JP2007306752A - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
JP2007306752A
JP2007306752A JP2006134892A JP2006134892A JP2007306752A JP 2007306752 A JP2007306752 A JP 2007306752A JP 2006134892 A JP2006134892 A JP 2006134892A JP 2006134892 A JP2006134892 A JP 2006134892A JP 2007306752 A JP2007306752 A JP 2007306752A
Authority
JP
Japan
Prior art keywords
motor
drive
speed
signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006134892A
Other languages
Japanese (ja)
Inventor
Masayuki Kanzaki
政幸 神前
Masahiro Yasohara
正浩 八十原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006134892A priority Critical patent/JP2007306752A/en
Publication of JP2007306752A publication Critical patent/JP2007306752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor drive device wherein speed command voltage for a motor can be supplied externally and speed control can be stabilized over a wide range. <P>SOLUTION: The motor drive device includes a waveform generating means 31, incorporated in or integrated with a motor 1 having a moving member and three-phase drive windings for generating a waveform signal for driving the motor 1 with phase timing, based on a moving member position detection signal; a drive means 32 for supplying the three-phase drive windings with drive voltage or drive current, based on the waveform signal; and a motor control terminal 10, to which a control signal Vsp is inputted. The control signal Vsp is inputted from equipment 6 where the motor is to be mounted, and servo computation for controlling the speed of the motor 1 to a desired value is carried out by the equipment 6 mounted with the motor. The control signal Vsp is a signal, based on the result of servo computation carried out by the equipment 6 mounted with the motor, and the magnitude of the drive voltage or drive current for the three-phase drive windings from the drive means 32 can be controlled by the control signal Vsp. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紙送りモータやスキャナーモータなどを駆動系に搭載したプリンタまたは複写機またはスキャナーまたはファックスまたはこれらの複合機器などに使用されるモータの駆動装置に関するものである。   The present invention relates to a motor driving device used in a printer, a copying machine, a scanner, a fax machine, or a combination of these equipped with a paper feed motor, a scanner motor or the like in a driving system.

近年、プリンタまたは複写機またはスキャナーまたはファックスまたはこれらの複合機器などに使用されるモータは、機器の高機能化および多機能化の進展に伴い、モータの広範囲な回転速度要求に対して、回転ムラ精度の向上および起動時の応答性などが強く望まれてきている。   In recent years, motors used in printers, copiers, scanners, fax machines, or composite devices thereof have become uneven in response to a wide range of rotational speed requirements of the motors as the functions of the devices become more advanced and multifunctional. Improvements in accuracy and responsiveness at startup have been strongly desired.

また、モータの駆動系においては、モータを可変速駆動させるために、一般的にPWM(パルス幅変調)が用いられてきている。PWMはモータの駆動巻線に接続されたトランジスタのオン時間とオフ時間の割合を変え、モータへ供給する電力量を制御する方式である。これにより、PWMはモータを可変速駆動させることができ、近年、上記のプリンタまたは複写機またはスキャナーまたはファックスまたはこれらの複合機器などに使用されるモータの駆動にも用いられるようになってきている。   In motor drive systems, PWM (pulse width modulation) has generally been used to drive the motor at a variable speed. PWM is a method of controlling the amount of power supplied to the motor by changing the ratio of the on time and off time of the transistor connected to the drive winding of the motor. As a result, the PWM can drive the motor at a variable speed, and has recently been used for driving a motor used in the above-described printer, copier, scanner, fax machine, or a composite device thereof. .

これらに搭載されるモータ駆動装置は従来から種々の方式が提案されており、例えば、図2のようなものがある。   Various types of motor drive devices mounted on these devices have been proposed in the past, such as the one shown in FIG.

図2は、モータ100と、三相駆動巻線110,130,150と、三相駆動巻線110,130,150に接続されるインバータ200とを備え、インバータ200はパワートランジスタ210,220,230,240,250,260から成る。また、パワートランジスタ210,220,230,240,250,260のオン・オフのスイッチング時間の割合をPWMにより制御し、モータ100へ供給する電力量を制御するモータ駆動手段300と、モータ100の回転速度を検出する回転数検出400と、回転数検出400が出力するモータ100の回転速度に比例した周波数をもつFG信号とモータ100への速度基準信号とを入力とし、その速度誤差信号を出力する回転数誤差検出700と、回転数誤差検出700が出力する速度誤差信号を誤差増幅する誤差増幅器800とを備え、インバータ200と、モータ駆動手段300と、回転数検出400と、回転数誤差検出700と、誤差増幅器800は、三相駆動巻線110,130,150を有するモータ100に内蔵または一体化されたプリント基板900上に構成されたモータ駆動装置である。   2 includes a motor 100, three-phase drive windings 110, 130, and 150, and an inverter 200 connected to the three-phase drive windings 110, 130, and 150. The inverter 200 includes power transistors 210, 220, and 230. , 240, 250, 260. Further, the ratio of ON / OFF switching time of the power transistors 210, 220, 230, 240, 250, 260 is controlled by PWM, and the motor driving means 300 for controlling the amount of power supplied to the motor 100, and the rotation of the motor 100 The rotational speed detection 400 for detecting the speed, the FG signal having a frequency proportional to the rotational speed of the motor 100 output from the rotational speed detection 400, and the speed reference signal to the motor 100 are input, and the speed error signal is output. A rotation speed error detection 700 and an error amplifier 800 that amplifies the speed error signal output from the rotation speed error detection 700 are provided. The inverter 200, the motor driving means 300, the rotation speed detection 400, and the rotation speed error detection 700 are provided. The error amplifier 800 is built in the motor 100 having the three-phase drive windings 110, 130, and 150. Is a motor driving apparatus that is configured on a printed circuit board 900 are integrated.

モータ100の三相駆動巻線110,130,150はインバータ200のパワートランジスタ210,220,230,240,250,260へ接続され、回転数検出400はモータ100の回転速度を検出し、その回転速度に比例した周波数をもつFG信号を出力する。回転数誤差検出700はFG信号と所望の設定された回転速度の指令信号となる速度基準信号とを入力とし、その出力は誤差増幅器800の入力へ接続する。誤差増幅器800の出力はモータ駆動手段300の入力へ接続され、モータ駆動手段300の出力はインバータ200パワートランジスタ210,220,230,240,250,260へ接続される。   The three-phase drive windings 110, 130, and 150 of the motor 100 are connected to the power transistors 210, 220, 230, 240, 250, and 260 of the inverter 200, and the rotation speed detection 400 detects the rotation speed of the motor 100 and rotates the rotation. An FG signal having a frequency proportional to the speed is output. The rotation speed error detection 700 receives an FG signal and a speed reference signal as a command signal for a desired set rotation speed, and an output thereof is connected to an input of the error amplifier 800. The output of the error amplifier 800 is connected to the input of the motor driving means 300, and the output of the motor driving means 300 is connected to the inverter 200 power transistors 210, 220, 230, 240, 250, 260.

次に図2におけるモータ駆動装置の駆動方法を以下に説明する。   Next, a driving method of the motor driving device in FIG. 2 will be described below.

モータ100の回転速度は回転数検出400により検出され、回転数検出400はモー
タ100の回転速度に比例した周波数をもつFG信号を回転数誤差検出700へ出力する。回転数誤差検出700は回転数検出400が出力するFG信号と所望の設定された回転速度の指令信号となる速度基準信号とを比較して速度誤差を検出し、速度誤差信号を出力する。誤差増幅器800は回転数誤差検出700が出力する速度誤差信号を入力とし、誤差増幅器800で増幅したモータ駆動の制御指令となる電圧指令Vspをモータ駆動手段300へ出力する。モータ駆動手段300はPWMにより電圧指令Vspに応じてインバータ200のパワートランジスタ210,220,230,240,250,260のゲート電極へオン・オフのスイッチング制御指令を出力する。これによりモータ100の三相駆動巻線110,130,150へも電圧指令Vspの大きさに応じた電力が供給され、モータが所定の回転速度になるように制御される(例えば特許文献1参照)。
特開平8−266078号公報
The rotational speed of the motor 100 is detected by the rotational speed detection 400, and the rotational speed detection 400 outputs an FG signal having a frequency proportional to the rotational speed of the motor 100 to the rotational speed error detection 700. The rotation speed error detection 700 detects a speed error by comparing the FG signal output from the rotation speed detection 400 with a speed reference signal serving as a command signal for a desired set rotation speed, and outputs a speed error signal. The error amplifier 800 receives the speed error signal output from the rotational speed error detection 700 and outputs a voltage command Vsp, which is a motor drive control command amplified by the error amplifier 800, to the motor drive means 300. The motor driving means 300 outputs an on / off switching control command to the gate electrodes of the power transistors 210, 220, 230, 240, 250, 260 of the inverter 200 according to the voltage command Vsp by PWM. As a result, power corresponding to the magnitude of the voltage command Vsp is also supplied to the three-phase drive windings 110, 130, and 150 of the motor 100, and the motor is controlled to have a predetermined rotational speed (see, for example, Patent Document 1). ).
JP-A-8-266078

しかしながら上記従来技術によるモータ駆動装置において、図3のような回路構成をした誤差増幅器を備えている場合、モータを可変速で用いたとき、指令回転速度によっては、回転ムラの精度等、十分な速度特性が得られない場合がある。     However, when the motor driving device according to the prior art includes an error amplifier having a circuit configuration as shown in FIG. 3, when the motor is used at a variable speed, depending on the command rotational speed, sufficient accuracy such as rotational unevenness may be obtained. Speed characteristics may not be obtained.

ここでまず、図3の誤差増幅器の回路構成について説明する。   First, the circuit configuration of the error amplifier of FIG. 3 will be described.

