサ38、負荷検出センサ39等の出力信号に基づいてエンジン回転速度Ne、負荷率等のエンジン運転状態を検出する。この後、ステップ102に進み、くすぶり状態判定ルーチン(図示せず)を実行してイオン電流検出値に基づいて点火プラグ27のくすぶり状態を判定する。このくすぶり状態の判定は、例えば特開2003−83222号公報に記載された方法で行えば良い。このすぶり状態の判定方法は、エンジン運転中に、イオン電流検出期間以外の期間(燃焼イオンが発生しない期間)に流れる電流(漏洩電流)を適当なサンプリング間隔で少なくとも2回検出し、それらの電流検出値から点火プラグ27の絶縁抵抗値を算出して、その絶縁抵抗値に基づいて点火プラグ27のくすぶり状態を判定する。   When this routine is started, first, in step 101, the engine operating state such as the engine rotation speed Ne and the load factor is detected based on output signals from the rotation angle detection sensor 38, the load detection sensor 39, and the like. Thereafter, the process proceeds to step 102, where a smoldering state determination routine (not shown) is executed to determine the smoldering state of the spark plug 27 based on the detected ion current value. The determination of the smoldering state may be performed by a method described in, for example, Japanese Patent Application Laid-Open No. 2003-83222. This smoldering state determination method detects current (leakage current) flowing in a period other than the ion current detection period (period in which combustion ions are not generated) at least twice during an engine operation at an appropriate sampling interval. The insulation resistance value of the spark plug 27 is calculated from the detected current value, and the smoldering state of the spark plug 27 is determined based on the insulation resistance value.

この後、ステップ103に進み、上記ステップ102のくすぶり状態の判定結果に基づいてくすぶり回復途中(くすぶり汚損の回復過程の所定期間)であるか否かを判定する。この際、上記ステップ102のくすぶり状態の判定結果が“くすぶり有り”から“くすぶり無し”に切り換わった直後は、点火プラグ27の帯電部表面にまだカーボンが残っているので、上記ステップ102のくすぶり状態の判定結果がくすぶり無しに切り換わった後も、点火プラグ27の帯電部表面のカーボンがほぼ焼き切られるまでの期間は、くすぶり回復途中と判定する。この期間は、走行距離や走行時間等によって判定すれば良く、例えば、くすぶり状態の判定結果がくすぶり無しに切り換わってから走行距離が所定距離(例えば50km)を越えた時点で、点火プラグ27の帯電部表面のカーボンがほぼ完全に焼き切られた(つまりくすぶり状態からほぼ完全に回復した)と判定すれば良い。   Thereafter, the process proceeds to step 103, and it is determined whether or not smolder recovery is in progress (a predetermined period of the recovery process of smoldering stain) based on the determination result of the smoldering state in step 102. At this time, immediately after the determination result of the smoldering state in the step 102 is switched from “smoldering” to “no smoldering”, carbon still remains on the surface of the charged portion of the spark plug 27. Even after the determination result of the state is switched to no smoldering, the period until the carbon on the surface of the charged portion of the spark plug 27 is almost burned out is determined to be in the middle of smolder recovery. This period may be determined based on the travel distance, travel time, and the like. For example, when the travel distance exceeds a predetermined distance (for example, 50 km) after the determination result of the smoldering state is switched to no smolder, the spark plug 27 It may be determined that the carbon on the surface of the charged portion is almost completely burned out (that is, almost completely recovered from the smoldering state).

上記ステップ103で、くすぶり回復途中と判定されれば、ステップ104に進み、点火プラグ27の帯電部容量Cp を新品時(くすぶり無し時)の帯電部の標準的な容量(本実施例1では5pF)よりも所定量増加して例えば9pFに設定する。   If it is determined in step 103 that smolder recovery is in progress, the process proceeds to step 104, where the charged part capacitance Cp of the spark plug 27 is set to the standard capacity of the charged part when new (no smoldering) (5 pF in the first embodiment). ) To a predetermined amount, for example, set to 9 pF.

一方、上記ステップ103で「No」と判定されれば、くすぶり状態から完全に回復した状態であると判断して、ステップ105に進み、点火プラグ27の帯電部容量Cp を新品時(くすぶり無し時)の帯電部の標準的な容量(本実施例1では5pF)に設定する。   On the other hand, if “No” is determined in Step 103, it is determined that the state is completely recovered from the smoldering state, and the process proceeds to Step 105, where the charged portion capacity Cp of the spark plug 27 is set to a new one (when there is no smoldering). ) Of the charging portion (5 pF in the first embodiment).

この後、ステップ106に進み、点火プラグ27の帯電電圧Vp を、現在のエンジン運転状態(本実施例1では負荷率とエンジン回転速度Ne)に応じて帯電電圧マップにより算出する。この帯電電圧マップは、例えば、負荷率が所定値以下の領域では、負荷率とエンジン回転速度Neとは関係なく帯電電圧Vp が一定値に設定されるが、負荷率が所定値以上の領域では、負荷率が大きくなるほど帯電電圧Vp が高くなり、且つ、エンジン回転速度Neが高くなるほど帯電電圧Vp が高くなるように設定されている。   Thereafter, the routine proceeds to step 106, where the charging voltage Vp of the spark plug 27 is calculated from the charging voltage map according to the current engine operating state (the load factor and the engine speed Ne in the first embodiment). In this charging voltage map, for example, in a region where the load factor is a predetermined value or less, the charging voltage Vp is set to a constant value regardless of the load factor and the engine speed Ne, but in a region where the load factor is a predetermined value or more. The charging voltage Vp increases as the load factor increases, and the charging voltage Vp increases as the engine speed Ne increases.

