JP2007305502A - Direct type liquid fuel battery - Google Patents

Direct type liquid fuel battery Download PDF

Info

Publication number
JP2007305502A
JP2007305502A JP2006134664A JP2006134664A JP2007305502A JP 2007305502 A JP2007305502 A JP 2007305502A JP 2006134664 A JP2006134664 A JP 2006134664A JP 2006134664 A JP2006134664 A JP 2006134664A JP 2007305502 A JP2007305502 A JP 2007305502A
Authority
JP
Japan
Prior art keywords
cathode
end plate
supply
air
purification filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006134664A
Other languages
Japanese (ja)
Inventor
Shigeo Suzuki
重雄 鈴木
Kenichi Soma
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006134664A priority Critical patent/JP2007305502A/en
Publication of JP2007305502A publication Critical patent/JP2007305502A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct type liquid fuel battery, of which supply of air will not be interrupted by waterdrops produced at power generation during cleaning of air supplied to a cathode electrode by an air purification filter. <P>SOLUTION: In the direct type fuel battery provided with a fuel battery cell equipped with an anode electrode and a cathode electrode through an electrolyte membrane, with the anode electrode pinched by an anode end plate having a collecting function and a fuel supply port, and a cathode electrode pinched by a cathode end plate having a collecting function and a supply/exhaust port of air and product water, and a means for supplying liquid fuel to the anode electrode, an air purification filter is fitted to the supply/exhaust port of the cathode end plate via a moisture-absorption frame. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アノード極,電解質膜,カソード極,拡散層から構成される膜電極接合体
(MEA:Membrane Electrode Assembly )のアノード極で液体の燃料が酸化され、カソード極で酸素が還元される燃料電池に関する。
The present invention is a fuel in which liquid fuel is oxidized at the anode electrode of a membrane electrode assembly (MEA) composed of an anode electrode, an electrolyte membrane, a cathode electrode, and a diffusion layer, and oxygen is reduced at the cathode electrode. It relates to batteries.

燃料電池は少なくとも固体又は液体の電解質及び所望の電気化学反応を誘起する2つの電極(アノード極及びカソード極)から構成され、その燃料が持つ化学エネルギーを直接電気エネルギーに高効率で変換する発電装置である。固体高分子電解質形燃料電池(PEM−FC:Polymer Electrolyte Membrane Fuel Cell)システムは一般的に固体高分子電解質膜の両面に多孔質のアノード極及びカソード極を配置した単位電池を直列及び必要に応じて並列に接続した電池と,燃料容器と,燃料供給装置及び空気又は酸素供給装置から構成される。   A fuel cell is composed of at least a solid or liquid electrolyte and two electrodes (anode electrode and cathode electrode) that induce a desired electrochemical reaction, and converts the chemical energy of the fuel directly into electric energy with high efficiency. It is. A polymer electrolyte fuel cell (PEM-FC) system generally includes unit cells in which a porous anode electrode and a cathode electrode are arranged on both sides of a solid polymer electrolyte membrane in series and as required. And connected in parallel to each other, a fuel container, a fuel supply device, and an air or oxygen supply device.

PEM−FCの中でも、液体燃料を使用する直接形メタノール燃料電池(DMFC:
Direct Methanol Fuel Cell )やメタルハイドライド,ヒドラジン燃料電池は燃料の体積エネルギー密度が高いために小型の可搬型又は携帯型の電源として有効である。これらの直接形液体燃料電池のなかでも、取り扱いが容易で、近い将来バイオマスからの生産も期待されるメタノールを燃料とするDMFCは、理想的な電源システムといえる。
Among PEM-FCs, direct methanol fuel cells using liquid fuel (DMFC:
Direct Methanol Fuel Cell), metal hydride, and hydrazine fuel cells are effective as small portable or portable power sources because of their high volumetric energy density. Among these direct liquid fuel cells, DMFCs that use methanol as fuel, which are easy to handle and are expected to be produced from biomass in the near future, are ideal power systems.

DMFCの場合、アノード極でメタノールの酸化反応が起こり、二酸化炭素(CO2)が生成する。一方、カソード極では、アノード極の反応で生成した水素イオンがカソード電極上で空気中の酸素と反応し、水を生成する。生成した水がカソード極の表面に滞留すると、カソード極に酸素の供給が遮断され、出力電圧が大きく低下する。また、滞留した生成水に外部から進入した各不純物元素類が混入し、イオン化するとDMFCに対して、様々な悪影響を与える。その例として、カソード触媒や電解質膜と、反応ないし吸着することで触媒活性を弱める、電解質膜のプロトン伝導性を低下させる等が挙げられる。したがって、DMFCが安定した出力電圧を維持するためには、カソード極の表面に生成水を滞留させないこと、カソード極に不純物元素類の侵入を防止すること等が重要である。 In the case of DMFC, an oxidation reaction of methanol occurs at the anode electrode, and carbon dioxide (CO 2 ) is generated. On the other hand, at the cathode electrode, hydrogen ions generated by the reaction at the anode electrode react with oxygen in the air on the cathode electrode to generate water. When the generated water stays on the surface of the cathode electrode, supply of oxygen to the cathode electrode is interrupted, and the output voltage is greatly reduced. In addition, when impurity elements entering from the outside are mixed in the accumulated product water and ionized, various adverse effects are exerted on the DMFC. For example, the catalytic activity is weakened by reacting or adsorbing with the cathode catalyst or the electrolyte membrane, and the proton conductivity of the electrolyte membrane is reduced. Therefore, in order for the DMFC to maintain a stable output voltage, it is important not to retain the generated water on the surface of the cathode electrode, to prevent the entry of impurity elements into the cathode electrode, and the like.

近年、携帯用情報端末機器類は急速な普及に伴い、使用環境も多様化し、DMFCに対してより厳しい環境下での発電を考慮しなければならない。例えば、海岸・海上、屋内競技場・屋外グランド、さらに街路地・幹線道路等周辺といった不純物元素を数多く含む塵埃が避けられない環境下でも、安定した出力を持続することが必要である。そのために、このような環境下では塵埃がカソード極に侵入することを防止しなければならない。PEM−FCの中でも、水素ガスを燃料とする設置型電源の場合、特許文献1に代表されるように空気供給経路に空気浄化装置を備え、空気中の塵埃や有機物を除去する方法が知られている。このような設置型電源は、装置自体が比較的大型であるために、カソード極へ十分な空気が送付できるように空気供給経路と共に送風用補機等を有しており、空気供給経路に空気浄化装置類を取り付ける方法は有効な手段といえる。しかし、DMFCのような携帯用電源であるためには、小型化及び電池自体の省電力化が必須要件となり、設置型電源で有効な空気供給経路や送風用補機等の採用は、できる限り控えなければならない。また、特許文献2には空気浄化フィルターに替わって電解質膜の耐久性向上策として、電解質膜に弱酸性物質を含ませ、侵入してきた各種不純物元素の活性を減衰させる方法が記載されている。しかし、この場合、DMFCの出力と耐久性との両立を図るには、使用する弱酸性物質の種類や添加量に対する最適化が重要であり、さらに簡便な対策の出現が望まれている。   In recent years, with the rapid spread of portable information terminal devices, the usage environment has diversified, and power generation in a harsher environment than DMFC must be considered. For example, it is necessary to maintain a stable output even in an environment in which dust containing a large amount of impurity elements such as the coast, sea, indoor stadium, outdoor ground, streets, and trunk roads cannot be avoided. Therefore, in such an environment, it is necessary to prevent dust from entering the cathode electrode. Among the PEM-FCs, in the case of an installation type power source using hydrogen gas as a fuel, a method of removing dust and organic substances in the air by providing an air purification device in the air supply path as represented by Patent Document 1 is known. ing. Since such an installation type power supply is relatively large in size, it has a blower auxiliary machine and the like along with an air supply path so that sufficient air can be sent to the cathode electrode. It can be said that the method of attaching purification devices is an effective means. However, in order to be a portable power source such as a DMFC, it is essential to reduce the size and power consumption of the battery itself. I have to refrain. Further, Patent Document 2 describes a method for reducing the activity of various intruding impurity elements by including a weakly acidic substance in the electrolyte membrane as a measure for improving the durability of the electrolyte membrane instead of the air purification filter. However, in this case, in order to achieve both the output and durability of the DMFC, it is important to optimize the type and addition amount of the weakly acidic substance to be used, and the appearance of a simpler measure is desired.

直接形液体燃料電池の発電運転方式には、燃料供給と空気供給及び生成水処理等を補機によって強制的に動作するアクティブ方式と、これらを自然対流で動作するパッシブ方式とがある。本発明は、電池構成が単純な後者のパッシブ方式において特に効果を発揮する。パッシブ方式における基本的なセル構成は、MEAの両側に集電機能を有する各端板
(アノード極端板及びカソード極端板と称す)が挟み込まれた構造であり、アノード端板には、液体燃料を供給するための供給口、カソード端板には、空気を供給するためと生成水を排出するための給排口が、通常、拡散層と接触する部位に複数個設けられている。特許文献3には空気の供給を妨げないために、カソード側の生成水を積極的に除去する方法が記載されている。ここでは、MEAのカソード極表面の外周部に吸水枠を設置し、該吸水枠をカソード端板で押さえ込むことで、カソード極の表面にしみ出してくる生成水を吸水枠で吸い取り、吸い取った生成水を電池セル外部へ排出することを特徴としている。すなわち、ここでの吸水枠はカソード極側の生成水を外部に除去する役割を果たす。この作用により、燃料電池の出力低下を防止する効果が得られる。しかし、カソード極側に空気浄化フィルターを直接取り付けた場合には、カソード端板と空気浄化フィルターが密着した状態になるために、MEAの中央部付近の生成水はカソード端板を介して、空気浄化フィルターに移行して吸収され易く、空気浄化フィルターの機能及び空気供給能力を低下させることがある。
The power generation operation system of the direct liquid fuel cell includes an active system in which fuel supply, air supply, and generated water treatment are forcibly operated by an auxiliary machine, and a passive system in which these are operated by natural convection. The present invention is particularly effective in the latter passive system having a simple battery configuration. The basic cell configuration in the passive system is a structure in which each end plate (referred to as an anode extreme plate and a cathode extreme plate) having a current collecting function is sandwiched between both sides of the MEA, and liquid fuel is supplied to the anode end plate. The supply port for supplying and the cathode end plate are usually provided with a plurality of supply / discharge ports for supplying air and discharging generated water at a portion in contact with the diffusion layer. Patent Document 3 describes a method of positively removing the generated water on the cathode side so as not to hinder the supply of air. Here, a water absorption frame is installed on the outer periphery of the surface of the cathode electrode of the MEA, and the water absorbed through the surface of the cathode electrode is absorbed by the absorption frame by pressing the water absorption frame with the cathode end plate. It is characterized by discharging water to the outside of the battery cell. In other words, the water absorption frame here serves to remove the generated water on the cathode electrode side to the outside. By this action, an effect of preventing a decrease in the output of the fuel cell can be obtained. However, when the air purification filter is directly attached to the cathode electrode side, the cathode end plate and the air purification filter are in close contact with each other, so that the generated water near the center of the MEA passes through the cathode end plate. It may be easily absorbed and transferred to the purification filter, which may reduce the function and air supply capability of the air purification filter.

一方、空気浄化フィルターに替わる不純物を除去する方法としては、特許文献4に代表されるように、空気供給口から流入する空気がカソード端板に直接当らなくするために、供給口に当て板を配置した構造とする通気構造体なる提案がされている。この場合、該当て板の厚さにもよるが、カソード端板と通気構造体の空気供給口とは直接接することを無くすことができるために、カソード生成水を吸水することによる空気供給不足が生じることを防止できる。しかし、空気浄化フィルターに比較し、微細な塵埃やイオン性物質の除去性能が劣ることは否めない。   On the other hand, as a method for removing impurities in place of the air purification filter, as represented by Patent Document 4, in order to prevent the air flowing from the air supply port from directly hitting the cathode end plate, a contact plate is applied to the supply port. Proposals have been made for ventilation structures with an arranged structure. In this case, depending on the thickness of the plate, the cathode end plate and the air supply port of the ventilation structure can be prevented from being in direct contact with each other. It can be prevented from occurring. However, it cannot be denied that the removal performance of fine dust and ionic substances is inferior to that of an air purification filter.

特開2004−273311号公報(要約)Japanese Patent Application Laid-Open No. 2004-273311 (Abstract) 特開2003−282092号公報(要約)JP 2003-282092 A (summary) 特開2004−165002号公報(要約)JP 2004-165002 A (summary) 特開2000−268835号公報(要約)JP 2000-268835 A (summary)

直接形液体燃料電池の発電性能が低下する原因の一つは、カソード極側から侵入した種々の不純物元素が、MEAの触媒活性ないしプロトン伝導性等を低下させるためである。前記不純物の侵入を防止するための有効な手段として、カソード極側に空気浄化フィルターを取り付ける方法が考えられるが、新たにカソード極で生成した水分による空気供給不足を改善する必要がある。   One of the causes of the decrease in the power generation performance of the direct liquid fuel cell is that various impurity elements entering from the cathode electrode side decrease the catalytic activity or proton conductivity of MEA. As an effective means for preventing the intrusion of impurities, a method of attaching an air purification filter to the cathode electrode side can be considered, but it is necessary to improve the shortage of air supply due to moisture newly generated at the cathode electrode.

本発明の目的は、カソード極に空気浄化フィルターで浄化した空気を供給する際に、生成水による空気の供給遮断を防止した直接形液体燃料電池を提供することにある。   An object of the present invention is to provide a direct type liquid fuel cell that prevents the supply of air from being blocked by generated water when supplying air purified by an air purification filter to a cathode electrode.

本発明は、プロトン導電性を有する電解質膜の第一の面に燃料を酸化するアノード極を、他方の面に酸素を還元するカソード極を有し、アノード極は集電機能及び燃料供給口を有するアノード端板、カソード極が集電機能と空気及び生成水の給排口を有するカソード端板とで挟み込まれた燃料電池セルと、前記アノード極に液体燃料を供給するための手段を具備している直接形液体燃料電池であって、前記カソード端板の給排口に吸水枠を介して空気浄化フィルターを取り付けている直接形液体燃料電池を対象としている。そして、吸水枠は多孔体であることを特徴とする。   The present invention has an anode electrode for oxidizing fuel on the first surface of an electrolyte membrane having proton conductivity, and a cathode electrode for reducing oxygen on the other surface. The anode electrode has a current collecting function and a fuel supply port. An anode end plate, a fuel cell sandwiched between a cathode end plate having a current collecting function and a supply and discharge port for air and generated water, and a means for supplying liquid fuel to the anode electrode. The direct type liquid fuel cell is a direct type liquid fuel cell in which an air purification filter is attached to the supply / exhaust port of the cathode end plate through a water absorption frame. The water absorption frame is a porous body.

本発明の直接形液体燃料電池には、燃料電池セル及び燃料タンクに加えて、燃料タンクに液体燃料を送り出すための燃料カートリッジを備えることができる。この燃料カートリッジは着脱可能にすることが望ましい。   The direct liquid fuel cell of the present invention can include a fuel cartridge for sending liquid fuel to the fuel tank in addition to the fuel cell and the fuel tank. This fuel cartridge is preferably removable.

本発明によれば、カソード端板の給排口に、多孔体の吸水枠を介して空気浄化フィルターを取り付けるという極めて簡単な構造で、空気浄化フィルターがカソード生成水を吸水する現象を防止し、空気供給不足による出力電圧の低下を防止できる。   According to the present invention, the air purification filter is attached to the supply / exhaust port of the cathode end plate via a porous water absorption frame to prevent the phenomenon that the air purification filter absorbs the cathode generated water, It is possible to prevent a decrease in output voltage due to insufficient air supply.

一般に直接形液体燃料電池において、カソード極での化学反応により生成した水分は、カソード極の触媒層から拡散層内に浸透し、外気と接した拡散層表面に至る。拡散層表面に到達した水分の一部分は水蒸気となって空気中に放散され、残りの部分がカソード端板の空気取り入れ口に水滴となって滞留する。したがって、カソード端板に空気浄化フィルターを直接取り付けた場合、滞留した水滴がカソード端板の給排口と空気浄化フィルターとの隙間に蓄積するか、あるいは空気浄化フィルターに吸収された水滴がフィルター内の空孔を閉塞する等によって、カソード極への空気供給が遮断される。   In general, in a direct liquid fuel cell, moisture generated by a chemical reaction at the cathode electrode penetrates from the catalyst layer at the cathode electrode into the diffusion layer and reaches the surface of the diffusion layer in contact with the outside air. A portion of the water that reaches the surface of the diffusion layer is diffused into the air as water vapor, and the remaining portion remains as water droplets in the air intake port of the cathode end plate. Therefore, when the air purification filter is directly attached to the cathode end plate, the accumulated water droplets accumulate in the gap between the cathode end plate supply / discharge port and the air purification filter, or the water droplets absorbed by the air purification filter are contained in the filter. The air supply to the cathode electrode is shut off, for example, by closing the air holes.

本発明の直接形液体燃料電池では、カソード端板の給排口に多孔体の吸水枠を介して空気浄化フィルターを取り付けることで、カソード端板と空気浄化フィルターとの間隔が広がるために、カソード端板の給排口に水滴が万一滞留したとしても、水滴と空気浄化フィルターとの接触を妨げるために、空気浄化フィルターの空孔が閉塞するのを防止できる。同時に、滞留した水滴は量が増えるのに従い、自ずとカソード端板の給排口から流れ出して吸水枠に吸収されるため、周囲に生成水が漏洩することを防止できる。吸収された水分は、毛管力で吸水枠の側面に移動し、徐々に蒸発することができる。したがって、多孔体製吸水枠の役割は、空気浄化フィルターの空孔閉塞防止と、カソード生成水の周囲への漏洩防止を果たす。   In the direct liquid fuel cell of the present invention, the air purification filter is attached to the supply / discharge port of the cathode end plate via a porous water absorption frame, so that the distance between the cathode end plate and the air purification filter is widened. Even if water droplets stay in the supply / discharge port of the end plate, it is possible to prevent the air purification filter air holes from being blocked in order to prevent contact between the water droplets and the air purification filter. At the same time, the accumulated water droplets naturally flow out from the supply / discharge port of the cathode end plate and are absorbed by the water absorption frame as the amount increases, so that it is possible to prevent the generated water from leaking to the surroundings. The absorbed moisture moves to the side surface of the water absorption frame by capillary force and can be gradually evaporated. Therefore, the role of the porous water-absorbing frame serves to prevent the air purification filter from closing the pores and to prevent leakage of the cathode-generated water to the surroundings.

前述の様にこれらの作用は、カソード端板に吸水枠を取り付けることで、カソード端板と空気浄化フィルターとの間に間隙が生み出され、カソード端板上に滞留した水滴がカソード端板上を流れ出し、吸水枠に吸収されるためと考えている。したがって、携帯型電子機器用電源では持ち運びによって、燃料電池の姿勢が常に変化するために、吸水枠はカソード端板の給排口の四方を囲む形状が好ましい。一方、非常用電源等の定置型におけるカソード生成水は、カソード端板から流れ出る位置が特定されるため、吸水枠の取り付け位置は流れ出る一方向のみでも構わない。   As described above, these actions are performed by attaching a water absorption frame to the cathode end plate, thereby creating a gap between the cathode end plate and the air purification filter, and water droplets staying on the cathode end plate move on the cathode end plate. It is thought that it flows out and is absorbed by the water absorption frame. Therefore, since the attitude of the fuel cell always changes depending on the portable power supply for the portable electronic device, the water absorption frame preferably has a shape that surrounds the four sides of the supply / discharge port of the cathode end plate. On the other hand, the position of the cathode generation water in a stationary type such as an emergency power source that flows out from the cathode end plate is specified, and therefore, the water absorption frame may be attached only in one direction of flowing out.

本発明における多孔体製吸水枠は、ミクロンオーダーの細孔を有するプラスチック,金属,紙等から適宜選択され、通常20mm以下の厚さで、少なくともカソード端板の給排口相当部位が開口している。一方、空気浄化フィルターはミクロンオーダーの細孔を有する膜状材料と化学吸着剤を組み合わせた構造が好適で、細孔を有する膜状材料で塵埃の除去を行うと共に、化学吸着剤で微細なイオン性物質も同時に捕捉することが可能になる。ここで、膜状材料はプラスチックフィルム,天然繊維,合成繊維及び紙等を適宜選択するが、撥水性に優れた材料を用いることにより、吸着剤が吸水することを抑制できる。また、化学吸着剤は例えば活性炭,ゼオライト及びイオン交換樹脂等の中から適宜選択される。   The porous water-absorbing frame in the present invention is appropriately selected from plastic, metal, paper, etc. having micron-order pores, and usually has a thickness of 20 mm or less, and at least a portion corresponding to the supply / discharge port of the cathode end plate is opened. Yes. On the other hand, the air purification filter preferably has a structure that combines a membrane-like material with micron-order pores and a chemical adsorbent, which removes dust with a membrane-like material with pores and fine ions with a chemical adsorbent. It becomes possible to capture the sex substance at the same time. Here, the film-like material is appropriately selected from a plastic film, natural fiber, synthetic fiber, paper, and the like, but by using a material having excellent water repellency, it is possible to prevent the adsorbent from absorbing water. The chemical adsorbent is appropriately selected from, for example, activated carbon, zeolite, ion exchange resin, and the like.

以下、DMFCを例にとって説明するが、本発明は他の液体燃料電池にも広く適用できることはいうまでもない。   Hereinafter, DMFC will be described as an example, but it goes without saying that the present invention can be widely applied to other liquid fuel cells.

DMFCでは、メタノール濃度を数%ないし数十%(重量比)にした水溶液が用いられる。この燃料電池は、いかに述べる電気化学反応により、メタノールの持っている化学エネルギーが直接電気エネルギーに変換される形で発電される。アノード極側では供給されたメタノール水溶液が(1)式にしたがって反応して炭酸ガスと水素イオンと電子に解離する(メタノールの酸化反応)。   In DMFC, an aqueous solution having a methanol concentration of several percent to several tens of percent (weight ratio) is used. This fuel cell generates electricity in such a way that the chemical energy of methanol is directly converted into electrical energy by the electrochemical reaction described below. On the anode electrode side, the supplied aqueous methanol solution reacts according to the equation (1) to dissociate into carbon dioxide, hydrogen ions, and electrons (oxidation reaction of methanol).

CH3OH+H2O → CO2+6H++6e- …(1)
生成された水素イオンは電解質膜中をアノード極側からカソード極側に移動し、カソード極上で空気中から拡散してきた酸素ガスと電極上の電子と(2)式に従って反応して水を生成する(酸素の還元反応)。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (1)
The generated hydrogen ions move from the anode side to the cathode side in the electrolyte membrane, and react with the oxygen gas diffused from the air on the cathode electrode and the electrons on the electrode according to the formula (2) to generate water. (Reduction reaction of oxygen).

6H++3/2O2+6e- → 3H2O …(2)
従って発電に伴う全化学反応は(3)式に示すようにメタノールが酸素によって酸化されて炭酸ガスと水とを生成し、化学反応式はメタノールの火炎燃焼と同じになる。
6H + + 3 / 2O 2 + 6e → 3H 2 O (2)
Therefore, as shown in the equation (3), the total chemical reaction accompanying power generation is that methanol is oxidized by oxygen to generate carbon dioxide gas and water, and the chemical reaction equation is the same as that of methanol flame combustion.

CH3OH+3/2O2 → CO2+3H2O …(3)
上記に示した発電に関係する主反応の他に、副生成物を生じる反応として、(4)式に示すメタノールが酸化してホルムアルデヒドを生成する反応、(5)式に示すホルムアルデヒドが酸化してギ酸を生成する反応、(6)式に示すギ酸とメタノールが反応してギ酸メチルを生成する反応等が生じる。
CH 3 OH + 3 / 2O 2 → CO 2 + 3H 2 O (3)
In addition to the main reaction related to power generation shown above, as a reaction that produces by-products, a reaction in which methanol shown in formula (4) is oxidized to formaldehyde, and formaldehyde shown in formula (5) is oxidized. A reaction for producing formic acid, a reaction in which formic acid and methanol shown in the formula (6) react to produce methyl formate, and the like occur.

CH3OH → HCHO+2H++2e …(4)
HCHO+1/2O2 → HCOOH …(5)
HCOOH+CH3OH → HCOOCH3+H2O …(6)
これらの副生成物についても、カソード生成水に含まれた場合、本発明によれば除去することが可能である。
CH 3 OH → HCHO + 2H + + 2e (4)
HCHO + 1 / 2O 2 → HCOOH (5)
HCOOH + CH 3 OH → HCOOCH 3 + H 2 O (6)
These by-products can also be removed according to the present invention when contained in the cathode product water.

次に、図面を用いて本発明の実施形態について説明するが、以下に述べる実施形態に限定されるものでない。   Next, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.

メタノール水溶液を燃料とする本発明におけるDMFCセルの基本構成の断面図を図1に示す。集電機能を有するアノード端板1とカソード端板3とでMEA2(膜電極接合体)を挟み込んで締め付け、カソード端板3に吸水枠4を介して、空気浄化フィルター5が取り付けられた構造である。ここで、吸水枠4は図2に示す一例の様に、中央付近にカソード端板の給排口(空気の供給及び生成水の排水を行うための開口部)よりも大きい吸水枠の開口部7を有している。また、空気浄化フィルター5は吸着剤部6を有している。   A cross-sectional view of the basic configuration of a DMFC cell according to the present invention using an aqueous methanol solution as a fuel is shown in FIG. The MEA 2 (membrane electrode assembly) is sandwiched and tightened between the anode end plate 1 and the cathode end plate 3 having a current collecting function, and the air purification filter 5 is attached to the cathode end plate 3 via the water absorption frame 4. is there. Here, as in the example shown in FIG. 2, the water absorption frame 4 has an opening of the water absorption frame that is larger than the supply / discharge port of the cathode end plate (opening for supplying air and discharging generated water) near the center. 7. The air purification filter 5 has an adsorbent portion 6.

上記基本構成のDMFCセルを電子機器用電源とした時の一例を図3に示す。アノード端板側に燃料タンク8を取り付け、燃料であるメタノール水溶液は燃料カートリッジ9から供給される。アノードで発生した二酸化炭素の排出例を図4に示す。二酸化炭素は、燃料タンク蓋10の二酸化炭素排出口11に取り付けた気液分離膜(気体は透過するが液体は透過しない性質を有する膜)を透過して、外気に放出される。   An example when the DMFC cell having the above basic configuration is used as a power source for electronic equipment is shown in FIG. A fuel tank 8 is attached to the anode end plate side, and a methanol aqueous solution as fuel is supplied from a fuel cartridge 9. An example of the emission of carbon dioxide generated at the anode is shown in FIG. Carbon dioxide permeates through a gas-liquid separation membrane (a membrane having a property that gas permeates but liquid does not permeate) attached to the carbon dioxide outlet 11 of the fuel tank lid 10 and is released to the outside air.

燃料カートリッジ9は、高圧ガス又はバネなどの圧力によってメタノール水溶液を送り出す方式のものであり、燃料タンク内に燃料であるメタノール水溶液を供給すると共に、燃料タンク内を液体燃料で大気圧よりも高い圧力に維持する構造になっている。燃料タンク内を液体燃料で大気圧よりも高く保つことにより、アノード極で生成した二酸化炭素は燃料タンク蓋10に設けた二酸化炭素排出口11に導かれ、気液分離膜を透過して外部に放出される。一方、カソード極側では、空気浄化フィルター5を透過した空気中の酸素とアノードから電解質膜を透過してきた水素イオンとが反応して、水と電子が生成する。   The fuel cartridge 9 is of a type that sends out an aqueous methanol solution by pressure such as high-pressure gas or a spring, and supplies an aqueous methanol solution as a fuel into the fuel tank, and at a pressure higher than atmospheric pressure with liquid fuel in the fuel tank It has a structure to maintain. By keeping the inside of the fuel tank higher than atmospheric pressure with liquid fuel, the carbon dioxide generated at the anode electrode is guided to the carbon dioxide outlet 11 provided in the fuel tank lid 10 and permeates the gas-liquid separation membrane to the outside. Released. On the other hand, on the cathode electrode side, oxygen in the air that has passed through the air purification filter 5 reacts with hydrogen ions that have passed through the electrolyte membrane from the anode to generate water and electrons.

発電に伴って、カソード端板には生成水が徐々に水滴となって付着するが、自ずと滴下した生成水は吸水枠4に吸水され、吸水枠4の側面から大気中に蒸発する。また、燃料タンク8内のメタノール水溶液は消費されるが、燃料カートリッジ9から燃料が補給されるので、常にほぼ一定量のメタノール水溶液をアノード極に供給することができる。燃料カートリッジ9内の燃料が無くなった場合には、新たな燃料カートリッジと交換することで、連続的に燃料タンク内に燃料を補給することができ、連続発電が可能になる。   As the power is generated, the generated water gradually adheres to the cathode end plate as water droplets. However, the dropped generated water is naturally absorbed by the water absorption frame 4 and evaporated from the side surface of the water absorption frame 4 into the atmosphere. Further, although the aqueous methanol solution in the fuel tank 8 is consumed, the fuel is replenished from the fuel cartridge 9, so that a substantially constant amount of aqueous methanol solution can always be supplied to the anode electrode. When the fuel in the fuel cartridge 9 runs out, the fuel tank can be continuously replenished by replacing it with a new fuel cartridge, and continuous power generation becomes possible.

(試験例1)
図3の構成を有するDMFCにおいて、吸水枠として平均細孔40μm、空孔率40%の金属(Fe−Ni焼結体)製多孔体を用い、ポリテトラフルオロエチレン製で平均孔径10μmを外装材とし、粉砕状(粒径2〜5mm)の活性炭を吸着剤とする空気浄化フィルターを取り付けた。燃料タンクには容量9mlのものを用い、燃料カートリッジには15重量%メタノール水溶液が10ml入っているものを用いた。負荷電流密度を50mA/cm2 の条件下で連続発電試験を200h時間行い、この間、メタノール水溶液が1ml以下になると新しい燃料カートリッジに交換した。この時の出力電圧低下率は0.2mV/hであった。
(Test Example 1)
In the DMFC having the configuration shown in FIG. 3, a metal (Fe—Ni sintered body) porous body having an average pore size of 40 μm and a porosity of 40% is used as the water absorption frame, and the average pore diameter is 10 μm made of polytetrafluoroethylene. And an air purification filter using pulverized activated carbon (particle size 2 to 5 mm) as an adsorbent was attached. A fuel tank having a capacity of 9 ml was used, and a fuel cartridge containing 10 ml of a 15 wt% aqueous methanol solution was used. A continuous power generation test was conducted for 200 hours under a load current density of 50 mA / cm 2. During this time, when the methanol aqueous solution became 1 ml or less, a new fuel cartridge was replaced. The output voltage drop rate at this time was 0.2 mV / h.

比較のため、吸水枠を設けずにカソード極端板に空気浄化フィルターを直接貼り付けて、上記と同様な発電試験を行った。その結果、試験開始10h付近から急激に出力電圧が低下し、発電試験を持続できなくなった。カソード極端板から空気浄化フィルターを剥がして、観察したところ、カソード極端板の給排口に水分が多量に付着していた。したがって、カソード端板の給排口と空気浄化フィルターとの空隙に発電で生成した水分が水滴となって滞留し、カソード極への空気供給が遮断され、出力電圧が低下したことがわかった。   For comparison, a power generation test similar to the above was performed by directly attaching an air purification filter to the cathode extreme plate without providing a water absorption frame. As a result, the output voltage suddenly decreased from around 10 h after the start of the test, and the power generation test could not be continued. When the air purification filter was peeled off from the cathode extreme plate and observed, a large amount of water adhered to the supply / exhaust port of the cathode extreme plate. Therefore, it was found that the water generated by power generation stayed as water droplets in the gap between the supply / discharge port of the cathode end plate and the air purification filter, shutting off the air supply to the cathode electrode and lowering the output voltage.

本試験例により、アノード極端板に、吸水枠を介して空気浄化フィルターを取り付けることにより、アノード端板と空気浄化フィルター間に生成した水分が滞留することを防止でき、空気供給不足による出力電圧の低下を抑制できることが明らかになった。   In this test example, by attaching an air purification filter to the anode extreme plate via a water absorption frame, it is possible to prevent the moisture generated between the anode end plate and the air purification filter from staying, and the output voltage due to insufficient air supply is reduced. It became clear that the decrease could be suppressed.

(試験例2)
図3の基本構成を有するDMFCにおいて、吸水枠を平均細孔100μm,空孔率50%のプラスチック(ポリウレタン)製多孔体に、さらに空気浄化フィルターの吸着剤をゼオライト(人口ゼオライト,平均粒径約100μm)に替えた以外は、試験例1と同様にして、DMFCの発電試験を行った。この時の出力電圧低下率は0.2mV/h であった。
(Test Example 2)
In the DMFC having the basic configuration of FIG. 3, the water absorption frame is made of a plastic (polyurethane) porous body having an average pore size of 100 μm and the porosity is 50%, and the adsorbent of the air purification filter is made of zeolite (artificial zeolite, average particle size of about A DMFC power generation test was conducted in the same manner as in Test Example 1 except that the thickness was changed to 100 μm. The output voltage drop rate at this time was 0.2 mV / h.

本試験例によれば、吸水枠を介して空気浄化フィルターを取り付けることにより、空気供給不足による出力電圧の低下を抑制できることが明らかになった。   According to this test example, it has been clarified that a reduction in output voltage due to insufficient air supply can be suppressed by attaching an air purification filter via a water absorption frame.

(試験例3)
試験例2において、空気浄化フィルターを取り外した以外は全て同様にして、DFMCの発電試験を行った。この時の出力電圧低下率は1.0mV/h であり、空気浄化フィルターを採用しないことで出力電圧の低下率は大きくなった。この間、カソード端板の空気供給口における水滴付着状況を観察した結果、生成した水滴は自ら流れ出して吸水枠に吸収されていることが確認され、水滴付着による空気供給不足とは考えられないことから、空気中の不純物により、カソード極の劣化が早まったと推察した。
(Test Example 3)
In Test Example 2, a power generation test of DFMC was performed in the same manner except that the air purification filter was removed. The output voltage reduction rate at this time was 1.0 mV / h, and the output voltage reduction rate was increased by not using the air purification filter. During this time, as a result of observing the state of water droplet adhesion at the air supply port of the cathode end plate, it was confirmed that the generated water droplets flowed out and absorbed by the water absorption frame, and it is not considered that air supply is insufficient due to water droplet adhesion. It was speculated that the cathode electrode deteriorated faster due to impurities in the air.

本試験例によれば、空気浄化フィルターを使用しなければ、出力電圧の低下率が大きくなり、低下の抑制効果が十分得られないことがわかった。   According to this test example, it was found that unless the air purification filter is used, the rate of decrease of the output voltage becomes large and the effect of suppressing the decrease cannot be obtained sufficiently.

本発明におけるDMFCの基本構成を示す断面図である。It is sectional drawing which shows the basic composition of DMFC in this invention. 本発明における吸水枠の一例を示す概略図である。It is the schematic which shows an example of the water absorption frame in this invention. 本発明の実施例を示すカソード極側から見た概略図である。It is the schematic seen from the cathode pole side which shows the Example of this invention. 本発明の実施例を示すアノード極側から見た概略図である。It is the schematic seen from the anode pole side which shows the Example of this invention.

符号の説明Explanation of symbols

1…アノード端板、2…MEA、3…カソード端板、4…吸水枠、5…空気浄化フィルター、6…吸着剤部、7…開口部、8…燃料タンク、9…燃料カートリッジ、10…燃料タンク蓋、11…二酸化炭素排出口。
DESCRIPTION OF SYMBOLS 1 ... Anode end plate, 2 ... MEA, 3 ... Cathode end plate, 4 ... Water absorption frame, 5 ... Air purification filter, 6 ... Adsorbent part, 7 ... Opening part, 8 ... Fuel tank, 9 ... Fuel cartridge, 10 ... Fuel tank lid, 11 ... carbon dioxide outlet.

Claims (2)

プロトン導電性を有する電解質膜の第一の面に燃料を酸化するアノード極を、他方の面に酸素を還元するカソード極を有し、アノード極は集電機能及び燃料供給口を有するアノード端板、カソード極が集電機能と空気及び生成水の給排口を有するカソード端板とで挟み込まれた燃料電池セルと、前記アノード極に液体燃料を供給するための手段を具備している直接形液体燃料電池であって、前記カソード端板の給排口に吸水枠を介して空気浄化フィルターを取り付けることを特徴とする直接形液体燃料電池。   An anode end plate having an anode electrode for oxidizing fuel on the first surface of the electrolyte membrane having proton conductivity and a cathode electrode for reducing oxygen on the other surface, the anode electrode having a current collecting function and a fuel supply port A direct form comprising a fuel cell in which the cathode electrode is sandwiched between a current collecting function and a cathode end plate having supply and discharge ports for air and product water, and means for supplying liquid fuel to the anode electrode A direct type liquid fuel cell, wherein an air purification filter is attached to a supply / exhaust port of the cathode end plate through a water absorption frame. 請求項1において、前記吸水枠が多孔体からなることを特徴とする直接形液体燃料電池。   2. The direct liquid fuel cell according to claim 1, wherein the water absorption frame is made of a porous body.
JP2006134664A 2006-05-15 2006-05-15 Direct type liquid fuel battery Pending JP2007305502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134664A JP2007305502A (en) 2006-05-15 2006-05-15 Direct type liquid fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134664A JP2007305502A (en) 2006-05-15 2006-05-15 Direct type liquid fuel battery

Publications (1)

Publication Number Publication Date
JP2007305502A true JP2007305502A (en) 2007-11-22

Family

ID=38839248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134664A Pending JP2007305502A (en) 2006-05-15 2006-05-15 Direct type liquid fuel battery

Country Status (1)

Country Link
JP (1) JP2007305502A (en)

Similar Documents

Publication Publication Date Title
KR20230030620A (en) Systems and methods for high concentrations of multi-electron products or CO in an electrolyzer output
US20050170227A1 (en) Methods and apparatuses for managing effluent products in a fuel cell system
US20030215686A1 (en) Method and apparatus for water management of a fuel cell system
US20060194092A1 (en) Fuel cell power generation apparatus, fuel cartridge, and fuel cell system using the same
JP2007329002A (en) Fuel cell system
WO2005088752A1 (en) Fuel cell system
JPWO2006120958A1 (en) Fuel cell and fuel cell system
JP2002367655A (en) Fuel cell
JP4791757B2 (en) Liquid fuel for fuel cell, fuel cartridge for fuel cell, and fuel cell
JP2012204300A (en) Metal air cell system
JPWO2007080763A1 (en) Polymer electrolyte fuel cell
US20120164554A1 (en) Membrane electrode assembly, fuel cell with the same, and fuel cell generating system
KR20040000568A (en) Stack structure for fuel cell
JP2005100886A (en) Fuel cell system and fuel supply method to fuel cell
JP4733788B2 (en) Fuel cell system
JP5241125B2 (en) Fuel cell module
JP5182475B2 (en) Fuel cells and electronics
KR100759430B1 (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same
JP2007305502A (en) Direct type liquid fuel battery
JP2006024401A (en) Fuel cell
JP2009231195A (en) Fuel cell and electronic device
JP2008151390A (en) Water vapor exchange membrane refresh system, humidifier, and fuel cell system
JP2008210752A (en) Liquid fuel supply board, fuel cell provided with the same and liquid fuel supplying method
WO2012001839A1 (en) Direct oxidation fuel cell system
JP2005294107A (en) Fuel cell and fuel cell system using this