図3の誤差増幅器において、70は増幅器であり、その入力の一方はバイアス電源71に接続する。他方の入力には抵抗72,73,74およびコンデンサ75が接続する。また抵抗72と直列にコンデンサ76が接続し、そのコンデンサ76の他端側は増幅器70の出力と接続する。また、コンデンサ75はその直列接続された抵抗72とコンデンサ76に並列接続する。   In the error amplifier of FIG. 3, reference numeral 70 denotes an amplifier, and one of its inputs is connected to a bias power supply 71. Resistors 72, 73, 74 and a capacitor 75 are connected to the other input. A capacitor 76 is connected in series with the resistor 72, and the other end of the capacitor 76 is connected to the output of the amplifier 70. The capacitor 75 is connected in parallel to the resistor 72 and the capacitor 76 connected in series.

図3の誤差増幅器の入力端子である速度誤差信号端子もしくは位相誤差信号端子は図2の回転数誤差検出700が出力する信号が入力する端子である。(位相誤差信号端子はモータの位相誤差を検出し、位相制御を行う場合に用いる。)その端子に入力される誤差信号はFG信号と速度基準信号との速度誤差または位相誤差の誤差量に応じた幅の加速もしくは減速指令のパルス信号であり、FG信号の周期ごとに検出される。その加速・減速信号のパルス信号はバイアス電源71により決まる増幅器70の基準電圧Vrefに対して逆極性をもつパルス信号である。   A speed error signal terminal or a phase error signal terminal, which is an input terminal of the error amplifier in FIG. 3, is a terminal to which a signal output from the rotation speed error detection 700 in FIG. 2 is input. (The phase error signal terminal is used to detect the phase error of the motor and perform phase control.) The error signal input to the terminal depends on the speed error between the FG signal and the speed reference signal or the amount of phase error. This is a pulse signal for an acceleration or deceleration command of a wide range, and is detected for each cycle of the FG signal. The pulse signal of the acceleration / deceleration signal is a pulse signal having a reverse polarity with respect to the reference voltage Vref of the amplifier 70 determined by the bias power supply 71.

また、図3の誤差増幅器はモータ100に供給する電力量を制御する電圧指令Vspを出力し、その出力は図2におけるモータ駆動手段300の入力となる。   3 outputs a voltage command Vsp for controlling the amount of power supplied to the motor 100, and the output is input to the motor driving means 300 in FIG.

このように回路構成された図3の誤差増幅器において、抵抗72,73,74は誤差増幅率を設定するための抵抗であり、コンデンサ76は積分コンデンサ、またコンデンサ75は高域フィルタ用のコンデンサである。これらの回路定数は速度制御に関わるものであり、モータの起動特性または回転ムラの精度など回転速度の安定性に影響を与えるものである。   3, the resistors 72, 73 and 74 are resistors for setting an error amplification factor, the capacitor 76 is an integrating capacitor, and the capacitor 75 is a high-pass filter capacitor. is there. These circuit constants are related to speed control, and affect the stability of the rotational speed, such as the starting characteristics of the motor or the accuracy of rotation unevenness.

つまり、モータの回転速度を安定させるためには、抵抗72,73,74およびコンデンサ75,76の回路定数を適切に設定する必要がある。しかし、回転速度の安定化が最適となるように回路定数を設定するためにはモータ仕様や回転速度などの条件によりその回路定数を適切に変更しなければならない。   That is, in order to stabilize the rotation speed of the motor, it is necessary to appropriately set the circuit constants of the resistors 72, 73, 74 and the capacitors 75, 76. However, in order to set the circuit constant so that the stabilization of the rotation speed is optimum, the circuit constant must be appropriately changed according to conditions such as the motor specifications and the rotation speed.

図3の誤差増幅器を備えた図2のモータ駆動装置においては、使用する回転速度が一定で固定された回転速度ならば、その回転速度で速度特性が最適となるように誤差増幅器の
抵抗72,73,74およびコンデンサ75,76の回路定数を設計することができる。しかし、同一のモータ駆動装置で回転速度を変えて速度制御させた場合、その回転速度で速度特性が最適となるように誤差増幅器の回路定数が設定されていないために、回転ムラの精度などが低下している場合がある。
In the motor drive device of FIG. 2 having the error amplifier of FIG. 3, if the rotational speed to be used is a constant and fixed rotational speed, the error amplifier resistors 72, so that the speed characteristics are optimized at the rotational speed. The circuit constants 73 and 74 and capacitors 75 and 76 can be designed. However, when the speed is controlled by changing the rotational speed with the same motor drive device, the error amplifier circuit constants are not set so that the speed characteristics are optimized at the rotational speed, so the accuracy of rotational unevenness etc. May have declined.

したがって、図3の誤差増幅器を備えた図2のモータ駆動装置において、回転速度を変えてモータを使用した場合、例えば高速回転で回転ムラ精度の向上を図るように誤差増幅器の回路定数を設計すれば、低速回転では回転ムラ精度が低下し、逆に低速回転で回転ムラ精度の向上を図るように誤差増幅器の回路定数を設計すれば、高速回転では回転ムラ精度が最適でない場合がある。   Therefore, when the motor is used with the rotation speed changed in the motor driving apparatus shown in FIG. 2 having the error amplifier shown in FIG. 3, the circuit constants of the error amplifier should be designed so as to improve the rotation unevenness accuracy at high speed rotation, for example. For example, if the circuit constant of the error amplifier is designed so that the rotation unevenness accuracy is reduced at low speed rotation and the rotation unevenness accuracy is improved at low speed rotation, the rotation unevenness accuracy may not be optimal at high speed rotation.

また、複数の指令回転速度に対応するために、各回転速度で速度特性が最適となるように回路定数を設計した複数の誤差増幅器を備え、指令回転速度に応じて、適切な誤差増幅器を選択することで、可変速でも安定した速度特性を得るようにする方法などもあるが、回路規模が大きくなり、素子数の増加につながり、コストの増加を伴う。   In addition, in order to support multiple command rotation speeds, it has multiple error amplifiers designed with circuit constants so that the speed characteristics are optimized at each rotation speed, and an appropriate error amplifier is selected according to the command rotation speed. By doing so, there is a method for obtaining a stable speed characteristic even at a variable speed, but the circuit scale becomes large, leading to an increase in the number of elements, and an increase in cost.

上記課題を解決するために本発明のモータ駆動装置は、可動子および三相駆動巻線を有するモータに内蔵または一体化され、前記モータを駆動するための波形信号を前記可動子の位置検出信号に基づく位相タイミングで生成する波形生成手段と、前記波形信号に基づき前記三相駆動巻線に駆動電圧または駆動電流を供給する駆動手段と、制御信号が入力されるモータ制御端子とを備え、前記制御信号は前記モータが搭載される機器から入力され、前記モータの速度を所望の値に制御するためのサーボ演算は前記機器が行い、前記制御信号は前記機器が行うサーボ演算の結果に基づく信号であり、前記制御信号により、前記駆動手段による前記三相駆動巻線の駆動電圧または駆動電流の大きさを制御可能とするように構成したものである。   In order to solve the above-mentioned problems, a motor driving device of the present invention is built in or integrated in a motor having a mover and a three-phase drive winding, and a waveform signal for driving the motor is used as a position detection signal of the mover. Waveform generating means for generating at a phase timing based on, a drive means for supplying a drive voltage or drive current to the three-phase drive winding based on the waveform signal, and a motor control terminal to which a control signal is input, The control signal is input from a device on which the motor is mounted, the servo calculation for controlling the speed of the motor to a desired value is performed by the device, and the control signal is a signal based on the result of the servo calculation performed by the device. And the magnitude of the drive voltage or drive current of the three-phase drive winding by the drive means can be controlled by the control signal.

本発明のモータ駆動装置によれば、モータが搭載される機器から駆動手段へ三相駆動巻線の駆動電圧または駆動電流の大きさの制御指令となる信号が入力されるモータ制御端子を有する構成をしている。   According to the motor driving device of the present invention, the motor control device has a motor control terminal to which a signal serving as a control command for the drive voltage or drive current of the three-phase drive winding is input from the device on which the motor is mounted to the drive means. I am doing.

これにより、モータが搭載される機器から三相駆動巻線の駆動電圧または駆動電流の大きさの制御指令となる信号を入力することで、広範囲な回転速度でも安定した速度制御が可能となり、また非制御でも可変速できるために、より自由度の高いモータ制御も可能となる。   This enables stable speed control even over a wide range of rotational speeds by inputting a signal that is a control command for the magnitude of the drive voltage or drive current of the three-phase drive winding from the device on which the motor is mounted. Since variable speed can be achieved even without control, motor control with a higher degree of freedom is possible.

さらに、回転数誤差検出および誤差増幅器などのモータの速度制御を行う機能を本モータ駆動装置から省くことで素子数を削減でき、モータ駆動装置の低コスト化にもつながる。   Furthermore, the number of elements can be reduced by omitting the motor speed control function such as rotational speed error detection and error amplifier from the motor drive device, leading to cost reduction of the motor drive device.

本発明のモータ駆動装置は、可動子および三相駆動巻線を有するモータに内蔵または一体化され、前記モータを駆動するための波形信号を前記可動子の位置検出信号に基づく位相タイミングで生成する波形生成手段と、前記波形信号に基づき前記三相駆動巻線に駆動電圧または駆動電流を供給する駆動手段と、制御信号が入力されるモータ制御端子とを備え、前記制御信号は前記モータが搭載される機器から入力され、前記モータの速度を所望の値に制御するためのサーボ演算は前記機器が行い、前記制御信号は前記機器が行うサーボ演算の結果に基づく信号であり、前記制御信号により、前記駆動手段による前記三相駆動巻線の駆動電圧または駆動電流の大きさを制御可能とするように構成したものである。   The motor drive device of the present invention is built in or integrated with a motor having a mover and a three-phase drive winding, and generates a waveform signal for driving the motor at a phase timing based on a position detection signal of the mover. Waveform generation means, drive means for supplying a drive voltage or drive current to the three-phase drive winding based on the waveform signal, and a motor control terminal to which a control signal is input, the control signal being mounted on the motor The servo calculation for controlling the motor speed to a desired value is performed by the device, and the control signal is a signal based on the result of the servo calculation performed by the device. The drive means or the drive current of the three-phase drive winding can be controlled by the drive means.