この帯電電圧Vp の算出後、ステップ107に進み、点火プラグ27の帯電部容量Cp と帯電電圧Vp とを乗算して、ノイズ電荷量Qn を求める。
Qn =Cp ×Vp
上記ステップ102〜107の処理が特許請求の範囲でいうノイズ電荷量算出手段としての役割を果たす。
After calculating the charging voltage Vp, the routine proceeds to step 107, where the charging portion capacitance Cp of the spark plug 27 and the charging voltage Vp are multiplied to determine the noise charge amount Qn.
Qn = Cp x Vp
The processing in steps 102 to 107 serves as noise charge amount calculation means in the claims.

この後、図4のステップ108に進み、検出区間(本実施例1では点火後からATDC180℃Aまでの区間)内であるか否かを判定し、検出区間内であれば、ステップ109に進み、イオン電流検出回路35で検出したイオン電流検出値iを読み込み、次のステップ110で、検出区間のイオン電流ピーク値Ii 、イオン電流積分値Qi (検出電荷量)、イオン電流出力時間Ti を検出する。これらステップ108〜110の処理が特許請求の範囲でいう電荷量検出手段としての役割を果たす。   Thereafter, the process proceeds to step 108 in FIG. 4, and it is determined whether or not it is within the detection zone (the zone from after ignition to ATDC 180 ° C. in the first embodiment). The ion current detection value i detected by the ion current detection circuit 35 is read, and in the next step 110, the ion current peak value Ii, the ion current integrated value Qi (detected charge amount), and the ion current output time Ti in the detection section are detected. To do. The processing of these steps 108 to 110 serves as charge amount detection means in the claims.

その後、検出区間終了タイミングになった時点で、上記ステップ108で「No」と判定されて、ステップ111で「Yes」と判定され、ステップ112に進み、検出区間のイオン電流積分値Qi (検出電荷量)をノイズ電荷量Qn と比較して、イオン電流積分値Qi (検出電荷量)がノイズ電荷量Qn 以上であれば、燃焼イオン電流による燃焼状態の判定が可能であると判断して、燃焼状態の判定を許可する。この場合は、ステップ113に進み、検出区間のイオン電流ピーク値Ii をそのまま燃焼イオン電流ピーク値Iion とし、イオン電流出力時間Ti をそのまま燃焼イオン電流出力時間Tion とすると共に、イオン電流積分値Qi (検出電荷量)からノイズ電荷量Qn を差し引いて正味の燃焼イオン電荷量Qion を求める。この後、ステップ114に進み、燃焼イオン電流ピーク値Iion 、燃焼イオン電荷量Qion 、燃焼イオン電流出力時間Tion に基づいてマップ等により燃焼状態(失火、プレイグニッション、ノッキング等)を判定する。   Thereafter, when the detection interval end timing is reached, “No” is determined in Step 108, “Yes” is determined in Step 111, the process proceeds to Step 112, and the ion current integrated value Qi (detected charge) in the detection interval is determined. Amount) is compared with the noise charge amount Qn, and if the ion current integrated value Qi (detected charge amount) is equal to or greater than the noise charge amount Qn, it is determined that the combustion state can be determined by the combustion ion current, and combustion Allow state judgment. In this case, the routine proceeds to step 113, where the ion current peak value Ii in the detection section is directly used as the combustion ion current peak value Iion, the ion current output time Ti is used as it is as the combustion ion current output time Tion, and the ion current integrated value Qi ( The net combustion ion charge amount Qion is obtained by subtracting the noise charge amount Qn from the detected charge amount). Thereafter, the routine proceeds to step 114, where the combustion state (misfire, preignition, knocking, etc.) is determined by a map or the like based on the combustion ion current peak value Iion, the combustion ion charge amount Qion, and the combustion ion current output time Tion.

尚、燃焼イオン電流ピーク値Iion 、燃焼イオン電荷量Qion 、燃焼イオン電流出力時間Tion のうちのいずれか1つ又は2つに基づいて燃焼状態を判定するようにしても良い。また、燃焼イオン電荷量Qion は、検出区間のイオン電流積分値Qi をそのまま用いるようにしても良い。   It should be noted that the combustion state may be determined based on any one or two of the combustion ion current peak value Iion, the combustion ion charge amount Qion, and the combustion ion current output time Tion. Further, as the combustion ion charge amount Qion, the ion current integrated value Qi in the detection section may be used as it is.

一方、上記ステップ112で、イオン電流積分値Qi (検出電荷量)がノイズ電荷量Qn よりも少ないと判定されれば、ノイズが多くて燃焼イオン電流による燃焼状態の判定が困難であると判断して、燃焼状態の判定を禁止する(又は燃焼状態判定結果を無効としても良い)。この場合は、ステップ115に進み、失火(又は不完全燃焼)と判定する。   On the other hand, if it is determined in step 112 that the ion current integrated value Qi (detected charge amount) is smaller than the noise charge amount Qn, it is determined that there is a lot of noise and it is difficult to determine the combustion state by the combustion ion current. Thus, determination of the combustion state is prohibited (or the combustion state determination result may be invalidated). In this case, the process proceeds to step 115 and it is determined that misfire (or incomplete combustion) has occurred.

