JP2007306736A - Magnetic levitation mobile unit - Google Patents

Magnetic levitation mobile unit Download PDF

Info

Publication number
JP2007306736A
JP2007306736A JP2006134006A JP2006134006A JP2007306736A JP 2007306736 A JP2007306736 A JP 2007306736A JP 2006134006 A JP2006134006 A JP 2006134006A JP 2006134006 A JP2006134006 A JP 2006134006A JP 2007306736 A JP2007306736 A JP 2007306736A
Authority
JP
Japan
Prior art keywords
coil
current collecting
current
collecting coil
turns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006134006A
Other languages
Japanese (ja)
Other versions
JP4315965B2 (en
Inventor
Toshiaki Murai
敏昭 村井
Yasuaki Sakamoto
泰明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2006134006A priority Critical patent/JP4315965B2/en
Publication of JP2007306736A publication Critical patent/JP2007306736A/en
Application granted granted Critical
Publication of JP4315965B2 publication Critical patent/JP4315965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic levitation mobile unit, in which the current collection power by a current collection coil can be increased. <P>SOLUTION: A current collection coil section 20 is constituted of a two layer coil, consisting of a surface current collection coil 20A provided on the ground coil side, and a backside current collection coil 20B provided on the vehicle side. The surface current collection coil 20A and the backside current collection coil 20B are connected in series, and the number of turns of the collection coil 20A is set larger than that of the backside current collection coil 20B. Furthermore, the number of turns of the collection coil 20A and the backside current collection coil 20B is adjusted, such that a current flowing through the collection coil 20A by electromagnetic induction of a harmonic magnetic field generated by the ground coil becomes equal to a current flowing through the collection coil 20B. Since the loss, based on an eddy current generated by the currents flowing through the surface current collection coil 20A and the backside current collection coil 20B, is reduced, current collection power can be increased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気浮上移動装置に係り、特に、地上コイルによって発生する磁界の電磁誘導により電力を集電コイルによって集電する磁気浮上移動装置に関する。   The present invention relates to a magnetic levitation moving apparatus, and more particularly to a magnetic levitation moving apparatus that collects electric power by a current collecting coil by electromagnetic induction of a magnetic field generated by a ground coil.

従来より、超電導磁気浮上式鉄道車両等、電磁力により非接触で支持され駆動される磁気浮上移動体の集電方式の一つとして、地上コイルの磁界の高調波成分による電磁誘導を利用して磁気浮上移動体において非接触で電力を集電する非接触誘導集電装置を用いた集電方式が利用されている。   Conventionally, as one of the current collection methods for magnetically levitated moving bodies that are supported and driven by electromagnetic force in a non-contact manner, such as superconducting magnetically levitated railway vehicles, electromagnetic induction using the harmonic component of the magnetic field of the ground coil is used. A current collecting system using a non-contact induction current collecting device that collects electric power in a non-contact manner in a magnetically levitated moving body is used.

また、側壁浮上方式の超電導磁気浮上車両においては、車両の台車に相当する下部両側面に超電導磁石低温容器に収納された超電導コイルが取り付けられ、U字型断面を持つ軌道の側壁内面に設けられた推進用地上コイルが発生する移動磁界により車両が駆動される。また、この軌道の側壁内面に設けられた推進用地上コイルの内側には、8の字状に短絡された浮上用地上コイルが、超電導コイルに対向して、車両の走行方向にそって並べられている。   Also, in the superconducting magnetic levitation vehicle of the side wall levitation method, the superconducting coil housed in the superconducting magnet cryogenic container is attached to both lower side surfaces corresponding to the carriage of the vehicle, and is provided on the inner surface of the side wall of the track having a U-shaped cross section. The vehicle is driven by the moving magnetic field generated by the propulsion ground coil. In addition, on the inner side of the propulsion ground coil provided on the inner surface of the side wall of the track, a levitation ground coil short-circuited in the shape of a figure 8 is arranged along the traveling direction of the vehicle, facing the superconducting coil. ing.

ここで、良導体からなる超電導磁石低温容器表面に配置された集電コイルでは、その低温容器表面に発生する渦電流の影響により、集電電力が低減されるという特徴があり、その影響を如何に低減するかが設計のポイントとなっている。   Here, the current collecting coil arranged on the surface of the superconducting magnet made of a good conductor has a feature that the collected power is reduced by the effect of the eddy current generated on the surface of the cryogenic container. The point of design is to reduce it.

そこで、低温容器渦電流の影響を受けにくいように、集電コイルを低温容器表面から離して構成した誘導集電装置が知られている(非特許文献1)。
村井、長谷川、藤原、「側壁浮上方式における誘導集電装置の特性改善」、電気学会論文誌D、117巻、1号、pp.81−90(1997)
In view of this, an induction current collecting apparatus is known in which the current collecting coil is separated from the surface of the low temperature container so as not to be affected by the low temperature container eddy current (Non-Patent Document 1).
Murai, Hasegawa, Fujiwara, “Improvement of characteristics of induction current collector in side wall floating method”, IEEJ Transactions D, Vol. 117, No. 1, pp. 81-90 (1997)

しかしながら、非特許文献1記載の誘導集電装置では、集電コイルを厚さ方向(低温容器表面法線方向)に1層のコイルとして構成する場合、集電コイルの厚さを増大しても、図7に示すように、低温容器渦電流の影響により、かえって集電電力が低減されてしまい、集電電力を増加することができない、という問題があった。   However, in the induction current collector described in Non-Patent Document 1, when the current collecting coil is configured as a one-layer coil in the thickness direction (in the normal direction of the cryogenic vessel surface), the thickness of the current collecting coil is increased. As shown in FIG. 7, there is a problem that the collected power cannot be increased because the collected power is reduced due to the influence of the eddy current of the cryogenic vessel.

本発明は、上記の問題点を解決するためになされたもので、集電電力を増加することができる磁気浮上移動装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a magnetic levitation moving apparatus capable of increasing the collected power.

上記の目的を達成するために第1の発明に係る磁気浮上移動装置は、導体で形成された低温容器と、前記低温容器に収納された超電導コイルと、所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面における、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、前記第1の集電コイルに直列接続され、かつ、前記所定巻き数より多い巻き数の第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群とを含んで構成されている。   In order to achieve the above object, a magnetic levitation moving apparatus according to a first invention includes a cryocontainer formed of a conductor, a superconducting coil housed in the cryocontainer, and a first current collecting coil having a predetermined number of turns. A first coil group provided in a portion of the surface of the cryogenic vessel facing a ground coil installed on a side wall of a track on which the device moves, and a first coil connected in series. And a plurality of second current collecting coils having a number of turns larger than the predetermined number of turns, and including a second coil group provided on the ground coil side of the first coil group. Yes.

第1の発明に係る磁気浮上移動装置によれば、軌道の側壁に設置された地上コイルによって発生された高調波磁界を利用して、直列接続された第1の集電コイル及び第2の集電コイルによって電力を集電する。このとき、地上コイルによって発生された高調波磁界によって、低温容器に渦電流が生じ、第1の集電コイル及び第2の集電コイルへの高調波磁界を低減し、第1の集電コイル及び第2の集電コイルによる集電電力を低下させる。   According to the magnetic levitation moving apparatus according to the first aspect of the invention, the first current collecting coil and the second current collecting coil connected in series using the harmonic magnetic field generated by the ground coil installed on the side wall of the track. Electric power is collected by the electric coil. At this time, an eddy current is generated in the cryogenic vessel by the harmonic magnetic field generated by the ground coil, and the harmonic magnetic field to the first current collecting coil and the second current collecting coil is reduced. And the collected electric power by the 2nd current collection coil is reduced.

また、第1の集電コイル及び第2の集電コイルに流れる電流によって発生する磁界により、低温容器に渦電流が生じるため、第1の集電コイル及び第2の集電コイルにとって損失となり、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗を増加させ、集電電力を低下させる。   In addition, an eddy current is generated in the low temperature container due to the magnetic field generated by the current flowing through the first current collecting coil and the second current collecting coil, and therefore a loss occurs for the first current collecting coil and the second current collecting coil. The apparent resistance of the first current collecting coil and the second current collecting coil is increased, and the collected power is decreased.

ここで、第1の集電コイルの巻き数を小さくして、第1の集電コイルと第2の集電コイルとの巻き数比を変化させると、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失が減少し、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗の増加を抑制する。   Here, when the number of turns of the first current collecting coil is reduced and the turn ratio of the first current collecting coil and the second current collecting coil is changed, the first current collecting coil and the second current collecting coil are changed. Loss based on the eddy current generated by the current flowing through the current collecting coil is reduced, and an increase in apparent resistance of the first current collecting coil and the second current collecting coil is suppressed.

従って、第1の集電コイルと、第1の集電コイルの地上コイル側に設けられた第2の集電コイルとによって、電力を集電すると共に、第2の集電コイルの巻き数を第1の集電コイルの巻き数より多くすることにより、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   Therefore, the first current collecting coil and the second current collecting coil provided on the ground coil side of the first current collecting coil collect power and reduce the number of turns of the second current collecting coil. By increasing the number of windings of the first current collecting coil, the current collecting power is increased in order to reduce the loss based on the eddy current generated by the current flowing through the first current collecting coil and the second current collecting coil. be able to.

また、第1の発明に係る第2の集電コイルの巻き数は、地上コイルによって発生する磁界の電磁誘導によって、第1の集電コイルにおいて発生する電流と、第2の集電コイルにおいて発生する電流とが等しくなるように、所定巻き数より多くすることができる。これにより、第1の集電コイルと第2の集電コイルとの各々による集電能力を最大限生かすことができるため、集電電力を更に増加することができる。   Further, the number of turns of the second current collecting coil according to the first invention is generated in the first current collecting coil and in the second current collecting coil by electromagnetic induction of the magnetic field generated by the ground coil. The number of turns can be increased to be equal to the current to be applied. Thereby, since the current collection capability by each of the 1st current collection coil and the 2nd current collection coil can be utilized to the maximum, current collection electric power can be increased further.

