JP2007305703A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2007305703A
JP2007305703A JP2006131104A JP2006131104A JP2007305703A JP 2007305703 A JP2007305703 A JP 2007305703A JP 2006131104 A JP2006131104 A JP 2006131104A JP 2006131104 A JP2006131104 A JP 2006131104A JP 2007305703 A JP2007305703 A JP 2007305703A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting device
peak wavelength
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006131104A
Other languages
Japanese (ja)
Inventor
Masatoshi Abe
雅俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2006131104A priority Critical patent/JP2007305703A/en
Publication of JP2007305703A publication Critical patent/JP2007305703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device with reduced size and weight, using semiconductor light emitting elements to be efficiently hardened without being affected by the film thickness of an object to be irradiated, and to provide, especially, the light emitting device capable of transmitting light from a part close to the surface of the object to be irradiated to the depth part and also efficiently performing exposure. <P>SOLUTION: The light emitting device includes not less than two kinds of different semiconductor light emitting elements having the wavelength region of not more than 400 nm. At least one peak wavelength is not more than 380 nm. Not less than two semiconductor light emitting elements are different in peak wavelength. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、紫外線領域の発光が可能な半導体発光素子を用いた発光装置に関する。   The present invention relates to a light emitting device using a semiconductor light emitting element capable of emitting light in the ultraviolet region.

紫外線硬化樹脂の露光装置や食品の殺菌装置及び洗浄装置などの紫外線を用いた照明装置は、光源として高圧水銀ランプ、メタルハライドランプ、キセノンランプなどが用いられている。このようなランプを用いた照明装置の場合、出力を高くしようとすると発生する熱が多くなる。そのため、被照射物に近接して配することができず、ある程度の距離をとる必要があるため作業スペースの確保が必要となる。さらに、照明装置自体を冷却するためにダクトを設けるなどの対策も必要であり、コスト的にも問題があった。   High-pressure mercury lamps, metal halide lamps, xenon lamps, and the like are used as light sources in illumination devices that use ultraviolet light such as ultraviolet curable resin exposure devices, food sterilization devices, and cleaning devices. In the case of an illumination device using such a lamp, more heat is generated when the output is increased. For this reason, it is impossible to arrange the object close to the object to be irradiated, and it is necessary to secure a work space because it is necessary to take a certain distance. Furthermore, it is necessary to take measures such as providing a duct for cooling the lighting device itself, which causes a problem in terms of cost.

近年、紫外線が発光可能な半導体発光素子が実用化されてきており、上記のような露光装置や殺菌装置などにも用いられている(例えば、特許文献1)。このような紫外線発光素子は、上記ランプに比して小型であり、また、発熱がほとんどないため被照射物の近傍から照射することが可能となる。これにより作業スペースも小さくすることができる。   In recent years, semiconductor light-emitting elements capable of emitting ultraviolet rays have been put into practical use, and are also used in the exposure apparatus and sterilization apparatus as described above (for example, Patent Document 1). Such an ultraviolet light emitting element is smaller than the above lamp and generates little heat, so that it can be irradiated from the vicinity of the irradiated object. As a result, the work space can be reduced.

特開2005−203481号公報JP 2005-203481 A

半導体発光素子を用いた場合のメリットとして、その波長の半値幅が非常に狭いことが挙げられる。例えば、発光ダイオード(以下、LED)では10nm程度と非常に狭くなっている。ランプのようにプロードな波長の場合、目的の波長以外の波長(特に熱線)の光も出射されているため、その分のエネルギーが損失されて非効率的であり、また、熱線により被照射物が変形したり、硬化樹脂から放出されるガスが増加する懸念がある。半導体発光素子の場合、より効率よく所望の波長の光を出射することができる。   An advantage of using a semiconductor light emitting element is that the half width of the wavelength is very narrow. For example, a light-emitting diode (hereinafter referred to as LED) is very narrow, about 10 nm. In the case of a broad wavelength such as a lamp, light of a wavelength other than the target wavelength (especially heat rays) is also emitted, so that energy is lost and inefficient, and the object to be irradiated by heat rays May be deformed or the gas released from the cured resin may increase. In the case of a semiconductor light emitting device, light with a desired wavelength can be emitted more efficiently.