以上説明した本実施例1によれば、ノイズ(コロナ放電)の発生区間に対応して設定した所定の検出区間内でイオン電流検出値iを時間積分して検出電荷量Qi を求めると共に、点火プラグ27の帯電部容量Cp と帯電電圧Vp とを乗算して、ノイズ電荷量Qn を算出し、検出電荷量Qi をノイズ電荷量Qn と比較して燃焼状態判定の実行許可/禁止(又は燃焼状態判定結果の有効/無効)を判定するようにしたので、コロナ放電の電荷量(ノイズ電荷量Qn )を基準にして燃焼イオンの電荷量を正当に評価して、ノイズの発生状態を判定することが可能となり、エンジン運転状態の変化の影響を受けずに、ノイズによる燃焼状態の誤判定を安定して防止することができ、燃焼状態の判定精度を向上することができる。   According to the first embodiment described above, the detected charge amount Qi is obtained by integrating the ion current detection value i with time within a predetermined detection interval set corresponding to the noise (corona discharge) generation interval, and ignition. The charge portion capacitance Cp of the plug 27 and the charging voltage Vp are multiplied to calculate the noise charge amount Qn, and the detected charge amount Qi is compared with the noise charge amount Qn to permit / prohibit execution of combustion state determination (or combustion state) Since the determination result is valid / invalid), the charge amount of the combustion ions is legitimately evaluated based on the charge amount (noise charge amount Qn) of the corona discharge, and the noise generation state is determined. This makes it possible to stably prevent erroneous determination of the combustion state due to noise without being affected by changes in the engine operating state, and improve the determination accuracy of the combustion state.

上記実施例1では、連続コロナ放電の発生区間とスパイクコロナ放電の発生区間を一括して含む1つの検出区間(点火後から例えばATDC180℃Aまでの区間)を設定したが、図5乃至図9に示す本発明の実施例2では、連続コロナ放電の発生区間に対応する第1検出区間(点火後から例えばATDC60℃Aまでの区間)と、スパイクコロナ放電の発生区間に対応する第2検出区間(例えばATDC60℃AからATDC180℃Aまでの区間)に分割して、各検出区間毎にイオン電流検出値iを時間積分することで第1検出電荷量Qi1と第2検出電荷量Qi2とを求めるようにしている。そして、第1検出区間における第1ノイズ電荷量Qn1と第2検出区間における第2ノイズ電荷量Qn2を、それぞれ各検出区間における点火プラグ27の帯電部容量Cp と帯電電圧Vp1,Vp2を乗算して求める。
Qn1=Cp ×Vp1
Qn2=Cp ×Vp2
In the first embodiment, one detection interval (interval from after ignition to, for example, ATDC 180 ° C.) including the continuous corona discharge generation interval and the spike corona discharge generation interval is set. In the second embodiment of the present invention shown in FIG. 2, the first detection interval (interval from after ignition to, for example, ATDC 60 ° C. A) corresponding to the generation interval of continuous corona discharge, and the second detection interval corresponding to the generation interval of spike corona discharge The first detection charge amount Qi1 and the second detection charge amount Qi2 are obtained by dividing the detection value i into time divisions (for example, a section from ATDC 60 ° C. to ATDC 180 ° C.) and time-integrating the ion current detection value i for each detection section. I am doing so. Then, the first noise charge amount Qn1 in the first detection interval and the second noise charge amount Qn2 in the second detection interval are multiplied by the charging portion capacitance Cp of the ignition plug 27 and the charging voltages Vp1 and Vp2 in each detection interval, respectively. Ask.
Qn1 = Cp x Vp1
Qn2 = Cp x Vp2

この場合、点火プラグ27の帯電部容量Cp は、第1検出区間と第2検出区間で同じ値を用いるが、帯電電圧Vp は、筒内圧力により変化するため、第1検出区間の帯電電圧Vp1と第2検出区間の帯電電圧Vp2は、図8及び図9に示す2つのマップを用いて別々に算出する。   In this case, the charging portion capacitance Cp of the spark plug 27 uses the same value in the first detection section and the second detection section, but the charging voltage Vp varies depending on the in-cylinder pressure, and thus the charging voltage Vp1 in the first detection section. And the charging voltage Vp2 in the second detection section are calculated separately using the two maps shown in FIGS.

そして、第1検出区間で検出した第1検出電荷量Qi1が第1ノイズ電荷量Qn1以下で、且つ、第2検出区間で検出した第2検出電荷量Qi2が第2ノイズ電荷量Qn2以下と判定される場合のみ、燃焼状態の判定を禁止又は燃焼状態判定結果を無効とし、第1検出区間と第2検出区間の両方又はいずれか一方で検出電荷量がノイズ電荷量よりも多いと判定されれば、燃焼状態の判定を実行してその燃焼状態判定結果を有効とする。   Then, it is determined that the first detected charge amount Qi1 detected in the first detection interval is equal to or less than the first noise charge amount Qn1, and the second detected charge amount Qi2 detected in the second detection interval is equal to or less than the second noise charge amount Qn2. Only when it is determined that the combustion state determination is prohibited or the combustion state determination result is invalid, and it is determined that the detected charge amount is larger than the noise charge amount in one or both of the first detection interval and the second detection interval. For example, the determination of the combustion state is executed, and the combustion state determination result is validated.

以上説明した本実施例2の燃焼状態の判定は、エンジン制御回路34によって図6及び図7の燃焼状態判定ルーチンに従って次のように実行される。本ルーチンが起動されると、まずステップ201で、回転角検出センサ38、負荷検出センサ39等の出力信号に基づいてエンジン回転速度Ne、負荷率等のエンジン運転状態を検出する。この後、ステップ202に進み、前記実施例1と同様の方法で点火プラグ27のくすぶり状態を判定する。 この後、ステップ203に進み、上記ステップ202のくすぶり状態の判定結果に基づいてくすぶり回復途中(くすぶり汚損の回復過程の所定期間)であるか否かを前記実施例1と同様の方法で判定し、くすぶり回復途中と判定されれば、ステップ204に進み、点火プラグ27の帯電部容量Cp を新品時(くすぶり無し時)の帯電部の標準的な容量(本実施例2では5pF)よりも増加して例えば9pFに設定する。   The determination of the combustion state of the second embodiment described above is executed by the engine control circuit 34 as follows according to the combustion state determination routines of FIGS. When this routine is started, first, in step 201, the engine operating state such as the engine rotation speed Ne and the load factor is detected based on output signals from the rotation angle detection sensor 38, the load detection sensor 39, and the like. Thereafter, the process proceeds to step 202, and the smoldering state of the spark plug 27 is determined by the same method as in the first embodiment. Thereafter, the process proceeds to step 203, where it is determined in the same manner as in the first embodiment whether or not smolder recovery is in progress (a predetermined period of the recovery process of smoldering stain) based on the determination result of the smoldering state in step 202. If it is determined that smolder recovery is in progress, the process proceeds to step 204, where the charged part capacity Cp of the spark plug 27 is increased from the standard capacity (5 pF in the second embodiment) of the charged part when new (no smoldering). For example, it is set to 9 pF.

一方、上記ステップ203で「No」と判定されれば、くすぶり状態から完全に回復した状態であると判断して、ステップ205に進み、点火プラグ27の帯電部容量Cp を新品時(くすぶり無し時)の帯電部の標準的な容量(本実施例2では5pF)に設定する。   On the other hand, if “No” is determined in step 203, it is determined that the state is completely recovered from the smoldering state, and the process proceeds to step 205, where the charged portion capacity Cp of the spark plug 27 is set to a new one (when there is no smoldering). ) Of the charging portion (5 pF in the second embodiment).

この後、ステップ206に進み、第1検出区間(本実施例2では点火後からATDC60℃Aまでの区間)内であるか否かを判定し、第1検出区間内であれば、ステップ207に進み、第1検出区間の点火プラグ27の帯電電圧Vp1を、現在のエンジン運転状態(本実施例2では負荷率とエンジン回転速度Ne)に応じて図8の第1検出区間の帯電電圧マップにより算出する。この第1検出区間の帯電電圧マップは、全負荷領域、全回転速度領域で一定値(例えば1kV)に設定されている。   Thereafter, the process proceeds to step 206, where it is determined whether or not it is within the first detection interval (in this embodiment, the interval from after ignition to ATDC 60 ° C. A). The charging voltage Vp1 of the spark plug 27 in the first detection section is determined based on the charging voltage map in the first detection section of FIG. 8 according to the current engine operating state (load factor and engine speed Ne in the second embodiment). calculate. The charging voltage map in the first detection section is set to a constant value (for example, 1 kV) in the entire load region and the entire rotational speed region.

この第1検出区間の帯電電圧Vp1の算出後、ステップ208に進み、点火プラグ27の帯電部容量Cp と第1検出区間の帯電電圧Vp1とを乗算して、第1検出区間のノイズ電荷量Qn1を算出する。
Qn1=Cp ×Vp1
After the calculation of the charging voltage Vp1 in the first detection section, the process proceeds to step 208, where the charging portion capacity Cp of the spark plug 27 and the charging voltage Vp1 in the first detection section are multiplied to obtain the noise charge amount Qn1 in the first detection section. Is calculated.
Qn1 = Cp x Vp1

この後、ステップ209に進み、イオン電流検出回路35で検出したイオン電流検出値iを読み込み、次のステップ210で、第1検出区間のイオン電流ピーク値Ii1、イオン電流積分値Qi1(第1検出電荷量)、イオン電流出力時間Ti1を検出する。   Thereafter, the process proceeds to step 209, and the ion current detection value i detected by the ion current detection circuit 35 is read. In the next step 210, the ion current peak value Ii1 and the ion current integration value Qi1 (first detection interval) in the first detection section. Charge amount) and ion current output time Ti1.