また、第1の発明に係る第1の集電コイルの位置と、第1の集電コイルに直列接続された第2の集電コイルの位置とが、自装置の移動方向に所定量ずれるように構成することができる。これにより、第1の集電コイルの位置と第2の集電コイルの位置とがずれているため、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させ、集電電力を更に増加することができる。   Further, the position of the first current collecting coil according to the first invention and the position of the second current collecting coil connected in series to the first current collecting coil are shifted by a predetermined amount in the moving direction of the device itself. Can be configured. Thereby, since the position of the 1st current collection coil and the position of the 2nd current collection coil have shifted, it is based on the eddy current which the current which flows into the 1st current collection coil and the 2nd current collection coil generates. Loss can be reduced and the collected power can be further increased.

また、第1の発明に係る第1の集電コイルは、低温容器の表面の上部に設けられ、第2の集電コイルは、大きさが第1の集電コイルより大きくなるように構成することができる。これにより、大きさが小さい第1の集電コイルを、低温容器の表面の上部に設けているため、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させ、集電電力を更に増加することができる。   Moreover, the 1st current collection coil which concerns on 1st invention is provided in the upper part of the surface of a cryogenic container, and a 2nd current collection coil is comprised so that a magnitude | size may become larger than a 1st current collection coil. be able to. Accordingly, since the first current collecting coil having a small size is provided on the upper portion of the surface of the cryogenic vessel, the first current collecting coil is based on the eddy current generated by the current flowing through the first current collecting coil and the second current collecting coil. Loss can be reduced and the collected power can be further increased.

また、第2の発明に係る磁気浮上移動装置は、導体で形成された低温容器と、前記低温容器に収納された超電導コイルと、所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面における、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、前記第1の集電コイルに直列接続され、かつ、該第1の集電コイルの位置に対して、自装置の移動方向に所定量ずれた位置に設けられた第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群とを含んで構成されている。   A magnetic levitation moving apparatus according to a second aspect of the present invention includes a low temperature container formed of a conductor, a superconducting coil housed in the low temperature container, and a plurality of first current collecting coils having a predetermined number of turns, A first coil group provided on a surface of the container facing a ground coil installed on a side wall of a trajectory on which the device moves, and a first coil group connected in series to the first current collecting coil; and A plurality of second current collecting coils provided at positions shifted by a predetermined amount in the moving direction of the current device with respect to the position of one current collecting coil, provided on the ground coil side of the first coil group; And the second coil group.

第2の発明に係る磁気浮上移動装置によれば、軌道の側壁に設置された地上コイルによって発生された高調波磁界を利用して、直列接続された第1の集電コイル及び第2の集電コイルによって電力を集電する。このとき、地上コイルによって発生された高調波磁界によって、低温容器に渦電流が生じ、第1の集電コイル及び第2の集電コイルへの高調波磁界を低減し、第1の集電コイル及び第2の集電コイルによる集電電力を低下させる。   According to the magnetic levitation moving apparatus according to the second invention, the first current collecting coil and the second current collecting coil connected in series by using the harmonic magnetic field generated by the ground coil installed on the side wall of the track. Electric power is collected by the electric coil. At this time, an eddy current is generated in the cryogenic vessel by the harmonic magnetic field generated by the ground coil, and the harmonic magnetic field to the first current collecting coil and the second current collecting coil is reduced. And the collected electric power by the 2nd current collection coil is reduced.

また、第1の集電コイル及び第2の集電コイルに流れる電流によって発生する磁界により、低温容器に渦電流が生じるため、第1の集電コイル及び第2の集電コイルにとって損失となり、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗を増加させ、集電電力を低下させる。   In addition, an eddy current is generated in the low temperature container due to the magnetic field generated by the current flowing through the first current collecting coil and the second current collecting coil, and therefore a loss occurs for the first current collecting coil and the second current collecting coil. The apparent resistance of the first current collecting coil and the second current collecting coil is increased, and the collected power is decreased.

ここで、第1の集電コイルの位置と第2の集電コイルの位置とを移動方向にずらすと、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失が減少し、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗の増加を抑制する。   Here, if the position of the first current collecting coil and the position of the second current collecting coil are shifted in the moving direction, the eddy current generated by the current flowing through the first current collecting coil and the second current collecting coil is changed. The loss based on it decreases and the increase in the apparent resistance of the 1st current collection coil and the 2nd current collection coil is controlled.

従って、第1の集電コイルと、第1の集電コイルの地上コイル側に設けられた第2の集電コイルとによって、電力を集電すると共に、第1の集電コイルの位置と第2の集電コイルの位置とを移動方向にずらすことにより、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   Accordingly, power is collected by the first current collecting coil and the second current collecting coil provided on the ground coil side of the first current collecting coil, and the position of the first current collecting coil and the second current collecting coil are By shifting the position of the two current collecting coils in the moving direction, the current collected power is increased in order to reduce the loss due to the eddy current generated by the current flowing through the first current collecting coil and the second current collecting coil. Can be made.

また、第2の発明に係る第1の集電コイルは、低温容器の表面の上部に設けられ、第2の集電コイルは、大きさが前記第1の集電コイルより大きくなるように構成することができる。これにより、大きさが小さい第1の集電コイルを、低温容器の表面の上部に設けているため、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させ、集電電力を更に増加することができる。   Moreover, the 1st current collection coil which concerns on 2nd invention is provided in the upper part of the surface of a cryogenic container, and a 2nd current collection coil is comprised so that a magnitude | size may become larger than the said 1st current collection coil. can do. Accordingly, since the first current collecting coil having a small size is provided on the upper portion of the surface of the cryogenic vessel, the first current collecting coil is based on the eddy current generated by the current flowing through the first current collecting coil and the second current collecting coil. Loss can be reduced and the collected power can be further increased.

また、第3の発明に係る磁気浮上移動装置は、導体で形成された低温容器と、前記低温容器に収納された超電導コイルと、所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面の上部であって、かつ、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、前記第1の集電コイルに直列接続され、かつ、該第1の集電コイルより大きさが大きい第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群とを含んで構成されている。   According to a third aspect of the present invention, there is provided a magnetic levitation moving apparatus comprising a plurality of low-temperature containers made of a conductor, a superconducting coil housed in the low-temperature container, and a first current collecting coil having a predetermined number of turns. A first coil group provided on a portion of the upper surface of the container and facing a ground coil installed on a side wall of a trajectory on which the device moves, and the first current collecting coil connected in series A plurality of second current collecting coils having a larger size than the first current collecting coil, and a second coil group provided on the ground coil side of the first coil group. It is configured.

第3の発明に係る磁気浮上移動装置によれば、軌道の側壁に設置された地上コイルによって発生された高調波磁界を利用して、直列接続された第1の集電コイル及び第2の集電コイルによって電力を集電する。また、地上コイルによって発生された高調波磁界によって、低温容器に渦電流が生じ、第1の集電コイル及び第2の集電コイルへの高調波磁界を低減し、第1の集電コイル及び第2の集電コイルによる集電電力を低下させる。また、第1の集電コイル及び第2の集電コイルに流れる電流によって発生する磁界により、低温容器に渦電流が生じるため、第1の集電コイル及び第2の集電コイルにとって損失となり、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗を増加させ、集電電力を低下させる。   According to the magnetic levitation moving apparatus according to the third aspect of the present invention, the first current collecting coil and the second current collecting coil connected in series using the harmonic magnetic field generated by the ground coil installed on the side wall of the track. Electric power is collected by the electric coil. Moreover, an eddy current is generated in the cryogenic vessel by the harmonic magnetic field generated by the ground coil, the harmonic magnetic field to the first current collecting coil and the second current collecting coil is reduced, and the first current collecting coil and The power collected by the second current collecting coil is reduced. In addition, an eddy current is generated in the low temperature container due to the magnetic field generated by the current flowing through the first current collecting coil and the second current collecting coil, so that the first current collecting coil and the second current collecting coil are lost. The apparent resistance of the first current collecting coil and the second current collecting coil is increased, and the collected power is decreased.

ここで、第1の集電コイルの大きさを、第2の集電コイルよりも小さくし、低温容器の表面の上部に設けると、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失が減少し、第1の集電コイル及び第2の集電コイルの見かけ上の抵抗の増加を抑制する。   Here, when the size of the first current collecting coil is made smaller than that of the second current collecting coil and provided on the upper portion of the surface of the cryogenic vessel, the first current collecting coil flows through the first current collecting coil and the second current collecting coil. Loss based on the eddy current generated by the current is reduced, and an increase in apparent resistance of the first current collecting coil and the second current collecting coil is suppressed.

従って、第1の集電コイルと、第1の集電コイルの地上コイル側に設けられた第2の集電コイルとによって、電力を集電すると共に、大きさが小さい第1の集電コイルを、低温容器の表面の上部に設けることにより、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   Therefore, the first current collecting coil and the second current collecting coil provided on the ground coil side of the first current collecting coil collect power and the first current collecting coil having a small size. To reduce the loss due to eddy currents generated by the currents flowing in the first current collecting coil and the second current collecting coil, thereby increasing the current collecting power. it can.

以上説明したように、本発明の磁気浮上移動装置によれば、第1の集電コイルと、第1の集電コイルの地上コイル側に設けられた第2の集電コイルとによって、電力を集電すると共に、第2の集電コイルの巻き数を第1の集電コイルの巻き数より多くすることにより、又は、第1の集電コイルの位置と第2の集電コイルの位置とを移動方向にずらすことにより、又は、大きさが小さい第1の集電コイルを、低温容器の表面の上部に設けることにより、第1の集電コイル及び第2の集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる、という効果が得られる。   As described above, according to the magnetic levitation moving apparatus of the present invention, electric power is generated by the first current collecting coil and the second current collecting coil provided on the ground coil side of the first current collecting coil. By collecting current and making the number of turns of the second current collecting coil larger than the number of turns of the first current collecting coil, or the position of the first current collecting coil and the position of the second current collecting coil By moving the first current collecting coil in the moving direction or by providing the first current collecting coil having a small size on the upper surface of the cryogenic container, the current flowing through the first current collecting coil and the second current collecting coil can be reduced. Since the loss based on the eddy current to be generated is reduced, it is possible to increase the collected power.