しかしながら、半導体発光素子を用いた紫外線照射装置の場合、被照射物が厚くなるにつれて、その深部が硬化しにくくなることがある。これは、深部にまで紫外線が入り込めなくなることが理由として挙げられる。そうなると、被照射物の膜厚をある程度薄くしなければならなくなるなど、用途が限定されてしまうことになる。例えば、膜厚が厚いものを硬化させる場合には、ランプを用いるなど、膜厚によってランプを使い分けるなどの手間が必要となってくる。   However, in the case of an ultraviolet irradiation device using a semiconductor light emitting element, the deep portion of the irradiation object may become difficult to cure as the thickness of the irradiated object increases. This is because ultraviolet rays cannot penetrate deeply. In that case, the application is limited, for example, the film thickness of the irradiated object must be reduced to some extent. For example, in the case of curing a thick film, it is necessary to use different lamps depending on the film thickness, such as using a lamp.

本発明は、上記問題を解決するためになされたものであり、小型化、軽量であり、かつ、被照射物の膜厚に左右されずに効率よく硬化が可能な発光装置を提供することを目的とする。   The present invention has been made to solve the above problem, and provides a light-emitting device that is small and lightweight, and that can be cured efficiently without being influenced by the film thickness of an irradiated object. Objective.

以上の目的を達成するために、本願に係る発光装置は、400nm以下の波長領域をもつ異なる2種類以上の半導体発光素子を有し少なくとも一つのピーク波長が380nm以下であることを特徴とする。   In order to achieve the above object, a light emitting device according to the present application has two or more different types of semiconductor light emitting elements having a wavelength region of 400 nm or less, and has at least one peak wavelength of 380 nm or less.

これにより、被照射物の表面近傍から深部まで光を透過させることができ、効率よく露光させることができる。   Thereby, light can be permeate | transmitted from the surface vicinity of an irradiated object to the deep part, and it can expose efficiently.

また、本願の請求項2に記載の発光装置は、半導体発光素子が、異なるピーク波長を有する2以上の半導体発光素子であることを特徴とする。
また、本願の請求項3に記載の発光装置は、半導体発光素子が、同一の半導体発光素子中に、異なるピーク波長の光を発光可能な活性層を2以上有することを特徴とする。
また、本願の請求項4に記載の発光装置は、半導体発光素子のピーク波長は、その差が30nm以上であることを特徴とする。
The light emitting device according to claim 2 of the present application is characterized in that the semiconductor light emitting elements are two or more semiconductor light emitting elements having different peak wavelengths.
The light emitting device according to claim 3 of the present application is characterized in that the semiconductor light emitting element has two or more active layers capable of emitting light of different peak wavelengths in the same semiconductor light emitting element.
The light emitting device according to claim 4 of the present application is characterized in that the difference between the peak wavelengths of the semiconductor light emitting elements is 30 nm or more.

本発明に係る発光装置により、光硬化型樹脂、接着剤、塗料などの硬化において、被照射物の膜厚に制限されることなく効率よく硬化が可能な発光装置とすることができる。   With the light emitting device according to the present invention, a light emitting device that can be efficiently cured without being limited by the film thickness of an object to be irradiated in curing of a photocurable resin, an adhesive, a paint, or the like can be obtained.

本発明を実施するための最良の形態を、以下に詳説する。ただし、以下に示す形態は、本発明の技術思想を具体化するための発光装置を例示するものであって、本発明は発光装置を以下に限定するものではない。   The best mode for carrying out the present invention will be described in detail below. However, the form shown below illustrates the light emitting device for embodying the technical idea of the present invention, and the present invention does not limit the light emitting device to the following.

また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。以下、図面を参照しながら本形態にかかる発光装置について説明する。   Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Further, in the following description, the same name and reference sign indicate the same or the same members, and detailed description will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Hereinafter, the light emitting device according to the present embodiment will be described with reference to the drawings.

図1Aは、本実施の形態における発光装置100を示す。図1Bは図1Aを発光部側からみた平面図であり、図1Cは図1BのX−X‘断面における断面図を示す。セラミックからなるパッケージ101の内部には、半導体発光素子107a、107bを載置可能な凹部が形成されており、半導体発光素子107a、107bは、凹部底面に接合部材を用いてそれぞれ固定されている。半導体発光素子の電極とパッケージ101に設けられた導電性部材104とは、導電性ワイヤ106を用いて電気的に接続されている。パッケージ101の導電性部材104は、凹部内に露出されるとともにスルーホール105を通じてパッケージ裏面まで連続して形成されており、回路基板上と電気的に接続させるよう、はんだ等を用いて固定される。また、パッケージ101の凹部の上部は、透光性部材103を有するキャップ102によってキャップされている。
以下、本願の各構成について説明する。
FIG. 1A shows a light emitting device 100 according to the present embodiment. 1B is a plan view of FIG. 1A viewed from the light emitting unit side, and FIG. 1C is a cross-sectional view taken along the line XX ′ of FIG. The ceramic package 101 has recesses in which the semiconductor light emitting elements 107a and 107b can be placed, and the semiconductor light emitting elements 107a and 107b are respectively fixed to the bottom surfaces of the recesses using bonding members. The electrode of the semiconductor light emitting element and the conductive member 104 provided in the package 101 are electrically connected using a conductive wire 106. The conductive member 104 of the package 101 is exposed in the recess and continuously formed through the through hole 105 to the back of the package, and is fixed using solder or the like so as to be electrically connected to the circuit board. . Further, the upper part of the concave portion of the package 101 is capped by a cap 102 having a translucent member 103.
Hereinafter, each structure of this application is demonstrated.

(半導体発光素子)
本願における半導体発光素子は、発光ダイオード(LED)、又はレーザダイオード(LD)として用いることが可能な半導体発光素子であり、本願において、半導体発光素子として400nm以下の波長領域を含み、少なくとも2以上の異なるピーク波長を有し、少なくとも1つのピーク波長が380nm以下であることを特徴とする。
(Semiconductor light emitting device)
The semiconductor light-emitting element in the present application is a semiconductor light-emitting element that can be used as a light-emitting diode (LED) or a laser diode (LD). In the present application, the semiconductor light-emitting element includes a wavelength region of 400 nm or less, and at least two or more It has different peak wavelengths, and at least one peak wavelength is 380 nm or less.

半導体発光素子は、異なるピーク波長を有する半導体発光素子を複数用いるのが好ましい。その場合、発光ダイオードやレーザダイオードのいずれかのみを複数用いてもよく、あるいは、両方を用いることができる。目的や用途に応じて種々選択することができるが、被対象物の面積が広い場合は発光ダイオードが好ましく、微細な領域に照射する場合はレーザダイオードが好ましい。例えば、400nmのピーク波長を有する発光ダイオードと、365nmのピーク波長を有する発光ダイオードの組み合わせや、400nmのピーク波長を有するレーザダイオードと、365nmのピーク波長を有する発光ダイオードの組み合わせなどを選択することができる。   As the semiconductor light emitting device, it is preferable to use a plurality of semiconductor light emitting devices having different peak wavelengths. In that case, only one of a light emitting diode and a laser diode may be used, or both may be used. Although various selections can be made according to the purpose and application, a light emitting diode is preferable when the area of the object is large, and a laser diode is preferable when irradiating a minute region. For example, a combination of a light emitting diode having a peak wavelength of 400 nm and a light emitting diode having a peak wavelength of 365 nm, a combination of a laser diode having a peak wavelength of 400 nm, and a light emitting diode having a peak wavelength of 365 nm may be selected. it can.

また、ピーク波長の異なる半導体発光素子は、それぞれ同一個数を用いてもよく、又は目的や被照射物に種類に応じて異なる数を用いることができる。異なる個数を用いる場合は、より長波長側のピーク波長を有する半導体発光素子を多く用いるなどの組み合わせで用いることが好ましい。   Further, the same number of semiconductor light emitting devices having different peak wavelengths may be used, or different numbers may be used depending on the purpose and the type of irradiated object. When different numbers are used, it is preferable to use a combination such as a large number of semiconductor light emitting elements having a longer peak wavelength.

また、複数の半導体発光素子を用いるのではなく、同一の半導体発光素子の積層構造中に、異なるピーク波長の光が発光可能な素子構造を設けることもできる。例えば、発光ダイオードの積層構造ではn型層とp型層の間に活性層を有するが、その活性層として、組成の異なる活性層を2段階で設けることにより得ることができる。その場合、パッケージ等に載置させる側に、より長波長のピーク波長を発光可能な活性層を配置させるのが好ましい。例えば、まずピーク波長が400nmの活性層を積層させ、その上にピーク波長が365nmの活性層を積層させることで、1つの半導体発光素子で、異なる2つのピーク波長を有する半導体発光素子とすることができる。これにより、他方の活性層での吸収を低減させることができる。また、同一基板上に、選択成長などによって異なる積層構造体を形成させてもよい。   In addition, instead of using a plurality of semiconductor light emitting elements, an element structure capable of emitting light having different peak wavelengths can be provided in the stacked structure of the same semiconductor light emitting elements. For example, the stacked structure of the light emitting diode has an active layer between an n-type layer and a p-type layer, and can be obtained by providing active layers having different compositions as the active layer in two stages. In that case, it is preferable to arrange an active layer capable of emitting a longer peak wavelength on the side to be placed on a package or the like. For example, an active layer having a peak wavelength of 400 nm is first laminated, and an active layer having a peak wavelength of 365 nm is laminated thereon, thereby forming a semiconductor light emitting element having two different peak wavelengths with one semiconductor light emitting element. Can do. Thereby, absorption in the other active layer can be reduced. Further, different stacked structures may be formed on the same substrate by selective growth or the like.

さらに、少なくとも2つ以上の400nm以下のピーク波長を有する半導体発光素子に加え、400nm以上にピーク波長を有する半導体発光素子を併用してもよい。これは、複数の半導体発光素子を用いる場合にも、ひとつの半導体発光素子に複数の活性層を有する場合にも適用可能である。例えば、ピーク波長がそれぞれ400nm、365nmである半導体発光素子に加え、420nmにピーク波長を有する半導体発光素子を加えてもよい。これにより、より深部の硬化が促進することができる。また、赤外線や遠赤外線領域にピーク波長を有する半導体発光素子も用いることができる。これにより、加熱作用を付すことができるので、硬化時に加熱を要する場合などに適している。   Furthermore, in addition to at least two semiconductor light emitting elements having a peak wavelength of 400 nm or less, a semiconductor light emitting element having a peak wavelength of 400 nm or more may be used in combination. This is applicable both when a plurality of semiconductor light emitting elements are used and when a plurality of active layers are provided in one semiconductor light emitting element. For example, in addition to a semiconductor light emitting element having a peak wavelength of 400 nm and 365 nm, a semiconductor light emitting element having a peak wavelength at 420 nm may be added. Thereby, hardening of a deeper part can be accelerated | stimulated. A semiconductor light emitting element having a peak wavelength in the infrared or far infrared region can also be used. Thereby, since a heating effect | action can be attached | subjected, it is suitable for the case where a heating is required at the time of hardening.

(パッケージ101)
本願において発光装置100のパッケージ101は、セラミックス、金属など紫外線に対する耐性に優れた部材から構成されるのが好ましく、具体的にはAlN、Al等があげられる。パッケージは、内部に凹部が形成されており、底部に半導体発光素子107a、107bが載置されている。
(Package 101)
In the present application, the package 101 of the light emitting device 100 is preferably composed of a member having excellent resistance to ultraviolet rays, such as ceramics and metal, and specifically includes AlN, Al 2 O 3 and the like. The package has a recess formed therein, and the semiconductor light emitting elements 107a and 107b are placed on the bottom.

セラミックからなる場合、スルーホール105を設けて凹部内部とパッケージ外部とが電気的に連続するようにする。スルーホール105は、図1ではパッケージ101の側面に形成されているが、これに限られるものではなく、側面から露出しないようにすることもできる。   In the case of ceramic, a through hole 105 is provided so that the inside of the recess and the outside of the package are electrically continuous. Although the through hole 105 is formed on the side surface of the package 101 in FIG. 1, the through hole 105 is not limited to this and may be prevented from being exposed from the side surface.

パッケージ101の凹部は、半導体発光素子が載置可能な領域を確保できればよい。また、ツェナーダイオードなどの保護素子を設ける場合は、それらの載置領域も確保できるようにする。   The recess of the package 101 only needs to secure an area where the semiconductor light emitting element can be placed. Moreover, when providing protective elements, such as a Zener diode, those mounting areas are also ensured.

(導電性部材104)
導電性部材104は、パッケージ101に設けられるものであり、図1Cに示すように、凹部内部において導電性ワイヤを接合させる領域が露出されており、からパッケージの外側にまで連続するように設けられている。パッケージがセラミックからなる場合、セラミックシートを積層させる際に、導電性部材を所望の位置に形成しておくことで、内部に埋め込まれるようにすることができる。導電性部材の具体的な材料としては、セラミックパッケージと密着性がよく、熱膨張率差が小さく、耐熱性に優れた材料が好ましく、具体的にはタングステン、銅などが上げられる。なお、凹部内部においては、半導体発光素子からの光を反射しやすいよう、銀、アルミニウム等を最表面に設けるのが好ましい。
(Conductive member 104)
The conductive member 104 is provided in the package 101, and as shown in FIG. 1C, a region where the conductive wire is joined is exposed inside the recess, and is provided so as to continue from the package to the outside of the package. ing. When the package is made of ceramic, when the ceramic sheets are laminated, the conductive member can be formed at a desired position to be embedded inside. As a specific material of the conductive member, a material having good adhesion to the ceramic package, a small difference in thermal expansion coefficient, and excellent heat resistance is preferable, and specifically, tungsten, copper and the like can be raised. In addition, it is preferable to provide silver, aluminum, etc. in the outermost surface so that the light from a semiconductor light emitting element may be easily reflected in the inside of a recessed part.

(キャップ102)
パッケージ101の上に、キャップ102が接合されている。キャップ102は、透光性部材103を配置するために設けるものであり、パッケージ101の上面で、凹部の開口部の縁部周辺と接合するように設けられる。断面から見ると、図1Cのように、キャップ102の内部に、透光性のガラス103が嵌め込まれるように形成されている。キャップの材料としては、パッケージ101と接合が可能で、ガラス103とも接合可能な材料が好ましく、金属からなるものが好ましく、具体的にはコパールなどが好ましい。
(Cap 102)
A cap 102 is bonded on the package 101. The cap 102 is provided to dispose the translucent member 103, and is provided on the upper surface of the package 101 so as to be joined to the periphery of the edge of the opening of the recess. When viewed from a cross-section, as shown in FIG. 1C, a translucent glass 103 is formed inside the cap 102. As a material of the cap, a material that can be bonded to the package 101 and can also be bonded to the glass 103 is preferable. A material made of metal is preferable, and specifically, copal is preferable.

(透光性部材103)
発光装置からの光が出射される方向には、透光性ガラスを用いる。光源として紫外領域の半導体発光素子を用いるため、樹脂では劣化しやすいため、耐候性に優れたガラスを用いるのが好ましい。特に、光源からの光に対して透光性を示す材料が好ましい。具体的には石英、CaFなどを用いることができる。
(Translucent member 103)
Translucent glass is used in the direction in which light from the light emitting device is emitted. Since a semiconductor light emitting element in the ultraviolet region is used as a light source, it is preferable to use glass having excellent weather resistance since it is easily deteriorated with resin. In particular, a material that transmits light from the light source is preferable. Specifically, quartz, CaF, or the like can be used.

実施例1では、365nmをピーク波長とするLEDチップと、400nmをピーク波長とするLEDチップとを用いる発光装置について説明する。
LEDチップを、各2個ずつ用意し、図1に示すようなパッケージに載置する。ピーク波長が365nmのLEDチップ107aと、ピーク波長が400nmのLEDチップ107bを、図1Bに示す位置に配する。
LEDチップ107aと107bは、同時に点灯させてもよく、別々に点灯させてもよい。
In Example 1, a light emitting device using an LED chip having a peak wavelength of 365 nm and an LED chip having a peak wavelength of 400 nm will be described.
Two LED chips are prepared and placed on a package as shown in FIG. An LED chip 107a having a peak wavelength of 365 nm and an LED chip 107b having a peak wavelength of 400 nm are arranged at the positions shown in FIG. 1B.
The LED chips 107a and 107b may be lit simultaneously or separately.

実施例2では、370nmをピーク波長とするレーザチップを1つと、400nmをピーク波長とするLEDチップを2つとを用いる以外は、実施例1と同様にして発光装置を得る。   In Example 2, a light emitting device is obtained in the same manner as in Example 1 except that one laser chip having a peak wavelength of 370 nm and two LED chips having a peak wavelength of 400 nm are used.

本発明にかかる発光装置は、光硬化樹脂、接着剤、塗料等の硬化のための露光装置として利用することができる。   The light emitting device according to the present invention can be used as an exposure device for curing a photocurable resin, an adhesive, a paint, and the like.

図1Aは、本発明に係る半導体装置の例を示す斜視図である。FIG. 1A is a perspective view showing an example of a semiconductor device according to the present invention. 図1Bは、図1Aの正面図である。FIG. 1B is a front view of FIG. 1A. 図1Cは、図1BのX−X‘断面における断面図である。1C is a cross-sectional view taken along the line X-X ′ of FIG. 1B.

符号の説明Explanation of symbols

100・・・発光装置
101・・・パッケージ
102・・・キャップ
103・・・透光性部材
104・・・導電性部材
105・・・スルーホール
106・・・導電性ワイヤ
107a、107b・・・半導体発光素子
DESCRIPTION OF SYMBOLS 100 ... Light-emitting device 101 ... Package 102 ... Cap 103 ... Translucent member 104 ... Conductive member 105 ... Through hole 106 ... Conductive wire 107a, 107b ... Semiconductor light emitting device

Claims (4)

400nm以下の波長領域をもつ異なる2種類以上の半導体発光素子を有し、少なくとも一つのピーク波長が380nm以下であることを特徴とする。
It has two or more different types of semiconductor light emitting elements having a wavelength region of 400 nm or less, and at least one peak wavelength is 380 nm or less.
前記半導体発光素子は、異なるピーク波長を有する2以上の半導体発光素子である請求項1記載の発光装置。
The light emitting device according to claim 1, wherein the semiconductor light emitting elements are two or more semiconductor light emitting elements having different peak wavelengths.
前記半導体発光素子は、同一の半導体発光素子中に、異なるピーク波長の光を発光可能な活性層を2以上有する請求項1記載の発光装置。
The light emitting device according to claim 1, wherein the semiconductor light emitting element has two or more active layers capable of emitting light having different peak wavelengths in the same semiconductor light emitting element.
前記ピーク波長は、その差が30nm以上である請求項1乃至請求項3のいずれか1項に記載の発光装置。



The light emitting device according to any one of claims 1 to 3, wherein a difference between the peak wavelengths is 30 nm or more.



JP2006131104A 2006-05-10 2006-05-10 Light emitting device Pending JP2007305703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131104A JP2007305703A (en) 2006-05-10 2006-05-10 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131104A JP2007305703A (en) 2006-05-10 2006-05-10 Light emitting device

Publications (1)

Publication Number Publication Date
JP2007305703A true JP2007305703A (en) 2007-11-22

Family

ID=38839400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131104A Pending JP2007305703A (en) 2006-05-10 2006-05-10 Light emitting device

Country Status (1)

Country Link
JP (1) JP2007305703A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056192A (en) * 2008-08-27 2010-03-11 Kyocera Corp Surface-emitting irradiation device, surface-emitting irradiation equipment, and droplet discharge equipment
JP2010093094A (en) * 2008-10-09 2010-04-22 U-Vix Corp Ultraviolet irradiation device for photocuring
DE102009049612A1 (en) 2008-10-17 2010-04-22 Nichia Corp., Anan Light-emitting nitride semiconductor element
WO2011013581A1 (en) * 2009-07-30 2011-02-03 日亜化学工業株式会社 Light emitting device and method for manufacturing same
JP2012023110A (en) * 2010-07-12 2012-02-02 Vienex Corp Ultraviolet light source and optical reader using the same
US8592855B2 (en) 2008-05-23 2013-11-26 Lg Innotek Co., Ltd. Light emitting device package including a substrate having at least two recessed surfaces
JP2014036226A (en) * 2012-08-09 2014-02-24 Lg Innotek Co Ltd Light-emitting package
JP2014132671A (en) * 2014-02-07 2014-07-17 Vienex Corp Optical reading device
JP2015018873A (en) * 2013-07-09 2015-01-29 日機装株式会社 Semiconductor module
CN105321938A (en) * 2014-07-11 2016-02-10 弘凯光电(深圳)有限公司 LED light-emitting device
WO2016129495A1 (en) * 2015-02-13 2016-08-18 シャープ株式会社 Light source device and light-emitting device
EP2515355B1 (en) * 2011-04-20 2019-03-13 LG Innotek Co., Ltd. Light emitting device package including an UV light emitting diode
JP2019184644A (en) * 2018-04-02 2019-10-24 日本特殊陶業株式会社 Light wavelength conversion member and light-emitting device
JP2020014017A (en) * 2016-04-28 2020-01-23 日亜化学工業株式会社 Manufacturing method of light-emitting device
USRE49645E1 (en) 2016-04-28 2023-09-05 Nichia Corporation Manufacturing method of light-emitting device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592855B2 (en) 2008-05-23 2013-11-26 Lg Innotek Co., Ltd. Light emitting device package including a substrate having at least two recessed surfaces
US9190450B2 (en) 2008-05-23 2015-11-17 Lg Innotek Co., Ltd. Light emitting device package including a substrate having at least two recessed surfaces
US8878229B2 (en) 2008-05-23 2014-11-04 Lg Innotek Co., Ltd. Light emitting device package including a substrate having at least two recessed surfaces
US9455375B2 (en) 2008-05-23 2016-09-27 Lg Innotek Co., Ltd. Light emitting device package including a substrate having at least two recessed surfaces
JP2010056192A (en) * 2008-08-27 2010-03-11 Kyocera Corp Surface-emitting irradiation device, surface-emitting irradiation equipment, and droplet discharge equipment
JP2010093094A (en) * 2008-10-09 2010-04-22 U-Vix Corp Ultraviolet irradiation device for photocuring
DE102009049612A1 (en) 2008-10-17 2010-04-22 Nichia Corp., Anan Light-emitting nitride semiconductor element
WO2011013581A1 (en) * 2009-07-30 2011-02-03 日亜化学工業株式会社 Light emitting device and method for manufacturing same
US8546841B2 (en) 2009-07-30 2013-10-01 Nichia Corporation Light emitting device
EP2461378A1 (en) * 2009-07-30 2012-06-06 Nichia Corporation Light emitting device and method for manufacturing same
EP2461378A4 (en) * 2009-07-30 2014-03-19 Nichia Corp Light emitting device and method for manufacturing same
US8703511B2 (en) 2009-07-30 2014-04-22 Nichia Corporation Method of manufacturing light emitting device
KR20120052370A (en) 2009-07-30 2012-05-23 니치아 카가쿠 고교 가부시키가이샤 Light emitting device and method for manufacturing same
JP2012023110A (en) * 2010-07-12 2012-02-02 Vienex Corp Ultraviolet light source and optical reader using the same
EP2515355B1 (en) * 2011-04-20 2019-03-13 LG Innotek Co., Ltd. Light emitting device package including an UV light emitting diode
JP2014036226A (en) * 2012-08-09 2014-02-24 Lg Innotek Co Ltd Light-emitting package
CN107023760A (en) * 2012-08-09 2017-08-08 Lg伊诺特有限公司 Luminescent device
JP2015018873A (en) * 2013-07-09 2015-01-29 日機装株式会社 Semiconductor module
JP2014132671A (en) * 2014-02-07 2014-07-17 Vienex Corp Optical reading device
CN105321938A (en) * 2014-07-11 2016-02-10 弘凯光电(深圳)有限公司 LED light-emitting device
WO2016129495A1 (en) * 2015-02-13 2016-08-18 シャープ株式会社 Light source device and light-emitting device
JPWO2016129495A1 (en) * 2015-02-13 2017-10-26 シャープ株式会社 Light source device and light emitting device
US10332866B2 (en) 2015-02-13 2019-06-25 Sharp Kabushiki Kaisha Light source device and light emitting apparatus
JP2020014017A (en) * 2016-04-28 2020-01-23 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP7007597B2 (en) 2016-04-28 2022-01-24 日亜化学工業株式会社 Manufacturing method of light emitting device and light emitting device
JP2022033325A (en) * 2016-04-28 2022-02-28 日亜化学工業株式会社 Manufacturing method of light-emitting device and light-emitting device
USRE49645E1 (en) 2016-04-28 2023-09-05 Nichia Corporation Manufacturing method of light-emitting device
JP7364943B2 (en) 2016-04-28 2023-10-19 日亜化学工業株式会社 Manufacturing method of light emitting device and light emitting device
JP2019184644A (en) * 2018-04-02 2019-10-24 日本特殊陶業株式会社 Light wavelength conversion member and light-emitting device
JP7115888B2 (en) 2018-04-02 2022-08-09 日本特殊陶業株式会社 Optical wavelength conversion member and light emitting device

Similar Documents

Publication Publication Date Title
JP2007305703A (en) Light emitting device
JP6371201B2 (en) Light emitting module and light emitting device using the same
JP6332294B2 (en) Light emitting device
JP5665160B2 (en) Light emitting device and lighting apparatus
JP5226077B2 (en) Light emitting module, method for manufacturing light emitting module, and lamp unit
KR101227582B1 (en) Led array
JP5395097B2 (en) Light emitting module and lamp unit
JP2016167492A (en) Light emission device
TW200802975A (en) Light emitting diode package having anodized insulation layer and fabrication method therefor
RU2011109198A (en) Light emitting device
JP7083647B2 (en) Light emitting device
US9166124B2 (en) Light emitting device package and headlight for vehicle having the same
US20200271282A1 (en) Light-emitting element and illumination device
JP2008235827A (en) Light-emitting device
WO2003030316A3 (en) Optically pumped, vertically emitting semiconductor laser
JP2019016763A (en) Light-emitting device and method for manufacturing the same
JP4948841B2 (en) Light emitting device and lighting device
JP2011171504A (en) Light-emitting device
KR102062383B1 (en) Lighting apparatus
JP2007080874A (en) Light-emitting device
TW202021164A (en) Light emitting device with high near-field contrast ratio
JP2009245643A (en) Lighting system
JP2013030600A (en) Heat generation device
JP2018195800A (en) Light-emitting device and method for manufacturing the same
US20130077302A1 (en) Light-emitting circuit and luminaire