この後、図7のステップ211に進み、第2検出区間(本実施例2ではATDC60℃AからATDC180℃Aまでの区間)内であるか否かを判定し、第2検出区間内であれば、ステップ212に進み、第2検出区間の点火プラグ27の帯電電圧Vp2を、現在のエンジン運転状態(本実施例2では負荷率とエンジン回転速度Ne)に応じて図9の第2検出区間の帯電電圧マップにより算出する。この第2検出区間の帯電電圧マップは、負荷率が所定値以下(例えば40%以下)の領域では、負荷率とエンジン回転速度Neとは関係なく帯電電圧Vp2が一定値(例えば1kV)に設定されるが、負荷率が所定値以上の領域では、負荷率が大きくなるほど帯電電圧Vp2が高くなり、且つ、エンジン回転速度Neが高くなるほど帯電電圧Vp2が高くなるように設定されている。   After that, the process proceeds to step 211 in FIG. 7 to determine whether or not it is within the second detection interval (the interval from ATDC 60 ° C. A to ATDC 180 ° C. A in the second embodiment). In step 212, the charging voltage Vp2 of the spark plug 27 in the second detection section is set to the second detection section in FIG. 9 according to the current engine operating state (load factor and engine speed Ne in the second embodiment). It is calculated from the charging voltage map. In the charging voltage map of the second detection section, in a region where the load factor is equal to or less than a predetermined value (for example, 40% or less), the charging voltage Vp2 is set to a constant value (for example, 1 kV) regardless of the load factor and the engine rotation speed Ne. However, in a region where the load factor is equal to or greater than a predetermined value, the charging voltage Vp2 increases as the load factor increases, and the charging voltage Vp2 increases as the engine speed Ne increases.

この第2検出区間の帯電電圧Vp2の算出後、ステップ213に進み、点火プラグ27の帯電部容量Cp と第2検出区間の帯電電圧Vp2とを乗算して、第2検出区間のノイズ電荷量Qn2を算出する。
Qn2=Cp ×Vp2
After the calculation of the charging voltage Vp2 in the second detection interval, the process proceeds to step 213, where the charging portion capacitance Cp of the spark plug 27 and the charging voltage Vp2 in the second detection interval are multiplied to obtain the noise charge amount Qn2 in the second detection interval. Is calculated.
Qn2 = Cp x Vp2

この後、ステップ214に進み、イオン電流検出回路35で検出したイオン電流検出値iを読み込み、次のステップ215で、第2検出区間のイオン電流ピーク値Ii2、イオン電流積分値Qi2(第2検出電荷量)、イオン電流出力時間Ti2を検出する。   Thereafter, the process proceeds to step 214, and the ion current detection value i detected by the ion current detection circuit 35 is read. In the next step 215, the ion current peak value Ii2 and ion current integration value Qi2 (second detection) in the second detection section. Charge amount) and ion current output time Ti2.

その後、第2検出区間終了タイミングになった時点で、上記ステップ211で「No」と判定されて、ステップ216で「Yes」と判定され、ステップ217に進み、第1検出区間で検出した第1検出電荷量Qi1が第1ノイズ電荷量Qn1以上であるか、又は、第2検出区間で検出した第2検出電荷量Qi2が第2ノイズ電荷量Qn2以上であるか否かを判定する。その結果、第1検出区間と第2検出区間の両方又はいずれか一方で検出電荷量がノイズ電荷量以上と判定されれば、燃焼イオン電流による燃焼状態の判定が可能であると判断して燃焼状態の判定を許可する。この場合は、ステップ218に進み、第1検出区間のイオン電流ピーク値Ii1と第2検出区間のイオン電流ピーク値Ii2とを比較して大きい方を燃焼イオンピーク値Iion として選択すると共に、第1検出区間のイオン電流出力時間Ti1と第2検出区間のイオン電流出力時間Ti2とを合算した値を燃焼イオン電流出力時間Tion とし、更に、第1検出電荷量Qi1と第2検出電荷量Qi2との合算値(Qi1+Qi2)から、第1ノイズ電荷量Qn1と第2ノイズ電荷量Qn2との合算値(Qn1+Qn2)を差し引いて正味の燃焼イオン電荷量Qion を求める。
Qion =(Qi1+Qi2)−(Qn1+Qn2)
Thereafter, when the second detection interval end timing is reached, “No” is determined in Step 211, “Yes” is determined in Step 216, the process proceeds to Step 217, and the first detected in the first detection interval is detected. It is determined whether the detected charge amount Qi1 is greater than or equal to the first noise charge amount Qn1, or whether the second detected charge amount Qi2 detected in the second detection interval is greater than or equal to the second noise charge amount Qn2. As a result, if the detected charge amount is determined to be greater than or equal to the noise charge amount in either or both of the first detection interval and the second detection interval, it is determined that the combustion state can be determined based on the combustion ion current, and combustion is performed. Allow state judgment. In this case, the process proceeds to step 218, the ion current peak value Ii1 in the first detection interval and the ion current peak value Ii2 in the second detection interval are compared, and the larger one is selected as the combustion ion peak value Iion. A value obtained by adding the ion current output time Ti1 in the detection section and the ion current output time Ti2 in the second detection section is a combustion ion current output time Tion, and further, the first detected charge amount Qi1 and the second detected charge amount Qi2 The net combustion ion charge amount Qion is obtained by subtracting the sum value (Qn1 + Qn2) of the first noise charge amount Qn1 and the second noise charge amount Qn2 from the total value (Qi1 + Qi2).
Qion = (Qi1 + Qi2)-(Qn1 + Qn2)

尚、第1検出電荷量Qi1と第2検出電荷量Qi2との合算値(Qi1+Qi2)をそのまま燃焼イオン電荷量Qion としても良い。
Qion =Qi1+Qi2
The total value (Qi1 + Qi2) of the first detected charge amount Qi1 and the second detected charge amount Qi2 may be used as the combustion ion charge amount Qion.
Qion = Qi1 + Qi2

この後、ステップ219に進み、燃焼イオン電流ピーク値Iion 、燃焼イオン電荷量Qion 、燃焼イオン電流出力時間Tion に基づいてマップ等により燃焼状態(失火、プレイグニッション、ノッキング等)を判定する。尚、燃焼イオン電流ピーク値Iion 、燃焼イオン電荷量Qion 、燃焼イオン電流出力時間Tion のうちのいずれか1つ又は2つに基づいて燃焼状態を判定するようにしても良い。   Thereafter, the process proceeds to step 219, and the combustion state (misfire, preignition, knocking, etc.) is determined by a map or the like based on the combustion ion current peak value Iion, the combustion ion charge amount Qion, and the combustion ion current output time Tion. It should be noted that the combustion state may be determined based on any one or two of the combustion ion current peak value Iion, the combustion ion charge amount Qion, and the combustion ion current output time Tion.

一方、上記ステップ217で、第1検出区間で検出した第1検出電荷量Qi1が第1ノイズ電荷量Qn1以下で、且つ、第2検出区間で検出した第2検出電荷量Qi2が第2ノイズ電荷量Qn2以下と判定された場合は、ノイズが多くて燃焼イオン電流による燃焼状態の判定が困難であると判断して、燃焼状態の判定を禁止する(又は燃焼状態判定結果を無効としても良い)。この場合は、ステップ220に進み、失火(又は不完全燃焼)と判定する。   On the other hand, in step 217, the first detected charge amount Qi1 detected in the first detection interval is equal to or less than the first noise charge amount Qn1, and the second detected charge amount Qi2 detected in the second detection interval is the second noise charge. If it is determined that the amount is Qn2 or less, it is determined that it is difficult to determine the combustion state based on the combustion ion current due to the noise, and the determination of the combustion state is prohibited (or the combustion state determination result may be invalidated). . In this case, it progresses to step 220 and determines with misfire (or incomplete combustion).

以上説明した本実施例2では、連続コロナ放電の発生区間に対応する第1検出区間と、スパイクコロナ放電の発生区間に対応する第2検出区間とに分割したので、各検出区間毎にノイズ電荷量ひいてはノイズの発生状態を精度良く評価することができ、ノイズ/燃焼イオンの判別精度をより向上させることができる。しかも、2つの検出区間に分けて各検出区間毎に検出電荷量とノイズ電荷量とを比較するため、一般的な従来のピーク値判定では失火を検出できない領域でも、失火を検出することが可能となり、失火検出可能領域を従来より拡大することができる。   In the second embodiment described above, since the first detection interval corresponding to the generation interval of the continuous corona discharge and the second detection interval corresponding to the generation interval of the spike corona discharge are divided, noise charge is detected for each detection interval. As a result, the noise generation state can be accurately evaluated, and the noise / combustion ion discrimination accuracy can be further improved. Moreover, since the detection charge amount and the noise charge amount are compared for each detection section divided into two detection sections, misfire can be detected even in a region where misfire cannot be detected by general conventional peak value determination. Thus, the misfire-detectable region can be expanded as compared with the conventional case.

尚、本発明は、上記実施例1,2に限定されず、例えば、燃焼状態の判定方法等を適宜変更しても良い等、種々変更して実施できることは言うまでもない。   Needless to say, the present invention is not limited to the first and second embodiments, and can be implemented with various modifications, for example, the method for determining the combustion state may be appropriately changed.

本発明の実施例1における点火制御系とイオン電流検出回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the ignition control system and ion current detection circuit in Example 1 of this invention. 本発明の実施例1における点火信号、筒内圧力、発生区間、正常燃焼時の検出電流波形、連続コロナ放電発生時の検出電流波形、スパイクコロナ放電発生時の検出電流波形との関係を説明するタイムチャートである。The relationship among the ignition signal, in-cylinder pressure, generation period, detection current waveform during normal combustion, detection current waveform when continuous corona discharge occurs, and detection current waveform when spike corona discharge occurs in Example 1 of the present invention will be described. It is a time chart. 本発明の実施例1における燃焼状態判定ルーチンの処理の流れを示すフローチャートである(その1)。It is a flowchart which shows the flow of a process of the combustion state determination routine in Example 1 of this invention (the 1). 本発明の実施例1における燃焼状態判定ルーチンの処理の流れを示すフローチャートである(その2)。It is a flowchart which shows the flow of a process of the combustion state determination routine in Example 1 of this invention (the 2). 本発明の実施例2における点火信号、筒内圧力、発生区間、正常燃焼時の検出電流波形、連続コロナ放電発生時の検出電流波形、スパイクコロナ放電発生時の検出電流波形との関係を説明するタイムチャートである。The relationship among the ignition signal, in-cylinder pressure, generation period, detection current waveform during normal combustion, detection current waveform when continuous corona discharge occurs, and detection current waveform when spike corona discharge occurs in Example 2 of the present invention will be described. It is a time chart. 本発明の実施例2における燃焼状態判定ルーチンの処理の流れを示すフローチャートである(その1)。It is a flowchart which shows the flow of a process of the combustion state determination routine in Example 2 of this invention (the 1). 本発明の実施例2における燃焼状態判定ルーチンの処理の流れを示すフローチャートである(その2)。It is a flowchart which shows the flow of a process of the combustion state determination routine in Example 2 of this invention (the 2). 第1検出区間の帯電電圧マップの一例を示す図である。It is a figure which shows an example of the charging voltage map of a 1st detection area. 第2検出区間の帯電電圧マップの一例を示す図である。It is a figure which shows an example of the charging voltage map of a 2nd detection area.

符号の説明Explanation of symbols

21…点火コイル、22…一次コイル、23…バッテリ、24…イグナイタ、25…パワートランジスタ、26…二次コイル、27…点火プラグ、31…イオン電流検出抵抗、33…反転増幅回路、34…エンジン制御回路(燃焼状態判定手段,電荷量検出手段,ノイズ電荷量算出手段)、35…イオン電流検出回路(イオン電流検出手段)、36…中心電極、37…接地電極   DESCRIPTION OF SYMBOLS 21 ... Ignition coil, 22 ... Primary coil, 23 ... Battery, 24 ... Igniter, 25 ... Power transistor, 26 ... Secondary coil, 27 ... Spark plug, 31 ... Ion current detection resistor, 33 ... Inversion amplification circuit, 34 ... Engine Control circuit (combustion state determination means, charge amount detection means, noise charge amount calculation means), 35 ... ion current detection circuit (ion current detection means), 36 ... center electrode, 37 ... ground electrode

Claims (6)

内燃機関の燃焼室内で混合気の燃焼に伴って発生するイオン電流を点火プラグの電極を介して検出するイオン電流検出手段と、前記イオン電流検出手段のイオン電流検出値に基づいて燃焼状態を判定する燃焼状態判定手段とを備えた内燃機関の燃焼状態判定装置において、
前記イオン電流検出手段のイオン電流検出値に重畳するノイズの発生区間に対応して設定した所定の検出区間内で前記イオン電流検出値を時間積分して検出電荷量を求める電荷量検出手段と、
前記点火プラグの帯電部容量と帯電電圧とに基づいてノイズ電荷量を算出するノイズ電荷量算出手段とを備え、
前記燃焼状態判定手段は、前記検出電荷量を前記ノイズ電荷量と比較して前記イオン電流検出値に基づく燃焼状態判定の実行許可/禁止又は燃焼状態判定結果の有効/無効を判定することを特徴とする内燃機関の燃焼状態判定装置。
Ion current detection means for detecting ion current generated by combustion of the air-fuel mixture in the combustion chamber of the internal combustion engine through the electrode of the spark plug, and determining the combustion state based on the ion current detection value of the ion current detection means A combustion state determination device for an internal combustion engine, comprising:
A charge amount detection means for obtaining a detected charge amount by time-integrating the ion current detection value within a predetermined detection section set corresponding to a noise generation section superimposed on an ion current detection value of the ion current detection means;
A noise charge amount calculating means for calculating a noise charge amount based on a charging portion capacity and a charging voltage of the spark plug;
The combustion state determination means compares the detected charge amount with the noise charge amount to determine whether to permit / inhibit execution of the combustion state determination based on the detected ion current value or whether the combustion state determination result is valid / invalid. A combustion state determination device for an internal combustion engine.
前記電荷量検出手段は、前記検出区間を、連続コロナ放電の発生区間に対応する第1検出区間と、スパイクコロナ放電の発生区間に対応する第2検出区間とに分割して、各検出区間毎に前記イオン電流検出値を時間積分することで第1検出電荷量と第2検出電荷量を求め、
前記ノイズ電荷量算出手段は、前記第1検出区間における第1ノイズ電荷量と前記第2検出区間における第2ノイズ電荷量をそれぞれ各検出区間における前記点火プラグの帯電部容量と帯電電圧とに基づいて算出し、
前記燃焼状態判定手段は、前記第1検出区間で検出した前記第1検出電荷量が前記第1ノイズ電荷量以下で、且つ、前記第2検出区間で検出した前記第2検出電荷量が前記第2ノイズ電荷量以下と判定される場合のみ、前記イオン電流検出値に基づく燃焼状態の判定を禁止又は燃焼状態判定結果を無効とし、前記第1検出区間と前記第2検出区間の両方又はいずれか一方で検出電荷量がノイズ電荷量よりも多いと判定されれば、前記イオン電流検出値に基づく燃焼状態の判定を実行してその燃焼状態判定結果を有効とすることを特徴とする請求項1に記載の内燃機関の燃焼状態判定装置。
The charge amount detection means divides the detection section into a first detection section corresponding to a continuous corona discharge generation section and a second detection section corresponding to a spike corona discharge generation section. The first detected charge amount and the second detected charge amount are obtained by time-integrating the detected ion current value with respect to time,
The noise charge amount calculating means calculates the first noise charge amount in the first detection interval and the second noise charge amount in the second detection interval based on the charging portion capacity and the charging voltage of the spark plug in each detection interval, respectively. Calculated,
The combustion state determining means is configured such that the first detected charge amount detected in the first detection interval is equal to or less than the first noise charge amount, and the second detected charge amount detected in the second detection interval is the first detection charge amount. Only when it is determined that the amount of noise charge is 2 or less, the determination of the combustion state based on the detected ionic current value is prohibited or the determination result of the combustion state is invalid, and either or both of the first detection interval and the second detection interval On the other hand, if it is determined that the detected charge amount is larger than the noise charge amount, a combustion state determination based on the detected ion current value is executed, and the combustion state determination result is validated. A combustion state determination device for an internal combustion engine according to claim 1.
前記燃焼状態判定手段は、前記検出電荷量と前記ノイズ電荷量との比較結果から前記イオン電流検出値に基づく燃焼状態の判定を禁止又は燃焼状態判定結果を無効と判定した場合は、失火又は不完全燃焼と判断することを特徴とする請求項1又は2に記載の内燃機関の燃焼状態判定装置。   If the combustion state determination means prohibits the determination of the combustion state based on the detected ion current value from the comparison result between the detected charge amount and the noise charge amount, or determines that the combustion state determination result is invalid, the combustion state determination means The combustion state determination device for an internal combustion engine according to claim 1 or 2, wherein it is determined that the combustion is complete. 前記ノイズ電荷量を算出する際に用いる前記点火プラグの帯電部容量は、新品時の帯電部の標準的な容量を基準として設定し、前記点火プラグのくすぶり汚損の回復過程の所定期間は、前記帯電部容量を増加することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の燃焼状態判定装置。   The charging part capacity of the spark plug used when calculating the noise charge amount is set with reference to the standard capacity of the charging part when new, and the predetermined period of the recovery process of the smoldering stain of the spark plug is the The combustion state determination device for an internal combustion engine according to any one of claims 1 to 3, wherein the charging portion capacity is increased. 前記ノイズ電荷量算出手段は、前記点火プラグの帯電電圧を内燃機関の運転状態に応じて設定してノイズ電荷量を算出することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の燃焼状態判定装置。   The internal combustion engine according to any one of claims 1 to 4, wherein the noise charge amount calculation means calculates a noise charge amount by setting a charging voltage of the spark plug according to an operating state of the internal combustion engine. Combustion state determination device. 前記ノイズ電荷量算出手段は、前記第2検出区間における前記点火プラグの帯電電圧を前記第1検出区間よりも高く設定することを特徴とする請求項2に記載の内燃機関の燃焼状態判定装置。   The combustion state determination device for an internal combustion engine according to claim 2, wherein the noise charge amount calculation means sets a charging voltage of the spark plug in the second detection section higher than that in the first detection section.
JP2006140932A 2006-05-19 2006-05-19 Combustion condition determining device for internal combustion engine Pending JP2007309274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140932A JP2007309274A (en) 2006-05-19 2006-05-19 Combustion condition determining device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140932A JP2007309274A (en) 2006-05-19 2006-05-19 Combustion condition determining device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007309274A true JP2007309274A (en) 2007-11-29

Family

ID=38842355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140932A Pending JP2007309274A (en) 2006-05-19 2006-05-19 Combustion condition determining device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007309274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116824A (en) * 2008-11-12 2010-05-27 Diamond Electric Mfg Co Ltd Ion current detecting device
JP2012162993A (en) * 2011-02-03 2012-08-30 Diamond Electric Mfg Co Ltd Combustion control device of internal combustion engine
CN112305055A (en) * 2020-09-29 2021-02-02 华帝股份有限公司 Combustion working condition control device and control method of gas appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116824A (en) * 2008-11-12 2010-05-27 Diamond Electric Mfg Co Ltd Ion current detecting device
JP2012162993A (en) * 2011-02-03 2012-08-30 Diamond Electric Mfg Co Ltd Combustion control device of internal combustion engine
CN112305055A (en) * 2020-09-29 2021-02-02 华帝股份有限公司 Combustion working condition control device and control method of gas appliance

Similar Documents

Publication Publication Date Title
JP4714690B2 (en) Ion current detection device for internal combustion engine
JPH05149230A (en) Knocking detecting device for internal combustion engine
US6739181B2 (en) Combustion detecting apparatus of engine
JP3633580B2 (en) Misfire detection device for internal combustion engine
JP4483708B2 (en) Ignition system abnormality detection device for internal combustion engine
JP4573048B2 (en) Misfire detection device for internal combustion engine
JP3502580B2 (en) Knock detection device for internal combustion engine
JP2007309274A (en) Combustion condition determining device for internal combustion engine
JP4100492B2 (en) Misfire detection device for internal combustion engine
JPH05263741A (en) Misfire detecting device for internal combustion engine
JP2008261304A (en) Ion current detection device for internal combustion engine
JPH07180647A (en) Misfire detecting device for internal combustion engine
JPH1113620A (en) Ignition plug abnormality detecting device for internal combustion engine
JP2009281161A (en) Diagnostic device of internal combustion engine
JPH1113616A (en) Combustion detecting device for internal combustion engine
JPH1136971A (en) Ion current detector of internal combustion engine
JP4134880B2 (en) Ion current detection device for internal combustion engine
JP3577217B2 (en) Spark plug smoldering detector for internal combustion engine
JPH11351053A (en) Knocking detecting device for internal-combustion engine
JP4408550B2 (en) RUNNING STATE DETECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
JP4014914B2 (en) Misfire detection device for internal combustion engine
JP5407070B2 (en) Combustion control device for internal combustion engine
JP5142087B2 (en) Ion current detection device for internal combustion engine
JP4134879B2 (en) Ion current detection device for internal combustion engine
JP2003120493A (en) Misfire detector of internal combustion engine