以下、本発明の第1の実施の形態について図面を参照して詳細に説明する。   Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、第1の実施の形態に係る磁気浮上移動システム10は、車両12と、U字型断面を持つ軌道14とから構成されている。   As shown in FIG. 1, the magnetic levitation moving system 10 according to the first embodiment includes a vehicle 12 and a track 14 having a U-shaped cross section.

車両12の台車に相当する下部両側面に、アルミニウムなどの良導体で形成された超電導磁石低温容器16が設けられており、超電導磁石低温容器16には、超電導コイル18が収納されている。   Superconducting magnet cryogenic container 16 made of a good conductor such as aluminum is provided on both lower side surfaces corresponding to the carriage of vehicle 12, and superconducting coil 18 is accommodated in superconducting magnet cryogenic container 16.

また、超電導磁石低温容器16の表面には、複数の集電コイルが走行方向に配列された集電コイル部20が設けられており、集電コイル部20は、車両12の定常走行状態において、後述する地上コイルに対向するように配置されている。   In addition, the surface of the superconducting magnet cryogenic vessel 16 is provided with a current collecting coil unit 20 in which a plurality of current collecting coils are arranged in the traveling direction, and the current collecting coil unit 20 is in a steady traveling state of the vehicle 12. It arrange | positions so that the ground coil mentioned later may be opposed.

また、車両12には、集電コイル部20に誘起される誘導交流電流を整流するためのPWM(パルス幅変調)コンバータ22と、PWMコンバータ22を介して整流された電流が供給される負荷24とが設けられている。また、PWMコンバータ22によって整流された電流によって蓄電される蓄電池26が設けられている。   Further, the vehicle 12 is supplied with a PWM (pulse width modulation) converter 22 for rectifying the induced alternating current induced in the current collecting coil unit 20 and a load 24 supplied with the current rectified via the PWM converter 22. And are provided. Further, a storage battery 26 is provided that is charged by the current rectified by the PWM converter 22.

また、軌道14の側壁内面には、移動磁界を発生させる推進用地上コイル(図示省略)が設けられ、推進用地上コイルの内側には、8の字状に短絡された浮上用地上コイル30が、超電導コイル18に対向するように、車両12の走行方向に配列されて設けられている。   Further, a propulsion ground coil (not shown) that generates a moving magnetic field is provided on the inner surface of the side wall of the track 14, and a levitation ground coil 30 that is short-circuited in a figure 8 shape is provided inside the propulsion ground coil. These are arranged in the traveling direction of the vehicle 12 so as to face the superconducting coil 18.

上記の構成により、車両12を支持する電磁力が、超電導コイル18とその移動によって生じる浮上用地上コイル30の反作用磁界の基本波成分との相互作用によって発生するようになっている。また、浮上用地上コイル30の反作用磁界の高調波成分(以下、高調波磁界と称する。)を利用して、車両12上の集電コイル部20によって電力を集電するようになっている。   With the above configuration, the electromagnetic force that supports the vehicle 12 is generated by the interaction between the superconducting coil 18 and the fundamental wave component of the reaction magnetic field of the levitation ground coil 30 generated by the movement of the superconducting coil 18. In addition, the current collecting coil unit 20 on the vehicle 12 collects electric power using a harmonic component (hereinafter referred to as a harmonic magnetic field) of the reaction magnetic field of the levitation ground coil 30.

また、集電コイル部20は、車両12の走行方向に3相回路を構成するようになっており、また、集電コイル部20は、大きなインダクタンスを持つため、PWMコンバータ22を使用して、力率改善を行い、出力を増大するようになっている。   In addition, the current collecting coil unit 20 is configured to form a three-phase circuit in the traveling direction of the vehicle 12, and since the current collecting coil unit 20 has a large inductance, a PWM converter 22 is used. The power factor is improved and the output is increased.

集電コイル部20は、図2に示すように、浮上用地上コイル30側に設けられた表集電コイル20Aと車両12側に設けられた裏集電コイル20Bとの2層のコイルで構成されている。また、表集電コイル20Aと裏集電コイル20Bとは直列接続されており、また、表集電コイル20Aの巻き数は、裏集電コイル20Bの巻き数より多くなっており、浮上用地上コイル30によって発生する高調波磁界の電磁誘導によって表集電コイル20Aに流れる電流と、裏集電コイル20Bに流れる電流とが等しくなるように、表集電コイル20A及び裏集電コイル20Bの巻き数が調整されている。なお、集電コイル部20は、表集電コイル20A及び裏集電コイル20Bの2層のコイルが車両12の走行方向に複数配列されて構成されている。   As shown in FIG. 2, the current collecting coil section 20 is composed of two layers of coils, a front current collecting coil 20A provided on the levitation ground coil 30 side and a back current collecting coil 20B provided on the vehicle 12 side. Has been. Further, the front current collecting coil 20A and the back current collecting coil 20B are connected in series, and the number of turns of the front current collecting coil 20A is larger than the number of turns of the back current collecting coil 20B. Winding of the front current collecting coil 20A and the back current collecting coil 20B so that the current flowing in the front current collecting coil 20A by the electromagnetic induction of the harmonic magnetic field generated by the coil 30 is equal to the current flowing in the back current collecting coil 20B. The number has been adjusted. The current collecting coil unit 20 is configured by arranging a plurality of two-layer coils of a front current collecting coil 20 </ b> A and a back current collecting coil 20 </ b> B in the traveling direction of the vehicle 12.

次に、本実施の形態に係る磁気浮上移動システム10の走行方向の解析モデルを図3に示す。浮上用地上コイル30のコイルピッチτ1を極ピッチτの1/3とすると、集電コイル部20は、浮上用地上コイル30の基本波電流が作る高調波磁界のうち5次空間調波による6次時間調波成分を利用するのが望ましく、集電コイル部20のコイルピッチτ2は、2τ/15または4τ/15となる。   Next, FIG. 3 shows an analysis model of the traveling direction of the magnetic levitation moving system 10 according to the present embodiment. Assuming that the coil pitch τ1 of the levitation ground coil 30 is 1/3 of the pole pitch τ, the current collecting coil section 20 has a 6th harmonic wave generated by the fifth-order spatial harmonics out of the harmonic magnetic field generated by the fundamental current of the levitation ground coil 30. It is desirable to use the next time harmonic component, and the coil pitch τ2 of the current collecting coil unit 20 is 2τ / 15 or 4τ / 15.

次に、本実施の形態に係る磁気浮上移動システム10の作用について説明する。   Next, the operation of the magnetic levitation moving system 10 according to the present embodiment will be described.

まず、車両12が推進用地上コイルにより駆動され、超電導コイル18と浮上用地上コイル30との間に相対速度が生ずると、レンツの法則により浮上用地上コイル30に誘導起電力が発生するが、例えば、車両12が車輪によって支持され、超電導コイル18の磁束の上下の中心が浮上用地上コイル30の上下の中心と一致している時は、8の字状に短絡された浮上用地上コイル30の上部と下部との起電力が相殺され、浮上用地上コイル30には誘導電流が流れない。しかし、例えば、車両速度が浮上に十分な速度となり車輪が引きあげられ車両12が沈み、超電導コイル18の磁束の中心が浮上用地上コイル30の中心より下に下がると、浮上用地上コイル30の下部の誘導起電力が、上部の誘導起電力に優り、浮上用地上コイル30に誘導電流が流れ、下部には超電導コイル18の磁束を打ち消す極性の磁界が、また上部にはこれと反対の磁界が発生し、超電導コイル18を持ちあげて、超電導コイル18の磁束の中心を浮上用地上コイル30の中心に一致させようとする浮上力が働く。この誘導電流、すなわち浮上力は、超電導コイル18と浮上用地上コイル30との上下の相対距離に応じて、また、前後の相対速度に応じて大きくなり、例えば、相対速度500km/hで超電導コイル18の中心が浮上用地上コイル30の中心から40mm下がった所で車両12の重量(台車荷重)と浮上力とが拮抗する。   First, when the vehicle 12 is driven by the propulsion ground coil and a relative speed is generated between the superconducting coil 18 and the levitation ground coil 30, an induced electromotive force is generated in the levitation ground coil 30 according to Lenz's law. For example, when the vehicle 12 is supported by wheels and the upper and lower centers of the magnetic flux of the superconducting coil 18 coincide with the upper and lower centers of the levitation ground coil 30, the levitation ground coil 30 short-circuited in the shape of figure 8 The electromotive force between the upper part and the lower part is offset, and no induced current flows through the levitation ground coil 30. However, for example, when the vehicle speed becomes sufficient to ascend and the wheel is pulled up, the vehicle 12 sinks, and the center of the magnetic flux of the superconducting coil 18 falls below the center of the levitation ground coil 30, the lower part of the levitation ground coil 30 is lowered. The induced electromotive force is superior to the induced electromotive force at the upper part, an induced current flows through the levitation ground coil 30, a magnetic field having a polarity that cancels the magnetic flux of the superconducting coil 18 is present at the lower part, and a magnetic field opposite thereto is present at the upper part. When the superconducting coil 18 is lifted up, a levitation force acts to make the center of the magnetic flux of the superconducting coil 18 coincide with the center of the ground coil 30 for levitation. This induced current, that is, the levitation force, increases according to the vertical distance between the superconducting coil 18 and the levitation ground coil 30 and also according to the front and rear relative speeds. For example, the superconducting coil at a relative speed of 500 km / h. When the center of 18 is lowered by 40 mm from the center of the ground coil 30 for levitation, the weight (cart load) of the vehicle 12 and the levitation force antagonize.

また、上記したように浮上用地上コイル30は、車両12の走行方向にそって離散的に並べられているので、超電導コイル18が設置されている車両12の下部側面の一点の磁界をみると、例えば上下の位置が浮上用地上コイル30の上部に対向する一点では、車両12が走行し、浮上用地上コイル30の前後の中心に対向している位置にあるときに、最も磁束が密になり、2つの浮上用地上コイル30の中間点に対向する位置にあるときに、磁束が粗になる高調波成分(高調波磁界)が生じる。   In addition, as described above, the levitation ground coil 30 is discretely arranged along the traveling direction of the vehicle 12, so when looking at the magnetic field at one point on the lower side surface of the vehicle 12 where the superconducting coil 18 is installed. For example, at one point where the upper and lower positions are opposed to the upper part of the levitation ground coil 30, the vehicle 12 travels and the magnetic flux is most dense when the vehicle 12 is at a position facing the front and rear centers of the levitation ground coil 30. Thus, a harmonic component (harmonic magnetic field) in which the magnetic flux becomes coarse is generated when it is at a position opposite to the midpoint between the two levitation ground coils 30.

そして、この浮上用地上コイル30による高調波磁界を利用して、電磁誘導によって、集電コイル部20の表集電コイル20A及び裏集電コイル20Bに誘導電圧を発生させて、電力を集電する。また、集電された電力は、PWMコンバータ22を介して、負荷に供給され、又は、蓄電池26に供給されて、蓄電池26を充電する。なお、速度350km/h程度までの低速度域では、負荷24には、集電された電力がPWMコンバータ22を介して供給されると共に、蓄電池26からも電力が供給される。   Then, by utilizing the harmonic magnetic field generated by the levitation ground coil 30, an induction voltage is generated in the front current collecting coil 20 </ b> A and the back current collecting coil 20 </ b> B of the current collecting coil unit 20 by electromagnetic induction to collect power. To do. The collected power is supplied to the load or supplied to the storage battery 26 via the PWM converter 22 to charge the storage battery 26. In the low speed range up to about 350 km / h, the collected power is supplied to the load 24 via the PWM converter 22 and also from the storage battery 26.

ここで、浮上用地上コイル30の高調波磁界は、超電導コイル18に悪影響を与えるので、良導体によって形成された超電導磁石低温容器16は、その高調波磁界を遮蔽する。そのために、後述する2種類の渦電流が超電導磁石低温容器16の表面に発生し、集電コイル部20の表集電コイル20A及び裏集電コイル20Bへの高調波磁界を低減し、集電電力を低下させる。一つの渦電流は、浮上用地上コイル30が作る高調波磁界によって発生する渦電流で、超電導コイル18への高調波磁界と共に集電コイル部20への高調波磁界も低減し、表集電コイル20A及び裏集電コイル20Bによる集電電力を低下させる。もう一つの渦電流は、表集電コイル20A及び裏集電コイル20Bに流れる電流が作る磁界によって発生する渦電流であり、この渦電流により損失が生じ、集電コイル部20の見かけ上の抵抗(等価抵抗)を増加させて、表集電コイル20A及び裏集電コイル20Bによる集電電力を低下させる。   Here, since the harmonic magnetic field of the levitation ground coil 30 adversely affects the superconducting coil 18, the superconducting magnet cryogenic vessel 16 formed of a good conductor shields the harmonic magnetic field. Therefore, two types of eddy currents, which will be described later, are generated on the surface of the superconducting magnet cryocontainer 16 to reduce the harmonic magnetic field to the front current collecting coil 20A and the back current collecting coil 20B of the current collecting coil unit 20, thereby collecting current. Reduce power. One eddy current is an eddy current generated by the harmonic magnetic field generated by the levitation ground coil 30, and reduces the harmonic magnetic field to the current collecting coil unit 20 as well as the harmonic magnetic field to the superconducting coil 18. The collected power by 20A and the back collector coil 20B is reduced. Another eddy current is an eddy current generated by the magnetic field generated by the current flowing through the front current collecting coil 20A and the back current collecting coil 20B. Loss occurs due to this eddy current, and the apparent resistance of the current collecting coil unit 20 (Equivalent resistance) is increased, and the collected power by the front collector coil 20A and the back collector coil 20B is reduced.

また、超電導磁石低温容器16の表面に設置する集電コイル部を、浮上用地上コイル30側にある表集電コイルと、車両12側にある裏集電コイルとの2層にて構成し、各層のコイルを別々の回路にて集電を行った場合には、裏集電コイルも表集電コイルの半分程度の集電電力を得る。ところが、両コイルの巻き数を同じにして単純に直列接続すると、集電電力は、別々の回路として構成した場合の和とならず、この電力の和よりも小さくなる。   Further, the current collecting coil portion installed on the surface of the superconducting magnet cryogenic vessel 16 is composed of two layers of a front current collecting coil on the levitation ground coil 30 side and a back current collecting coil on the vehicle 12 side, When the coils in each layer are collected by separate circuits, the back current collecting coil also obtains about half the current collected from the front current collecting coil. However, if the number of turns of the two coils is the same and simply connected in series, the collected power is not the sum of when the coils are configured as separate circuits, but is smaller than the sum of the power.

一方、発電機等にて利用されるインピーダンス整合と同様な考え方にて、本実施の形態のように、表集電コイル20Aと裏集電コイル20Bとに流れる電流が同じとなるように両コイルの巻き数を調整した場合、前述した別々の回路として構成した場合に集電される電力の和となる。   On the other hand, based on the same concept as impedance matching used in a generator or the like, both coils so that the currents flowing in the front collector coil 20A and the back collector coil 20B are the same as in this embodiment. When the number of turns is adjusted, it is the sum of the power collected when configured as the separate circuits described above.

次に、第1の実施の形態の原理を簡単な数値例を用いて説明する。表集電コイル及び裏集電コイルの2層にて構成される集電コイル部を別々の回路とした場合の誘導電圧、抵抗、電流、及び集電電力の例を表1に示す。なお、図2において、表集電コイル20A及び裏集電コイル20Bを合わせた厚さDbを30mm、幅Dwを130mm、高さH0を400mmとし、コイル個数を15とする。また、電流及び集電電力は、誘導電圧及び抵抗から以下のように求められる。
(電流)=(誘導電圧)/(抵抗)/2
(集電電力)=(誘導電圧)/(抵抗)/4*(コイル個数)
Next, the principle of the first embodiment will be described using simple numerical examples. Table 1 shows an example of the induced voltage, resistance, current, and collected power when the current collecting coil section composed of the two layers of the front current collecting coil and the back current collecting coil is formed as a separate circuit. In FIG. 2, the combined thickness Db of the front current collecting coil 20A and the back current collecting coil 20B is 30 mm, the width Dw is 130 mm, the height H0 is 400 mm, and the number of coils is 15. Further, the current and the collected power are obtained from the induced voltage and the resistance as follows.
(Current) = (Inductive voltage) / (Resistance) / 2
(Collector power) = (Induction voltage) 2 / (Resistance) / 4 * (Number of coils)

Figure 2007306736
Figure 2007306736

表1に示すように、表集電コイルの約40%と小さいが、裏集電コイルによって集電電力が得られており、表集電コイルの集電電力と裏集電コイルの集電電力との合計値は、87.4kWとなる。また集電電力の大きい表集電コイルの電流は、裏集電コイルの電流の約1.8倍と大きくなっている。このとき、表集電コイル及び裏集電コイルの各電流を同じにするためには、表集電コイルの巻き数を裏集電コイルの1.8倍にする必要がある。この表集電コイル及び裏集電コイルを直列接続とする場合、誘導電圧及び抵抗は両コイルの和となり、電流及び集電電力は上述した式を用いて求められる。なお、実際には、集電コイル部の電流が発生させる渦電流による損失を含める必要があるため、抵抗は損失分に相当する値だけ増加するが、ここでは簡易化した例にて原理を説明するために、その増加分を省略する。 As shown in Table 1, although it is as small as about 40% of the front collector coil, the collected power is obtained by the back collector coil. The collected power of the front collector coil and the collected current of the back collector coil are And the total value becomes 87.4 kW. The current of the front current collecting coil having a large current collecting power is about 1.8 times larger than the current of the back current collecting coil. At this time, in order to make the currents of the front and back current collecting coils the same, the number of turns of the front current collecting coil needs to be 1.8 times that of the back current collecting coil. When the front current collecting coil and the back current collecting coil are connected in series, the induced voltage and the resistance are the sum of both coils, and the current and the collected power are obtained using the above-described equations. Actually, since it is necessary to include a loss due to the eddy current generated by the current in the current collecting coil section, the resistance increases by a value corresponding to the loss, but here the principle is explained with a simplified example Therefore, the increment is omitted.

同じ巻き数の表集電コイルと裏集電コイルとを直列接続にした場合、及びほぼ同じ電流となる巻き数の表集電コイルと裏集電コイルとを直列接続にした場合の誘導電圧、抵抗、電流、及び集電電力の例を上記の表1に示す。表1に示すように、同じ電流となるように調整された巻き数の表集電コイルと裏集電コイルとを直列接続にした場合の集電電力は、同じ巻き数の表集電コイルと裏集電コイルとを直列接続にした場合の8%増となっている。この値は、表集電コイル及び裏集電コイルを別々の回路とした場合の集電電力の和に一致しており、巻き数を調整することによって、集電電力が増大し、集電能力を最大限に生かしていることがわかる。
また、上述したように、上記の表1における抵抗は、表集電コイル及び裏集電コイルの電流が発生させる超電導磁石低温容器16における渦電流による損失を考慮した増加分を含んでいないため、本実施の形態における集電コイル部20において、その損失を考慮した場合の誘導電圧、抵抗、電流、集電電力、及び皮相電力の例を、表2に示す。なお、最大電力を得るために力率制御を行う電力変換器容量は、この皮相電力に比例するため、皮相電力が大きいほど大きな電力変換器が必要となる。
When the front current collecting coil and the back current collecting coil having the same number of turns are connected in series, and when the front current collecting coil and the back current collecting coil having the same number of turns are connected in series, the induced voltage, Examples of resistance, current, and collected power are shown in Table 1 above. As shown in Table 1, the collected power when the front current collecting coil and the back current collecting coil having the number of turns adjusted to have the same current are connected in series is the same as that of the front current collecting coil having the same number of turns. The increase is 8% when the back collector coil is connected in series. This value agrees with the sum of the collected power when the front and back current collecting coils are separate circuits. By adjusting the number of turns, the collected power increases and the current collecting capacity You can see that you are making the best use of.
In addition, as described above, the resistance in Table 1 above does not include an increase in consideration of loss due to eddy current in the superconducting magnet cryogenic vessel 16 that generates currents in the front collector coil and the back collector coil. Table 2 shows examples of the induced voltage, resistance, current, collected power, and apparent power when the loss is taken into account in the collecting coil unit 20 in the present embodiment. In addition, since the power converter capacity | capacitance which performs power factor control in order to obtain maximum electric power is proportional to this apparent power, a larger power converter is needed, so that apparent power is large.