これにより、モータが搭載される機器から三相駆動巻線の駆動電圧または駆動電流の大きさの制御指令となる信号を入力することで、広範囲な回転速度でも安定した速度制御が可能となり、また非制御でも可変速できるために、より自由度の高いモータ制御も可能となる。   This enables stable speed control even over a wide range of rotational speeds by inputting a signal that is a control command for the magnitude of the drive voltage or drive current of the three-phase drive winding from the device on which the motor is mounted. Since variable speed can be achieved even without control, motor control with a higher degree of freedom is possible.

さらに、回転数誤差検出および誤差増幅器などのモータの速度制御を行う機能を本モータ駆動装置から省くことで素子数を削減でき、モータ駆動装置の低コスト化にもつながる。   Furthermore, the number of elements can be reduced by omitting the motor speed control function such as rotational speed error detection and error amplifier from the motor drive device, leading to cost reduction of the motor drive device.

図1は本発明のモータ駆動装置の概略図である。   FIG. 1 is a schematic view of a motor drive device of the present invention.

図1において、モータ1の三相駆動巻線11,13,15はインバータ20へ接続する。インバータ20はパワートランジスタ21,22,23,24,25,26から成り、パワートランジスタ21,22は直流電源5の電源端子間に直列接続し、その直列接続点はモータ1の駆動巻線11へ接続する。同様に、パワートランジスタ23,24は直流電源5の電源端子間に直列接続し、その直列接続点はモータ1の駆動巻線13へ接続し、パワートランジスタ25,26は直流電源5の電源端子間に直列接続し、その直列接続点はモータ1の駆動巻線15へ接続する。モータ1の回転速度を検出する回転数検出4はモータ1の回転速度に比例した周波数をもつFG信号を生成し、モータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60への出力端子である端子9に接続する。また、端子10はモータ1の三相駆動巻線11,13,15への駆動電圧の大きさの制御指令となる電圧指令Vspをモータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60から入力する端子であり、モータ駆動手段30へ接続する。モータ駆動手段30は波形生成手段31と三相駆動巻線11,13,15に駆動電圧を供給するための制御指令を生成するPWM32から成る。波形生成手段32はモータ1の回転位置検出信号であるCS信号を入力として、波形生成信号であるWF信号を出力する。PWM32はWF信号とモータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60からの電圧指令Vspを入力として、インバータ20のパワートランジスタ21,22,23,24,25,26のゲート電極へ制御信号を出力する。またインバータ20、モータ駆動手段30および回転数検出4は、モータ1に内蔵または一体化されたプリント基板2上に構成され、これらはモノリシック集積回路から成る。   In FIG. 1, the three-phase drive windings 11, 13, and 15 of the motor 1 are connected to an inverter 20. The inverter 20 includes power transistors 21, 22, 23, 24, 25, and 26. The power transistors 21 and 22 are connected in series between the power supply terminals of the DC power supply 5, and the series connection point is connected to the drive winding 11 of the motor 1. Connecting. Similarly, the power transistors 23 and 24 are connected in series between the power supply terminals of the DC power supply 5, the series connection point is connected to the drive winding 13 of the motor 1, and the power transistors 25 and 26 are connected between the power supply terminals of the DC power supply 5. The series connection point is connected to the drive winding 15 of the motor 1. The rotational speed detection 4 for detecting the rotational speed of the motor 1 generates an FG signal having a frequency proportional to the rotational speed of the motor 1 and is a servo arithmetic unit for controlling the speed of the motor provided in the device 6 on which the motor is mounted. Connect to terminal 9 which is the output terminal to 60. The terminal 10 is used to control the speed of the motor provided in the device 6 on which the motor is mounted, with the voltage command Vsp serving as a control command for the magnitude of the drive voltage applied to the three-phase drive windings 11, 13, 15 of the motor 1. It is a terminal that is input from the servo arithmetic unit 60 that controls the motor, and is connected to the motor driving means 30. The motor drive means 30 comprises a waveform generation means 31 and a PWM 32 for generating a control command for supplying a drive voltage to the three-phase drive windings 11, 13 and 15. The waveform generation means 32 receives a CS signal that is a rotational position detection signal of the motor 1 and outputs a WF signal that is a waveform generation signal. The PWM 32 receives the WF signal and the voltage command Vsp from the servo arithmetic unit 60 that controls the speed of the motor provided in the device 6 on which the motor is mounted, and receives power transistors 21, 22, 23, 24, 25, A control signal is output to 26 gate electrodes. Further, the inverter 20, the motor driving means 30, and the rotation speed detection 4 are configured on a printed circuit board 2 built in or integrated in the motor 1, and are formed of a monolithic integrated circuit.

以上のように構成されたモータ駆動装置において、以下に具体的な駆動方法を説明する。   In the motor driving device configured as described above, a specific driving method will be described below.

図1において、モータ1を駆動させるために、三相駆動巻線11,13,15への駆動電圧の大きさの制御指令となる電圧指令Vspが、モータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60から入力端子10を通して、モータ駆動手段30へ入力される。ここで、サーボ演算器60はモータの速度を所望の値に制御するためのサーボ演算機能の有し、電圧指令Vspはそのサーボ演算の結果に基づく信号である。モータ駆動手段30は波形生成手段31およびPWM32から構成されており、波形生成手段31はモータ1の位置検出信号であるCS信号に基づく位相タイミングで波形生成信号を生成する。PWM32は波形生成手段31が生成した信号であるWF信号とモータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60から入力される電圧指令Vspに基づき、インバータ20のパワートランジスタ21,22,23,24,25,26のゲート電極へ制御指令を出力して、三相駆動巻線に駆動電圧を供給し、モータ1の回転数を制御する。PWM32はモータ1の三相駆動巻線に接続されたインバータ20のパワートランジスタ21,22,23,24,25,26のオン時間とオフ時間
の割合を変え、モータ1へ供給する電力量を制御している。例えば、モータ1の回転速度を速くする場合、電圧指令Vspの電圧レベルを上げることによって、PWM32はパワートランジスタ21,22,23,24,25,26のオン時間の割合を増加させ、オフ時間の割合を減少させるように制御し、モータ1の三相駆動巻線へ供給する電力量を増加させ、モータ1の回転速度を速くできる。
In FIG. 1, in order to drive the motor 1, a voltage command Vsp serving as a control command for the magnitude of the drive voltage to the three-phase drive windings 11, 13, 15 is provided in the device 6 on which the motor is mounted. It is input to the motor drive means 30 through the input terminal 10 from the servo calculator 60 that controls the motor speed control. Here, the servo calculator 60 has a servo calculation function for controlling the motor speed to a desired value, and the voltage command Vsp is a signal based on the result of the servo calculation. The motor driving unit 30 includes a waveform generation unit 31 and a PWM 32. The waveform generation unit 31 generates a waveform generation signal at a phase timing based on a CS signal that is a position detection signal of the motor 1. The PWM 32 is based on the WF signal generated by the waveform generating means 31 and the voltage command Vsp input from the servo calculator 60 that controls the speed of the motor provided in the device 6 on which the motor is mounted. A control command is output to the gate electrodes of the transistors 21, 22, 23, 24, 25, and 26, a drive voltage is supplied to the three-phase drive winding, and the rotation speed of the motor 1 is controlled. The PWM 32 controls the amount of power supplied to the motor 1 by changing the ratio of the on-time and off-time of the power transistors 21, 22, 23, 24, 25, 26 of the inverter 20 connected to the three-phase drive winding of the motor 1. is doing. For example, when the rotational speed of the motor 1 is increased, the PWM 32 increases the on-time ratio of the power transistors 21, 22, 23, 24, 25, and 26 by increasing the voltage level of the voltage command Vsp. Control is performed to decrease the ratio, the amount of power supplied to the three-phase drive winding of the motor 1 is increased, and the rotation speed of the motor 1 can be increased.

ここで、モータ1の回転速度を速くする場合に、前述とは逆に電圧指令Vspの電圧レベルを下げることによって、PWM32はパワートランジスタ21,22,23,24,25,26のオン時間の割合を増加させ、オフ時間の割合を減少させるように制御し、モータ1の三相駆動巻線へ供給する電力量を増加させ、モータ1の回転速度を速くするようにしても本発明の主旨を逸脱するものではない。   Here, when the rotational speed of the motor 1 is increased, the ratio of the on-time of the power transistors 21, 22, 23, 24, 25, 26 is decreased by decreasing the voltage level of the voltage command Vsp contrary to the above. The purpose of the present invention is to increase the amount of electric power supplied to the three-phase drive winding of the motor 1 and increase the rotational speed of the motor 1 by controlling so as to decrease the off-time ratio. It does not deviate.

なお、本実施例のモータ駆動手段30は三相駆動巻電11,13,15に駆動電圧を供給する駆動手段として説明したが、モータ駆動手段30が三相駆動巻電11,13,15に駆動電流を供給する駆動手段であるとしても差し支えはない。   Although the motor driving means 30 of the present embodiment has been described as a driving means for supplying a driving voltage to the three-phase driving windings 11, 13, and 15, the motor driving means 30 is connected to the three-phase driving windings 11, 13, and 15. Even if it is a drive means which supplies a drive current, it does not interfere.

また、モータ1の回転速度は回転数検出4によって検出される。回転数検出4はモータ1の回転速度に比例した周波数をもつFG信号を出力し、回転数検出4に接続された出力端子9へ出力する。出力端子9がモータが搭載される機器6の内部に有するサーボ演算器60に接続されていれば、FG信号からサーボ演算により速度誤差を検出し、その速度誤差に基づきモータ駆動の制御指令となる電圧指令Vspを生成することができる。   The rotational speed of the motor 1 is detected by the rotational speed detection 4. The rotation speed detection 4 outputs an FG signal having a frequency proportional to the rotation speed of the motor 1 and outputs it to an output terminal 9 connected to the rotation speed detection 4. If the output terminal 9 is connected to a servo calculator 60 provided in the device 6 on which the motor is mounted, a speed error is detected by servo calculation from the FG signal, and a motor drive control command is based on the speed error. A voltage command Vsp can be generated.

従来例の図2および図3で説明したような回転数誤差検出700や誤差増幅器800などのサーボ回路を備えたモータ駆動装置では、制御方式またはサーボの安定性を設定する回路定数がモータ駆動装置内部で固定される。このために、ある定まった回転速度であれば、サーボ特性が良い速度制御を得ることができるが、異なる広範囲な回転速度では、精度の高い安定した速度制御を確保することが難しいという課題があった。しかし、本発明のモータ駆動装置のようにサーボ演算機能をモータ駆動装置外部のモータが搭載される機器6に委ね、モータ駆動の制御指令である電圧指令Vspをモータが搭載される機器6に備えられたモータの速度制御を司るサーボ演算器60などから生成できるようにすることで、以下のような特徴をもつことができる。   In the conventional motor driving apparatus having servo circuits such as the rotation speed error detection 700 and the error amplifier 800 described with reference to FIGS. 2 and 3, the circuit constant for setting the control method or the stability of the servo is the motor driving apparatus. Fixed internally. For this reason, speed control with good servo characteristics can be obtained at a certain rotation speed, but it is difficult to ensure stable speed control with high accuracy at a wide range of different rotation speeds. It was. However, like the motor drive device of the present invention, the servo calculation function is left to the device 6 on which the motor outside the motor drive device is mounted, and the voltage command Vsp that is a motor drive control command is provided on the device 6 on which the motor is mounted. The following characteristics can be obtained by enabling generation from the servo arithmetic unit 60 or the like that controls the speed control of the motor.

まず、図1のモータが搭載される機器6の中に有するサーボ演算器60を従来例の図2の回転数誤差検出700と誤差増幅器800と同様のものに置き換えれば、従来例の図2と同等のモータ速度制御が可能である。モータの回転数を変更して異なる回転速度で使用する場合には、その回転速度で速度特性が最適となるようにモータが搭載される機器6の中に有するサーボ演算器60が適切なサーボ演算処理の設定を行えば、精度の高い安定した速度制御を確保することができる。つまり、広範囲な回転速度で安定した速度制御が可能となる。   First, if the servo calculator 60 included in the device 6 on which the motor of FIG. 1 is mounted is replaced with the same one as the rotation speed error detection 700 and the error amplifier 800 of FIG. Equivalent motor speed control is possible. When the motor rotation speed is changed and used at different rotation speeds, the servo calculator 60 included in the device 6 on which the motor is mounted has an appropriate servo calculation so that the speed characteristics are optimized at the rotation speeds. If processing is set, highly accurate and stable speed control can be ensured. That is, stable speed control is possible over a wide range of rotation speeds.

また、従来例の図2のような構成ではモータ駆動の制御指令である電圧指令Vspは速度基準信号とFG信号によって生成するために、それらの信号とは無関係にモータの速度制御を非制御として扱うことができない。しかし、本発明のモータ駆動装置ではモータの速度制御指令が外部入力で行えるために、速度基準信号またはFG信号に関係なくモータの速度制御を非制御で扱うこともでき、より自由度の高いモータ制御を行うことが可能となる。   Further, in the configuration shown in FIG. 2 of the conventional example, the voltage command Vsp, which is a motor drive control command, is generated by the speed reference signal and the FG signal, so that the motor speed control is not controlled regardless of these signals. I can't handle it. However, in the motor driving device of the present invention, since the motor speed control command can be performed by external input, the motor speed control can be handled uncontrolled regardless of the speed reference signal or the FG signal, and the motor with a higher degree of freedom. Control can be performed.

その上、モータの速度制御機能を外部のモータが搭載される機器6に委ねたことで、回路規模を抑え、速度制御に必要な素子数を削減でき、モータ駆動装置の低コスト化を図ることができる。   In addition, by entrusting the motor speed control function to the device 6 on which the external motor is mounted, the circuit scale can be reduced, the number of elements required for speed control can be reduced, and the cost of the motor drive device can be reduced. Can do.

本発明のモータ駆動装置は、プリンタまたは複写機またはスキャナーまたはファックスまたはこれらの複合機器の駆動用モータなどに有用である。   The motor driving device of the present invention is useful for a motor for driving a printer, a copying machine, a scanner, a fax machine, or a combination of these.

