JP2007307719A - Biodegradable resin member joining method - Google Patents

Biodegradable resin member joining method Download PDF

Info

Publication number
JP2007307719A
JP2007307719A JP2006136216A JP2006136216A JP2007307719A JP 2007307719 A JP2007307719 A JP 2007307719A JP 2006136216 A JP2006136216 A JP 2006136216A JP 2006136216 A JP2006136216 A JP 2006136216A JP 2007307719 A JP2007307719 A JP 2007307719A
Authority
JP
Japan
Prior art keywords
biodegradable resin
lactic acid
adhesive sheet
biodegradable
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006136216A
Other languages
Japanese (ja)
Other versions
JP4650339B2 (en
Inventor
Yuichi Miyake
裕一 三宅
Hiroshige Yonehara
浩茂 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006136216A priority Critical patent/JP4650339B2/en
Publication of JP2007307719A publication Critical patent/JP2007307719A/en
Application granted granted Critical
Publication of JP4650339B2 publication Critical patent/JP4650339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/474Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradable resin member joining method which has no problem in association with disposal, improves joining force, and can join the biodegradable resin members in a short time. <P>SOLUTION: In the biodegradable resin member joining method, an adhesion sheet containing polylactic acid as a main component is arranged between the biodegradable resin members containing polylactic acid as a main component while the interfaces in contact the biodegradable resin member and the adhesion sheet are heated. When the biodegradable resin members contain poly(D-lactic acid) as a main component, the adhesion sheet contains poly(L-lactic acid) as a main component. When the biodegradable resin members contain poly(L-lactic acid) as a main component, the adhesion sheet contains poly(D-lactic acid) as a main component. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性樹脂部材を接合する方法に関する。   The present invention relates to a method for joining biodegradable resin members.

合成樹脂はその優れた特性のため、現在、日用品のみならず機械工業の構造部品、土木建築材料等の様々な分野において広く用いられている。しかしながら、この合成樹脂はその安定性ゆえに、自然環境下においてほとんど分解されないため、廃棄において問題となっている。   Synthetic resins are widely used not only in daily necessities but also in various fields such as structural parts of the machine industry, civil engineering and building materials because of their excellent characteristics. However, since this synthetic resin is hardly decomposed in a natural environment due to its stability, it is a problem in disposal.

そこで近年、微生物等によって分解され、生態系の循環サイクルに還元することができる、いわゆる生分解性樹脂が注目され、この生分解性樹脂を用いた様々な成形体が製造されている。   Therefore, in recent years, so-called biodegradable resins that can be decomposed by microorganisms and reduced to the circulation cycle of ecosystems have attracted attention, and various molded articles using the biodegradable resins have been produced.

ところで、このような生分解性樹脂成形体の部材同士又はこの部材を基材に接合する場合に、従来の合成樹脂製の接着剤を用いたのでは、部材を生分解性としても廃棄に伴う問題が生ずることになる。そこで、非晶質ポリ乳酸を接着シートとして用い、この非晶質ポリ乳酸のガラス転移温度以上かつ融点以下の温度に加熱して生分解性樹脂同士を接着する方法が開示されている(例えば、特許文献1参照。)。   By the way, when joining the members of such biodegradable resin moldings or this member to a base material, if a conventional synthetic resin adhesive is used, even if the member is made biodegradable, it is accompanied by disposal. Problems will arise. Therefore, a method is disclosed in which amorphous polylactic acid is used as an adhesive sheet, and the biodegradable resins are bonded to each other by heating to a temperature not lower than the glass transition temperature and not higher than the melting point of the amorphous polylactic acid (for example, (See Patent Document 1).

この方法では非晶質ポリ乳酸を用いるので、接合された部材全体が生分解性を示し、廃棄に伴う問題が解消されることになる。しかしながら、接着のための温度をガラス転移温度以上かつ融点以下のという狭い温度範囲内に制御しなければならず、また、軟化した接着シートが固化し接合するまでに、時間がかかっていた。
特開2003−292925号公報
Since amorphous polylactic acid is used in this method, the entire joined member exhibits biodegradability, and the problem associated with disposal is solved. However, the temperature for bonding must be controlled within a narrow temperature range of not less than the glass transition temperature and not more than the melting point, and it takes time until the softened adhesive sheet is solidified and joined.
JP 2003-292925 A

本発明は、上記問題点を解決し、具体的には、廃棄に伴う問題がなく、且つ接合力が向上し、短時間で接合できる生分解性樹脂部材の接合方法の提供を目的とする。   An object of the present invention is to solve the above-described problems, and specifically, to provide a method for joining biodegradable resin members that can be joined in a short time without any problems associated with disposal, with improved joining force.

即ち、本発明は、
<1> D−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料で構成された2つの生分解性樹脂部材の間に、L−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料で構成された接着シートを、前記生分解性樹脂部材と前記接着シートの接する界面を加熱した状態で配置する、生分解性樹脂部材の接合方法である。
That is, the present invention
<1> Poly-L-lactic acid containing L-lactic acid as a main component between two biodegradable resin members composed of a biodegradable material containing poly-D-lactic acid containing D-lactic acid as a main component A biodegradable resin member joining method comprising: arranging an adhesive sheet made of a biodegradable material containing a material in a state where an interface between the biodegradable resin member and the adhesive sheet is heated.

<2> L−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料で構成された2つの生分解性樹脂部材の間に、D−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料で構成された接着シートを、前記生分解性樹脂部材と前記接着シートの接する界面を加熱した状態で配置する、生分解性樹脂部材の接合方法である。   <2> Poly-D-lactic acid containing D-lactic acid as a main component between two biodegradable resin members composed of a biodegradable material containing poly-L-lactic acid containing L-lactic acid as a main component A biodegradable resin member joining method comprising: arranging an adhesive sheet made of a biodegradable material containing a material in a state where an interface between the biodegradable resin member and the adhesive sheet is heated.

上記<1>及び<2>の発明では、生分解性樹脂部材及び接着シートにおいて、一方をポリ−L−乳酸を含む生分解性材料で構成するならば他方はポリ−D−乳酸を含む生分解性材料で構成される。この場合、生分解性樹脂部材と接着シートとの境界では、ポリ−L−乳酸とポリ−D−乳酸のステレオコンプレックスが形成されるので、化学的な結合によりせん断強度が高まって接合力が向上し、且つ短時間で結晶化(固化、接合)する。
したがって、上記<1>及び<2>の発明によれば、2つの生分解性樹脂部材間の接合力が高まり、且つ短時間で接合することができる。
また、少なくとも接着シートと生分解性樹脂部材との界面でステレオコンプレックスを形成すれば、接着シートと生分解性樹脂部材とを接合することができるので、接合のための加熱時間を短縮することができる。
In the above inventions <1> and <2>, if one of the biodegradable resin member and the adhesive sheet is composed of a biodegradable material containing poly-L-lactic acid, the other is a biodegradable material containing poly-D-lactic acid. Consists of degradable materials. In this case, since a stereocomplex of poly-L-lactic acid and poly-D-lactic acid is formed at the boundary between the biodegradable resin member and the adhesive sheet, the shear strength is increased by chemical bonding and the bonding force is improved. And crystallization (solidification, bonding) in a short time.
Therefore, according to the inventions <1> and <2>, the joining force between the two biodegradable resin members is increased, and the joining can be performed in a short time.
Also, if a stereo complex is formed at least at the interface between the adhesive sheet and the biodegradable resin member, the adhesive sheet and the biodegradable resin member can be joined, so the heating time for joining can be shortened. it can.

更に、接合された部材全体が生分解性となっていため、上記<1>及び<2>の発明によれば、構成部材を分別することなく廃棄できる。   Furthermore, since the whole joined member is biodegradable, according to the inventions <1> and <2>, the constituent members can be discarded without being separated.

<3> 前記界面の加熱温度が、前記ポリ−L−乳酸及び前記ポリ−D−乳酸の融点以上の温度であることを特徴とする上記<1>又は<2>に記載の生分解性樹脂部材の接合方法である。 <3> The biodegradable resin as described in <1> or <2> above, wherein the heating temperature at the interface is equal to or higher than the melting points of the poly-L-lactic acid and the poly-D-lactic acid. This is a method for joining members.

<4> 更に、前記接合時に加圧することを特徴とする請求項1乃至請求項3のいずれか1項に記載の生分解性樹脂部材の接合方法である。 <4> Furthermore, it pressurizes at the time of the said joining, The joining method of the biodegradable resin member of any one of Claim 1 thru | or 3 characterized by the above-mentioned.

<5> 前記接合時に、前記生分解性樹脂部材と前記接着シートとが接合された状態で、全体を加熱することを特徴とする請求項1乃至請求項4のいずれか1項に記載の生分解性樹脂部材の接合方法である。 <5> The raw material according to any one of claims 1 to 4, wherein the whole is heated while the biodegradable resin member and the adhesive sheet are joined at the time of joining. It is a joining method of a decomposable resin member.

本発明は、生分解性樹脂部材と接着シートとを、ステレオコンプレックスの形成によって接合する。ステレオコンプレックスは、ポリ−L−乳酸及びポリ−D−乳酸の分子レベルでの均一な混合によって起こる。
したがって、ポリ−L−乳酸及びポリ−D−乳酸の融点以上となるように加熱して、ポリ−L−乳酸とポリ−D−乳酸とを混合させる
In the present invention, the biodegradable resin member and the adhesive sheet are joined by forming a stereo complex. Stereocomplexes occur by homogeneous mixing of poly-L-lactic acid and poly-D-lactic acid at the molecular level.
Therefore, the poly-L-lactic acid and the poly-D-lactic acid are mixed by heating so as to be equal to or higher than the melting points of poly-L-lactic acid and poly-D-lactic acid.

また、上記<4>の発明のように、接合時に加圧したり、上記<5>の発明のように、生分解性樹脂部材と前記接着シートとが接合された状態で全体を加熱したりすることで、より強固に部材同士を接合することができる。   Further, as in the above <4> invention, pressure is applied at the time of joining, or as in the above <5> invention, the whole is heated in a state where the biodegradable resin member and the adhesive sheet are joined. Thereby, members can be joined more firmly.

<6> 前記2つの生分解性樹脂部材の少なくとも一方に、前記接着シートと接する面に1以上の凹部が設けられており、2つの生分解性樹脂部材の間に接着シートを配置して加熱圧着した際に、軟化した接着シートをこの凹部に侵入させることを特徴とする前記<1>乃至<4>のいずれか1項に記載の生分解性樹脂部材の接合方法である。 <6> At least one of the two biodegradable resin members is provided with one or more recesses on a surface in contact with the adhesive sheet, and the adhesive sheet is disposed between the two biodegradable resin members and heated. The biodegradable resin member joining method according to any one of <1> to <4>, wherein a softened adhesive sheet is caused to enter the concave portion when the pressure bonding is performed.

<7> 前記凹部が非貫通孔又は貫通孔であることを特徴とする前記<6>に記載の生分解性樹脂部材の接合方法である。 <7> The method for joining biodegradable resin members according to <6>, wherein the recess is a non-through hole or a through hole.

<8> 前記2つの生分解性樹脂部材の少なくとも一方が、ポリ乳酸と生分解性繊維の複合体で構成されており、前記凹部が前記生分解性繊維間の隙間であることを特徴とする前記<6>又は<7>に記載の生分解性樹脂部材の接合方法である。 <8> At least one of the two biodegradable resin members is composed of a composite of polylactic acid and biodegradable fibers, and the concave portion is a gap between the biodegradable fibers. The method for joining biodegradable resin members according to <6> or <7>.

上記<6>乃至<8>の発明によれば、生分解性樹脂部材の凹部に接着シートの溶融体が入り込み固化することによって、ステレオコンプレックスの形成という化学的な結合に加え、物理的にも結合することになるので、より強固に部材同士を接合することができる。   According to the inventions <6> to <8> above, the melt of the adhesive sheet enters into the recesses of the biodegradable resin member and solidifies, so that in addition to the chemical bond of forming a stereocomplex, physically Since it will couple | bond together, members can be joined more firmly.

本発明によれば、廃棄に伴う問題がなく、且つ接合力が向上し、短時間で接合できる生分解性樹脂部材の接合方法を提供することができる。   According to the present invention, there can be provided a method for joining biodegradable resin members that can be joined in a short time without any problems associated with disposal and with improved joining force.

本発明は、図1に示すように、生分解性樹脂部材1及び2の間に接着シート3を配置し、生分解性樹脂部材と接着シートとの間でステレオコンプレックスを形成させることで、生分解性樹脂部材1及び2を接合する方法である。本発明においては、接合される生分解性樹脂部材及びこの部材を接合する接着シートは共にポリ乳酸で構成する。   In the present invention, as shown in FIG. 1, an adhesive sheet 3 is disposed between biodegradable resin members 1 and 2, and a stereo complex is formed between the biodegradable resin member and the adhesive sheet. In this method, the decomposable resin members 1 and 2 are joined. In the present invention, both the biodegradable resin member to be joined and the adhesive sheet for joining the members are made of polylactic acid.

生分解性樹脂部材1及び2の材質について説明する。
生分解性樹脂部材1及び2は、D−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料、又はL−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料、により構成される。ポリ−D−乳酸を主成分とするポリ−D−乳酸とは、D−乳酸70〜100モル%とL−乳酸又は乳酸以外の共重合モノマー0〜30モル%とから構成されるものである。一方、L−乳酸を主成分とするポリ−L−乳酸とは、L−乳酸70〜100モル%とD−乳酸又は乳酸以外の共重合モノマー0〜30モル%とから構成されているものをいう。
The material of the biodegradable resin members 1 and 2 will be described.
Biodegradable resin members 1 and 2 are biodegradable materials containing poly-D-lactic acid mainly containing D-lactic acid, or biodegradable materials containing poly-L-lactic acid mainly containing L-lactic acid. It is comprised by. The poly-D-lactic acid containing poly-D-lactic acid as a main component is composed of 70 to 100 mol% of D-lactic acid and 0 to 30 mol% of L-lactic acid or a copolymerization monomer other than lactic acid. . On the other hand, poly-L-lactic acid containing L-lactic acid as a main component is composed of 70 to 100 mol% of L-lactic acid and 0 to 30 mol% of D-lactic acid or a copolymerization monomer other than lactic acid. Say.

乳酸以外の共重合モノマー成分としては、分解性を損なわない範囲で、公知の共重合モノマー(例えば、ポリスチレン、ポリアミドなど)を用いることができるが、共重合モノマー成分も生分解性であることが望ましい。
共重合モノマー成分としては、例えば、ラクチドと共重合が可能なオキシカルボン酸、カルボン酸エステル、ラクトン、ジカルボン酸、多価アルコール等を適用することができ、更にこれら成分から構成され、エステル結合形成性の官能基を有するポリエステル、ポリエーテル、ポリカーボネート等も適用することができる。なお、共重合モノマー成分も生分解性であることが望ましい。このような共重合モノマー成分としては、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸などを挙げることができる。
As the copolymerizable monomer component other than lactic acid, known copolymerizable monomers (for example, polystyrene, polyamide, etc.) can be used as long as the degradability is not impaired, but the copolymerized monomer component may also be biodegradable. desirable.
As the copolymerization monomer component, for example, oxycarboxylic acid, carboxylic acid ester, lactone, dicarboxylic acid, polyhydric alcohol, etc. that can be copolymerized with lactide can be applied. Polyester, polyether, polycarbonate and the like having a functional group can be applied. It is desirable that the copolymerization monomer component is also biodegradable. Examples of such copolymerizable monomer components include 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, and the like.

また、ポリ乳酸の成形加工性や成形体の物性を向上させるために、可塑剤、滑剤、充填材、紫外線吸収剤等の添加剤を添加してもよい。   In addition, additives such as a plasticizer, a lubricant, a filler, and an ultraviolet absorber may be added to improve the processability of polylactic acid and the physical properties of the molded body.

ポリ−D−乳酸及びポリ−L−乳酸が共重合体(コポリマー)の場合、ランダムコポリマー、ブロックコポリマー、グラフトコポリマーのいずれの形態であってもよい。   When poly-D-lactic acid and poly-L-lactic acid are copolymers (copolymers), any form of a random copolymer, a block copolymer, and a graft copolymer may be used.

ポリ−D−乳酸及びポリ−L−乳酸の重合法としては、縮合重合法、開環重合法等の公知の方法を用いることができ、例えば、乳酸や他の共重合モノマーを、有機溶媒及び触媒の存在下において脱水縮合し、或いは、乳酸や共重合モノマーを一旦脱水し環状二量体とした後に、開環重合する。
更に、得られるポリ乳酸の分子量を増大させるために鎖延長剤を用いることもできる。
As a polymerization method of poly-D-lactic acid and poly-L-lactic acid, known methods such as a condensation polymerization method and a ring-opening polymerization method can be used. For example, lactic acid and other copolymerization monomers can be used as an organic solvent and Dehydration condensation is carried out in the presence of a catalyst, or lactic acid or a copolymerization monomer is once dehydrated to form a cyclic dimer, followed by ring-opening polymerization.
Furthermore, a chain extender can be used to increase the molecular weight of the resulting polylactic acid.

このポリ−D−乳酸及びポリ−L−乳酸の分子量は、目的とする用途において十分な物性を有するものであれば特に制限されないが、一般には重量平均分子量として10万〜30万であることが好ましく、15万〜25万であることがより好ましく、18万〜22万であることが更に好ましい。   The molecular weights of poly-D-lactic acid and poly-L-lactic acid are not particularly limited as long as they have sufficient physical properties for the intended application, but generally have a weight average molecular weight of 100,000 to 300,000. Preferably, it is 150,000 to 250,000, more preferably 180,000 to 220,000.

ポリ−D−乳酸及びポリ−L−乳酸は、ポリマー鎖が無秩序に配置している非晶質のポリ乳酸であってもよいし、非晶質のポリ乳酸に、温度、圧力、張力等の外的な要因を加えた際にポリマー鎖の一部が配向し、個々のポリマー鎖が形態的に秩序のある状態に置かれた結晶性のポリ乳酸であってもよい。   Poly-D-lactic acid and poly-L-lactic acid may be amorphous polylactic acid in which polymer chains are randomly arranged, and the amorphous polylactic acid may have a temperature, pressure, tension, etc. It may be crystalline polylactic acid in which a part of the polymer chain is oriented when an external factor is applied, and each polymer chain is placed in a morphologically ordered state.

また、生分解性樹脂部材1及び2は、ポリ−D−乳酸又はポリ−L−乳酸のほかに、生分解性物質を含有してもよい。本発明で適用し得る生分解性物質としては、生分解性を呈するものであって、下記で説明するステレオコンプレックスの形成を阻害するものでなければ特に制限は無いが、生分解性繊維を用いると、生分解性樹脂部材1及び2の表面に凹凸を付することができるので、接合力を強化することができる点から好ましい。生分解性繊維を用いる場合には、ポリ−D−乳酸又はポリ−L−乳酸をマトリックスとし、生分解性繊維で強化した複合体とすることが好ましい。この場合、生分解性繊維は、ポリ−D−乳酸又はポリ−L−乳酸の軟化又は溶融によって熱融着して一体化し、生分解性樹脂部材1及び2表面の少なくとも1部ではポリ−D−乳酸又はポリ−L−乳酸が露出して存在している。
生分解性繊維としては、天然繊維、例えば、麻、綿、ケナフ等、又は生分解性樹脂より形成した繊維を用いることができる。この複合体において、ポリ乳酸と生分解性繊維の比率は7:3〜3:7であることが好ましい。
Moreover, the biodegradable resin members 1 and 2 may contain a biodegradable substance in addition to poly-D-lactic acid or poly-L-lactic acid. The biodegradable substance applicable in the present invention is not particularly limited as long as it exhibits biodegradability and does not inhibit the formation of the stereocomplex described below, but biodegradable fibers are used. And since the unevenness | corrugation can be attached | subjected to the surface of the biodegradable resin member 1 and 2, it is preferable from the point which can strengthen joining force. When using biodegradable fiber, it is preferable to use poly-D-lactic acid or poly-L-lactic acid as a matrix and to make a composite reinforced with biodegradable fiber. In this case, the biodegradable fiber is thermally fused and integrated by softening or melting poly-D-lactic acid or poly-L-lactic acid, and at least a part of the biodegradable resin members 1 and 2 has poly-D. -Lactic acid or poly-L-lactic acid is exposed and present.
As the biodegradable fiber, natural fiber such as hemp, cotton, kenaf or the like, or a fiber formed from a biodegradable resin can be used. In this composite, the ratio of polylactic acid to biodegradable fiber is preferably 7: 3 to 3: 7.

次に、接着シート3の材質について説明する。
接着シート3は、L−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料又はD−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料で構成される。ここでいう、「L−乳酸を主成分とするポリ−L−乳酸」及び「D−乳酸を主成分とするポリ−D−乳酸」は、生分解性樹脂部材1及び2で示したものと同義であり、重合方法等も同様である。
なお、本発明では、生分解性樹脂部材1及び2がポリ−D−乳酸を含む生分解性材料によって構成される場合には、接着シート3はポリ−L−乳酸で構成され、生分解性樹脂部材1及び2がポリ−L−乳酸を含む生分解性材料によって構成される場合には、接着シート3はポリ−D−乳酸で構成される。
Next, the material of the adhesive sheet 3 will be described.
The adhesive sheet 3 is composed of a biodegradable material containing poly-L-lactic acid containing L-lactic acid as a main component or a biodegradable material containing poly-D-lactic acid containing D-lactic acid as a main component. Here, “poly-L-lactic acid containing L-lactic acid as a main component” and “poly-D-lactic acid containing D-lactic acid as a main component” are those indicated by biodegradable resin members 1 and 2. The same is true for the polymerization method and the like.
In the present invention, when the biodegradable resin members 1 and 2 are made of a biodegradable material containing poly-D-lactic acid, the adhesive sheet 3 is made of poly-L-lactic acid and biodegradable. When the resin members 1 and 2 are made of a biodegradable material containing poly-L-lactic acid, the adhesive sheet 3 is made of poly-D-lactic acid.

また、生分解性樹脂部材1及び2と同様に、接着シート3においても、ポリ−D−乳酸又はポリ−L−乳酸のほかに、生分解性物質を含有してもよい。接着シート3に適用し得る生分解性物質としても、生分解性樹脂部材1及び2の場合と同様であり、生分解性繊維を含有させることもできる。生分解性繊維を接着シート3に含有させる場合には、ポリ乳酸と生分解性繊維の比率は9:1〜6:4程度であることが好ましい。   Similarly to the biodegradable resin members 1 and 2, the adhesive sheet 3 may contain a biodegradable substance in addition to poly-D-lactic acid or poly-L-lactic acid. The biodegradable substance that can be applied to the adhesive sheet 3 is the same as that of the biodegradable resin members 1 and 2, and biodegradable fibers can also be contained. When the biodegradable fiber is contained in the adhesive sheet 3, the ratio of polylactic acid to biodegradable fiber is preferably about 9: 1 to 6: 4.

接着シート3は、上記のポリ乳酸を一般的な射出成形、押出成形等によりフィルムもしくはシートとして成形することにより得られる。接着シートの厚さは特に制限はないが、一般に0.5mm〜1mm程度である。   The adhesive sheet 3 is obtained by molding the polylactic acid as a film or sheet by general injection molding, extrusion molding or the like. The thickness of the adhesive sheet is not particularly limited, but is generally about 0.5 mm to 1 mm.

次に、生分解性樹脂部材1及び2と接着シート3との接合について説明する。
本発明では、生分解性樹脂部材1と2の間に接着シート3を挟持し、少なくとも生分解性樹脂部材1又は2と接着シート3とが接する界面において、ステレオコンプレックスが形成することによって接合する。
Next, joining of the biodegradable resin members 1 and 2 and the adhesive sheet 3 will be described.
In the present invention, the adhesive sheet 3 is sandwiched between the biodegradable resin members 1 and 2 and joined by forming a stereo complex at least at the interface between the biodegradable resin member 1 or 2 and the adhesive sheet 3. .

ステレオコンプレックスについて説明する。
ポリ−L−乳酸は左巻きらせん構造を有するのに対し、ポリ−D−乳酸は右巻きらせん構造を有するため、これらが分子レベルで均一に混合すると、2成分間に立体特異的な結合が生じ、ポリ−L−乳酸あるいはポリ−D−乳酸単独の場合に形成される結晶構造よりも緊密かつ強固な結晶構造を形成する。この結晶構造をステレオコンプレックスという。このステレオコンプレックスの形成により、生分解性樹脂部材1及び2と接着シート3とが化学的に接合する。この化学的な結合は緊密かつ強固であるため、生分解性樹脂部材1及び2と接着シート3との接合力が向上する。
The stereo complex will be described.
Poly-L-lactic acid has a left-handed helical structure, whereas poly-D-lactic acid has a right-handed helical structure. Therefore, when these are uniformly mixed at the molecular level, stereospecific binding occurs between the two components. It forms a tighter and stronger crystal structure than the crystal structure formed with poly-L-lactic acid or poly-D-lactic acid alone. This crystal structure is called a stereo complex. By the formation of this stereo complex, the biodegradable resin members 1 and 2 and the adhesive sheet 3 are chemically bonded. Since this chemical bond is tight and strong, the bonding force between the biodegradable resin members 1 and 2 and the adhesive sheet 3 is improved.