Figure 2007306736
Figure 2007306736

表2に示される誘導電圧は、表1の値と同じとなっており、表1の例と比較すると、「表集電コイル(20回)+裏集電コイル(20回)」の抵抗が、38.0mΩから54.9mΩに増加し、「表集電コイル(36回)+裏コイル(20回)」が77.1mΩから107.5mΩに増加している。これは、以下のように説明される。   The induced voltage shown in Table 2 is the same as the value in Table 1. Compared with the example in Table 1, the resistance of “front current collecting coil (20 times) + back current collecting coil (20 times)” is 38.0 mΩ to 54.9 mΩ, and “surface current collecting coil (36 times) + back coil (20 times)” is increased from 77.1 mΩ to 107.5 mΩ. This is explained as follows.

表集電コイル及び裏集電コイルの電流が発生させる超電導磁石低温容器の渦電流を、各々a、bとすると、各コイルの通電時の渦電流による損失は、各々、a、bに比例し、単純な両者の和はa+bとなる。一方、両コイルの通電時の渦電流による損失は、(a+b)に比例するため、両コイルの通電時の渦電流による損失は、表集電コイル及び裏集電コイルの電流が発生させる渦電流による損失を表す式のクロス項である2ab分大きくなる。なお、このクロス項2abは、表集電コイル及び裏集電コイルの巻き数の比によっても変化するため、表集電コイルの巻き数を多くした「表集電コイル(36回)+裏集電コイル(20回)」の抵抗増加率(表2の値/表1の値)は、巻き数が同じになっている「表集電コイル(20回)+裏集電コイル(20回)」の抵抗増加率より小さくなる。そのため、同じ電流となるように調整された巻き数の表集電コイルと裏集電コイルとを直列接続にした場合の集電電力(表2の下段参照)は、同じ巻き数の表集電コイルと裏集電コイルを直列接続にした場合(以下、従来方式、表2の上段参照)の12%増となり、巻き数を調整したことによる特性向上は、表1より更に良くなっていることがわかる。 Assuming that the eddy currents of the superconducting magnet cryogenic container generated by the currents of the front and back current collecting coils are a and b, the losses due to the eddy currents when the coils are energized are respectively a 2 and b 2 . Proportional and simple sum of both is a 2 + b 2 . On the other hand, since the loss due to the eddy current when the two coils are energized is proportional to (a + b) 2 , the loss due to the eddy current when both the coils are energized is the eddy generated by the currents of the front and back current collecting coils. It increases by 2ab, which is a cross term of the expression representing the loss due to current. Since the cross term 2ab also changes depending on the ratio of the number of turns of the front current collecting coil and the back current collecting coil, the number of turns of the front current collecting coil is increased as “front current collecting coil (36 times) + back current collecting The resistance increase rate of the “electric coil (20 times)” (value in Table 2 / value in Table 1) is the same as the number of turns “front current collecting coil (20 times) + back current collecting coil (20 times)”. The resistance increase rate becomes smaller. Therefore, the collected power (see the lower part of Table 2) when the front current collecting coil and the back current collecting coil having the number of turns adjusted to have the same current are connected in series is the same as the current collected by the same number of turns. 12% increase in the case where the coil and the back collector coil are connected in series (hereinafter referred to as the conventional method, see the upper part of Table 2), and the characteristic improvement by adjusting the number of turns is even better than in Table 1. I understand.

以上説明したように、第1の実施の形態に係る磁気浮上移動システムによれば、直列接続された表集電コイルと裏集電コイルとによって、電力を集電すると共に、表集電コイルの巻き数を裏集電コイルの巻き数より多くすることにより、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   As described above, according to the magnetic levitation moving system according to the first embodiment, the power is collected by the front collector coil and the back collector coil connected in series, and the front collector coil By making the number of turns larger than the number of turns of the back current collecting coil, the loss due to the eddy current generated by the current flowing in the front current collecting coil and the back current collecting coil is reduced, so that the current collecting power can be increased. .

また、裏集電コイルの巻き数を、同じ電流が流れるように、表集電コイルの巻き数より少なくすることにより、表集電コイルと裏集電コイルとの各々による集電能力を最大限生かすことができるため、集電電力を更に増加することができる。   Also, by reducing the number of turns of the back collector coil to less than the number of turns of the front collector coil so that the same current flows, the current collection capacity of each of the front collector coil and the back collector coil is maximized. Since the power can be saved, the collected power can be further increased.

次に、第2の実施の形態について説明する。なお、第1の実施の形態と同様の構成となっている部分については、同一符号を付して説明を省略する。   Next, a second embodiment will be described. In addition, about the part which becomes the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第2の実施の形態では、裏集電コイルの大きさが、表集電コイルより小さくなっており、裏集電コイルが超電導磁石低温容器の上部に集中して配置されている点が第1の実施の形態と異なっている。   In the second embodiment, the size of the back current collecting coil is smaller than that of the front current collecting coil, and the back current collecting coil is concentrated on the upper part of the superconducting magnet cryogenic container. This is different from the embodiment.

図4に示すように、第2の実施の形態に係る磁気浮上移動システムの集電コイル部120は、表集電コイル120A及び裏集電コイル120Bの2層のコイルで構成され、裏集電コイル120Bの高さが、表集電コイル120Aの高さより低くなっている。   As shown in FIG. 4, the current collecting coil section 120 of the magnetic levitation moving system according to the second embodiment is composed of two layers of coils, a front current collecting coil 120A and a back current collecting coil 120B. The height of the coil 120B is lower than the height of the surface current collecting coil 120A.

ここで、表集電コイル120Aと裏集電コイル120Bとの両者の集電電流が発生させる超電導磁石低温容器16の渦電流による損失は、両者の渦電流による損失の相乗効果によって、各コイル単独とした集電コイルの電流が発生させる渦電流による損失より増加する。そのため、本実施の形態では、裏集電コイル120Bの高さを低くすると共に、超電導磁石低温容器16の表面における渦電流の発生しにくい上部に集中して裏集電コイル120Bを配置している。   Here, the loss due to the eddy current of the superconducting magnet cryogenic vessel 16 generated by the currents collected by both the front current collecting coil 120A and the back current collecting coil 120B is due to the synergistic effect of the loss due to both eddy currents. More than the loss caused by the eddy current generated by the current of the current collector coil. For this reason, in the present embodiment, the height of the back current collecting coil 120B is lowered, and the back current collecting coil 120B is concentrated on the upper surface of the superconducting magnet cryogenic vessel 16 where eddy currents are difficult to occur. .

集電コイル部120を上記のように構成することにより、表集電コイル120A及び裏集電コイル120Bの電流が発生させる渦電流による損失の相乗効果が低減されて、全体として表集電コイル120A及び裏集電コイル120Bの電流が発生させる渦電流による損失が低減されるため、集電電力の低下が抑制され、結果として、表集電コイル120A及び裏集電コイル120Bによる集電電力を増大させる。   By configuring the current collecting coil section 120 as described above, the synergistic effect of the loss caused by the eddy current generated by the current of the front current collecting coil 120A and the back current collecting coil 120B is reduced, and the surface current collecting coil 120A as a whole is reduced. Further, the loss due to the eddy current generated by the current of the current collecting coil 120B and the back current collecting coil 120B is reduced, so that the reduction of the current collecting power is suppressed, and as a result, the current collecting power by the front current collecting coil 120A and the back current collecting coil 120B is increased Let

次に、第2の実施の形態における原理について説明する。本実施の形態に係る磁気浮上移動システムにおいても、第1の実施の形態と同様に、表集電コイル及び裏集電コイルが発生させる渦電流による損失を表す式のクロス項2abが、集電電力を低下させてしまう。そこで、本実施の形態のように、裏集電コイル120Bの高さを低くし、超電導磁石低温容器16の表面上部に配置すると、裏集電コイル120Bは、超電導磁石低温容器16と対向する面積が低減するため、裏集電コイル120Bの電流が発生させる渦電流による損失が低減されると共に、前述した渦電流による損失を表す式のクロス項2abに相当する部分を低減させて、表集電コイル120A及び裏集電コイル120Bに流れる電流が発生させる渦電流による損失を低減させることができる。   Next, the principle in the second embodiment will be described. Also in the magnetic levitation moving system according to the present embodiment, as in the first embodiment, the cross term 2ab of the expression representing the loss due to the eddy current generated by the front collector coil and the back collector coil is the current collector. Power will be reduced. Therefore, when the height of the back current collecting coil 120B is lowered and disposed on the upper surface of the superconducting magnet cryogenic container 16 as in the present embodiment, the back current collecting coil 120B has an area facing the superconducting magnet cryogenic container 16. Therefore, the loss due to the eddy current generated by the current of the back current collecting coil 120B is reduced, and the portion corresponding to the cross term 2ab in the equation representing the loss due to the eddy current is reduced to reduce the surface current collector. Loss due to eddy current generated by the current flowing through the coil 120A and the back collecting coil 120B can be reduced.

次に、第2の実施の形態における集電コイル部120において、表集電コイル120A及び裏集電コイル120Bを合わせた厚さDbを30mm、幅Dwを130mm、表集電コイル120Aの高さH0を400mm、裏集電コイル120Bの高さHiを135mmとした構成における誘導電圧、抵抗、集電電力、及び皮相電力の例を表3に示す。   Next, in the current collecting coil section 120 in the second embodiment, the thickness Db of the front current collecting coil 120A and the back current collecting coil 120B is 30 mm, the width Dw is 130 mm, and the height of the front current collecting coil 120A. Table 3 shows examples of induced voltage, resistance, collected power, and apparent power in a configuration in which H0 is 400 mm and the height Hi of the back collecting coil 120B is 135 mm.