本発明の実施例1におけるモータ駆動装置の概略図1 is a schematic diagram of a motor drive device according to a first embodiment of the present invention. 従来例におけるモータ駆動装置の概略図Schematic diagram of motor drive device in conventional example 従来例におけるモータ駆動装置が備える誤差増幅器の概略図Schematic of the error amplifier provided in the motor drive device in the conventional example

符号の説明Explanation of symbols

1 モータ
2 プリント基板
4 回転数検出
6 モータが搭載される機器
10 電圧指令Vsp入力端子
11,13,15 三相駆動巻線
20 インバータ
21,22,23,24,25,26 パワートランジスタ
30 モータ駆動手段
31 波形生成手段
32 PWM
60 モータが搭載される機器が有するサーボ演算器
DESCRIPTION OF SYMBOLS 1 Motor 2 Printed circuit board 4 Rotation speed detection 6 Equipment in which motor is mounted 10 Voltage command Vsp input terminal 11, 13, 15 Three-phase drive winding 20 Inverter 21, 22, 23, 24, 25, 26 Power transistor 30 Motor drive Means 31 Waveform generation means 32 PWM
60 Servo computing unit of equipment equipped with motor

Claims (2)

可動子および三相駆動巻線を有するモータに内蔵または一体化され、前記モータを駆動するための波形信号を前記可動子の位置検出信号に基づく位相タイミングで生成する波形生成手段と、前記波形信号に基づき前記三相駆動巻線に駆動電圧または駆動電流を供給する駆動手段と、制御信号が入力されるモータ制御端子とを備え、前記制御信号は前記モータが搭載される機器から入力され、前記モータの速度を所望の値に制御するためのサーボ演算は前記機器が行い、前記制御信号は前記機器が行うサーボ演算の結果に基づく信号であり、前記制御信号により、前記駆動手段による前記三相駆動巻線の駆動電圧または駆動電流の大きさを制御可能としたモータ駆動装置。 Waveform generating means that is built in or integrated with a motor having a mover and a three-phase drive winding, and that generates a waveform signal for driving the motor at a phase timing based on a position detection signal of the mover, and the waveform signal Driving means for supplying a driving voltage or a driving current to the three-phase driving winding, and a motor control terminal to which a control signal is input, the control signal is input from a device on which the motor is mounted, The servo calculation for controlling the motor speed to a desired value is performed by the device, and the control signal is a signal based on the result of the servo calculation performed by the device, and the three-phase by the driving means is generated by the control signal. A motor drive device capable of controlling the magnitude of the drive voltage or drive current of the drive winding. モータが搭載される機器が、プリンタまたは複写機またはスキャナーまたはファックスまたはこれらの複合機器である請求項1に記載のモータの駆動装置。

2. The motor driving apparatus according to claim 1, wherein the device on which the motor is mounted is a printer, a copier, a scanner, a fax machine, or a combination of these.

JP2006134892A 2006-05-15 2006-05-15 Motor drive device Pending JP2007306752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134892A JP2007306752A (en) 2006-05-15 2006-05-15 Motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134892A JP2007306752A (en) 2006-05-15 2006-05-15 Motor drive device

Publications (1)

Publication Number Publication Date
JP2007306752A true JP2007306752A (en) 2007-11-22

Family

ID=38840213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134892A Pending JP2007306752A (en) 2006-05-15 2006-05-15 Motor drive device

Country Status (1)

Country Link
JP (1) JP2007306752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101467A1 (en) * 2014-12-24 2016-06-30 中山大洋电机股份有限公司 Isolation speed regulation interface circuit and electrical equipment system using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069780A (en) * 1999-08-31 2001-03-16 Hitachi Ltd Operation controller for pump motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069780A (en) * 1999-08-31 2001-03-16 Hitachi Ltd Operation controller for pump motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016101467A1 (en) * 2014-12-24 2016-06-30 中山大洋电机股份有限公司 Isolation speed regulation interface circuit and electrical equipment system using same
US10135370B2 (en) 2014-12-24 2018-11-20 Zhongshan Broad-Ocean Motor Co., Ltd. Interface circuit and electrical appliance system comprising the same

Similar Documents

Publication Publication Date Title
US7509032B2 (en) Motor drive control circuit and motor apparatus using the same
US9018872B2 (en) Motor control circuit
JP4708525B2 (en) Servo control device for motor
JP2009055649A (en) Driving device of brusless dc motor
JP2006149141A (en) Motor drive control method and motor drive control device
JP2007306752A (en) Motor drive device
JP2007170868A (en) Current detecting circuit
JP5461726B2 (en) Hall sensor for motor drive circuit and bias circuit for hall amplifier
JP2006129543A (en) Stepping motor driver and driving method
JP2006325334A (en) Power conversion device
JP4363119B2 (en) Brushless DC motor control method and apparatus
JP3252427B2 (en) Servo motor control device
JP2010063210A (en) Current detecting circuit for ac motor, and driving circuit for linear motor
US11635712B2 (en) Motor control apparatus and image forming apparatus
JP2000358390A (en) Servo control device of motor
JP2010119248A (en) Power generating system
JP2010110145A (en) Drive unit of ac motor, and drive control device equipped with the same
JP2008064506A (en) Current detection device of dc motor and galvano scanner system
JP2008092721A (en) Synchronous motor control device
JP2023133673A (en) Motor controller and image forming apparatus
WO2019142712A1 (en) Command generation device and command generation method
JP2629379B2 (en) Servo drive system
JP4154739B2 (en) PWM control apparatus and PWM control method
JP2004212545A (en) Carriage driving device for image forming apparatus
JPH0630573A (en) Motor controlling circuit and motor system using this circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102