JP2007303774A - Water evaporator - Google Patents

Water evaporator Download PDF

Info

Publication number
JP2007303774A
JP2007303774A JP2006134822A JP2006134822A JP2007303774A JP 2007303774 A JP2007303774 A JP 2007303774A JP 2006134822 A JP2006134822 A JP 2006134822A JP 2006134822 A JP2006134822 A JP 2006134822A JP 2007303774 A JP2007303774 A JP 2007303774A
Authority
JP
Japan
Prior art keywords
water
evaporator
heat exchange
gas
mist state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006134822A
Other languages
Japanese (ja)
Inventor
Takashi Eda
隆志 江田
Yasuhiro Fujita
泰広 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2006134822A priority Critical patent/JP2007303774A/en
Publication of JP2007303774A publication Critical patent/JP2007303774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Air Humidification (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water evaporator capable of securing a stable evaporation behavior, improving evaporation efficiency, and being optimum for a fuel battery device. <P>SOLUTION: This evaporator includes a water storing tank and a heat exchange core, wherein a piezoelectric element is disposed at the base of the water storing tank, the piezoelectric element is utilized to put water in a mist state, and the water in the mist state is supplied to a heat exchange core. The evaporator includes a gas humidifying part and a heat exchange core, wherein a piezoelectric element is disposed at the base of the gas humidifying part, the piezoelectric element is utilized to put the water in the mist state, and further gas is made to flow into the gas humidifying part to be mixed with the water in the mist state, and after that, the mixed gas is supplied to the heat exchange core. These processes are optimum for use in modifying the fuel battery device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池の燃料改質に適用できる水蒸発器に関し、さらに詳しくは、圧電素子を用いてミスト状態とした水を水蒸発器内に供給することによって、蒸発効率を向上させ、小型化するとともに、圧力変動にともなう流量変動を抑制し、安定した蒸発挙動を確保できる水蒸発器に関するものである。   The present invention relates to a water evaporator that can be applied to fuel reforming of a fuel cell. More specifically, by supplying water in a mist state using a piezoelectric element into the water evaporator, the evaporation efficiency is improved and a small size is achieved. The present invention relates to a water evaporator capable of ensuring stable evaporation behavior by reducing flow rate fluctuation accompanying pressure fluctuation.

水蒸発器は、熱交換器、燃料電池装置および水素製造装置等の広い技術分野における産業機器において、水を蒸発気化させ、過熱蒸気を得るためのプロセスにおいて、多数採用されている。   Many water evaporators are used in processes for evaporating water and obtaining superheated steam in industrial equipment in a wide technical field such as heat exchangers, fuel cell devices, and hydrogen production devices.

水蒸発器においては、水蒸発器内で水の蒸発気化が行われることから、水蒸発器内には常に気液2相が存在する。通常、水蒸発器によって生じた水蒸気を次工程へと供給する際には、水蒸気が再び液体に戻らないように、水蒸気をスーパーヒートして過熱蒸気の状態として供給する。   In the water evaporator, water is vaporized and vaporized in the water evaporator, so that there are always two gas-liquid phases in the water evaporator. Usually, when water vapor generated by the water evaporator is supplied to the next process, the water vapor is superheated and supplied as superheated steam so that the water vapor does not return to the liquid again.

前述の通り、水蒸発器内には常に液体と気体の2相が混合して存在しており、液体と気体ではヒートマスが大きく異なるため、水が蒸発気化して水蒸気となると急激に温度が上昇し、水蒸発器の内部で温度変動が生じる。このため、水蒸発器の内部には常に熱応力が生じることとなり、水蒸発器は損傷し易くなる。   As described above, there are always two phases of liquid and gas mixed in the water evaporator, and the heat mass differs greatly between liquid and gas, so the temperature rises rapidly when water evaporates and becomes water vapor. However, temperature fluctuations occur inside the water evaporator. For this reason, thermal stress is always generated inside the water evaporator, and the water evaporator is easily damaged.

また、水が蒸発する際に突沸が生じた場合は、それにともなう温度変動だけではなく、圧力変動に起因する水の蒸発挙動が問題となる。水は蒸発気化すると体積が1000倍程度に急激な膨張を生ずることから、突沸の発生にともなって圧力変動が大きくなり、蒸発挙動が不安定となる。蒸発挙動が不安定となると、次工程への水蒸気の供給が安定しない。   In addition, when bumping occurs when water evaporates, not only temperature fluctuations associated therewith but also water evaporation behavior due to pressure fluctuations becomes a problem. When water evaporates, the volume rapidly expands to about 1000 times. As a result, the pressure fluctuation increases with the occurrence of bumping, and the evaporation behavior becomes unstable. If the evaporation behavior becomes unstable, the supply of water vapor to the next process is not stable.

例えば、燃料電池装置では、使用する燃料を生成するための天然ガスの水素化やメタノールの水素改質に際し、水蒸発器が用いられる。前述のように、水蒸発器での蒸発挙動が安定しない場合には、水蒸気の供給量が不安定となり、水蒸気と混合ガスの混合が不均一になるため、次工程である燃料改質器への混合ガスの供給量が変動し、燃料電池の発電量が不安定となる。   For example, in a fuel cell device, a water evaporator is used for hydrogenation of natural gas or hydrogen reforming of methanol for producing fuel to be used. As described above, when the evaporation behavior in the water evaporator is not stable, the supply amount of water vapor becomes unstable, and the mixing of the water vapor and the mixed gas becomes non-uniform. The mixed gas supply amount fluctuates, and the power generation amount of the fuel cell becomes unstable.

さらに、燃料電池装置で採用される水蒸発器では、水の流量が比較的少ない場合があることから、水を水蒸発器内へ流入する際にノズル等を用いても、水蒸発器の通路内に均一に分配させることは難しい。このため、ノズル直下に水が流入しやすく、十分な熱交換が行われないことによって水の蒸発挙動が不安定になる場合がある。   Further, in the water evaporator employed in the fuel cell device, the flow rate of water may be relatively small. Therefore, even if a nozzle or the like is used when flowing water into the water evaporator, the passage of the water evaporator It is difficult to distribute evenly inside. For this reason, water tends to flow directly under the nozzle, and the water evaporation behavior may become unstable due to insufficient heat exchange.

また、ノズルを用いて水を水蒸発器内へ流入させる際には、水の清浄度が悪い場合、ノズルが詰まる恐れがあるため、水の清浄度を管理する必要があり、燃料電池装置のランニングコストの増加要因となる。   In addition, when water is flowed into the water evaporator using a nozzle, it is necessary to manage the cleanliness of the fuel cell device because the nozzle may be clogged if the cleanliness of the water is poor. This increases the running cost.

燃料電池は高温排ガス等の廃熱を利用しており、未気化のままの液体が水蒸発器より出て次工程の燃料改質へと供給されると、未気化の液体が供給された部分で気化熱が奪われ、温度低下が生じ、有効な改質反応が行われない。   The fuel cell uses waste heat such as high-temperature exhaust gas, and when the unvaporized liquid comes out of the water evaporator and is supplied to the fuel reforming of the next process, the part where the unvaporized liquid is supplied As a result, the heat of vaporization is lost, the temperature drops, and an effective reforming reaction is not performed.

このため、燃料電池装置では、水蒸発器における蒸発技術が重要な開発要素となり、良好な水蒸発器の性能、すなわち、蒸発効率の向上を図り、液体の蒸発にともなう圧力変動を抑制し安定した蒸発挙動を確保することによって、次工程の改質処理に安定した水蒸気を供給することが特に望まれる。   For this reason, in the fuel cell device, the evaporation technology in the water evaporator is an important development factor, and the performance of the water evaporator, that is, the improvement of the evaporation efficiency is improved, and the pressure fluctuation accompanying the evaporation of the liquid is suppressed and stabilized. By securing the evaporation behavior, it is particularly desirable to supply stable water vapor for the reforming process in the next step.

したがって、水の蒸発過程で生じる水蒸発器内部の温度変動および圧力変動を減少させるために、従来は水蒸発器内の液量を増やすための貯水槽を設ける方法および水蒸発器内へ水を均一に分配して流入させる方法等に関して検討されている。   Therefore, in order to reduce the temperature fluctuation and pressure fluctuation inside the water evaporator that occurs during the water evaporation process, conventionally, a method of providing a water storage tank for increasing the amount of liquid in the water evaporator and water into the water evaporator are used. A method of uniformly distributing and flowing in has been studied.

図1は、従来から用いられている水蒸発器に貯水槽を設け安定した蒸発挙動を確保した構成例を示す図である。また、図2は、従来から水蒸発器に用いられている水の分配方法であるスパージパイプの部分構成を示す図である。   FIG. 1 is a diagram showing a configuration example in which a water storage tank is provided in a conventionally used water evaporator to ensure stable evaporation behavior. FIG. 2 is a diagram showing a partial configuration of a sparge pipe which is a water distribution method conventionally used in water evaporators.

図1に示すように、水蒸発器1として別置きの貯水槽2を設け、貯水槽2に水を供給する。貯水槽2に供給された水は、貯水槽2より高い位置に設置された水蒸発器1内へ水蒸発器1の水頭圧を利用して流入させる。水蒸発器1内へ流入された水は、高温ガスと熱交換を行うことによって、蒸発気化され、図1では省略した次工程の改質器へと供給される。   As shown in FIG. 1, a separate water tank 2 is provided as the water evaporator 1, and water is supplied to the water tank 2. The water supplied to the water storage tank 2 is caused to flow into the water evaporator 1 installed at a position higher than the water storage tank 2 using the water head pressure of the water evaporator 1. The water that has flowed into the water evaporator 1 is evaporated and vaporized by exchanging heat with the high-temperature gas, and supplied to the reformer in the next step, which is omitted in FIG.

循環液量を増加することによって、水蒸発器1内の温度分布は安定し、水蒸発器1の熱応力による損傷を抑制することが可能になる。しかし、図1に示した構成例では、水の貯水槽2を設ける必要があることから、貯水槽2の設置スペースを確保しなければならないという制限があった。   By increasing the amount of circulating fluid, the temperature distribution in the water evaporator 1 is stabilized, and it becomes possible to suppress damage to the water evaporator 1 due to thermal stress. However, in the configuration example shown in FIG. 1, since it is necessary to provide the water reservoir 2, there is a restriction that an installation space for the reservoir 2 must be secured.

また、図2に示すスパージパイプ3は、例えば、水蒸発器のヘッダータンク内に内蔵され、水を均一に分配して通路に導入する細孔3aが設けられている。スパージパイプ3から、細孔3aを介して各通路へ水を流入させることにより、水を均一に分配させることが可能となる。   Moreover, the sparge pipe 3 shown in FIG. 2 is built in, for example, a header tank of a water evaporator, and is provided with pores 3a that uniformly distribute water and introduce it into the passage. By allowing water to flow from the sparge pipe 3 into the respective passages through the pores 3a, it becomes possible to uniformly distribute the water.

しかし、スパージパイプでは、前記図2に示すように、その基本構造はパイプ3に低温流体を均一に分配して通路に導入する細孔3aを配置するものであり、水の分配性能が向上するが、構成部品の構造が複雑となり、部品交換等のメンテナンス性を悪くさせるとともに、製造コストをアップさせる要因となる。   However, in the sparge pipe, as shown in FIG. 2, the basic structure is to arrange the pores 3a for uniformly distributing the low-temperature fluid into the pipe 3 and introducing it into the passage, and the water distribution performance is improved. As a result, the structure of the component parts becomes complicated, which deteriorates maintainability such as part replacement and increases the manufacturing cost.

さらに、特許文献1では、インジェクションチューブを設けたガス加湿器を提案している。特許文献1で提案される基本構成は、流通通路に蒸気源である液体を均一に散布するために、流通通路の上部に両側のチューブプレートに沿ってほぼ水平に挿入されたインジェクションチューブを配置するものであり、ヘッダー内の低温流体を均一に分配して低温流体通路に導入することができる。   Furthermore, Patent Document 1 proposes a gas humidifier provided with an injection tube. In the basic configuration proposed in Patent Document 1, an injection tube inserted substantially horizontally along the tube plates on both sides is arranged on the upper part of the flow passage in order to uniformly disperse the liquid as the vapor source in the flow passage. The cryogenic fluid in the header can be uniformly distributed and introduced into the cryogenic fluid passage.

しかし、特許文献1で提案される基本構成のように、多数のインジェクションチューブをヘッダーに取り付けることが必要になる。このため、インジェクションチューブを採用する場合も、前記スパージパイプの採用と同様に、蒸発器における部品交換等のメンテナンス性を悪くさせるとともに、製造コストを大幅にアップさせる要因となる。   However, as in the basic configuration proposed in Patent Document 1, it is necessary to attach a large number of injection tubes to the header. For this reason, even when the injection tube is employed, as in the case of the use of the sparge pipe, the maintainability such as the replacement of parts in the evaporator is deteriorated and the manufacturing cost is greatly increased.

また、上記に示す従来技術では、いずれも液体状態の水使用を前提としており、水をミスト状態として蒸発器内へ流入させることに関する検討はなされていない。   Moreover, in the prior art shown above, all use water in a liquid state as a premise, and examination about making water flow into an evaporator as a mist state is not made | formed.

特開2004−53101号公報JP 2004-53101 A

前述の通り、水蒸発器、特に燃料電池装置で採用される水蒸発器は、水の蒸発挙動を安定化させ、次工程の改質処理へ、安定した水蒸気量を確保して供給する必要がある。また、水蒸発器内の温度変動を抑制し、温度変動に起因する熱応力が生じることによる水蒸発器の損傷を抑制する必要がある。   As described above, water evaporators, particularly water evaporators used in fuel cell devices, need to stabilize the evaporation behavior of water and supply a stable amount of water vapor to the reforming process in the next step. is there. Moreover, it is necessary to suppress temperature fluctuations in the water evaporator and to suppress damage to the water evaporator due to thermal stress caused by the temperature fluctuations.

本発明は上記の状況に鑑みてなされたものであり、圧電素子を用いて水をミスト状態とし、水蒸発器内へ供給することによって、水の蒸発挙動を安定化させ、次工程へ安定した水蒸気を確保して供給することが可能であり、さらに、水蒸発器内の温度変動を抑制し、温度変動に起因する熱応力が生じることによる水蒸発器の損傷を抑制し、蒸発効率を向上させ小型化した水蒸発器を提供することを目的とする。   The present invention has been made in view of the above situation, and by making water into a mist state using a piezoelectric element and supplying the water into the water evaporator, the evaporation behavior of water is stabilized and stabilized to the next step. It is possible to secure and supply water vapor, and further suppress the temperature fluctuation in the water evaporator, suppress the damage of the water evaporator due to the thermal stress caused by the temperature fluctuation, and improve the evaporation efficiency An object of the present invention is to provide a miniaturized water evaporator.

本発明者は、上述した問題を解決するため、水蒸発器内への水の供給方法に関して種々検討した。その結果、水をミスト状態として水蒸発器内へ供給することによって下記(a)〜(c)に示す知見を得た。   In order to solve the above-described problems, the present inventor has made various studies on a method of supplying water into the water evaporator. As a result, the knowledge shown in the following (a) to (c) was obtained by supplying water into the water evaporator as a mist state.

(a)水を直接水蒸発器内へ流入させた場合と比較すると、水の表面積比(表面積/体積)が大きく、伝熱面積が増加するため蒸発効率の向上が図れる。   (A) Compared with the case where water is directly flowed into the water evaporator, the surface area ratio (surface area / volume) of water is large and the heat transfer area is increased, so that the evaporation efficiency can be improved.

(b)水の分配性能の向上が図れ、さらに、水の流量変動にともなう供給量の変動を抑制できる。   (B) The water distribution performance can be improved, and the fluctuation in the supply amount accompanying the fluctuation in the water flow rate can be suppressed.

(c)ミスト状態の水はガスに近い挙動を示すため、ガスと水を均一に混合することができる。   (C) Since water in a mist state behaves like a gas, the gas and water can be mixed uniformly.

本発明は、上記(a)〜(c)の知見に基づいて完成したものであり、下記(1)〜(3)に記載する水蒸発器を要旨とする。
(1)水貯槽部および熱交換コアからなる蒸発器であって、前記水貯槽部の底面に圧電素子を配し、圧電素子に電圧を加えることによって生じる高周波数の振動を利用して水をミスト状態とし、前記ミスト状態の水を前記熱交換コア部に供給することを特徴とする水蒸発器である(以下、「第一の水蒸発器」という。)。
(2)水貯槽部を備えたガス加湿部および熱交換コアからなる蒸発器であって、前記水貯槽部の底面に圧電素子を配し、圧電素子に電圧を加えることによって生じる高周波数の振動を利用して水をミスト状態とし、さらに前記ガス加湿部に流入されたガスとミスト状態とした水とを混合させた後、当該混合ガスを前記熱交換コアへ供給することを特徴とする水蒸発器(以下、「第二の水蒸発器」という。)。
(3)第一および第二の水蒸発器は、燃料電池装置の改質処理に用いられるのが望ましい。さらに、第一および第二の水蒸発器における熱交換コアは、仕切板を介して高温流体の通路と低温流体の通路とが隣接したプレートフィンタイプとすることができる。
This invention is completed based on the knowledge of said (a)-(c), and makes it a summary to the water evaporator described to following (1)-(3).
(1) An evaporator comprising a water storage tank section and a heat exchange core, wherein a piezoelectric element is arranged on the bottom surface of the water storage tank section, and water is supplied using high-frequency vibration generated by applying a voltage to the piezoelectric element. The water evaporator is characterized by being in a mist state and supplying the water in the mist state to the heat exchange core part (hereinafter referred to as “first water evaporator”).
(2) An evaporator composed of a gas humidification unit having a water storage tank and a heat exchange core, wherein a piezoelectric element is arranged on the bottom surface of the water storage tank and a high frequency vibration is generated by applying a voltage to the piezoelectric element. The water is made into a mist state by using the gas, and further, after the gas flowing into the gas humidifying unit and the water in the mist state are mixed, the mixed gas is supplied to the heat exchange core. Evaporator (hereinafter referred to as “second water evaporator”).
(3) The first and second water evaporators are preferably used for the reforming process of the fuel cell device. Furthermore, the heat exchange cores in the first and second water evaporators can be of the plate fin type in which the passage of the high temperature fluid and the passage of the low temperature fluid are adjacent to each other through the partition plate.

本発明の水蒸発器によれば、圧電素子を用い高周波数の振動を利用して水をミスト状態として水蒸発器内へ供給するため、安定した蒸発挙動を確保することができるとともに、蒸発効率の向上が図れ、水蒸発器を小型化できる。さらに、水蒸発器内の温度変動に起因して生じる熱応力による水蒸発器の損傷を抑制できるとともに、流量変動にともなう水の供給量の変動を抑制できる。   According to the water evaporator of the present invention, since water is supplied into the water evaporator as a mist state using a high frequency vibration using a piezoelectric element, stable evaporation behavior can be ensured and evaporation efficiency can be ensured. The water evaporator can be reduced in size. Further, damage to the water evaporator due to thermal stress caused by temperature fluctuations in the water evaporator can be suppressed, and fluctuations in the amount of water supplied due to flow rate fluctuations can be suppressed.

本発明の水蒸発器は、圧電素子を用い高周波数の振動を利用して水をミスト状態とし、水蒸発器内に供給することによって、水の蒸発挙動を安定化させるとともに、蒸発効率の向上を図ることができる。   The water evaporator of the present invention stabilizes the evaporation behavior of water and improves the evaporation efficiency by supplying water into the water evaporator by using a piezoelectric element to make high-frequency vibrations into a mist state. Can be achieved.

図3は、本発明の「第一の水蒸発器」の構成例を示す図である。図3に示すように、第一の水蒸発器1は水貯槽部1aおよび熱交換コア1bで構成され、水貯槽部1aの底面に圧電素子4が配されている。水貯槽部1aに収容される水は、図3では省略した液面計と連動するソレノイドバルブ5を介して水貯槽部1aへ供給され、圧電素子4に電圧を加えることによって生じる高周波数の振動によってミスト状態とされ、水蒸発器内を浮遊し、高温ガスと熱交換を行うことによって加熱され、上昇気流を生じ、次工程へと供給される。   FIG. 3 is a diagram showing a configuration example of the “first water evaporator” of the present invention. As shown in FIG. 3, the 1st water evaporator 1 is comprised by the water storage tank part 1a and the heat exchange core 1b, and the piezoelectric element 4 is distribute | arranged to the bottom face of the water storage tank part 1a. The water stored in the water storage tank 1a is supplied to the water storage tank 1a via a solenoid valve 5 interlocked with a liquid level gauge not shown in FIG. The mist is made into a mist state, floats in the water evaporator, is heated by exchanging heat with the high-temperature gas, generates an updraft, and is supplied to the next process.

圧電素子4を用いて水をミスト状態とする場合は、圧電素子4への供給電圧によってミストの発生量を制御する。したがって、従来のスプレーノズル等を用いた場合に問題となる、蒸発の際の水の圧力変動にともなう流量変動の影響は少なく、また、ノズルの目詰まりによるトラブルを回避できる。   When water is made into a mist state using the piezoelectric element 4, the amount of mist generated is controlled by the supply voltage to the piezoelectric element 4. Therefore, there is little influence of flow rate fluctuations due to water pressure fluctuations during evaporation, which is a problem when using a conventional spray nozzle or the like, and troubles due to nozzle clogging can be avoided.

さらに、水をミスト状態とすることによって、水を熱交換コアに均一に分配することが可能になるため、従来、水の分配性能の向上を図るため使用していたスパージパイプやインジェクションチューブが不要となり、水蒸発器の製造コストを削減できる。   Furthermore, since water can be uniformly distributed to the heat exchange core by making the water into a mist state, the sparge pipes and injection tubes that have been used to improve the water distribution performance are no longer necessary. The manufacturing cost of the water evaporator can be reduced.

さらに、ミスト状態とした水は、表面積比(表面積/体積)が大きく、伝熱面積が増加するため蒸発効率の向上が図れ、水蒸発器の小型化が可能となる。   Furthermore, the water in the mist state has a large surface area ratio (surface area / volume) and the heat transfer area increases, so that the evaporation efficiency can be improved and the water evaporator can be downsized.

図4は、本発明の「第二の水蒸発器」の構成例を示す図である。図4に示すように、第二の水蒸発器1は、水貯槽部1aを備えたガス加湿部7および熱交換コア1bで構成されている。水貯槽部1aに収容される水は、図では省略した液面計と連動しているソレノイドバルブ5を介して水貯槽部1aへ供給され、圧電素子4に電圧を加えることによって生じる高周波数の振動によってミスト状態とされる。   FIG. 4 is a diagram showing a configuration example of the “second water evaporator” of the present invention. As shown in FIG. 4, the 2nd water evaporator 1 is comprised by the gas humidification part 7 provided with the water storage tank part 1a, and the heat exchange core 1b. The water stored in the water storage tank 1a is supplied to the water storage tank 1a via a solenoid valve 5 interlocked with a liquid level gauge (not shown in the figure), and a high frequency generated by applying a voltage to the piezoelectric element 4. Mist state is caused by vibration.

また、ガス(例えば、燃料電池装置における燃料ガス)は、ガス用ソレノイドバルブ6を介してガス加湿部7へ供給され、ミスト状態の水と混合され水蒸発器へ供給され、高温ガスと熱交換を行うことによって加熱され、図では省略した次工程の燃料改質へと供給される。   Gas (for example, fuel gas in the fuel cell device) is supplied to the gas humidification unit 7 via the gas solenoid valve 6, mixed with water in the mist state, supplied to the water evaporator, and exchanges heat with the high-temperature gas. And is supplied to the fuel reforming of the next step, which is omitted in the drawing.

水をミスト状態とすることによって、水は気体に近い挙動を示し、ガスと均一に混合することが容易になる。また、圧電素子によってミスト状態とした水は駆動力を有しないことから、燃料ガスの噴射によってミスト状態の水の駆動力として利用することができる。   By making water into a mist state, the water behaves like a gas and it becomes easy to mix with the gas uniformly. Moreover, since the water made into the mist state by the piezoelectric element does not have the driving force, it can be used as the driving force of the water in the mist state by the fuel gas injection.

ガス加湿部7でのミスト状態の水と燃料ガスを混合する方法としては、例えば、燃料ガスを中央が狭まっている通路に勢いよく流し、その通路をガス加湿部7と連通させる構成とし、ベンチュリー効果を利用することができる。ベンチュリー効果を利用する際の装置構造は簡易であり、構成部品も少ないことから部品損傷等に起因するトラブルを抑制でき、水蒸発器の製造コストを低廉にできる。   As a method of mixing water and fuel gas in the mist state in the gas humidification unit 7, for example, the fuel gas is vigorously flowed into a passage narrowed at the center, and the passage is communicated with the gas humidification unit 7; The effect can be utilized. The apparatus structure when using the Venturi effect is simple and the number of components is small, so that troubles caused by parts damage and the like can be suppressed, and the manufacturing cost of the water evaporator can be reduced.

さらに、ミスト状態の水と燃料ガスを混合して水蒸発器へ供給することによって、水蒸気をスーパーヒートするとともに、燃料ガスの予熱を行うことが可能となり、従来と比較すると水蒸発器のエネルギー効率の改善が図れる。   Furthermore, by mixing mist water and fuel gas and supplying them to the water evaporator, it is possible to superheat water vapor and preheat the fuel gas. Compared to the conventional method, the energy efficiency of the water evaporator Can be improved.

本発明の「第一の水蒸発器」および「第二の水蒸発器」は、燃料電池装置の改質処理に用いられるのが望ましい。前述の通り、燃料電池装置、特に燃料電池の燃料を生成するための天然ガスの水素化やメタノールの水素改質に際して用いられる水蒸発器は、水蒸気の供給量が燃料電池の発電量に影響することから、安定した蒸発挙動を確保する必要があることによる。   The “first water evaporator” and the “second water evaporator” of the present invention are preferably used for the reforming process of the fuel cell device. As described above, in a water evaporator used for hydrogenation of natural gas or hydrogen reforming of methanol to produce fuel for fuel cell devices, particularly fuel cells, the amount of steam supplied affects the amount of power generated by the fuel cell. Therefore, it is necessary to ensure a stable evaporation behavior.

特に、本発明の「第二の水蒸発器」は、安定した蒸発挙動を確保するとともに、水と燃料ガスを混合させて熱交換コアへ供給できるため、水蒸気の生成とともに燃料ガスの予熱を行うことが可能となり、従来と比較すると水蒸発器のエネルギー効率の改善が図れるため、燃料電池装置の改質処理に用いるのが最適である。   In particular, the “second water evaporator” of the present invention ensures stable evaporation behavior and can mix water and fuel gas and supply them to the heat exchange core, so that fuel gas is preheated along with the generation of water vapor. It is possible to improve the energy efficiency of the water evaporator as compared with the prior art, and it is optimal to use it for the reforming process of the fuel cell device.

本発明の「第一の水蒸発器」および「第二の水蒸発器」における熱交換コアには、仕切板を介して高温流体の通路と低温流体の通路とが隣接したプレートフィンタイプを採用するのが望ましい。水蒸発器を小型化しつつ、優れた蒸発効率を確保することによる。   The heat exchange core in the “first water evaporator” and “second water evaporator” of the present invention adopts a plate fin type in which the passage of the high-temperature fluid and the passage of the low-temperature fluid are adjacent to each other through the partition plate. It is desirable to do. By miniaturizing the water evaporator and ensuring excellent evaporation efficiency.

また、上述した本発明の水蒸発器において水をミスト状態とする場合には、ミスト状態の水の粒子径は数ミクロン程度の微細な水粒子を使うのが望ましい。   Further, when the water evaporator of the present invention described above is in a mist state, it is desirable to use fine water particles having a mist state water particle diameter of about several microns.

ミスト状態となった水の微粒子にも質量があるため、駆動力(例えば、上昇する空気の流れ)がなければミスト状態となった水の微粒子は降下する。水の粒子径が大きい場合は粒子の質量が重くなり、必然的に早く降下し、空気の温度によっては気化するまもなく床や壁を湿らせる事態も起きる。   Since the water microparticles in the mist state also have mass, the water microparticles in the mist state will fall if there is no driving force (for example, rising air flow). When the particle size of water is large, the mass of the particle becomes heavier and inevitably descends quickly, and depending on the temperature of the air, the floor and the wall may be moistened shortly before vaporization.

一方、水の粒子径が小さい場合は、水の粒子は軽くなり、降下し難くなり、空間の隅々まで行き渡り、比較的低い温度に設定された室内でも気化しやすい。したがって、一般には水の粒子径が小さいほど、均一な湿度環境を維持しやすい。したがって、本発明の水蒸発器では、水をミスト状態とする場合に、粒子径は数ミクロン程度の微細な水粒子を使うことにより、高性能で耐久性に優れるという特性を発揮することができる。   On the other hand, when the particle size of water is small, the water particles become light and difficult to descend, reach every corner of the space, and easily vaporize even in a room set at a relatively low temperature. Therefore, in general, the smaller the water particle size, the easier it is to maintain a uniform humidity environment. Therefore, in the water evaporator according to the present invention, when water is in a mist state, the use of fine water particles having a particle diameter of about several microns can exhibit high performance and excellent durability. .

本発明の「第一の水蒸発器」の効果について以下に説明する。水蒸気の発生量を1000cc/hrとし、水の入口温度を室温(20℃)、出口温度を350℃として水蒸発器の設計を行い、燃料電池装置に設置し、従来の水蒸発器と本発明の「第一の水蒸発器」の性能を比較した。   The effect of the “first water evaporator” of the present invention will be described below. The water vapor generator is designed to have a water vapor generation rate of 1000 cc / hr, the water inlet temperature is room temperature (20 ° C.), the outlet temperature is 350 ° C., and is installed in the fuel cell device. The performance of the "first water evaporator" was compared.

図5は、従来、燃料電池装置に用いられていた水蒸発器の具体的構成例および外形寸法を示す図である。一方、図6は、実施例に用いた「第一の水蒸発器」の具体的構成例および外形寸法を示す図である。   FIG. 5 is a diagram showing a specific configuration example and external dimensions of a water evaporator conventionally used in a fuel cell device. On the other hand, FIG. 6 is a diagram showing a specific configuration example and external dimensions of the “first water evaporator” used in the examples.

図5に示すように従来の水蒸発器は、底部から液体状態の水を熱交換コア1bへ流入させる。熱交換コア1bに流入した液体状の水は加熱体と熱交換を行いながら熱交換コア1b内を流通し、蒸発気化されて水蒸気となり水蒸発器の系外へ流出される。   As shown in FIG. 5, the conventional water evaporator allows liquid water to flow into the heat exchange core 1b from the bottom. The liquid water that has flowed into the heat exchange core 1b flows through the heat exchange core 1b while exchanging heat with the heating body, and is evaporated and vaporized to form water vapor and flow out of the water evaporator.

また、図6に示すように本発明の「第一の水蒸発器」は水貯槽部1aおよび熱交換コア1bで構成され、水貯槽部1aの底部には圧電素子4を配し電圧を加えることによって水をミスト状態とすることが可能である。   Further, as shown in FIG. 6, the “first water evaporator” of the present invention is composed of a water storage tank 1a and a heat exchange core 1b, and a piezoelectric element 4 is arranged at the bottom of the water storage tank 1a to apply a voltage. It is possible to make water into a mist state.

また、図では省略した液面計によって、水の液面を管理し、圧電素子4の霧化効率に最適な液面を確保している。   Further, the level of water is controlled by a liquid level meter, which is omitted in the figure, and the optimal level for the atomization efficiency of the piezoelectric element 4 is ensured.

図5および図6に示すように、従来構造の水蒸発器は、外形寸法が50W×100H×200Lで重量が5kgであるのに対し、本発明の「第一の水蒸発器」は、外形寸法が50W×50H×175Lで重量が3.5kgとなり、ミスト状態の水を熱交換コア1bに供給することによって、水蒸発器の蒸発効率の改善を図り、水蒸発器を小型化することができ、水蒸発器の重量を30%軽減できた。   As shown in FIGS. 5 and 6, the water evaporator having a conventional structure has an outer dimension of 50 W × 100 H × 200 L and a weight of 5 kg, whereas the “first water evaporator” of the present invention has an outer shape. The dimensions are 50W x 50H x 175L and the weight is 3.5kg. By supplying water in the mist state to the heat exchange core 1b, it is possible to improve the evaporation efficiency of the water evaporator and downsize the water evaporator. And the weight of the water evaporator was reduced by 30%.

また、本発明の「第一の水蒸発器」は、従来の水蒸発器と比較すると、熱交換コアへ水が均一に供給されることから熱交換コアの温度変動が抑制されており、さらに、安定な蒸発挙動を確保することができ、次工程の改質器に安定した水蒸気量を供給することができた。   In addition, the “first water evaporator” of the present invention has a uniform temperature supply to the heat exchange core compared to the conventional water evaporator, so that the temperature fluctuation of the heat exchange core is suppressed, As a result, stable evaporation behavior could be secured, and a stable amount of water vapor could be supplied to the reformer in the next step.

本発明の水蒸発器は、圧電素子を用いてミスト状態とした水を水蒸発器内へ供給することによって、安定した水の蒸発挙動を確保することが可能となり、安定した水蒸気の供給量が確保できる。また、ミスト状態の水を水蒸発器内へ供給することによって、蒸発効率の向上を図り、さらに、水蒸発器内の温度変動を抑制することによって、温度変動に起因して生じる熱応力による水蒸発器の損傷を抑制することができる。これにより、燃料電池装置の燃料改質用として広く適用できる。   The water evaporator according to the present invention can ensure a stable water evaporation behavior by supplying water in a mist state using a piezoelectric element into the water evaporator. It can be secured. In addition, by supplying water in the mist state into the water evaporator, the evaporation efficiency is improved. Further, by suppressing the temperature fluctuation in the water evaporator, the water due to the thermal stress caused by the temperature fluctuation is reduced. Damage to the evaporator can be suppressed. Thereby, it can apply widely for the fuel reforming of a fuel cell device.

従来から用いられている水蒸発器に貯水槽を設け安定した蒸発挙動を確保した構成例を示す図である。It is a figure which shows the structural example which provided the water storage tank in the water evaporator used conventionally and ensured the stable evaporation behavior. 従来から水蒸発器に用いられている水の分配方法であるスパージパイプの部分構成を示す図である。It is a figure which shows the partial structure of the sparge pipe which is the distribution method of the water conventionally used for the water evaporator. 本発明の「第一の水蒸発器」の構成例を示す図である。It is a figure which shows the structural example of the "1st water evaporator" of this invention. 本発明の「第二の水蒸発器」の構成例を示す図である。It is a figure which shows the structural example of the "2nd water evaporator" of this invention. 従来、燃料電池装置に用いられていた水蒸発器の具体的構成例および外形寸法を示す図である。It is a figure which shows the specific structural example and external dimension of the water evaporator conventionally used for the fuel cell apparatus. 実施例に用いた「第一の水蒸発器」の具体的構成例および外形寸法を示す図である。It is a figure which shows the specific structural example and external dimension of the "1st water evaporator" used for the Example.

符号の説明Explanation of symbols

1:水蒸発器、 1a:水貯槽部、
1b:熱交換コア、 2:貯水槽、
3:スパージパイプ、 3a:孔、
4:圧電素子、 5:ソレノイドバルブ、
6:ガス用ソレノイドバルブ、 7:ガス加湿部
1: water evaporator, 1a: water reservoir,
1b: heat exchange core, 2: water tank,
3: sparge pipe, 3a: hole,
4: Piezoelectric element, 5: Solenoid valve,
6: Gas solenoid valve, 7: Gas humidifier

Claims (4)

水貯槽部および熱交換コアからなる蒸発器であって、前記水貯槽部の底面に圧電素子を配し、圧電素子に電圧を加えることによって生じる高周波数の振動を利用して水をミスト状態とし、前記ミスト状態の水を前記熱交換コア部に供給することを特徴とする水蒸発器。   An evaporator comprising a water storage section and a heat exchange core, wherein a piezoelectric element is disposed on the bottom surface of the water storage section, and water is made into a mist state by utilizing high frequency vibration generated by applying voltage to the piezoelectric element. The water evaporator is characterized in that the water in the mist state is supplied to the heat exchange core part. 水貯槽部を備えたガス加湿部および熱交換コアからなる蒸発器であって、前記水貯槽部の底面に圧電素子を配し、圧電素子に電圧を加えることによって生じる高周波数の振動を利用して水をミスト状態とし、さらに前記ガス加湿部に流入されたガスとミスト状態とした水とを混合させた後、当該混合ガスを前記熱交換コアへ供給することを特徴とする水蒸発器。   An evaporator comprising a gas humidifying unit and a heat exchange core with a water storage tank, and a piezoelectric element is disposed on the bottom surface of the water storage tank, and a high frequency vibration generated by applying a voltage to the piezoelectric element is utilized. The water evaporator is characterized in that the water is made into a mist state, and further, the gas flowing into the gas humidifying unit and the water in the mist state are mixed, and then the mixed gas is supplied to the heat exchange core. 燃料電池装置の改質処理に用いることを特徴とした請求項1または2に記載の水蒸発器。   The water evaporator according to claim 1 or 2, wherein the water evaporator is used for a reforming process of a fuel cell device. 前記熱交換コアが仕切板を介して高温流体の通路と低温流体の通路とが隣接したプレートフィン型であることを特徴とした請求項1〜3のいずれかに記載の水蒸発器。
The water evaporator according to any one of claims 1 to 3, wherein the heat exchange core is a plate fin type in which a passage of a high-temperature fluid and a passage of a low-temperature fluid are adjacent to each other through a partition plate.
JP2006134822A 2006-05-15 2006-05-15 Water evaporator Pending JP2007303774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134822A JP2007303774A (en) 2006-05-15 2006-05-15 Water evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134822A JP2007303774A (en) 2006-05-15 2006-05-15 Water evaporator

Publications (1)

Publication Number Publication Date
JP2007303774A true JP2007303774A (en) 2007-11-22

Family

ID=38837849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134822A Pending JP2007303774A (en) 2006-05-15 2006-05-15 Water evaporator

Country Status (1)

Country Link
JP (1) JP2007303774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2501590C2 (en) * 2012-02-03 2013-12-20 Общество с ограниченной ответственностью "ЭфЭнергия" Evaporator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266778A (en) * 1987-04-23 1988-11-02 Matsushita Electric Ind Co Ltd Fuel cell
JPH07293953A (en) * 1994-04-20 1995-11-10 Matsushita Seiko Co Ltd Ultrasonic humidifier
JP2003074919A (en) * 2001-08-31 2003-03-12 Sunbow Precision Co Ltd Composite humidifier
JP2003202136A (en) * 2002-01-07 2003-07-18 Mitsubishi Electric Corp Humidification unit for air conditioner
JP2004053101A (en) * 2002-07-18 2004-02-19 Sumitomo Precision Prod Co Ltd Gas moistening apparatus
JP2005116499A (en) * 2003-10-10 2005-04-28 Hyundai Motor Co Ltd Temperature/humidity control system for fuel cell stack and its control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266778A (en) * 1987-04-23 1988-11-02 Matsushita Electric Ind Co Ltd Fuel cell
JPH07293953A (en) * 1994-04-20 1995-11-10 Matsushita Seiko Co Ltd Ultrasonic humidifier
JP2003074919A (en) * 2001-08-31 2003-03-12 Sunbow Precision Co Ltd Composite humidifier
JP2003202136A (en) * 2002-01-07 2003-07-18 Mitsubishi Electric Corp Humidification unit for air conditioner
JP2004053101A (en) * 2002-07-18 2004-02-19 Sumitomo Precision Prod Co Ltd Gas moistening apparatus
JP2005116499A (en) * 2003-10-10 2005-04-28 Hyundai Motor Co Ltd Temperature/humidity control system for fuel cell stack and its control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2501590C2 (en) * 2012-02-03 2013-12-20 Общество с ограниченной ответственностью "ЭфЭнергия" Evaporator

Similar Documents

Publication Publication Date Title
US6776809B2 (en) Fuel reforming apparatus
US7264234B2 (en) Gas humidifier
Mao et al. A critical review on measures to suppress flow boiling instabilities in microchannels
JP2000317358A (en) Spray nozzle type mist generator and mist generator installation apparatus for fuel cell
JP2004149402A (en) Hydrogen generator and fuel cell system having the same
JP5461756B2 (en) Evaporator
CN113871658A (en) Humidification system for fixed fuel cell power station and control method
EP1162171B1 (en) Fuel reforming apparatus
JP2007303774A (en) Water evaporator
CN112361860B (en) Modularized double-phase-change composite thermal control system device and heat exchange method
JP4836668B2 (en) Fuel cell
KR101421355B1 (en) Fuel humidifier
JP2001135337A (en) Fuel evaporator
JP3071207B2 (en) Fuel cell power generator
JP2010169364A (en) Thermosiphon type steam generator
JP2016177880A (en) Reforming water evaporator and power generator
JP2001332283A (en) Evaporator for fuel cell
JP2002060205A (en) Fuel reformer
JP6809012B2 (en) Modified water evaporator and power generator
US6494169B1 (en) Evaporator and method for manufacturing same
JP2007237032A (en) Evaporator with excellent distribution performance
JP3886762B2 (en) Reforming reactor
JPS60177566A (en) Fuel cell power generating system
JP2012186048A (en) Fuel evaporating apparatus
CN116487644A (en) Spray evaporation cavity, fuel cell, power device and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122