Figure 2007306736
Figure 2007306736

表3に示すように、裏集電コイルの高さを低減した場合の集電電力(表3の上段参照)は、従来方式(表2の上段参照)の約36%増となっている。   As shown in Table 3, the collected power (see the upper part of Table 3) when the height of the back current collecting coil is reduced is about 36% higher than that of the conventional method (see the upper part of Table 2).

また、第1の実施の形態と同様に、表集電コイルの巻き数を、裏集電コイルと同じ電流が流れるように裏集電コイルの巻き数より多くして構成すると共に、裏集電コイルの高さを低減して構成することもできる。なお、表3では、裏集電コイルの高さを低減するため、同じ電流が得られる表集電コイルの巻き数は、上記の表2の場合とは異なり、裏集電コイルの1.2倍となっている。   Further, similarly to the first embodiment, the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil so that the same current as that of the back current collecting coil flows. It can also be configured with a reduced coil height. In Table 3, in order to reduce the height of the back current collecting coil, the number of turns of the front current collecting coil from which the same current is obtained is different from that in Table 2 above, and the number of turns of the back current collecting coil is 1.2. It has doubled.

この場合には、前述した渦電流による損失を表す式のクロス項2abに相当する部分を更に低減することができ、例えば、従来方式(上記表2の上段参照)と比較して、表集電コイルの巻き数を増加した構成(表3の下段参照)にて約38%増となっている。   In this case, the portion corresponding to the cross term 2ab in the expression representing the loss due to the eddy current described above can be further reduced. For example, compared with the conventional method (see the upper part of Table 2 above), In the configuration in which the number of turns of the coil is increased (see the lower part of Table 3), the increase is about 38%.

以上説明したように、第2の実施の形態に係る磁気浮上移動システムによれば、表集電コイルと裏集電コイルとによって、電力を集電すると共に、大きさが小さい裏集電コイルを超電導磁石低温容器表面の上部に設けることにより、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   As described above, according to the magnetic levitation moving system according to the second embodiment, the power is collected by the front current collecting coil and the back current collecting coil, and the back current collecting coil having a small size is arranged. By providing it on the upper surface of the superconducting magnet cryogenic vessel surface, the loss due to the eddy current generated by the current flowing through the front and back current collecting coils is reduced, so that the collected power can be increased.

また、更に、表集電コイルの巻き数を裏集電コイルの巻き数より多くするように構成した場合には、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を更に減少させるため、集電電力を更に増加させることができる。   Further, when the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil, the loss due to the eddy current generated by the current flowing through the front current collecting coil and the back current collecting coil is determined. Therefore, the collected power can be further increased.

次に、第3の実施の形態について説明する。なお、第1の実施の形態と同一構成となっている部分については、同一符号を付して説明を省略する。   Next, a third embodiment will be described. In addition, about the part which has the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第3の実施の形態では、集電コイル部の表集電コイルの位置と裏集電コイルの位置とが、車両12の走行方向にずれている点が第1の実施の形態と異なっている。   The third embodiment is different from the first embodiment in that the position of the front current collecting coil and the position of the back current collecting coil in the current collecting coil portion are shifted in the traveling direction of the vehicle 12. .

図5に示すように、第3の実施の形態に係る磁気浮上移動システムの集電コイル部220は、表集電コイル220A及び裏集電コイル220Bの2層のコイルが複数配列されて構成されており、表集電コイル220Aの位置と、この表集電コイル220Aと直列接続されている裏集電コイル220Bの位置とが、車両12の走行方向に半コイルピッチ分ずれるように配置されている。   As shown in FIG. 5, the current collecting coil unit 220 of the magnetic levitation moving system according to the third embodiment is configured by arranging a plurality of two-layer coils of a front current collecting coil 220 </ b> A and a back current collecting coil 220 </ b> B. The position of the front current collecting coil 220A and the position of the back current collecting coil 220B connected in series with the front current collecting coil 220A are arranged so as to be shifted by a half coil pitch in the traveling direction of the vehicle 12. Yes.

ここで、表集電コイル220Aと裏集電コイル220Bとの両者の集電電流が発生させる超電導磁石低温容器16の渦電流による損失は、両者の渦電流による損失の相乗効果によって、各コイル単独とした集電コイルの電流が発生させる渦電流による損失より増加する。そのため、本実施の形態では、表集電コイル220Aの位置と裏集電コイル220Bの位置とを走行方向にずらして配置する。   Here, the loss due to the eddy current in the superconducting magnet cryogenic vessel 16 generated by the currents collected by both the front current collecting coil 220A and the back current collecting coil 220B is due to the synergistic effect of the loss due to both eddy currents. More than the loss caused by the eddy current generated by the current of the current collector coil. Therefore, in the present embodiment, the position of the front current collecting coil 220A and the position of the back current collecting coil 220B are shifted from each other in the traveling direction.

上記のように構成することにより、表集電コイル220A及び裏集電コイル220Bの電流が発生させる渦電流による損失の相乗効果が低減されて、全体として表集電コイル220A及び裏集電コイル220Bの電流が発生させる渦電流による損失とが低減され、集電電力の低下が抑制されて、結果として、表集電コイル220A及び裏集電コイル220Bによる集電電力が増大されるようになっている。また、集電コイル部220のリアクタンスも低減できるため、集電コイル部220に接続される電力変換器の容量が増大しないようになっている。   By configuring as described above, the synergistic effect of loss due to eddy current generated by the currents of the front current collecting coil 220A and the back current collecting coil 220B is reduced, and the front current collecting coil 220A and the back current collecting coil 220B as a whole are reduced. Loss due to the eddy current generated by the current is reduced, and the reduction of the collected power is suppressed, and as a result, the collected power by the front collecting coil 220A and the back collecting coil 220B is increased. Yes. Further, since the reactance of the current collecting coil unit 220 can be reduced, the capacity of the power converter connected to the current collecting coil unit 220 is not increased.

次に、第3の実施の形態における原理について説明する。第1の実施の形態と同様に、表集電コイル及び裏集電コイルが発生させる渦電流による損失を表す式のクロス項2abが、集電電力を低減させてしまう。そこで、本実施の形態のように、裏集電コイル220Bを表集電コイル220Aと半コイルピッチ分ずらして配置すると、裏集電コイル220Bの電流より発生する渦電流の流路と表集電コイル220Aの電流により発生する渦電流の流路とが異なるものとなるため、渦電流による損失の相乗効果を低減して、前述した渦電流による損失を表す式のクロス項を低減することができる。   Next, the principle in the third embodiment will be described. Similar to the first embodiment, the cross term 2ab in the equation representing the loss due to the eddy current generated by the front and back current collecting coils reduces the collected power. Therefore, as in the present embodiment, when the back current collecting coil 220B is shifted from the front current collecting coil 220A by a half coil pitch, the flow path of the eddy current generated from the current of the back current collecting coil 220B and the front current collecting coil are arranged. Since the flow path of the eddy current generated by the current of the coil 220A is different, the synergistic effect of the loss due to the eddy current can be reduced, and the cross term of the expression representing the loss due to the eddy current can be reduced. .

次に、本実施の形態における集電コイル部220において、表集電コイル220A及び裏集電コイル220Bを合わせた厚さDbを30mm、幅Dwを130mm、表集電コイル120Aの高さH0を400mmとした構成における誘導電圧、抵抗、集電電力、及び皮相電力の例を表4に示す。   Next, in the current collecting coil section 220 in the present embodiment, the combined thickness Db of the front current collecting coil 220A and the back current collecting coil 220B is 30 mm, the width Dw is 130 mm, and the height H0 of the front current collecting coil 120A is Table 4 shows examples of induced voltage, resistance, collected power, and apparent power in the configuration of 400 mm.

Figure 2007306736
Figure 2007306736

表4に示すように、裏集電コイルを半コイルピッチ分ずらす場合の集電電力は、従来方式(上記表2の上段参照)と比較して、同じ巻き数のコイルで構成した場合(表4の上段参照)にて約41%増となっている。
また、皮相電力に関して、第2の実施の形態で説明したように裏集電コイルの高さを低減する場合(表3参照)は、従来方式(表2の上段参照)の2倍以上となっているが、裏集電コイルを半コイルピッチ分ずらした場合(表4参照)では、集電電力の増加率に比例する程度でそれほど大きくならなくて済んでいる。従って、それほど大きな電力変換器を必要としない。
As shown in Table 4, the collected power when the back current collecting coil is shifted by a half coil pitch is compared with the conventional method (see the upper part of Table 2 above) when it is composed of coils with the same number of turns (Table (See the upper part of 4).
In addition, regarding the apparent power, when the height of the back current collecting coil is reduced (see Table 3) as described in the second embodiment, it is more than twice the conventional method (see the upper part of Table 2). However, when the back collector coil is shifted by a half coil pitch (see Table 4), it does not have to be so large in proportion to the increasing rate of the collected power. Therefore, a very large power converter is not required.

また、第1の実施の形態と同様に、表集電コイルの巻き数を、裏集電コイルと同じ電流が流れるように裏集電コイルの巻き数より多くして構成すると共に、裏集電コイルを半コイルピッチ分ずらした場合には、前述した渦電流による損失を表す式のクロス項を更に低減することができ、集電電力を増加させることができる。例えば、従来方式(上記表2の上段参照)と比較して、表集電コイルの巻き数を増加した構成(表4の下段参照)にて約53%増となっている。   Further, similarly to the first embodiment, the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil so that the same current as that of the back current collecting coil flows. When the coil is shifted by a half-coil pitch, the cross term in the expression representing the loss due to the eddy current described above can be further reduced, and the collected power can be increased. For example, compared with the conventional method (see the upper part of Table 2 above), the configuration (see the lower part of Table 4) increases about 53% in the configuration in which the number of turns of the front current collecting coil is increased.