ポリ乳酸系重合体におけるステレオコンプレックスは、上記ポリ−D−乳酸とポリ−L−乳酸とが溶液状態あるいは溶融状態で混合することにより形成することができる。
したがって、生分解性樹脂部材1及び2と接着シート3との接合では、少なくとも生分解性樹脂部材1又は2と接着シート3とが接する界面において溶融状態となるように加熱を行う。ポリ−D−乳酸とポリ−L−乳酸を溶融状態とするには、ポリ−D−乳酸及びポリ−L−乳酸の融点以上の温度に加熱することが好ましく、具体的には170℃〜220度であることより好ましく、180℃〜210℃であることが更に好ましい。但し、ポリ−D−乳酸又はポリ−L−乳酸のほかに、ケナフ繊維を含有する場合、ケナフ繊維の熱劣化を防ぐために、加熱温度は190℃以下とすることが望ましい。
The stereocomplex in the polylactic acid polymer can be formed by mixing the poly-D-lactic acid and poly-L-lactic acid in a solution state or a molten state.
Therefore, in joining the biodegradable resin members 1 and 2 and the adhesive sheet 3, heating is performed so that at least an interface where the biodegradable resin member 1 or 2 and the adhesive sheet 3 are in contact is in a molten state. In order to bring poly-D-lactic acid and poly-L-lactic acid into a molten state, it is preferable to heat to a temperature equal to or higher than the melting points of poly-D-lactic acid and poly-L-lactic acid, specifically 170 ° C to 220 ° C. It is more preferable that the temperature is 180 ° C to 210 ° C. However, in the case of containing kenaf fiber in addition to poly-D-lactic acid or poly-L-lactic acid, the heating temperature is preferably 190 ° C. or lower in order to prevent thermal degradation of the kenaf fiber.

ステレオコンプレックスによる結晶構造は、巻き方向が異なる2成分の螺旋構造間で立体特異的な結合を生じることによって形成するので、溶融して分子の配列を再配列して整えることで結晶構造を形成する場合に比べて、結晶化の速度が極めて速い。したがって、これまでの接合方法に比べて、部材の接合時間を短縮することができる。
また、ステレオコンプレックスは少なくとも上記界面で形成されればよく、これまでのように、接着シート全体を溶融させなくても、接合させることが可能である。特にポリ乳酸は結晶化するまでの時間が長いため、部材の接合に長時間を要していたが、本発明では、少なくとも上記界面でポリ乳酸が溶融すればよいので、部材の接合時間を更に短縮することができる。
Since the crystal structure by the stereocomplex is formed by generating a stereospecific bond between two-component helical structures with different winding directions, the crystal structure is formed by melting and rearranging and arranging the molecules. Compared to the case, the rate of crystallization is extremely high. Therefore, the joining time of the members can be shortened as compared with conventional joining methods.
In addition, the stereo complex only needs to be formed at least at the interface, and can be joined without melting the entire adhesive sheet as in the past. In particular, since polylactic acid takes a long time to crystallize, it takes a long time to join the members. However, in the present invention, polylactic acid only needs to be melted at least at the above-described interface. It can be shortened.

生分解性樹脂部材1及び2が、ポリ−D−乳酸又はポリ−L−乳酸と生分解性繊維との複合体の場合、接合される面、すなわち接着シート3と接する面において生分解性繊維の一部が露出していることが好ましい。表面に生分解性繊維の一部が露出していることにより、接合時において接着シートが溶融すると、生分解性繊維の隙間にこの接着シートの溶融体が入り込み、固化することによってより強固に部材同士を接合することができる。
これにより、ステレオコンプレックスの形成という化学的な結合に加え、物理的にも結合することになるので、より強固に部材同士を接合することができる。
In the case where the biodegradable resin members 1 and 2 are poly-D-lactic acid or a composite of poly-L-lactic acid and biodegradable fibers, the biodegradable fibers on the surfaces to be joined, that is, the surfaces in contact with the adhesive sheet 3 It is preferable that a part of is exposed. When a part of the biodegradable fiber is exposed on the surface, when the adhesive sheet melts at the time of joining, the melt of the adhesive sheet enters the gap between the biodegradable fibers and solidifies, thereby strengthening the member. They can be joined together.
Thereby, in addition to the chemical bond of forming a stereo complex, it is also physically bonded, so the members can be bonded more firmly.

また、接合される部材の接合される面に凹部を設けることも好ましい。この凹部は、図2に示すように、接合される部材の接合される面に設けた非貫通孔4又は貫通孔5の形態であってよい。このような凹部を設けることにより、接合の際に、この凹部に接着シートの溶融体3が入り込み、固化することによってより強固に部材同士を接合することができる。凹部は、図2の非貫通孔4に示されるように、接合される面に対して傾斜を設けて形成することが好ましい。剥離に対して強度がより高まるからである。また、接合時に軟化溶融した接着シート3が流れ出ることを防止するため、かつ凹部に入るようにするため、流れ止め6を部材の少なくとも一方に設けることが好ましい。この流れ止めは接合時の部材同士の位置決めも兼ねることができる。   Moreover, it is also preferable to provide a recessed part in the surface to which the member to be joined is joined. As shown in FIG. 2, the recess may be in the form of a non-through hole 4 or a through hole 5 provided on a surface to be joined of members to be joined. By providing such a recess, the members 3 can be joined more firmly by joining and solidifying the melt 3 of the adhesive sheet into the recess during bonding. As shown in the non-through hole 4 in FIG. 2, the recess is preferably formed with an inclination with respect to the surfaces to be joined. This is because the strength is further increased against peeling. Further, in order to prevent the adhesive sheet 3 softened and melted at the time of joining from flowing out and to enter the recess, it is preferable to provide the flow stop 6 on at least one of the members. This flow stop can also serve as positioning of the members at the time of joining.

以上のようにして製造した生分解性樹脂部材1及び2の間に接着シート3を配置し、少なくとも生分解性樹脂部材1又は2と接着シート3とが接する界面で、生分解性樹脂部材1、生分解性樹脂部材2及び接着シート3の融点以上の温度となるように加熱し、前記界面においてステレオコンプレックスを形成させる。   The adhesive sheet 3 is disposed between the biodegradable resin members 1 and 2 manufactured as described above, and the biodegradable resin member 1 is at least at the interface where the biodegradable resin member 1 or 2 and the adhesive sheet 3 are in contact with each other. Then, the biodegradable resin member 2 and the adhesive sheet 3 are heated to a temperature equal to or higher than the melting point to form a stereo complex at the interface.

具体的な加熱方法としては、(1)予め、接着シート3と接する面側の生分解性樹脂部材1及び2の表面を加熱してポリ乳酸を溶融させておき、この状態で生分解性樹脂部材1と2との間に接着シート3を挟み込む方法が挙げられる。また、(2)接着シート3の表面を予め加熱してポリ乳酸を溶融させておいてから、生分解性樹脂部材1及び2の間に挟み込む方法、(3)生分解性樹脂部材1及び2の表面を加熱し、一方で、接着シート3の表面を予め加熱しておいて、この状態で生分解性樹脂部材1と2との間に接着シート3を挟み込む方法、(4)前記(1)〜(3)のいずれかによって、生分解性樹脂部材1と2との間に接着シート3を挟み込んだ後、加圧しながら接合する方法、(5)前記(1)〜(3)のいずれかによって、生分解性樹脂部材1と2との間に接着シート3を挟み込んだ後、加圧しながら全体を加熱する方法、などが挙げられる。   As specific heating methods, (1) the surfaces of the biodegradable resin members 1 and 2 on the side in contact with the adhesive sheet 3 are previously heated to melt polylactic acid, and in this state, the biodegradable resin There is a method of sandwiching the adhesive sheet 3 between the members 1 and 2. Also, (2) a method in which the surface of the adhesive sheet 3 is preheated to melt polylactic acid and then sandwiched between the biodegradable resin members 1 and 2, (3) the biodegradable resin members 1 and 2 The surface of the adhesive sheet 3 is heated in advance, and the adhesive sheet 3 is sandwiched between the biodegradable resin members 1 and 2 in this state, (4) the above (1 ) To (3), the method in which the adhesive sheet 3 is sandwiched between the biodegradable resin members 1 and 2 and then bonded while being pressurized, (5) any of the above (1) to (3) Depending on the method, after the adhesive sheet 3 is sandwiched between the biodegradable resin members 1 and 2, the whole is heated while being pressurized.

接合時に加圧する場合には、生分解性樹脂部材1及び生分解性樹脂部材2の強度や、接着シート3の強度を勘案して適宜圧力を調節することが好ましく、例えば10MPa〜20MPaの圧力を加えることができる。   When pressurizing at the time of joining, it is preferable to adjust the pressure appropriately in consideration of the strength of the biodegradable resin member 1 and the biodegradable resin member 2 and the strength of the adhesive sheet 3, for example, a pressure of 10 MPa to 20 MPa. Can be added.

以下、本発明について実施例を用いて具体的に説明する。ただし、本発明は、下記実施例により何ら限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
<生分解性樹脂部材の作製>
ポリ−L−乳酸(トヨタ自動車製、商品名:U’z−B0、融点168℃)300gと、ケナフ繊維200gとを用いて、圧縮成形を行い、図1に示すようなクリップ形状の部材と板状部材を製造した。
[Example 1]
<Production of biodegradable resin member>
Using a clip-shaped member as shown in FIG. 1, compression molding is performed using 300 g of poly-L-lactic acid (manufactured by Toyota Motor Corporation, trade name: U′z-B0, melting point 168 ° C.) and 200 g of kenaf fiber. A plate-like member was manufactured.

<接着シート−1の作製>
前記ポリ−D−乳酸(PURAC社製、商品名:PURASORB PD、融点192℃)の短繊維(1.7T51mm)を用い、目付100g/mの不織布を製造し、接着シート−1を成形した。
<Preparation of adhesive sheet-1>
Using a short fiber (1.7T51 mm) of the poly-D-lactic acid (manufactured by PURAC, trade name: PURASORB PD, melting point 192 ° C.), a non-woven fabric having a basis weight of 100 g / m 2 was produced, and an adhesive sheet-1 was formed. .

<接合>
上記クリップ形状の生分解性樹脂部材と板状部材の生分解性樹脂部材のそれぞれの表面を200℃で3分間加熱し、その間に接着シート−1を挟んでクリップで圧着し、数時間放置した。
<Joint>
The respective surfaces of the clip-shaped biodegradable resin member and the plate-shaped biodegradable resin member were heated at 200 ° C. for 3 minutes, the adhesive sheet -1 was sandwiched between them, and the surfaces were left to stand for several hours. .

[比較例1]
<生分解性樹脂部材の作製>
ポリ−L−乳酸(トヨタ自動車製、商品名:U’z−B0、融点168℃)300gと、ケナフ繊維200gとを用いて、圧縮成形を行い、図1に示すようなクリップ形状の部材と板状部材を製造した。
[Comparative Example 1]
<Production of biodegradable resin member>
Using a clip-shaped member as shown in FIG. 1, compression molding is performed using 300 g of poly-L-lactic acid (manufactured by Toyota Motor Corporation, trade name: U′z-B0, melting point 168 ° C.) and 200 g of kenaf fiber. A plate-like member was manufactured.

<接着シート−2の作製>
接着シート−1の作製において、ポリ−D−乳酸の短繊維(1.7T51mm)を用いたところを、ポリ−L−乳酸(トヨタ自動車製、商品名:U’z−B0、融点168℃)の短繊維(1.7T51mm)に変え、目付100g/mの不織布を製造し、接着シート−2を成形した。
<Preparation of adhesive sheet-2>
In the production of the adhesive sheet-1, a poly-D-lactic acid short fiber (1.7 T51 mm) was used as poly-L-lactic acid (manufactured by Toyota Motor Corporation, trade name: U'z-B0, melting point 168 ° C.). Then, a non-woven fabric having a basis weight of 100 g / m 2 was produced, and an adhesive sheet-2 was formed.

<接合>
上記クリップ形状の生分解性樹脂部材と板状部材の生分解性樹脂部材のそれぞれの表面を200℃で3分間加熱し、その間に接着シート−2を挟んでクリップで圧着し、数時間放置した。
<Joint>
The respective surfaces of the clip-shaped biodegradable resin member and the plate-shaped biodegradable resin member were heated at 200 ° C. for 3 minutes, and the pressure-sensitive adhesive sheet-2 was sandwiched between the surfaces, and then left for several hours. .

[比較例2]
<生分解性樹脂部材の作製>
ポリ−L−乳酸(トヨタ自動車製、商品名:U’z−B0、融点168℃)300gと、ケナフ繊維200gとを用いて、圧縮成形を行い、図1に示すようなクリップ形状の部材と板状部材を製造した。
[Comparative Example 2]
<Production of biodegradable resin member>
Using a clip-shaped member as shown in FIG. 1, compression molding is performed using 300 g of poly-L-lactic acid (manufactured by Toyota Motor Corporation, trade name: U′z-B0, melting point 168 ° C.) and 200 g of kenaf fiber. A plate-like member was manufactured.

<接合>
上記クリップ形状の生分解性樹脂部材と板状部材の生分解性樹脂部材のそれぞれの表面を200℃で3分間加熱し、その間に接着シートを挟まずにクリップで圧着し、数時間放置した。
<Joint>
The respective surfaces of the clip-shaped biodegradable resin member and the plate-shaped biodegradable resin member were heated at 200 ° C. for 3 minutes, and were then pressure-bonded with a clip without interposing an adhesive sheet therebetween, and left for several hours.

[接合部分の粘弾性測定]
上記接合部分について、粘弾性を測定した。測定方法は以下の通りである。
株式会社レオロジ製DVEレオスペクトラー(DVE−V4)を使用し、引張り試験を実施し、粘弾性を測定した。測定条件は、測定開始温度−50℃、終了温度250℃、昇温速度3℃/minであり、基本周波数10Hzの正弦波を用いた。
[Measurement of viscoelasticity of joints]
The viscoelasticity was measured for the joint part. The measuring method is as follows.
Using a DVE Rheospectr (DVE-V4) manufactured by Rheology Co., Ltd., a tensile test was carried out to measure viscoelasticity. The measurement conditions were a measurement start temperature of −50 ° C., an end temperature of 250 ° C., a temperature increase rate of 3 ° C./min, and a sine wave having a fundamental frequency of 10 Hz.

得られた測定結果を図3に示す。図3に示すとおり、実施例1では比較例1や比較例2に比べて粘弾性が高くなっていた。これは、接着シート−1のポリ−D−乳酸と生分解性樹脂部材のポリ−L−乳酸とが界面においてステレオコンプレックスを形成したためと思われる。   The obtained measurement results are shown in FIG. As shown in FIG. 3, the viscoelasticity was higher in Example 1 than in Comparative Example 1 and Comparative Example 2. This is probably because the poly-D-lactic acid of the adhesive sheet-1 and the poly-L-lactic acid of the biodegradable resin member formed a stereo complex at the interface.

[接合部分の接着強度の測定]
上記接合部分について、株式会社島津製作所 島津オートグラフ(AG−20KNG)を使用し、クロスヘッド移動速度10mm/minで引張り試験を実施して、接着強度を測定した。
[Measurement of adhesive strength at joints]
About the said junction part, Shimadzu Corporation Shimadzu autograph (AG-20KNG) was used, the tension test was implemented with the crosshead moving speed of 10 mm / min, and the adhesive strength was measured.

得られた測定結果を図4に示す。図4に示すとおり、実施例1では比較例1や比較例2に比べてせん断強度が高くなっていた。これは、接着シート−1のポリ−D−乳酸と生分解性樹脂部材のポリ−L−乳酸とが界面においてステレオコンプレックスを形成したためと思われる。   The obtained measurement results are shown in FIG. As shown in FIG. 4, the shear strength was higher in Example 1 than in Comparative Example 1 and Comparative Example 2. This is probably because the poly-D-lactic acid of the adhesive sheet-1 and the poly-L-lactic acid of the biodegradable resin member formed a stereo complex at the interface.

[接合部分の接着速度]
実施例1では200℃で3分間程度の時間で、生分解性樹脂部材を接合できることが確認された。一方、比較例1及び比較例2では、接合に0.5〜3時間程度要していた。本実施例では、ステレオコンプレックスを形成することによって接合しているため、比較例のように、溶融して分子の配列を再配列して整えることで結晶構造を形成するよりも接合時間を短縮できたものと思われる。
[Adhesion speed of joint part]
In Example 1, it was confirmed that the biodegradable resin member could be joined in about 3 minutes at 200 ° C. On the other hand, in Comparative Example 1 and Comparative Example 2, it took about 0.5 to 3 hours for joining. In this example, since the bonding is performed by forming a stereo complex, the bonding time can be shortened as compared with the case of forming a crystal structure by melting and rearranging the molecular arrangement as in the comparative example. It seems to have been.

なお、本発明では、実施例の結果に示すようにステレオコンプレックスが形成されることにより、せん断強度が高まり、接合力が向上し、且つ接合時間が短縮されているが、これに加え当然に部材全体が生分解性を有するため、部材全体を微生物等によって分解することができ、構成部材を分別することなく廃棄できる。   In the present invention, as shown in the results of the examples, the formation of a stereo complex increases the shear strength, improves the joining force, and shortens the joining time. Since the whole is biodegradable, the entire member can be decomposed by microorganisms or the like, and can be discarded without separating the constituent members.

本発明の方法を説明する略図である。1 is a schematic diagram illustrating the method of the present invention. 本発明の方法を説明する略図である。1 is a schematic diagram illustrating the method of the present invention. 実施例における粘弾性測定の結果を示すグラフである。It is a graph which shows the result of the viscoelasticity measurement in an Example. 実施例における接着強度の測定結果を示すグラフである。It is a graph which shows the measurement result of the adhesive strength in an Example.

符号の説明Explanation of symbols

1 生分解性樹脂部材
2 生分解性樹脂部材
3 接着シート
4 非貫通孔
5 貫通孔
6 流れ止め
1 Biodegradable resin member 2 Biodegradable resin member 3 Adhesive sheet 4 Non-through hole 5 Through hole 6 Flow stop

Claims (8)

D−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料で構成された2つの生分解性樹脂部材の間に、L−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料で構成された接着シートを、前記生分解性樹脂部材と前記接着シートの接する界面を加熱した状態で配置する、生分解性樹脂部材の接合方法。   Raw material containing poly-L-lactic acid mainly composed of L-lactic acid between two biodegradable resin members composed of biodegradable material containing poly-D-lactic acid mainly composed of D-lactic acid A bonding method of a biodegradable resin member, wherein an adhesive sheet made of a degradable material is disposed in a state where an interface between the biodegradable resin member and the adhesive sheet is heated. L−乳酸を主成分とするポリ−L−乳酸を含む生分解性材料で構成された2つの生分解性樹脂部材の間に、D−乳酸を主成分とするポリ−D−乳酸を含む生分解性材料で構成された接着シートを、前記生分解性樹脂部材と前記接着シートの接する界面を加熱した状態で配置する、生分解性樹脂部材の接合方法。   A living body containing poly-D-lactic acid mainly composed of D-lactic acid between two biodegradable resin members composed of a biodegradable material containing poly-L-lactic acid mainly composed of L-lactic acid. A bonding method of a biodegradable resin member, wherein an adhesive sheet made of a degradable material is disposed in a state where an interface between the biodegradable resin member and the adhesive sheet is heated. 前記界面の加熱温度が、前記ポリ−L−乳酸及び前記ポリ−D−乳酸の融点以上の温度であることを特徴とする請求項1又は請求項2に記載の生分解性樹脂部材の接合方法。   The method for joining biodegradable resin members according to claim 1 or 2, wherein a heating temperature at the interface is a temperature equal to or higher than a melting point of the poly-L-lactic acid and the poly-D-lactic acid. . 更に、前記接合時に加圧することを特徴とする請求項1乃至請求項3のいずれか1項に記載の生分解性樹脂部材の接合方法。   Furthermore, it pressurizes at the time of the said joining, The joining method of the biodegradable resin member of any one of Claim 1 thru | or 3 characterized by the above-mentioned. 前記接合時に、前記生分解性樹脂部材と前記接着シートとが接合された状態で、全体を加熱することを特徴とする請求項1乃至請求項4のいずれか1項に記載の生分解性樹脂部材の接合方法。   The biodegradable resin according to any one of claims 1 to 4, wherein the entire biodegradable resin member and the adhesive sheet are heated at the time of joining, and the whole is heated. Member joining method. 前記2つの生分解性樹脂部材の少なくとも一方に、前記接着シートと接する面に1以上の凹部が設けられており、2つの生分解性樹脂部材の間に接着シートを配置して接合した際に、軟化した接着シートをこの凹部に侵入させることを特徴とする請求項1乃至請求項5のいずれか1項に記載の生分解性樹脂部材の接合方法。   At least one of the two biodegradable resin members is provided with one or more recesses on the surface in contact with the adhesive sheet, and when the adhesive sheet is disposed and joined between the two biodegradable resin members The method for joining biodegradable resin members according to any one of claims 1 to 5, wherein the softened adhesive sheet is caused to enter the recess. 前記凹部が非貫通孔又は貫通孔であることを特徴とする請求項6に記載の生分解性樹脂部材の接合方法。   The biodegradable resin member joining method according to claim 6, wherein the recess is a non-through hole or a through hole. 前記2つの生分解性樹脂部材の少なくとも一方が、ポリ乳酸と生分解性繊維の複合体で構成されており、前記凹部が前記生分解性繊維間の隙間であることを特徴とする請求項6又は請求項7に記載の生分解性樹脂部材の接合方法。   7. At least one of the two biodegradable resin members is composed of a composite of polylactic acid and biodegradable fibers, and the concave portion is a gap between the biodegradable fibers. Or the joining method of the biodegradable resin member of Claim 7.
JP2006136216A 2006-05-16 2006-05-16 Method of joining biodegradable resin members Expired - Fee Related JP4650339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136216A JP4650339B2 (en) 2006-05-16 2006-05-16 Method of joining biodegradable resin members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136216A JP4650339B2 (en) 2006-05-16 2006-05-16 Method of joining biodegradable resin members

Publications (2)

Publication Number Publication Date
JP2007307719A true JP2007307719A (en) 2007-11-29
JP4650339B2 JP4650339B2 (en) 2011-03-16

Family

ID=38841012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136216A Expired - Fee Related JP4650339B2 (en) 2006-05-16 2006-05-16 Method of joining biodegradable resin members

Country Status (1)

Country Link
JP (1) JP4650339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307718A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Method for reinforcing biodegradable resin member
JP2013158914A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Welding structure and welding method
JP2017155151A (en) * 2016-03-02 2017-09-07 国立大学法人 奈良先端科学技術大学院大学 Joint structure and joining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141955A (en) * 1998-06-03 2000-05-23 Mitsubishi Plastics Ind Ltd Biodegradable card
JP2003292925A (en) * 2002-04-03 2003-10-15 Toyota Motor Corp Method for joining biodegradable resin member
JP2004189863A (en) * 2002-12-11 2004-07-08 Mitsubishi Plastics Ind Ltd Molded product having printed layer, and method for producing the same
JP2007307718A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Method for reinforcing biodegradable resin member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000141955A (en) * 1998-06-03 2000-05-23 Mitsubishi Plastics Ind Ltd Biodegradable card
JP2003292925A (en) * 2002-04-03 2003-10-15 Toyota Motor Corp Method for joining biodegradable resin member
JP2004189863A (en) * 2002-12-11 2004-07-08 Mitsubishi Plastics Ind Ltd Molded product having printed layer, and method for producing the same
JP2007307718A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Method for reinforcing biodegradable resin member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307718A (en) * 2006-05-16 2007-11-29 Toyota Motor Corp Method for reinforcing biodegradable resin member
JP4650338B2 (en) * 2006-05-16 2011-03-16 トヨタ自動車株式会社 Method of reinforcing biodegradable resin member
JP2013158914A (en) * 2012-02-01 2013-08-19 Toyota Motor Corp Welding structure and welding method
JP2017155151A (en) * 2016-03-02 2017-09-07 国立大学法人 奈良先端科学技術大学院大学 Joint structure and joining method

Also Published As

Publication number Publication date
JP4650339B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP6117784B2 (en) Components for hydrocarbon resource recovery downhole tools
JP6239297B2 (en) Nonwoven fabric, sheet or film, molded article, and method for producing nonwoven fabric
TWI269702B (en) Welding techniques for polymer or polymer composite components
KR100786005B1 (en) Multilayered aliphatic polyester film
JP3839037B1 (en) Laminated molded body
JP4650339B2 (en) Method of joining biodegradable resin members
KR20130105809A (en) Composite material containing natural fibers
JP4650338B2 (en) Method of reinforcing biodegradable resin member
JP2008138331A (en) Oxymethylene copolymer multilayer fiber
CN102066076A (en) Composite molded article having two-layer structure
AU2012213411B2 (en) Straps produced from renewable raw materials
Stoehr et al. Ultrasonic welding of plasticized PLA films
JP2003292925A (en) Method for joining biodegradable resin member
JPH01259062A (en) Nylon resin composite material and production thereof
JP6054885B2 (en) Welding method for renewable raw materials
TWI743592B (en) Polyester resin for adhesive strength-improved binder and polyester fiber using the same
KR102117688B1 (en) Polyester fiber using binder Having Advanced Adhesive Strength
WO2022075233A1 (en) Multilayer film and packaging material
JP4886314B2 (en) Method for producing stretched thermoplastic polyester resin sheet having recess and method for producing laminated sheet
Schega et al. Role of processing procedures and molecular weight and their link to quasistatic and fatigue properties of polyamide 6
JP5068032B2 (en) Polylactic acid composition and molded article
JPS5947229A (en) Resin composition
JP2005248407A (en) Biodegradable flat yarn, fabric-like article, and sheet
JP2005125803A (en) Multilayer biodegradable plastic film
KR20230099088A (en) High performance biodegradable fiber reinforced thermoplastics and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees