JP2007307913A - Joining method of pipe-shaped article - Google Patents

Joining method of pipe-shaped article Download PDF

Info

Publication number
JP2007307913A
JP2007307913A JP2007166348A JP2007166348A JP2007307913A JP 2007307913 A JP2007307913 A JP 2007307913A JP 2007166348 A JP2007166348 A JP 2007166348A JP 2007166348 A JP2007166348 A JP 2007166348A JP 2007307913 A JP2007307913 A JP 2007307913A
Authority
JP
Japan
Prior art keywords
pipe
resin
laser
joint
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166348A
Other languages
Japanese (ja)
Inventor
Tsutomu Katayama
勉 片山
Yoshiro Iwata
善郎 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007166348A priority Critical patent/JP2007307913A/en
Publication of JP2007307913A publication Critical patent/JP2007307913A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1606Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7332General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/735General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
    • B29C66/7352Thickness, e.g. very thin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joining method of a pipe-shaped article, which enables the strong joining of the pipe-shaped article comprising a resin member and a joint comprising a resin member by a laser welding with a laser irradiation. <P>SOLUTION: The method is characterized in that the pipe-shaped article comprising a resin member having an absorbability to the laser is inserted into the joint comprising a resin member having a transparency to the laser, and the laser is irradiated from the joint side and both are laser-welded, and further, is characterized in that a laser absorbing material is arranged on the outer surface of a pipe-shaped article comprising the resin member having the transparency to the laser, the pipe-shaped article is inserted into the joint comprising the resin member having the transparency to the laser, and the laser is irradiated from the joint side, and both are laser-welded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザー光を照射して樹脂部材からなるパイプ形状品と樹脂部材からなる継手を溶着させるパイプ形状品の接合方法に関する。   The present invention relates to a pipe-shaped product joining method in which a pipe-shaped product made of a resin member and a joint made of a resin member are welded by irradiating a laser beam.

従来、樹脂部材からなるパイプを接合する方法として、ボルト等による押しつけ力とシール材を利用した物理接合、反応性物質を塗布して化学的に接合する化学接合、樹脂を部分的に溶解して接合する溶着が知られている。パイプ用途では接合部の長期信頼性が重要であるため、信頼性を得やすい溶着方法が好適に用いられている。   Conventionally, as a method of joining pipes made of resin members, pressing force with bolts and the like and physical joining using a sealing material, chemical joining by applying a reactive substance and chemically joining, partially dissolving the resin Welding to join is known. Since the long-term reliability of the joint is important for pipe applications, a welding method that easily obtains reliability is preferably used.

溶着方法としては、熱を利用した熱溶着と樹脂可溶性溶媒を用いた溶剤溶着が知られている。
熱溶着方法としては、熱板によるバット溶着や電線埋め込み継手にパイプを挿入し、溶着する方法があった(例えば、特許文献1参照)。
しかしながら、バット溶着では、垂れが生じやすく、かけらが剥がれてパイプ内を搬送されて閉塞等を引き起こしたり、あるいは、圧損等の問題があり、また薄肉パイプでは、芯合わせが難しく、適切な融着が困難であった。
また、電線埋め込み継ぎ手は、その構造が複雑であり、コストが高い問題があった。
As the welding method, heat welding using heat and solvent welding using a resin-soluble solvent are known.
As a heat welding method, there are a butt welding by a hot plate and a method of inserting a pipe into a wire embedded joint and welding them (for example, see Patent Document 1).
However, in butt welding, dripping is likely to occur, and the fragments are peeled off and transported through the pipe to cause clogging, etc., or there is a problem such as pressure loss. It was difficult.
In addition, the electric wire embedded joint has a problem in that its structure is complicated and the cost is high.

また、溶剤溶着方法としては、パイプの接合面に溶剤接着剤を塗布して、継手に挿入し、溶剤を蒸発させて接合させる方法がある(例えば、特許文献2参照)。
しかしながら、使用する溶剤が有害であったり、接着剤の乾燥時間が長くかかりすぎるという欠点があり、また、樹脂部材の種類によっては十分な接着力が得られないという問題があった。
Further, as a solvent welding method, there is a method in which a solvent adhesive is applied to the joint surface of a pipe, inserted into a joint, and the solvent is evaporated to join (see, for example, Patent Document 2).
However, there are drawbacks that the solvent to be used is harmful and that the drying time of the adhesive is too long, and there is a problem that sufficient adhesive strength cannot be obtained depending on the type of the resin member.

特開平9−239839号公報Japanese Patent Laid-Open No. 9-239839 特表平4−506977号公報Japanese National Publication No. 4-506977

本発明は、前記問題点を解決し、レーザー光を照射して、樹脂部材からなるパイプ形状品と樹脂部材からなる継手を、レーザー溶着により強固に接合させることができるパイプ形状品の接合方法を提供することを課題とする。   The present invention solves the above-mentioned problems, and a pipe-shaped product joining method capable of firmly joining a pipe-shaped product made of a resin member and a joint made of a resin member by laser welding by irradiating laser light. The issue is to provide.

本発明は、レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品を、レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着することを特徴とするパイプ形状品の接合方法に関するものである。   In the present invention, a pipe-shaped product made of a resin member that absorbs laser light is inserted into a joint made of a resin member that is transparent to laser light, and laser light is irradiated from the joint side. The present invention relates to a method for joining pipe-shaped products, characterized in that both are laser-welded.

また、本発明は、レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品の外側表面にレーザー吸収材を配置し、該パイプ形状品をレーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着することを特徴とするパイプ形状品の接合方法に関するものである。   In the present invention, a laser absorber is disposed on the outer surface of a pipe-shaped article made of a resin member that is transmissive to laser light, and the pipe-shaped article is made of a resin member that is permeable to laser light. It is related with the joining method of the pipe-shaped goods characterized by inserting in the joint which becomes and irradiating a laser beam from the joint side, and laser-welding both.

本発明によれば、レーザー光を照射して、樹脂部材からなるパイプ形状品と樹脂部材からなる継手を、レーザー溶着により強固に接合させることができる。
本発明のレーザー溶着法では、従来の熱溶着の場合の垂れ、強い溶剤による環境安全問題、コストの問題、さらに薄肉パイプの融着の困難性を解決でき、また、溶剤接着剤の場合に比べて高い接合強度で接合することができるので、ガスパイプ用等に好適に利用できる。
また、機械的な接合方法にくらべ、機密性が高くできるため、自動車用燃料パイプ、自動車用エアブレーキパイプ、薬液輸送パイプにも好適に利用できる。
According to the present invention, a pipe-shaped product made of a resin member and a joint made of a resin member can be firmly joined by laser welding by irradiating laser light.
The laser welding method of the present invention can solve the sagging in the case of conventional heat welding, environmental safety problems due to strong solvents, cost problems, and the difficulty of fusion of thin-walled pipes, and also compared with the case of solvent adhesives And can be suitably used for gas pipes and the like.
In addition, since confidentiality can be increased as compared with a mechanical joining method, it can be suitably used for an automobile fuel pipe, an automobile air brake pipe, and a chemical solution transport pipe.

まず、本発明の第一の発明においては、レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品を、レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着する。   First, in the first invention of the present invention, a pipe-shaped product made of a resin member that absorbs laser light is inserted into a joint made of a resin member that is transparent to laser light. Laser welding is performed by irradiating laser light from the side.

上記発明におけるパイプ形状品は、レーザー光に対して吸収性を有する樹脂部材からなる。
レーザー光に対して吸収性を有する樹脂としては、熱可塑性を有し、ガスパイプ等のパイプ形状品に成形可能で、レーザー光に対して十分な吸収性を示すものであれば特に限定されない。例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレンなどの共重合体などのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、あるいはスチレン、塩化ビニル、メチルメタクリレート、塩化ビニリデンなどの共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルフォン、ポリイミドなどの縮合系のエンジニアリングプラスチック等の樹脂に、レーザー光に対して吸収性を有する着色材を混入したものを挙げることができる。なお、必要に応じて、ガラス繊維やカーボン繊維等の補強繊維を添加したものを用いてもよい。
特に、耐薬品性・靭性が必要な自動車用パイプや可燃性ガス供給および/又は輸送用パイプ用などには、ポリアミド樹脂または、ポリアミド樹脂を主成分とするポリアミド樹脂組成物が好適に用いられる。
ここで、十分な吸収性とは、レーザー光を受けた部分がレーザー光を吸収し、その部分が溶融するような吸収性をいう。
The pipe-shaped product in the above invention is made of a resin member that absorbs laser light.
The resin having absorptivity with respect to laser light is not particularly limited as long as it has thermoplasticity, can be formed into a pipe-shaped product such as a gas pipe, and exhibits sufficient absorptivity with respect to laser light. For example, polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers such as ethylene and propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, or styrene, vinyl chloride, methyl methacrylate Absorptive to laser light in resins such as copolymers such as vinylidene chloride, polycarbonate, polyamide, polyester, polyether, polyetherketone, polyetheretherketone, polysulfone, polyimide, and other condensate engineering plastics The thing which mixed the coloring material which has this can be mentioned. In addition, you may use what added reinforcement fibers, such as glass fiber and carbon fiber, as needed.
In particular, a polyamide resin or a polyamide resin composition containing a polyamide resin as a main component is suitably used for automobile pipes that require chemical resistance and toughness, and for combustible gas supply and / or transportation pipes.
Here, sufficient absorptivity means the absorptivity so that the part which received the laser beam absorbs the laser beam, and the part melts.

前記ポリアミド樹脂としては、ジアミンと二塩基酸とからなるか、またはラクタムもしくはアミノカルボン酸からなるか、またはこれらの2種以上の共重合体からなるものが挙げられる。   Examples of the polyamide resin include those composed of diamine and dibasic acid, or composed of lactam or aminocarboxylic acid, or composed of a copolymer of two or more of these.

ジアミンとしては、テトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンや、メタキシリレンジアミン等の芳香族・環状構造を有するジアミンが挙げられる。
ジカルボン酸としては、アジピン酸、ヘプタンジカルボン酸、オクタンジカルボン酸、ノナンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等の脂肪族ジアミンやテレフタル酸、イソフタル酸等の芳香族・環状構造を有するジカルボン酸が挙げられる。
Examples of diamines include aliphatic diamines such as tetramethylene diamine, hexamethylene diamine, octamethylene diamine, nonamethyle diamine, undecamethylene diamine, and dodecamethylene diamine, and diamines having aromatic and cyclic structures such as metaxylylene diamine. Can be mentioned.
Examples of the dicarboxylic acid include aliphatic diamines such as adipic acid, heptane dicarboxylic acid, octane dicarboxylic acid, nonane dicarboxylic acid, undecane dicarboxylic acid, and dodecane dicarboxylic acid, and dicarboxylic acids having aromatic / cyclic structures such as terephthalic acid and isophthalic acid. Can be mentioned.

ラクタムとしては、炭素数6〜12のラクタム類であり、また、アミノカルボン酸としては炭素数6〜12のアミノカルボン酸である。6−アミノカプロン酸、7−アミノヘプタン酸、11−アミノウンデカン酸、12−アミノドデカン酸、α−ピロリドン、ε−カプロラクタム、ω−ラウロラクタム、ε−エナントラクタム等が挙げられる。   The lactam is a lactam having 6 to 12 carbon atoms, and the aminocarboxylic acid is an aminocarboxylic acid having 6 to 12 carbon atoms. Examples thereof include 6-aminocaproic acid, 7-aminoheptanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, α-pyrrolidone, ε-caprolactam, ω-laurolactam, and ε-enanthractam.

特に、パイプ用としては、加工温度範囲が広く、熱的に安定な押出加工性に優れた材料が好ましく、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612などの比較的融点の低いホモポリマーや、ポリアミド6/66、ポリアミド6/12、ポリアミド11/12などのコポリマーが好適に使用される。特に粘度や吸水性の点でポリアミド11、ポリアミド12が望ましい。   In particular, for pipes, a material having a wide processing temperature range and a thermally stable extrudability is preferable. Polyamide 6, polyamide 11, polyamide 12, polyamide 610, polyamide 612 and the like having a relatively low melting point are used. Polymers and copolymers such as polyamide 6/66, polyamide 6/12, polyamide 11/12 are preferably used. Particularly, polyamide 11 and polyamide 12 are desirable in terms of viscosity and water absorption.

また、上記ポリアミド樹脂は、他のポリアミド樹脂またはその他のポリマーとの混合物であってもよい。混合物中のポリアミド樹脂の含有率は、50重量%以上が好ましい。
混合するポリアミド樹脂としては、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミド610、ポリアミド612、ポリアミド912、ポリアミド1010、ポリアミド1212、ポリアミド6/66共重合、ポリアミド6/12共重合、ポリアミド11/12共重合等を挙げることができる。また、その他のポリマーとしては、ポリプロピレン、ABS樹脂、ポリフェニレンオキサイド、ポリカーボネ−ト、ポリエチレンテレフタレート、ポリブチレンテレフタレート等を挙げることができる。
The polyamide resin may be a mixture with other polyamide resins or other polymers. The content of the polyamide resin in the mixture is preferably 50% by weight or more.
Polyamide resins to be mixed include polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 912, polyamide 1010, polyamide 1212, polyamide 6/66 copolymer, polyamide 6/12 copolymer, polyamide 11 / 12 copolymerization. Examples of other polymers include polypropylene, ABS resin, polyphenylene oxide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, and the like.

また、上記樹脂には、耐熱剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤等の機能性付与剤を添加してもよい。   In addition, functional additives such as heat-resistant agents, weathering agents, crystal nucleating agents, crystallization accelerators, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardant aids may be added to the resin. Good.

本発明におけるレーザー光に対して吸収性を有する着色材としてはそのような性質を有するものであればどのようなものでも利用可能であるが、具体的には、カーボンブラック、複合酸化物系顔料等の無機系着色材、フタロシアニン系顔料、ポリメチン系顔料等の有機系着色材が用いられる。   Any colorant having such a property can be used as the colorant having absorptivity with respect to laser light in the present invention. Specifically, carbon black, composite oxide pigments can be used. Inorganic colorants such as phthalocyanine pigments and polymethine pigments are used.

また、前記レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品は、レーザー光に対して吸収性を有する樹脂部材からなる外層と、レーザー光に対して透過性を有する樹脂部材からなる内層とから構成してもよい。
外層の厚みは、10〜1000μmであることが好ましい。
これは、レーザー吸収性材料は可視光も吸収するものが多く配合により着色するが、レーザー光に対して吸収性を有する樹脂部材からなる外層の厚みを10〜1000μmの範囲にすることにより、その発色の影響が小さくなり、パイプ基材(内層)の色が外観上支配的になる。よって、パイプ基材の着色により見かけ上の色をコントロールでき、着色の自由度が高くなる。
また、レーザー吸収層を外層に限定することにより、内部で発熱しないため、パイプ内面に円筒状の溶解痕が出来にくくなり、接合部の欠陥が発生しにくくなる。
The pipe-shaped product made of a resin member that absorbs laser light includes an outer layer made of a resin member that absorbs laser light and a resin member that is transparent to laser light. You may comprise from an inner layer.
The thickness of the outer layer is preferably 10 to 1000 μm.
This is because many laser-absorbing materials also absorb visible light and are colored by blending. However, by setting the thickness of the outer layer made of a resin member having absorbability for laser light to a range of 10 to 1000 μm, The influence of coloring is reduced, and the color of the pipe base material (inner layer) becomes dominant in appearance. Therefore, the apparent color can be controlled by coloring the pipe base material, and the degree of freedom in coloring increases.
Further, by limiting the laser absorption layer to the outer layer, no heat is generated inside, so that it becomes difficult to form a cylindrical dissolution mark on the inner surface of the pipe, and defects in the joint are less likely to occur.

また、上記発明における継手は、レーザー光に対して透過性を有する樹脂部材からなる。
レーザー光に対して透過性を有する樹脂としては、熱可塑性を有し、パイプ用継手等に成形可能で、レーザー光に対して透過性を示すものであれば特に限定されない。例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレンなどの共重合体などのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、あるいはスチレン、塩化ビニル、メチルメタクリレート、塩化ビニリデンなどの共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルフォン、ポリイミドなどの縮合系のエンジニアリングプラスチック等の樹脂を挙げることができる。なお、必要に応じて、ガラス繊維やカーボン繊維等の補強繊維を添加したものを用いてもよい。具体的には、前記パイプ形状品との接着性を考慮して、前記パイプ形状品に用いられる樹脂と同種の樹脂を用いることが好ましい。
ここで、レーザー光に対して透過性を有するとは、たとえば一部のレーザー光の吸収があっても、残りのレーザー光が透過し、その部分の樹脂が溶融しない透過性をいう。
Moreover, the joint in the said invention consists of a resin member which has the permeability | transmittance with respect to a laser beam.
The resin having transparency to laser light is not particularly limited as long as it has thermoplasticity, can be molded into a pipe joint, and the like and exhibits transparency to laser light. For example, polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers such as ethylene and propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, or styrene, vinyl chloride, methyl methacrylate And copolymers such as vinylidene chloride, resins such as condensation engineering plastics such as polycarbonate, polyamide, polyester, polyether, polyetherketone, polyetheretherketone, polysulfone, and polyimide. In addition, you may use what added reinforcement fibers, such as glass fiber and carbon fiber, as needed. Specifically, in consideration of adhesiveness with the pipe-shaped product, it is preferable to use the same type of resin as that used for the pipe-shaped product.
Here, having transparency with respect to laser light means, for example, the transparency with which the remaining laser light is transmitted and the resin of that portion is not melted even if some of the laser light is absorbed.

上記樹脂には、耐熱剤、耐候剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤等の機能性付与剤を添加してもよい。
また、上記樹脂にレーザー光に対して透過性を示す着色材を添加してもよい。例えば、アンスラキノン系染料、ペリレン系、ペリノン系、複素環系、ジスアゾ系、モノアゾ系等の有機系染料をあげることができる。また、これらの染料を混合させて用いてもよい。
Functional additives such as heat-resistant agents, weathering agents, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardant aids may be added to the resin.
Moreover, you may add the coloring material which shows the transmittance | permeability with respect to a laser beam to the said resin. Examples thereof include organic dyes such as anthraquinone dyes, perylene series, perinone series, heterocyclic series, disazo series and monoazo series. Further, these dyes may be mixed and used.

上記発明では、レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品を、レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着する。
すなわち、レーザー光が照射されたとき、レーザー光に対して透過性を有する樹脂部材からなる継手をレーザー光が透過し、透過したレーザー光は、レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品の表面に到達し、接合面においてレーザー光が吸収され、パイプ形状品および当接する継手を溶融させ、接合する。
In the above invention, a pipe-shaped product made of a resin member that absorbs laser light is inserted into a joint made of a resin member that is transparent to laser light, and laser light is irradiated from the joint side. Both are laser welded.
That is, when irradiated with laser light, the laser light is transmitted through a joint made of a resin member that is transmissive to the laser light, and the transmitted laser light is made of a resin member that is absorbent to the laser light. It reaches the surface of the pipe-shaped product, the laser beam is absorbed at the joining surface, and the pipe-shaped product and the joint to be abutted are melted and joined.

このレーザー溶着法により、パイプ形状品と継手を接合することにより、垂れとコストの問題、さらに薄肉パイプの融着の困難性を解決できる。特に、樹脂がPEの場合には高分子量で高粘度の材料が製造しやすため、垂れが発生しにくいが、PAの場合は、工業的に粘度上昇に限界があり、また吸水による更なる粘度低下の問題もあり、垂れが発生しやすいので、このレーザー溶着法が適している。   By joining the pipe-shaped product and the joint by this laser welding method, it is possible to solve the problem of drooping and cost and the difficulty of fusion of the thin-walled pipe. In particular, when the resin is PE, a high molecular weight and high viscosity material can be easily produced, so that dripping does not easily occur. However, in the case of PA, there is an industrially limited increase in viscosity, and further viscosity due to water absorption. This laser welding method is suitable because there is a problem of lowering and sag is likely to occur.

次に、本発明の第二の発明においては、レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品の外側表面にレーザー吸収材を配置し、該パイプ形状品をレーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着する。   Next, in the second invention of the present invention, a laser absorbing material is disposed on the outer surface of a pipe-shaped product made of a resin member that is permeable to laser light, and the pipe-shaped product is disposed on the laser light. It inserts in the coupling | bonding which consists of a resin member which has permeability | transmittance, both are laser-welded by irradiating a laser beam from this coupling | bonding side.

上記発明におけるパイプ形状品は、レーザー光に対して透過性を有する樹脂部材からなる。
レーザー光に対して透過性を有する樹脂としては、熱可塑性を有し、ガスパイプ等のパイプ形状品に成形可能で、レーザー光に対して透過性を示すものであれば特に限定されない。例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレンなどの共重合体などのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、あるいはスチレン、塩化ビニル、メチルメタクリレート、塩化ビニリデンなどの共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルフォン、ポリイミドなどの縮合系のエンジニアリングプラスチック等の樹脂を挙げることができる。なお、必要に応じて、ガラス繊維やカーボン繊維等の補強繊維を添加したものを用いてもよい。
The pipe-shaped product in the above invention is made of a resin member that is transparent to laser light.
The resin having transparency to laser light is not particularly limited as long as it has thermoplasticity, can be formed into a pipe-shaped product such as a gas pipe, and exhibits transparency to laser light. For example, polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers such as ethylene and propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, or styrene, vinyl chloride, methyl methacrylate And copolymers such as vinylidene chloride, resins such as condensation engineering plastics such as polycarbonate, polyamide, polyester, polyether, polyetherketone, polyetheretherketone, polysulfone, and polyimide. In addition, you may use what added reinforcement fibers, such as glass fiber and carbon fiber, as needed.

ポリアミド樹脂については、前記第一発明の場合と同様である。
また、上記樹脂には、耐熱剤、耐候剤、結晶核剤、結晶化促進剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤等の機能性付与剤を添加してもよい。
また、上記樹脂にレーザー光に対して透過性を示す着色材を添加してもよい。例えば、アンスラキノン系染料、ペリレン系、ペリノン系、複素環系、ジスアゾ系、モノアゾ系等の有機系染料をあげることができる。また、これらの染料を混合させて用いてもよい。
The polyamide resin is the same as in the case of the first invention.
In addition, functional additives such as heat-resistant agents, weathering agents, crystal nucleating agents, crystallization accelerators, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardant aids may be added to the resin. Good.
Moreover, you may add the coloring material which shows the transmittance | permeability with respect to a laser beam to the said resin. Examples thereof include organic dyes such as anthraquinone dyes, perylene series, perinone series, heterocyclic series, disazo series and monoazo series. Further, these dyes may be mixed and used.

また、上記発明における継手は、レーザー光に対して透過性を有する樹脂部材からなる。
レーザー光に対して透過性を有する樹脂としては、熱可塑性を有し、パイプ用継手等に成形可能で、レーザー光に対して透過性を示すものであれば特に限定されない。例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレンなどの共重合体などのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、あるいはスチレン、塩化ビニル、メチルメタクリレート、塩化ビニリデンなどの共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルフォン、ポリイミドなどの縮合系のエンジニアリングプラスチック等の樹脂を挙げることができる。なお、必要に応じて、ガラス繊維やカーボン繊維等の補強繊維を添加したものを用いてもよい。具体的には、前記パイプ形状品との接着性を考慮して、前記パイプ形状品に用いられる樹脂と同種の樹脂を用いることが好ましい。
Moreover, the joint in the said invention consists of a resin member which has the permeability | transmittance with respect to a laser beam.
The resin having transparency to laser light is not particularly limited as long as it has thermoplasticity, can be molded into a pipe joint, and the like and exhibits transparency to laser light. For example, polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers such as ethylene and propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, or styrene, vinyl chloride, methyl methacrylate And copolymers such as vinylidene chloride, resins such as condensation engineering plastics such as polycarbonate, polyamide, polyester, polyether, polyetherketone, polyetheretherketone, polysulfone, and polyimide. In addition, you may use what added reinforcement fibers, such as glass fiber and carbon fiber, as needed. Specifically, in consideration of adhesiveness with the pipe-shaped product, it is preferable to use the same type of resin as that used for the pipe-shaped product.

上記樹脂には、耐熱剤、耐候剤、離型剤、滑剤、帯電防止剤、難燃剤、難燃助剤等の機能性付与剤を添加してもよい。
また、上記樹脂にレーザー光に対して透過性を示す着色材を添加してもよい。例えば、アンスラキノン系染料、ペリレン系、ペリノン系、複素環系、ジスアゾ系、モノアゾ系等の有機系染料をあげることができる。また、これらの染料を混合させて用いてもよい。
Functional additives such as heat-resistant agents, weathering agents, mold release agents, lubricants, antistatic agents, flame retardants, and flame retardant aids may be added to the resin.
Moreover, you may add the coloring material which shows the transmittance | permeability with respect to a laser beam to the said resin. Examples thereof include organic dyes such as anthraquinone dyes, perylene series, perinone series, heterocyclic series, disazo series and monoazo series. Further, these dyes may be mixed and used.

上記発明においては、パイプ形状品の外側表面の継手との接合部分にレーザー吸収材を配置する。
レーザー吸収材としては、レーザー光に対して吸収性を有する着色材を直接塗布したものが挙げられる。具体的には、着色材を溶媒に分散させた懸濁液をパイプ形状品の外側表面に塗布し、乾燥することにより、着色材がパイプ形状品の外側表面に配置される。
レーザー光に対して吸収性を有する着色材としては、カーボンブラック、複合酸化物系顔料等の無機系着色材、フタロシアニン系顔料、ポリメチン系顔料等の有機系着色材が用いられる。
In the said invention, a laser absorber is arrange | positioned in the junction part with the joint of the outer surface of a pipe-shaped goods.
Examples of the laser absorbing material include those obtained by directly applying a coloring material having absorptivity to laser light. Specifically, the coloring material is disposed on the outer surface of the pipe-shaped article by applying a suspension obtained by dispersing the coloring material in a solvent to the outer surface of the pipe-shaped article and drying.
As the colorant having absorptivity with respect to laser light, inorganic colorants such as carbon black and composite oxide pigments, and organic colorants such as phthalocyanine pigments and polymethine pigments are used.

また、レーザー吸収材として、レーザー光に対して吸収性を有する着色材を含む樹脂部材からなるフィルムを用いることもできる。
前記樹脂としてはフィルムに成形可能で、レーザー光に対して十分な吸収性を示すものであれば特に限定されない。例えば、ポリビニルアルコール、ポリ酢酸ビニル、ポリアミド、ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレンなどの共重合体などのポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、あるいはスチレン、塩化ビニル、メチルメタクリレート、塩化ビニリデンなどの共重合体、ポリカーボネート、ポリアミド、ポリエステル、ポリエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルフォン、ポリイミドなどの縮合系のエンジニアリングプラスチック等の樹脂に、レーザー光に対して吸収性を有する着色材を混入したものを挙げることができる。具体的には、前記パイプ形状品及び継手との接着性を考慮して、前記パイプ形状品及び継手に用いられる樹脂と同種の樹脂を用いることが好ましい。
フィルムの厚みは、10〜500μmであることが好ましい。10μm未満ではパイプと継ぎ手接合時、破損が発生しやすく、500μm超では、フィルムが剛直になり、取り扱い性が悪くなる。
Moreover, the film which consists of a resin member containing the coloring material which has an absorptivity with respect to a laser beam can also be used as a laser absorber.
The resin is not particularly limited as long as it can be formed into a film and exhibits sufficient absorbability with respect to laser light. For example, polyolefins such as polyvinyl alcohol, polyvinyl acetate, polyamide, polyethylene, polypropylene, or copolymers such as ethylene and propylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, or styrene, vinyl chloride, methyl methacrylate Absorptive to laser light in resins such as copolymers such as vinylidene chloride, polycarbonate, polyamide, polyester, polyether, polyetherketone, polyetheretherketone, polysulfone, polyimide, and other condensate engineering plastics The thing which mixed the coloring material which has this can be mentioned. Specifically, it is preferable to use the same type of resin as that used for the pipe-shaped product and the joint in consideration of the adhesiveness to the pipe-shaped product and the joint.
The thickness of the film is preferably 10 to 500 μm. If it is less than 10 μm, breakage is likely to occur at the time of joining a pipe and a joint, and if it exceeds 500 μm, the film becomes rigid and the handling property is deteriorated.

上記発明では、レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品の外側表面にレーザー吸収材を配置し、該パイプ形状品をレーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着する。
すなわち、レーザー光が照射されたとき、レーザー光に対して透過性を有する樹脂部材からなる継手をレーザー光が透過し、透過したレーザー光は、レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品の外側表面に配置されたレーザー吸収材に吸収され、接合面において当接するパイプ形状品および継手を溶融させ、接合する。
このレーザー溶着法によれば、パイプ形状品にレーザー光に対して吸収性を有する着色材を配合する必要がないため、本吸収材による着色・変色の可能性が無く、所望の色に容易に着色することができる。
In the above invention, a laser absorber is disposed on the outer surface of a pipe-shaped article made of a resin member that is transparent to laser light, and the pipe-shaped article is made of a resin member that is transparent to laser light. And laser welding is performed by irradiating laser light from the joint side.
That is, when irradiated with laser light, the laser light is transmitted through a joint made of a resin member that is transparent to the laser light, and the transmitted laser light is made of a resin member that is transparent to the laser light. The pipe-shaped product and the joint that are absorbed by the laser absorber disposed on the outer surface of the pipe-shaped product and abut on the joining surface are melted and joined.
According to this laser welding method, since it is not necessary to add a coloring material having absorptivity to laser light to the pipe-shaped product, there is no possibility of coloring or discoloration by this absorbing material, and it is easy to obtain a desired color. Can be colored.

このレーザー溶着法により、パイプ形状品と継手を接合することにより、垂れ、強い溶剤による環境安全問題、コストの問題、さらに薄肉パイプの融着の困難性を解決できる。特に、樹脂がPEの場合には高分子量で高粘度の材料が製造しやすため、垂れが発生しにくいが、PAの場合は、工業的に粘度上昇に限界があり、また吸水による更なる粘度低下の問題もあり、垂れが発生しやすいので、このレーザー溶着法が適している。   By joining the pipe-shaped product and the joint by this laser welding method, it is possible to solve dripping, environmental safety problems due to strong solvents, cost problems, and difficulty in fusion of thin-walled pipes. In particular, when the resin is PE, a high molecular weight and high viscosity material can be easily produced, so that dripping does not easily occur. However, in the case of PA, there is an industrially limited increase in viscosity, and further viscosity due to water absorption. This laser welding method is suitable because there is a problem of lowering and sag is likely to occur.

本発明においては、前記第一及び第二の発明における継手として、レーザー光に対して弱吸収性である樹脂部材を用いても良い。
ここで、レーザー光に対して弱吸収性であるとは、レーザー光に対して透過性であるが、一部のレーザー光を吸収することにより、その部分の樹脂が発熱することをいう。
そのため、樹脂部材にレーザー光を照射すると、エネルギーを吸収して、発熱し、パイプ形状品との接合面部分の温度がある程度まで高くなる。この状態で、例えば、レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品がレーザー光を吸収して加熱されることにより、溶融すると、継手の樹脂部材も容易に溶融するため、接合部において樹脂部材同士が十分に互いに絡み合った接合部となり、接合力が強くなる。
In this invention, you may use the resin member which is weakly absorptive with respect to a laser beam as a coupling in said 1st and 2nd invention.
Here, being weakly absorptive with respect to laser light means being transmissive with respect to laser light, but absorbing a part of the laser light causes the resin in that part to generate heat.
Therefore, when the resin member is irradiated with laser light, the energy is absorbed and heat is generated, and the temperature of the joint surface portion with the pipe-shaped product is increased to some extent. In this state, for example, when a pipe-shaped product made of a resin member that absorbs laser light is melted by absorbing and heating the laser light, the joint resin member is also easily melted. In the portion, the resin members are sufficiently entangled with each other, and the joining force is increased.

レーザー光に対して弱吸収性である樹脂部材としては、樹脂にレーザー光に対して弱吸収性の添加剤を配合したものや、樹脂にレーザー光に対して吸収性を有する添加剤をレーザー光の吸収があっても樹脂が溶融しない範囲で配合したものを用いることができる。   Examples of resin members that are weakly absorbent to laser light include those in which an additive that is weakly absorbent to laser light is added to the resin, or additives that are absorbent to the laser light in the resin. Even if there is absorption, a compounded in a range where the resin does not melt can be used.

レーザー光に対して弱吸収性の添加剤としては、レーザー光の波長に共振して、レーザー光の一部を吸収し、一部を透過する材料であればよい。特にレーザー光に対して40〜90%の透過率を有するものが好ましい。なお、前記レーザー光に対する透過率は、弱吸収性の添加剤を3.2mm厚さのASTM1号ダンベルの形状に成形したものについて測定した数値である。   The additive weakly absorbing the laser beam may be any material that resonates with the wavelength of the laser beam, absorbs part of the laser beam, and transmits part of the laser beam. In particular, those having a transmittance of 40 to 90% with respect to laser light are preferable. In addition, the transmittance | permeability with respect to the said laser beam is the numerical value measured about what shape | molded the weak absorption additive in the shape of the ASTM1 dumbbell of thickness 3.2mm.

また、弱吸収性の添加剤の含有量は、樹脂に対し、0.1〜50重量%であることが好ましい。含有量が0.1重量%よりも少ないと、レーザー光のエネルギーを吸収することによる発熱が少ないため、樹脂部材の温度が十分にあがらず、接合部の接合強度が低くなる。また、含有量が50重量%を超えると、曲げ弾性率等の物性が低下したり、十分な溶着強度を得るためにより多くのレーザー光のエネルギーが必要になるので好ましくない。   Moreover, it is preferable that content of a weakly absorbable additive is 0.1 to 50 weight% with respect to resin. When the content is less than 0.1% by weight, heat generated by absorbing the energy of the laser beam is small, so that the temperature of the resin member is not sufficiently increased, and the bonding strength of the bonded portion is lowered. On the other hand, if the content exceeds 50% by weight, it is not preferable because physical properties such as flexural modulus are lowered and more laser beam energy is required to obtain sufficient welding strength.

弱吸収性の添加剤としては、例えば、エチレン及び/又はプロピレンと他のオレフィン類やビニル系化合物との共重合体(以下、エチレン及び/又はプロピレン系共重合体という)、スチレンと、共役ジエン化合物との共重合体を水素添加してなるブロック共重合体(以下、スチレン系共重合体という)、かかるエチレン及び/又はプロピレン系共重合体、スチレン系共重合体にα,β−不飽和カルボン酸もしくはその誘導体を付加させた変性エチレン及び/又はプロピレン系共重合体、変性スチレン系共重合体が挙げられる。   Examples of weakly absorbing additives include copolymers of ethylene and / or propylene with other olefins and vinyl compounds (hereinafter referred to as ethylene and / or propylene copolymers), styrene, and conjugated dienes. Block copolymer formed by hydrogenating copolymer with compound (hereinafter referred to as styrene copolymer), such ethylene and / or propylene copolymer, α, β-unsaturated to styrene copolymer Examples thereof include modified ethylene and / or propylene copolymer and modified styrene copolymer to which carboxylic acid or a derivative thereof is added.

エチレン及び/又はプロピレン系共重合体としては、(エチレン及び/又はプロピレン)・α−オレフィン系共重合体、(エチレン及び/又はプロピレン)・α,β−不飽和カルボン酸共重合体、(エチレン及び/又はプロピレン)・α,β−不飽和カルボン酸エステル系共重合体、アイオノマー重合体などを挙げることができる。   Examples of the ethylene and / or propylene copolymer include (ethylene and / or propylene) · α-olefin copolymer, (ethylene and / or propylene) · α, β-unsaturated carboxylic acid copolymer, (ethylene And / or propylene) · α, β-unsaturated carboxylic acid ester copolymer, ionomer polymer, and the like.

(エチレン及び/又はプロピレン)・α−オレフィン系共重合体とは、エチレン及び/又はプロピレンと炭素数3以上のα−オレフィンを共重合した重合体であり、炭素数3以上のα−オレフィンとしては、プロピレン、ブテン−1、ヘキセン−1、デセン−1、4−メチルブテン−1、4−メチルペンテン−1が挙げられる。   (Ethylene and / or propylene) · α-olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an α-olefin having 3 or more carbon atoms, and as an α-olefin having 3 or more carbon atoms. Are propylene, butene-1, hexene-1, decene-1, 4-methylbutene-1, 4-methylpentene-1.

(エチレン及び/又はプロピレン)・α,β−不飽和カルボン酸系共重合体とは、エチレン及び/又はプロピレンとα,β−不飽和カルボン酸単量体を共重合した重合体であり、α,β−不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸、エタクリル酸、無水マレイン酸等を挙げることができる。   The (ethylene and / or propylene) · α, β-unsaturated carboxylic acid copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an α, β-unsaturated carboxylic acid monomer. Examples of the .beta.-unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, ethacrylic acid, and maleic anhydride.

(エチレン及び/又はプロピレン)・α,β−不飽和カルボン酸エステル系共重合体とは、エチレン及び/又はプロピレンとα,β−不飽和カルボン酸エステル単量体を共重合した重合体であり、α,β−不飽和カルボン酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチルなどのメタクリル酸エステル等を挙げられる。   (Ethylene and / or propylene) · α, β-unsaturated carboxylic acid ester copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an α, β-unsaturated carboxylic acid ester monomer. , Α, β-unsaturated carboxylic acid ester monomers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and other acrylic esters, methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacrylic acid And methacrylates such as butyl acid.

アイオノマー重合体とは、オレフィンとα,β−不飽和カルボン酸共重合体のカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしてはエチレンが好ましく用いられ、α,β−不飽和カルボン酸としてはアクリル酸、メタクリル酸等が用いられる。金属イオンはナトリウム、カリウム、マグネシウム、カルシウム、亜鉛等のイオンを挙げることできる。   The ionomer polymer is obtained by ionizing at least part of the carboxyl group of the olefin and the α, β-unsaturated carboxylic acid copolymer by neutralization of metal ions. Ethylene is preferably used as the olefin, and acrylic acid, methacrylic acid or the like is used as the α, β-unsaturated carboxylic acid. Metal ions can include ions of sodium, potassium, magnesium, calcium, zinc and the like.

スチレン系共重合体とは、少なくとも1個、好ましくは2個以上のスチレンを主体とする重合体ブロックAと、少なくとも1個の共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体を水素添加してなるブロック共重合体であり、例えばA−B−A、B−A−B−A、A−B−A−B−A、B−A−B−A−B等の構造を有する。   The styrene copolymer is a block copolymer consisting of a polymer block A mainly composed of at least one, preferably 2 or more styrenes, and a polymer block B mainly composed of at least one conjugated diene compound. It is a block copolymer formed by hydrogenating a coalescence, such as ABA, BABA, ABBABA, BABB, and the like. It has a structure.

共役ジエン化合物としては、例えばブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエンなどが挙げられる。
スチレン系共重合体としては、水添スチレン−ブタジエン−スチレン共重合体(SEBS)、水添スチレン−イソプレン−スチレン共重合体(SEPS)等が挙げられる。
Examples of the conjugated diene compound include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like.
Examples of the styrene copolymer include hydrogenated styrene-butadiene-styrene copolymer (SEBS) and hydrogenated styrene-isoprene-styrene copolymer (SEPS).

変性(エチレン及び/又はプロピレン)系共重合体、変性スチレン系共重合体は、前記に規定した(エチレン及び/又はプロピレン)系共重合体、スチレン系共重合体にα,β−不飽和カルボン酸基またはその誘導体基を含有する化合物を溶液状態もしくは溶融状態において付加することによって得られる。これら変性(エチレン及び/又はプロピレン)系共重合体、変性スチレン系共重合体の製造方法としては、例えば押出機中で、ラジカル開始剤存在下、(エチレン及び/又はプロピレン)系共重合体、スチレン系共重合体とカルボン酸基またはその誘導体基を含有する化合物とを反応させる方法がある。   The modified (ethylene and / or propylene) -based copolymer and modified styrene-based copolymer are the same as the above-defined (ethylene and / or propylene) -based copolymer and styrene-based copolymer. It can be obtained by adding a compound containing an acid group or a derivative group thereof in a solution state or a molten state. As a method for producing these modified (ethylene and / or propylene) -based copolymers and modified styrene-based copolymers, for example, in an extruder, in the presence of a radical initiator, (ethylene and / or propylene) -based copolymers, There is a method of reacting a styrene copolymer with a compound containing a carboxylic acid group or a derivative group thereof.

α,β−不飽和カルボン酸またはその誘導体(以下単に不飽和カルボン酸という)としては、アクリル酸,メタクリル酸,エタクリル酸,マレイン酸,フマル酸あるいはこれらの酸の無水物またはエステルなどを挙げることができる。   Examples of α, β-unsaturated carboxylic acids or derivatives thereof (hereinafter simply referred to as unsaturated carboxylic acids) include acrylic acid, methacrylic acid, ethacrylic acid, maleic acid, fumaric acid, and anhydrides or esters of these acids. Can do.

樹脂にレーザー光に対して吸収性を有する添加剤を配合する場合には、レーザー光を照射した際、一部のレーザー光を吸収しても、残りのレーザー光が透過し、その部分の樹脂が溶融しない範囲で添加量を調整する。
レーザー光に対して吸収性を有する添加剤としては、カーボンブラック、複合酸化物系顔料等の無機系着色材、フタロシアニン系顔料、ポリメチン系顔料等の有機系着色材が用いられる。
When an additive that absorbs laser light is added to the resin, even when part of the laser light is absorbed when irradiated with the laser light, the remaining laser light is transmitted and the resin in that part is absorbed. The amount of addition is adjusted in such a range that does not melt.
As an additive having absorptivity with respect to laser light, inorganic colorants such as carbon black and composite oxide pigments, and organic colorants such as phthalocyanine pigments and polymethine pigments are used.

本発明においては、前記レーザー光に対して弱吸収性である樹脂部材からなる継手として、前記樹脂にレーザー光に対して弱吸収性の添加剤等を配合した樹脂部材からなる内層と、レーザー光に対して弱吸収性の添加剤等を含有しない樹脂部材からなる外層とから構成してもよい。
内層の厚みは、全継ぎ手厚みの1/2以下であることが好ましい。
多層にすることにより、弱吸収性の材料によるレーザーエネルギーロスを低減することができ、必要なレーザー光出力が小さくて済む。それゆえ、コンパクトな小型半導体レーザーが選択でき、より早い走査速度で対応可能になり、装置・速度の面で好ましい。
また、添加剤により物理的な特性変化が発生しても、部品全体としての構成割合が小さいため素材自身の特性を維持した部品を作ることができる。
In the present invention, as a joint made of a resin member that is weakly absorbable with respect to the laser beam, an inner layer made of a resin member obtained by blending the resin with an additive that is weakly absorbable with respect to the laser beam, In contrast, an outer layer made of a resin member that does not contain weakly absorbent additives or the like may be used.
The thickness of the inner layer is preferably 1/2 or less of the total joint thickness.
By using multiple layers, laser energy loss due to weakly absorbing materials can be reduced, and the required laser light output can be reduced. Therefore, a compact small semiconductor laser can be selected, and it can be handled at a higher scanning speed, which is preferable in terms of apparatus and speed.
In addition, even if physical characteristics change due to the additive, a component that maintains the characteristics of the material itself can be made because the composition ratio of the entire component is small.

また、本発明においては、前記第一及び第二の発明における継手として、樹脂に結晶核剤又は該樹脂に対し結晶化促進効果を有する他の樹脂を配合してなる樹脂部材を用いても良い。
樹脂に結晶核剤又は該樹脂に対し結晶化促進効果を有する他の樹脂を配合することにより、該樹脂の結晶化開始温度が高くなる。このため、接合面において、前記溶融時の体積膨張による圧力が高い時点で第一樹脂の結晶化が始まるので、接合部において樹脂部材同士が十分に互いに絡み合った状態となり、接合強度が著しく向上する。
In the present invention, as the joint in the first and second inventions, a resin member obtained by blending a resin with a crystal nucleating agent or another resin having a crystallization promoting effect on the resin may be used. .
By blending the resin with a crystal nucleating agent or another resin having a crystallization promoting effect on the resin, the crystallization start temperature of the resin is increased. For this reason, since the crystallization of the first resin starts at the time when the pressure due to volume expansion at the time of melting is high on the joint surface, the resin members are sufficiently intertwined with each other at the joint, and the joint strength is significantly improved. .

結晶核剤としては、樹脂の結晶化速度を速める効果を有するものであれば、特に制限はないが、例えば、グラファイト、二硫化モリブデン、硫酸バリウム、炭酸カルシウム、燐酸ソーダ、タルク、マイカ、カオリンなどの無機結晶核剤や、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸等の脂肪酸と亜鉛、マグネシウム、カルシウム、リチウム、アルミニウム、バリウム等の金属からなる脂肪酸金属塩や、高級脂肪酸類、高級脂肪酸エステル類、高級脂肪族アルコール類等の有機結晶核剤などが挙げられる。   The crystal nucleating agent is not particularly limited as long as it has an effect of increasing the crystallization speed of the resin. For example, graphite, molybdenum disulfide, barium sulfate, calcium carbonate, sodium phosphate, talc, mica, kaolin, etc. Inorganic crystal nucleating agents, fatty acid metal salts composed of fatty acids such as myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid and metals such as zinc, magnesium, calcium, lithium, aluminum, barium, higher fatty acids, And organic crystal nucleating agents such as higher fatty acid esters and higher aliphatic alcohols.

また、結晶核剤の含有量は、樹脂100重量部に対し、0.001〜5重量部、特に0.002〜1重量部であることが好ましい。含有量が0.001重量%よりも少ないと、樹脂の結晶化開始温度を高くする効果が得られず、接合部の接合強度が向上しない。また、含有量が5重量%を超えると、母材の剛性、耐衝撃性及び流動性などの物性が大きく変化するため好ましくない。   Moreover, it is preferable that content of a crystal nucleating agent is 0.001-5 weight part with respect to 100 weight part of resin, especially 0.002-1 weight part. When the content is less than 0.001% by weight, the effect of increasing the crystallization start temperature of the resin cannot be obtained, and the bonding strength of the bonded portion is not improved. On the other hand, if the content exceeds 5% by weight, it is not preferable because physical properties such as rigidity, impact resistance and fluidity of the base material change greatly.

樹脂に対し結晶化促進効果を有する他の樹脂としては、樹脂の結晶化速度を速める効果を有するものであれば、特に制限はなく、一般に、樹脂の凝固点(Tc)よりも高い凝固点(Tc)を有する樹脂であればよい。例えば、樹脂がポリアミド12である場合には、ポリアミド6、ポリアミド66等が挙げられる。   The other resin having an effect of promoting crystallization with respect to the resin is not particularly limited as long as it has an effect of increasing the crystallization speed of the resin, and generally has a freezing point (Tc) higher than the freezing point (Tc) of the resin. What is necessary is just resin which has. For example, when the resin is polyamide 12, examples thereof include polyamide 6 and polyamide 66.

また、結晶化促進効果を有する他の樹脂の含有量は、樹脂100重量部に対し、1〜20重量部、特に5〜15重量部であることが好ましい。含有量が1重量%よりも少ないと、樹脂の結晶化開始温度を高くする効果が得られず、接合部の接合強度が向上しない。また、含有量が20重量%を超えると、母材の剛性、耐衝撃性及び流動性などの物性が大きく変化するため好ましくない。   Moreover, it is preferable that content of the other resin which has a crystallization promotion effect is 1-20 weight part with respect to 100 weight part of resin, especially 5-15 weight part. When the content is less than 1% by weight, the effect of increasing the crystallization start temperature of the resin cannot be obtained, and the bonding strength of the bonded portion is not improved. On the other hand, if the content exceeds 20% by weight, it is not preferable because physical properties such as rigidity, impact resistance and fluidity of the base material change greatly.

本発明においては、前記継手が、樹脂に結晶核剤又は結晶化促進効果を有する他の樹脂を配合してなる樹脂部材からなる内層と、結晶核剤又は結晶化促進効果を有する他の樹脂を含有しない樹脂部材からなる外層とから構成してもよい。
内層の厚みは、全継ぎ手厚さの1/2以下であることが好ましい。
多層にすることにより、結晶核剤等の添加によるレーザーエネルギーロスを低減することができ、必要なレーザー光出力が小さくて済む。それゆえ、コンパクトな小型半導体レーザーが選択でき、より早い走査速度で対応可能になり、装置・速度の面で好ましい。
また、添加剤により物理的な特性変化が発生しても、部品全体としての構成割合が小さいため素材自身の特性を維持した部品を作ることができる。
In the present invention, the joint includes an inner layer made of a resin member obtained by blending a resin with a crystal nucleating agent or another resin having a crystallization promoting effect, and a crystal nucleating agent or another resin having a crystallization promoting effect. You may comprise from the outer layer which consists of a resin member which does not contain.
The thickness of the inner layer is preferably 1/2 or less of the total joint thickness.
By using multiple layers, laser energy loss due to the addition of a crystal nucleating agent or the like can be reduced, and the required laser light output can be reduced. Therefore, a compact small semiconductor laser can be selected, and it can be handled at a higher scanning speed, which is preferable in terms of apparatus and speed.
In addition, even if physical characteristics change due to the additive, a component that maintains the characteristics of the material itself can be made because the composition ratio of the entire component is small.

本発明における継手としては、パイプと接する内側に溝や梨地状の微細な凹凸を設けることもできる。溝や微細な凹凸を設けることにより、パイプの挿入性の改善と固化時の応力緩和に効果がある。
さらに、高い接着強度発現のためにレーザー溶着面を十分密着させることが必要であり、十分な圧力がかかるよう継手内径よりパイプ外径の寸法を大きくすることが望ましい。例えば、パイプ外径/継手内径=1.0〜1.3の範囲にすることが好ましい。
また、必要に応じ、内側から外側(パイプ開口部)へ向けて広がるようにテーパーをつけ、パイプを挿入しやすくすることができる。
As a joint in this invention, a groove | channel and a satin-like fine unevenness | corrugation can also be provided in the inner side which touches a pipe. Providing grooves and fine irregularities is effective in improving pipe insertion and stress relaxation during solidification.
Furthermore, it is necessary for the laser welding surface to be in close contact with each other in order to achieve high adhesive strength, and it is desirable to make the pipe outer diameter larger than the joint inner diameter so that sufficient pressure is applied. For example, it is preferable that the outer diameter of the pipe / the inner diameter of the joint = 1.0 to 1.3.
Further, if necessary, the pipe can be tapered so as to spread from the inside toward the outside (pipe opening), and the pipe can be easily inserted.

本発明のレーザー溶着方法に用いられるレーザー光としては、ガラス:ネオジム3+レーザー、YAG:ネオジム3+レーザー、ルビーレーザー、ヘリウム−ネオンレーザー、クリプトンレーザー、アルゴンレーザー、Hレーザー、Nレーザー、半導体レーザー等のレーザー光をあげることができる。より好ましいレーザーとしては、半導体レーザーである。 Laser light used in the laser welding method of the present invention includes glass: neodymium 3+ laser, YAG: neodymium 3+ laser, ruby laser, helium-neon laser, krypton laser, argon laser, H 2 laser, N 2 laser, semiconductor laser. And so on. A more preferable laser is a semiconductor laser.

レーザー光の波長は、接合される樹脂材料により異なるため一概に決定できないが、400nm以上であることが好ましい。波長が400nmより短いと、樹脂が著しく劣化することがある。   The wavelength of the laser beam varies depending on the resin material to be joined and cannot be determined unconditionally, but is preferably 400 nm or more. If the wavelength is shorter than 400 nm, the resin may be significantly deteriorated.

また、レーザー光の出力は、走査速度と透過基材の吸収能力により調整できる。レーザー光の出力が低いと樹脂材料の接合面を互いに溶融させることが困難となり、出力が高いと樹脂材料が蒸発したり、変質し強度が低下する問題が生じるようになる。
本接合方法は、自動車用燃料パイプ、自動車用エアブレーキパイプ、薬液輸送パイプ、可燃性ガス供給または輸送パイプ等に用いることができる。
Further, the output of the laser beam can be adjusted by the scanning speed and the absorption capacity of the transmissive substrate. If the output of the laser beam is low, it becomes difficult to melt the joint surfaces of the resin materials, and if the output is high, the resin material evaporates or changes in quality and the strength is lowered.
This joining method can be used for automobile fuel pipes, automobile air brake pipes, chemical liquid transport pipes, flammable gas supply or transport pipes, and the like.

以下、実施例を用いて本発明を説明する。
実施例1
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)を用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が30W、走査速度が10mm/sであった。
前記と同様にして、前記パイプの他端をもう一つの継手とレーザー溶着し、このレーザー溶着したパイプと継手の接着力を、両端の継手側を長手方向に引き抜くことにより評価したところ、4200Nで接合部が外れた。
Hereinafter, the present invention will be described using examples.
Example 1
As shown in FIG. 1, a laser-transmitting cylindrical joint 1 (inner diameter 31.5 mm, thickness 3.5 mm) was produced using polyamide 12 (UBESTA 3035U manufactured by Ube Industries, Ltd.).
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
In the same manner as described above, the other end of the pipe was laser welded to another joint, and the adhesive strength between the laser welded pipe and the joint was evaluated by pulling out the joint side at both ends in the longitudinal direction. The joint has come off.

実施例2
図2に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)を用いて、レーザー透過性の円筒形継手3(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12を用いて、レーザー透過性のパイプ4(外径32mm、厚み1.5mm)を作製した。
前記パイプ4の外側表面にカーボンブラック系黒色インクを塗布、乾燥して、レーザー吸収材5を配置した。
このパイプを継手に挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が30W、走査速度は10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、接着力は3600Nであった。
Example 2
As shown in FIG. 2, a laser-transmitting cylindrical joint 3 (inner diameter: 31.5 mm, thickness: 3.5 mm) was prepared using polyamide 12 (UBEST 3035U manufactured by Ube Industries, Ltd.).
Also, using the same polyamide 12, a laser transmissive pipe 4 (outer diameter 32 mm, thickness 1.5 mm) was produced.
A carbon black black ink was applied to the outer surface of the pipe 4 and dried, and a laser absorbing material 5 was disposed.
This pipe was inserted into a joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
When the adhesive force between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the adhesive force was 3600 N.

実施例3
図3に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)を用いて、レーザー透過性の円筒形継手6(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12を用いて、レーザー透過性のパイプ7(外径32mm、厚み1.5mm)を作製した。
同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、溶融押出したフィルムを二軸延伸処理して熱収縮性フィルムを作製した。
この熱収縮性フィルムをパイプ7の外側表面に被覆し、熱処理してパイプに密着させて、レーザー吸収材8を配置した。
このパイプを継手に挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が30W、走査速度は10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、接着力は4000Nであった。
Example 3
As shown in FIG. 3, a laser-transmitting cylindrical joint 6 (inner diameter: 31.5 mm, thickness: 3.5 mm) was prepared using polyamide 12 (UBEST 3035U manufactured by Ube Industries, Ltd.).
Further, using the same polyamide 12, a laser permeable pipe 7 (outer diameter 32 mm, thickness 1.5 mm) was produced.
Using the same polyamide 12 blended with 0.5% by weight of carbon black, the melt-extruded film was biaxially stretched to produce a heat-shrinkable film.
The heat-shrinkable film was coated on the outer surface of the pipe 7, heat-treated and adhered to the pipe, and the laser absorbing material 8 was disposed.
This pipe was inserted into a joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
When the adhesive force between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the adhesive force was 4000 N.

実施例4
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)を用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12に黄色の着色剤及び赤外線吸収剤(Avecia製PRO−JET830NP)を0.05重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。パイプの色は黒ずんだ黄色であった。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が30W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、接着力は3900Nであった。
Example 4
As shown in FIG. 1, a laser-transmitting cylindrical joint 1 (inner diameter 31.5 mm, thickness 3.5 mm) was produced using polyamide 12 (UBESTA 3035U manufactured by Ube Industries, Ltd.).
Also, using the same polyamide 12 mixed with 0.05% by weight of a yellow colorant and an infrared absorber (Avecia PRO-JET830NP), a laser-absorbing pipe 2 (outer diameter 32 mm, thickness 1.5 mm) Was made. The color of the pipe was dark yellow.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
When the adhesive force between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the adhesive force was 3900N.

実施例5
図4に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)を用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12に黄色着色剤と赤外線吸収剤(Avecia製PRO−JET830NP)を0.05重量%配合したものを外層に、赤外線吸収剤抜きの黄色材料だけを配合したものを内層にして共押出しで、レーザー吸収性の多層パイプ2(外径32mm、厚み1.5mm)を作製した。吸収剤入りの外層の厚みは100μmであり、2層パイプの外観は、明るい黄色であった。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が30W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、接着力は4400Nであり、単層パイプより高い強度であった。また、内面に観察される溶着部の変形は単層より小さかった。
Example 5
As shown in FIG. 4, a laser-permeable cylindrical joint 1 (inner diameter: 31.5 mm, thickness: 3.5 mm) was produced using polyamide 12 (UBESTA 3035U manufactured by Ube Industries, Ltd.).
In addition, the same polyamide 12 blended with 0.05% by weight of a yellow colorant and an infrared absorber (Avecia PRO-JET830NP) in the outer layer and a blend of only the yellow material without the infrared absorber in the inner layer. A laser-absorbing multilayer pipe 2 (outer diameter 32 mm, thickness 1.5 mm) was produced by extrusion. The thickness of the outer layer containing the absorbent was 100 μm, and the appearance of the two-layer pipe was bright yellow.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 30 W, and a scanning speed of 10 mm / s.
When the adhesive force between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the adhesive force was 4400 N, which was higher than that of the single-layer pipe. Moreover, the deformation of the welded portion observed on the inner surface was smaller than that of the single layer.

実施例6
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)にタルク(竹原化学工業(株)製タルクカップ)200ppmを配合したものを用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が100W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、5700Nでパイプが破断した。
Example 6
As shown in FIG. 1, a laser-permeable cylindrical joint 1 (inner diameter) using polyamide 12 (UBEST 3035U manufactured by Ube Industries Co., Ltd.) and 200 ppm of talc (Talc Cup manufactured by Takehara Chemical Industry Co., Ltd.). 31.5 mm, thickness 3.5 mm).
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mm / s.
When the adhesive strength between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the pipe broke at 5700N.

実施例7
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)にポリアミド6(宇部興産(株)製1030B)を10重量%配合したものを用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が100W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、5700Nで破断した。
Example 7
As shown in FIG. 1, a laser-transmitting cylindrical joint 1 (using Ubesta 3035U manufactured by Ube Industries, Ltd.) and 10% by weight of polyamide 6 (1030B manufactured by Ube Industries) was blended. The inner diameter was 31.5 mm and the thickness was 3.5 mm.
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mm / s.
When the adhesive strength between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, it was broken at 5700N.

実施例8
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)にマレイン酸変性EPR(JSR製T7712SP)を2重量%配合したものを用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が100W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、5600Nでパイプが破断した。
Example 8
As shown in FIG. 1, a laser-permeable cylindrical joint 1 (inner diameter 31) using polyamide 12 (UBEST 3035U manufactured by Ube Industries Co., Ltd.) and 2% by weight of maleic acid-modified EPR (T7712SP manufactured by JSR). 0.5 mm, thickness 3.5 mm).
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mm / s.
When the adhesive strength between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the pipe broke at 5600N.

実施例9
図1に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)に赤外線吸収剤(Avecia製PRO−JET830NP)を0.005重量%配合したものを用いて、レーザー透過性の円筒形継手1(内径31.5mm、厚み3.5mm)を作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が100W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、5700Nでパイプが破断した。
Example 9
As shown in FIG. 1, a laser-transmitting cylindrical joint 1 using a polyamide 12 (UBEST 3035U manufactured by Ube Industries Co., Ltd.) and 0.005% by weight of an infrared absorber (PRO-JET830NP manufactured by Avecia) is blended. (Inner diameter 31.5 mm, thickness 3.5 mm) was produced.
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 100 W, and a scanning speed of 10 mm / s.
When the adhesive strength between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the pipe broke at 5700N.

実施例10
図5に示すように、ポリアミド12(宇部興産(株)製UBESTA3035U)にタルク(竹原化学工業(株)製タルクカップ)200ppmを配合したものを内層に、タルクを配合しないものを外層にした、レーザー透過性の円筒形継手1(内径31.5mm、厚み:内層0.5mm、外層3mm)を射出成形で作製した。
また、同じポリアミド12にカーボンブラックを0.5重量%配合したものを用いて、レーザー吸収性のパイプ2(外径32mm、厚み1.5mm)を作製した。
この継手にパイプを挿入し、半導体レーザー装置にセットした。継手側からレーザー光を照射しながら、照射ノズルを継手の円周に沿って移動させた。その結果、継手とパイプとの当接面部において、溶融、固化が生じ、継手とパイプが強固に溶着した。
このとき、レーザー溶着に用いられたレーザー光は、波長が808nm、出力が50W、走査速度が10mm/sであった。
このレーザー溶着したパイプと継手の接着力を実施例1と同様にして評価したところ、5100Nでパイプが破断した。
Example 10
As shown in FIG. 5, polyamide 12 (UBE Kosan Co., Ltd. UBESTA3035U) blended with 200 ppm of talc (Takehara Chemical Industry Co., Ltd. talc cup) in the inner layer, and the one without talc blended in the outer layer, A laser-transmitting cylindrical joint 1 (inner diameter 31.5 mm, thickness: inner layer 0.5 mm, outer layer 3 mm) was produced by injection molding.
Further, a laser-absorbing pipe 2 (an outer diameter of 32 mm and a thickness of 1.5 mm) was prepared using the same polyamide 12 blended with 0.5% by weight of carbon black.
A pipe was inserted into this joint and set in a semiconductor laser device. The irradiation nozzle was moved along the circumference of the joint while irradiating laser light from the joint side. As a result, melting and solidification occurred at the contact surface portion between the joint and the pipe, and the joint and the pipe were firmly welded.
At this time, the laser beam used for laser welding had a wavelength of 808 nm, an output of 50 W, and a scanning speed of 10 mm / s.
When the adhesive strength between the laser welded pipe and the joint was evaluated in the same manner as in Example 1, the pipe broke at 5100N.

図1は、本発明の実施例1で作製した継手とパイプの接合形態の概略図である。FIG. 1 is a schematic view of a joint form of a joint and a pipe produced in Example 1 of the present invention. 図2は、本発明の実施例2で作製した継手とパイプの接合形態の概略図である。FIG. 2 is a schematic view of a joint form of a joint and a pipe produced in Example 2 of the present invention. 図3は、本発明の実施例3で作製した継手とパイプの接合形態の概略図である。FIG. 3 is a schematic view of the joint form of the joint and pipe produced in Example 3 of the present invention. 図4は、本発明の実施例5で作製した継手とパイプの接合形態の概略図である。FIG. 4 is a schematic view of a joint form of a joint and a pipe produced in Example 5 of the present invention. 図5は、本発明の実施例10で作製した継手とパイプの接合形態の概略図である。FIG. 5 is a schematic view of a joint form of a joint and a pipe produced in Example 10 of the present invention.

Claims (19)

レーザー光に対して吸収性を有する樹脂部材からなるパイプ形状品を、レーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着することを特徴とするパイプ形状品の接合方法。   A pipe-shaped product made of a resin member that absorbs laser light is inserted into a joint made of a resin member that is transparent to laser light, and both are laser welded by irradiating laser light from the joint side. A method for joining pipe-shaped products. ー光に対して透過性を有する樹脂部材からなる内層とから構成されてなる請求項1記載のパイプ形状品の接合方法。   The pipe-shaped product joining method according to claim 1, comprising an inner layer made of a resin member having transparency to light. 外層の厚みが、10〜1000μmである請求項2記載のパイプ形状品の接合方法。   The method for joining pipe-shaped products according to claim 2, wherein the outer layer has a thickness of 10 to 1000 µm. レーザー光に対して透過性を有する樹脂部材からなるパイプ形状品の外側表面にレーザー吸収材を配置し、該パイプ形状品をレーザー光に対して透過性を有する樹脂部材からなる継手に挿入し、該継手側からレーザー光を照射して両者をレーザー溶着することを特徴とするパイプ形状品の接合方法。   A laser absorber is disposed on the outer surface of a pipe-shaped article made of a resin member that is transparent to laser light, and the pipe-shaped article is inserted into a joint made of a resin member that is transparent to laser light, A method for joining pipe-shaped products, characterized by irradiating a laser beam from the joint side and laser welding them. レーザー吸収材が、レーザー光に対して吸収性を有する着色材である請求項4記載のパイプ形状品の接合方法。   The method for joining pipe-shaped articles according to claim 4, wherein the laser absorbing material is a coloring material having absorbability with respect to laser light. レーザー吸収材が、レーザー光に対して吸収性を有する着色材を含む樹脂部材からなるフィルムである請求項4記載のパイプ形状品の接合方法。   The method for joining pipe-shaped articles according to claim 4, wherein the laser absorbing material is a film made of a resin member containing a coloring material having absorptivity to laser light. フィルムの厚みが、10〜500μmである請求項6記載のパイプ形状品の接合方法。   The method for joining pipe-shaped products according to claim 6, wherein the film has a thickness of 10 to 500 µm. 継手が、レーザー光に対して弱吸収性である樹脂部材からなることを特徴とする請求項1又は4記載のパイプ形状品の接合方法。   The pipe-shaped article joining method according to claim 1 or 4, wherein the joint is made of a resin member that is weakly absorbable with respect to laser light. 樹脂部材が、樹脂とレーザー光に対して弱吸収性の添加剤とからなることを特徴とする請求項8記載のパイプ形状品の接合方法。   9. The method for joining pipe-shaped products according to claim 8, wherein the resin member comprises a resin and an additive that is weakly absorbable with respect to laser light. 弱吸収性の添加剤が、レーザー光に対して40〜90%の透過率を有するものである請求項9記載のパイプ形状品の接合方法。   The method for joining pipe-shaped articles according to claim 9, wherein the weakly absorbing additive has a transmittance of 40 to 90% with respect to the laser beam. 弱吸収性の添加剤が、エチレン及び/又はプロピレン系共重合体、スチレン系共重合体、変性エチレン及び/又はプロピレン系共重合体及び変性スチレン系共重合体の少なくとも一種であることを特徴とする請求項9記載のパイプ形状品の接合方法。   The weakly absorbing additive is at least one of ethylene and / or propylene copolymer, styrene copolymer, modified ethylene and / or propylene copolymer and modified styrene copolymer, The method for joining pipe-shaped products according to claim 9. 樹脂部材が、樹脂にレーザー光に対して吸収性を有する添加剤をレーザー光の吸収があっても樹脂が溶融しない範囲で配合してなることを特徴とする請求項8記載のパイプ形状品の接合方法。   9. The pipe-shaped product according to claim 8, wherein the resin member is formed by adding an additive having an absorptivity to the laser beam to the resin in such a range that the resin does not melt even if the laser beam is absorbed. Joining method. 継手を構成する樹脂部材が、樹脂に結晶核剤を配合してなることを特徴とする請求項1又は4記載のパイプ形状品の接合方法。   The method for joining pipe-shaped products according to claim 1 or 4, wherein the resin member constituting the joint is formed by blending a crystal nucleating agent with resin. 結晶核剤の含有量が、樹脂100重量部に対し、0.001〜5重量部であることを特徴とする請求項13記載のパイプ形状品の接合方法。   The pipe-shaped product joining method according to claim 13, wherein the content of the crystal nucleating agent is 0.001 to 5 parts by weight with respect to 100 parts by weight of the resin. 結晶核剤がタルクであることを特徴とする請求項13記載のパイプ形状品の接合方法。   14. The method for joining pipe-shaped products according to claim 13, wherein the crystal nucleating agent is talc. 継手を構成する樹脂部材が、樹脂に該樹脂に対し結晶化促進効果を有する他の樹脂を配合してなることを特徴とする請求項1又は4記載のパイプ形状品の接合方法。   The pipe-shaped article joining method according to claim 1 or 4, wherein the resin member constituting the joint is formed by blending the resin with another resin having an effect of promoting crystallization with respect to the resin. 結晶化促進効果を有する他の樹脂の含有量が、樹脂100重量部に対し、1〜20重量部であることを特徴とする請求項16記載のパイプ形状品の接合方法。   The pipe-shaped product joining method according to claim 16, wherein the content of another resin having a crystallization promoting effect is 1 to 20 parts by weight with respect to 100 parts by weight of the resin. パイプ計上品及び継手を構成する樹脂部材が,ポリアミド樹脂又はポリアミドを主成分とするポリアミド樹脂組成物からなる請求項1〜17記載のパイプ形状品の接合方法。   The pipe-shaped article joining method according to claim 1, wherein the pipe member and the resin member constituting the joint are made of a polyamide resin or a polyamide resin composition containing polyamide as a main component. パイプ形状品が、自動車用燃料パイプ、自動車用エアブレーキパイプ、薬液輸送パイプ、可燃性ガス供給または輸送パイプ用である請求項1〜18記載のパイプ形状品の接合方法。   The pipe-shaped article joining method according to claim 1, wherein the pipe-shaped article is for an automobile fuel pipe, an automobile air brake pipe, a chemical transportation pipe, a flammable gas supply or transportation pipe.
JP2007166348A 2002-07-09 2007-06-25 Joining method of pipe-shaped article Pending JP2007307913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166348A JP2007307913A (en) 2002-07-09 2007-06-25 Joining method of pipe-shaped article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002200034 2002-07-09
JP2007166348A JP2007307913A (en) 2002-07-09 2007-06-25 Joining method of pipe-shaped article

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003193336A Division JP4161823B2 (en) 2002-07-09 2003-07-08 How to join pipe-shaped products

Publications (1)

Publication Number Publication Date
JP2007307913A true JP2007307913A (en) 2007-11-29

Family

ID=38841171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166348A Pending JP2007307913A (en) 2002-07-09 2007-06-25 Joining method of pipe-shaped article

Country Status (1)

Country Link
JP (1) JP2007307913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524842A (en) * 2011-07-26 2014-09-25 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Protective device for laser machining of component holes
JP2015052111A (en) * 2013-09-05 2015-03-19 アルケマ フランス Tube connector based on polyamide composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524842A (en) * 2011-07-26 2014-09-25 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Protective device for laser machining of component holes
US9457430B2 (en) 2011-07-26 2016-10-04 Robert Bosch Gmbh Protective device for the laser machining of holes in components
JP2015052111A (en) * 2013-09-05 2015-03-19 アルケマ フランス Tube connector based on polyamide composition
US11242455B2 (en) 2013-09-05 2022-02-08 Arkema France Tube connectors based on a polyamide composition

Similar Documents

Publication Publication Date Title
JP4161823B2 (en) How to join pipe-shaped products
Acherjee Laser transmission welding of polymers–a review on process fundamentals, material attributes, weldability, and welding techniques
JP4894761B2 (en) Laser welding material, laser welding method and molded product using the same
WO2004005013A1 (en) Method of joining pipe-shaped articles
JP2007260957A (en) Laser welding joint of pipe-shaped product and laser welding method of pipe-shaped product
JP2008007584A (en) Joining method for different kinds of members and joined article of different kinds of members
JP2005193614A (en) Method for joining pipe-shaped article
WO2006085659A1 (en) Laser weld of laser transmitting member containing alkaline earth metal salt of anthrapyridone acid dye
US20040045663A1 (en) Laser Welding material and laser welding method
JP2007307913A (en) Joining method of pipe-shaped article
EP1669186B1 (en) Material for laser welding and method for laser welding
JP2004148800A (en) Laser welding material and laser welding method
JP2007503339A (en) Method for laser welding articles molded from polyolefins to articles molded from other thermoplastic resins, and welded articles made therefrom
JP4078823B2 (en) Barrier multilayer hollow container and method for producing the same
JP4161825B2 (en) How to join pipe-shaped products
JP4453507B2 (en) Laser welding material and laser welding method
JP4161824B2 (en) How to join pipe-shaped products
JP2002284895A (en) Resin molded article
WO2005063469A1 (en) Method for manufacturing tubular article
JP2007210203A (en) Laser welding method and laser-welded resin member
JP2007260937A (en) Saddle-shaped member for laser welding and laser welding method of saddle-shaped member and pipe shaped product
JP2003251699A (en) Welding method of resin component by laser
JP4274008B2 (en) Laser welding material and laser welding method
JP5825758B2 (en) 3-layer adhesive
JP2006274121A (en) Polyamide resin composition for welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105