以上説明したように、第3の実施の形態に係る磁気浮上移動システムによれば、表集電コイルと裏集電コイルとによって、電力を集電すると共に、表集電コイルの位置と裏集電コイルの位置とを車両の走行方向にずらすことにより、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   As described above, according to the magnetic levitation moving system according to the third embodiment, the power is collected by the front current collecting coil and the back current collecting coil, and the position and the back current collecting position of the front current collecting coil are collected. By shifting the position of the electric coil in the traveling direction of the vehicle, the loss based on the eddy current generated by the current flowing through the front and back current collecting coils is reduced, so that the collected power can be increased.

また、更に、表集電コイルの巻き数を裏集電コイルの巻き数より多くするように構成した場合には、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を更に減少させるため、集電電力を更に増加させることができる。   Further, when the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil, the loss due to the eddy current generated by the current flowing through the front current collecting coil and the back current collecting coil is determined. Therefore, the collected power can be further increased.

次に、第4の実施の形態について説明する。なお、第1の実施の形態と同一構成となっている部分については、同一符号を付して説明を省略する。   Next, a fourth embodiment will be described. In addition, about the part which has the same structure as 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第4の実施の形態では、裏集電コイルの大きさが、表集電コイルより小さくなっており、裏集電コイルが超電導磁石低温容器の上部に集中して配置されている点と、集電コイル部の表集電コイルの位置及び裏集電コイルの位置が車両の走行方向にずれている点とが第1の実施の形態と異なっている。   In the fourth embodiment, the size of the back current collecting coil is smaller than that of the front current collecting coil, and the back current collecting coil is concentrated on the upper part of the superconducting magnet cryogenic vessel, The difference from the first embodiment is that the position of the front current collecting coil and the position of the back current collecting coil in the electric coil section are shifted in the traveling direction of the vehicle.

図6に示すように、第4の実施の形態に係る磁気浮上移動システムの集電コイル部320は、表集電コイル320A及び裏集電コイル320Bの2層のコイルが走行方向に複数配列されて構成され、表集電コイル320Aの位置と、この表集電コイル320Aと直列接続されている裏集電コイル320Bの位置とが、車両12の走行方向に半コイルピッチ分ずれている。   As shown in FIG. 6, the current collecting coil unit 320 of the magnetic levitation moving system according to the fourth embodiment has a plurality of two layers of coils, a front current collecting coil 320A and a back current collecting coil 320B, arranged in the traveling direction. The position of the front current collecting coil 320 </ b> A and the position of the back current collecting coil 320 </ b> B connected in series with the front current collecting coil 320 </ b> A are shifted by a half coil pitch in the traveling direction of the vehicle 12.

また、裏集電コイル320Bの高さが、表集電コイル320Aの高さより低くなっている。   Further, the height of the back current collecting coil 320B is lower than the height of the front current collecting coil 320A.

また、表集電コイル320Aと裏集電コイル320Bとの両者の集電電流が発生させる超電導磁石低温容器16の渦電流による損失は、両者の渦電流による損失の相乗効果によって、各コイル単独とした集電コイルの電流が発生させる渦電流による損失より増加する。そのため、本実施の形態では、表集電コイル320Aの位置と裏集電コイル320Bの位置とを走行方向にずらして配置し、また、裏集電コイル320Bの高さを低くすると共に、超電導磁石低温容器16の表面における渦電流の発生しにくい上部に集中して裏集電コイル320Bを配置する。   Moreover, the loss due to the eddy current of the superconducting magnet cryogenic vessel 16 generated by the currents collected by both the front current collecting coil 320A and the back current collecting coil 320B, More than the loss due to the eddy current generated by the current of the current collecting coil. Therefore, in the present embodiment, the position of the front current collecting coil 320A and the position of the back current collecting coil 320B are shifted in the traveling direction, the height of the back current collecting coil 320B is reduced, and the superconducting magnet The back collecting coil 320B is arranged in a concentrated manner on the surface of the cryogenic vessel 16 where eddy currents are less likely to occur.

このように構成することにより、裏集電コイル320Bを表集電コイル320Aと半コイルピッチ分ずらして配置するため、裏集電コイル320Bの電流より発生する渦電流の流路と表集電コイル320Aの電流により発生する渦電流の流路とが異なるものとなり、また、超電導磁石低温容器16の表面の上部に集中して裏集電コイル320Bを配置するため、裏集電コイル320Bが超電導磁石低温容器16と対向する面積を低減させ、裏集電コイル320Bの電流が発生させる渦電流による損失が低減される。従って、表集電コイル320A及び裏集電コイル320Bの電流が発生させる渦電流による損失の相乗効果が低減されて、全体として表集電コイル320A及び裏集電コイル320Bの電流が発生させる渦電流による損失が低減されるため、集電電力の低下が抑制され、結果として、表集電コイル320A及び裏集電コイル320Bによる集電電力を増大させる。   By configuring in this way, the back current collecting coil 320B is shifted from the front current collecting coil 320A by a half coil pitch, so that the flow path of the eddy current generated from the current of the back current collecting coil 320B and the front current collecting coil are arranged. The flow path of the eddy current generated by the current of 320A is different, and the back current collecting coil 320B is concentrated on the upper surface of the superconducting magnet cryogenic vessel 16, so that the back current collecting coil 320B is a superconducting magnet. The area facing the cryogenic vessel 16 is reduced, and loss due to eddy current generated by the current of the back collector coil 320B is reduced. Therefore, the synergistic effect of the loss due to the eddy current generated by the currents of the front current collecting coil 320A and the back current collecting coil 320B is reduced, and the eddy currents generated as a whole by the currents of the front current collecting coil 320A and the back current collecting coil 320B. As a result, the reduction of the collected power is suppressed, and as a result, the collected power by the front collecting coil 320A and the back collecting coil 320B is increased.

このように、第1の実施の形態と同様に、表集電コイル及び裏集電コイルの電流が発生させる渦電流による損失を表す式のクロス項2abの相当する部分を低減することができるため、集電電力の低下を抑制し、集電コイル部320による集電電力を増大させる。   Thus, as in the first embodiment, the portion corresponding to the cross term 2ab in the expression representing the loss due to the eddy current generated by the currents of the front collector coil and the back collector coil can be reduced. Then, the reduction of the collected power is suppressed, and the collected power by the collecting coil unit 320 is increased.

次に、第4の実施の形態に係る集電コイル部320において、表集電コイル320A及び裏集電コイル320Bを合わせた厚さDbを30mm、幅Dwを130mm、表集電コイル320Aの高さH0を400mm、裏集電コイル320Bの高さHiを135mmとした構成における誘導電圧、抵抗、集電電力、及び皮相電力の例を表5に示す。なお、裏集電コイルの高さを低減するため、第2の実施の形態と同様に、同じ電流が得られる表コイル巻数は、上記の表2とは異なり、裏集電コイルの1.2倍となっている。   Next, in the current collecting coil section 320 according to the fourth embodiment, the combined thickness Db of the front current collecting coil 320A and the back current collecting coil 320B is 30 mm, the width Dw is 130 mm, and the height of the front current collecting coil 320A. Table 5 shows examples of induced voltage, resistance, collected power, and apparent power in a configuration in which the height H0 is 400 mm and the height Hi of the back current collecting coil 320B is 135 mm. In order to reduce the height of the back current collecting coil, the number of front coil turns for obtaining the same current is different from that in Table 2 above, as in the second embodiment. It has doubled.

Figure 2007306736
Figure 2007306736

表5に示すように、裏集電コイルの高さを低くし、裏集電コイルの位置を半コイルピッチ分ずらした場合の集電電力(表5の上段参照)は、従来方式(表2の上段参照)の約36%増となっている。   As shown in Table 5, the collected power (see the upper part of Table 5) when the height of the back current collecting coil is lowered and the position of the back current collecting coil is shifted by a half coil pitch is the conventional method (Table 2). This is an increase of about 36%.

また、第1の実施の形態と同様に、表集電コイルの巻き数を、裏集電コイルと同じ電流が流れるように、裏集電コイルの巻き数より多くすると共に、表集電コイルの位置と、裏集電コイルの位置とを、半コイルピッチ分ずらし、かつ、高さを低くした裏集電コイルを超電導磁石低温容器の表面上部に配置した構成である場合には、前述した渦電流による損失を表す式のクロス項を更に低減することができ、例えば、従来方式(上記表2の上段参照)と比較して、表集電コイルの巻き数を増加した構成(表5の下段参照)にて約36%増となっている。   Further, as in the first embodiment, the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil so that the same current as that of the back current collecting coil flows. If the position of the back current collecting coil is shifted by a half coil pitch and the back current collecting coil having a reduced height is arranged on the upper surface of the superconducting magnet cryogenic vessel, the vortex mentioned above is used. The cross term of the expression representing the loss due to current can be further reduced. For example, a configuration (lower part of Table 5) in which the number of turns of the front current collecting coil is increased as compared with the conventional method (see the upper part of Table 2 above). )), The increase is about 36%.

以上説明したように、第4の実施の形態に係る磁気浮上移動システムによれば、表集電コイルと裏集電コイルとによって、電力を集電すると共に、大きさが小さい裏集電コイルを、超電導磁石低温容器の表面の上部に設け、かつ、表集電コイルの位置と裏集電コイルの位置とを車両の走行方向にずらすことにより、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を減少させるため、集電電力を増加させることができる。   As described above, according to the magnetic levitation moving system according to the fourth embodiment, power is collected by the front current collecting coil and the back current collecting coil, and the back current collecting coil having a small size is arranged. Current flowing in the front and back current collecting coils by shifting the position of the front current collecting coil and the position of the back current collecting coil in the traveling direction of the vehicle. The collected power can be increased because the loss due to the eddy current generated by is reduced.

また、更に、表集電コイルの巻き数を裏集電コイルの巻き数より多くするように構成した場合には、表集電コイル及び裏集電コイルに流れる電流が発生させる渦電流に基づく損失を更に減少させるため、集電電力を更に増加させることができる。   Further, when the number of turns of the front current collecting coil is set to be larger than the number of turns of the back current collecting coil, the loss due to the eddy current generated by the current flowing through the front current collecting coil and the back current collecting coil is determined. Therefore, the collected power can be further increased.

本発明の第1の実施の形態に係る磁気浮上移動システムの構成を示す断面図である。It is sectional drawing which shows the structure of the magnetic levitation moving system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る磁気浮上システムの集電コイル部の構成を示す断面図である。It is sectional drawing which shows the structure of the current collection coil part of the magnetic levitation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る磁気浮上移動システムの走行方向の解析モデルを示す図である。It is a figure which shows the analysis model of the running direction of the magnetic levitation moving system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る磁気浮上システムの集電コイル部の構成を示す断面図である。It is sectional drawing which shows the structure of the current collection coil part of the magnetic levitation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る磁気浮上システムの集電コイル部の構成を示す斜視図である。It is a perspective view which shows the structure of the current collection coil part of the magnetic levitation system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る磁気浮上システムの集電コイル部の構成を示す斜視図である。It is a perspective view which shows the structure of the current collection coil part of the magnetic levitation system which concerns on the 4th Embodiment of this invention. 従来例におけるコイル断面厚さと集電電力との関係を示すグラフである。It is a graph which shows the relationship between the coil cross-sectional thickness and current collection electric power in a prior art example.

符号の説明Explanation of symbols

10 磁気浮上移動システム
12 車両
14 軌道
16 超電導磁石低温容器
18 超電導コイル
20、120、220、320 集電コイル部
20A、120A、220A、320A 表集電コイル
20B、120B、220B、320B 裏集電コイル
22 PWMコンバータ
24 負荷
26 蓄電池
30 浮上用地上コイル
DESCRIPTION OF SYMBOLS 10 Magnetic levitation movement system 12 Vehicle 14 Track 16 Superconducting magnet cryogenic container 18 Superconducting coil 20, 120, 220, 320 Current collecting coil part 20A, 120A, 220A, 320A Front current collecting coil 20B, 120B, 220B, 320B Back surface current collecting coil 22 PWM converter 24 Load 26 Storage battery 30 Levitation ground coil

Claims (7)

導体で形成された低温容器と、
前記低温容器に収納された超電導コイルと、
所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面における、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、
前記第1の集電コイルに直列接続され、かつ、前記所定巻き数より多い巻き数の第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群と、
を含む磁気浮上移動装置。
A cryogenic container formed of a conductor;
A superconducting coil housed in the cryogenic vessel;
A first coil group provided with a plurality of first current collecting coils having a predetermined number of turns, provided on a portion of the surface of the cryogenic vessel facing a ground coil installed on a side wall of a track on which the device moves;
A second current collector coil connected in series to the first current collecting coil and having a plurality of second current collecting coils having a number of turns larger than the predetermined number of turns, provided on the ground coil side of the first coil group. Coil groups of
Magnetic levitating and moving device.
前記第2の集電コイルの巻き数は、前記地上コイルによって発生する磁界の電磁誘導によって、前記第1の集電コイルにおいて発生する電流と、前記第2の集電コイルにおいて発生する電流とが等しくなるように、前記所定巻き数より多くなっている請求項1記載の磁気浮上移動装置。   The number of windings of the second current collecting coil includes a current generated in the first current collecting coil and a current generated in the second current collecting coil due to electromagnetic induction of a magnetic field generated by the ground coil. The magnetic levitation moving apparatus according to claim 1, wherein the number of turns is greater than the predetermined number of turns so as to be equal. 前記第1の集電コイルの位置と、該第1の集電コイルに直列接続された第2の集電コイルの位置とが、自装置の移動方向に所定量ずれている請求項1又は2記載の磁気浮上移動装置。   The position of the said 1st current collection coil and the position of the 2nd current collection coil connected in series with this 1st current collection coil have shifted | deviated predetermined amount in the moving direction of the own apparatus. The magnetic levitation moving apparatus as described. 前記第1の集電コイルは、前記低温容器の表面の上部に設けられ、
前記第2の集電コイルは、大きさが前記第1の集電コイルより大きい請求項1〜請求項3の何れか1項記載の磁気浮上移動装置。
The first current collecting coil is provided on an upper surface of the cryogenic container,
The magnetic levitation moving apparatus according to any one of claims 1 to 3, wherein the second current collecting coil is larger in size than the first current collecting coil.
導体で形成された低温容器と、
前記低温容器に収納された超電導コイルと、
所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面における、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、
前記第1の集電コイルに直列接続され、かつ、該第1の集電コイルの位置に対して、自装置の移動方向に所定量ずれた位置に設けられた第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群と、
を含む磁気浮上移動装置。
A cryogenic container formed of a conductor;
A superconducting coil housed in the cryogenic vessel;
A first coil group provided with a plurality of first current collecting coils having a predetermined number of turns, provided on a portion of the surface of the cryogenic vessel facing a ground coil installed on a side wall of a track on which the device moves;
A plurality of second current collecting coils connected in series to the first current collecting coil and provided at a position shifted by a predetermined amount in the moving direction of the device relative to the position of the first current collecting coil. A second coil group provided on the ground coil side of the first coil group;
Magnetic levitating and moving device.
前記第1の集電コイルは、前記低温容器の表面の上部に設けられ、
前記第2の集電コイルは、大きさが前記第1の集電コイルより大きい請求項5記載の磁気浮上移動装置。
The first current collecting coil is provided on an upper surface of the cryogenic container,
The magnetic levitation moving apparatus according to claim 5, wherein the second current collecting coil is larger in size than the first current collecting coil.
導体で形成された低温容器と、
前記低温容器に収納された超電導コイルと、
所定巻き数の第1の集電コイルを複数備え、前記低温容器の表面の上部であって、かつ、自装置が移動する軌道の側壁に設置された地上コイルに対向する部位に設けられた第1のコイル群と、
前記第1の集電コイルに直列接続され、かつ、該第1の集電コイルより大きさが大きい第2の集電コイルを複数備え、前記第1のコイル群の前記地上コイル側に設けられた第2のコイル群と、
を含む磁気浮上移動装置。
A cryogenic container formed of a conductor;
A superconducting coil housed in the cryogenic vessel;
A plurality of first current collecting coils having a predetermined number of turns are provided on the surface of the cryogenic vessel and provided on a portion facing the ground coil installed on the side wall of the track on which the device moves. One coil group;
A plurality of second current collecting coils connected in series to the first current collecting coil and larger in size than the first current collecting coil, and provided on the ground coil side of the first coil group. A second coil group,
Magnetic levitating and moving device.
JP2006134006A 2006-05-12 2006-05-12 Magnetic levitation moving device Expired - Fee Related JP4315965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134006A JP4315965B2 (en) 2006-05-12 2006-05-12 Magnetic levitation moving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134006A JP4315965B2 (en) 2006-05-12 2006-05-12 Magnetic levitation moving device

Publications (2)

Publication Number Publication Date
JP2007306736A true JP2007306736A (en) 2007-11-22
JP4315965B2 JP4315965B2 (en) 2009-08-19

Family

ID=38840200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134006A Expired - Fee Related JP4315965B2 (en) 2006-05-12 2006-05-12 Magnetic levitation moving device

Country Status (1)

Country Link
JP (1) JP4315965B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740250A (en) * 2016-12-01 2017-05-31 西南交通大学 Magnetic suspension mechanism and magnetic suspension train
CN115833522A (en) * 2023-02-15 2023-03-21 西南交通大学 8-shaped coil with asymmetric turns, and guide rail structure and system formed by coil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2456149B (en) 2008-01-03 2012-05-30 Toshiba Res Europ Ltd A photon detection system and a method of photon detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740250A (en) * 2016-12-01 2017-05-31 西南交通大学 Magnetic suspension mechanism and magnetic suspension train
CN106740250B (en) * 2016-12-01 2023-03-21 西南交通大学 Magnetic suspension mechanism and magnetic suspension train
CN115833522A (en) * 2023-02-15 2023-03-21 西南交通大学 8-shaped coil with asymmetric turns, and guide rail structure and system formed by coil

Also Published As

Publication number Publication date
JP4315965B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
US6629503B2 (en) Inductrack configuration
Lee et al. A new design methodology for a 300-kW, low flux density, large air gap, online wireless power transfer system
Jayawant Review lecture-electromagnetic suspension and levitation techniques
US20130229061A1 (en) Inductive power transfer system primary track topologies
US20030112105A1 (en) Laminated track design for inductrack maglev systems
CN110808678A (en) Superconducting linear motor applied to maglev train
Shimode et al. A study of structure of inductive power transfer coil for railway vehicles
JP4315965B2 (en) Magnetic levitation moving device
Song et al. A review of dynamic wireless power transfer for in-motion electric vehicles
JPH04208058A (en) Device for propelling magnetically levitated vehicle
JPH11122718A (en) Propelling, floating and guiding ground coil for magnetic levitated railway system, connection thereof and supporting and guiding structure of magnetic levitated railway system
Zhang et al. Concept design of active shielding for dynamic wireless charging of light-duty ev
JP2009124777A (en) Onboard power supply system for maglev railway using harmonic magnetic field of thrust coil
JPS5863001A (en) Induction coil for non-contact current collector of floating-type railway
De Oliveira et al. Finite element analysis of the forces developed on linear induction motors
Jiang et al. Novel power receiver for dynamic wireless power transfer system
CN111106732B (en) Linear motor and primary winding thereof
Ohashi Effect of the active damper coils of the superconducting magnetically levitated bogie in case of acceleration
JP3954047B2 (en) Superconducting magnetic levitation system
KR20150142905A (en) Wireless power transmission system using Shaped Magnetic Field in Resonance
JP3435085B2 (en) Magnetic damping generator using current collecting coil
Shimode et al. Design of ferrite cores of inductive power collection coils for moving vehicles
JP4008161B2 (en) Inductive current collector for magnetic levitation train
JP3592573B2 (en) Induction current collector
CN214203353U (en) Zero-magnetic-flux electric suspension coil unit and superconducting magnetic suspension system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees