JP2007303029A - Heat treatment furnace - Google Patents

Heat treatment furnace Download PDF

Info

Publication number
JP2007303029A
JP2007303029A JP2006133318A JP2006133318A JP2007303029A JP 2007303029 A JP2007303029 A JP 2007303029A JP 2006133318 A JP2006133318 A JP 2006133318A JP 2006133318 A JP2006133318 A JP 2006133318A JP 2007303029 A JP2007303029 A JP 2007303029A
Authority
JP
Japan
Prior art keywords
furnace
sheet
heat treatment
heat
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006133318A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tatsuta
浩之 龍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2006133318A priority Critical patent/JP2007303029A/en
Publication of JP2007303029A publication Critical patent/JP2007303029A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment furnace that increases a temperature difference between zones and reduces wrinkles, undulation, etc., without reducing a contact pressure application function. <P>SOLUTION: The heat treatment furnace 2 for producing a product sheet 40 by heat-treating a raw material sheet 4 has an upstream furnace part 16 that forms a raw material sheet inlet part 8 and has contact pressure rollers 22a and 22b inside, a downstream furnace part 18 that form a product sheet outlet part 12 and has contact pressure rollers 22d and 22e inside, a partition wall 14 that divides the furnace 2 into the upstream furnace part 16 and the downstream furnace part 18 and forms a sheet conveying window 20, a heat insulating roller 22c attached to the sheet conveying window 20 and heating means 32a, 32b, .., 36d installed in the furnace. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シートの加熱処理を行う耐炎繊維を素材とするシートから炭素繊維シートを製造する際など、原料シートを加熱処理して製品シートを製造する際に使用する熱処理炉において、炉内の上流炉部と下流炉部との間で温度差を確実に形成できると共に原料シートに充分の接圧を与えて、得られる製品シートの品位を向上させる熱処理炉に関する。   The present invention relates to a heat treatment furnace used for producing a product sheet by heat-treating a raw material sheet, such as when producing a carbon fiber sheet from a sheet made of flame-resistant fiber that performs heat treatment of the sheet. The present invention relates to a heat treatment furnace capable of reliably forming a temperature difference between an upstream furnace part and a downstream furnace part and applying sufficient contact pressure to a raw material sheet to improve the quality of a product sheet to be obtained.

炭素繊維シートは、補強材、断熱材、耐火材などの用途がある。更に、導電性、通気性が良いため、導電材や電極材としての用途が期待されている。特に、電池用電極材としての用途は重要である。   The carbon fiber sheet has uses such as a reinforcing material, a heat insulating material, and a refractory material. Furthermore, since it has good conductivity and air permeability, it is expected to be used as a conductive material or an electrode material. In particular, the use as a battery electrode material is important.

炭素繊維シートを電極材用として用いる場合、近年の電池の小型化、軽量化に対応できるように、炭素繊維シート自体の厚さを小さくすることが求められている。   When a carbon fiber sheet is used as an electrode material, it is required to reduce the thickness of the carbon fiber sheet itself so as to cope with the recent reduction in size and weight of batteries.

従来より薄層の炭素繊維シートの製造方法としては、炭素繊維、耐炎繊維等の原料繊維を紙、不織布、フェルト、織物等の薄層シートに加工し、これを連続的に加熱処理する方法が知られている。   As a conventional method for producing a thin-layer carbon fiber sheet, there is a method in which raw fibers such as carbon fiber and flame-resistant fiber are processed into a thin-layer sheet such as paper, nonwoven fabric, felt, and woven fabric, and this is continuously heat-treated. Are known.

従来の耐炎繊維シートを原料とする薄層の炭素繊維シートの製造方法においては、温度域800℃以下の低温における加熱処理(第1炭素化処理)と温度域1500〜2500℃の高温における加熱処理(第2炭素化処理)の2段の加熱処理を行う方法が主流である。この2段の加熱処理において、耐炎繊維の低温熱処理は無緊張下で行われていることが多い。低温熱処理をした薄層シートの高温処理は通常無緊張下で行われるか、張力付与下で行われるか、加熱体へ接触させてシート表面を加圧した状態で行われる。   In the conventional method for producing a thin-layer carbon fiber sheet using a flame-resistant fiber sheet as a raw material, heat treatment at a low temperature in the temperature range of 800 ° C. or less (first carbonization treatment) and heat treatment at a high temperature in the temperature range of 1500 to 2500 ° C. A method of performing a two-stage heat treatment (second carbonization treatment) is the mainstream. In this two-stage heat treatment, the low-temperature heat treatment of the flame resistant fiber is often performed without tension. The high-temperature treatment of the thin-layer sheet subjected to the low-temperature heat treatment is usually performed under no tension, under tension, or in a state where the surface of the sheet is pressed by contacting with a heating body.

しかし、従来の炭素繊維シートの製造方法においては、耐炎繊維シートを低温熱処理する場合、処理中のシートの熱収縮が大きいので、無緊張下で加熱処理するとシートには皺やうねりが発生し、得られる炭素繊維シートの表面品位(皺、うねり)が低下する問題がある。   However, in the conventional method for producing a carbon fiber sheet, when heat-treating a flame resistant fiber sheet at a low temperature, the sheet undergoing heat treatment has a large thermal shrinkage, and when subjected to heat treatment under no tension, wrinkles and undulations occur in the sheet. There is a problem that the surface quality (wrinkles, undulation) of the obtained carbon fiber sheet is lowered.

上記炭素繊維シートの製造中に生ずる熱収縮に起因する表面品位低下の改善を目的とする製造装置が提案されている(例えば、特許文献1、2参照)。   There has been proposed a manufacturing apparatus for the purpose of improving surface quality degradation caused by thermal shrinkage that occurs during the manufacture of the carbon fiber sheet (see, for example, Patent Documents 1 and 2).

特許文献1には、低温熱処理炉と高温熱処理炉とを基本構成とする炭素繊維シートの製造装置において、高温熱処理炉の下流に皺加熱矯正炉を設けることにより、耐炎繊維シートの熱収縮に起因する表面品位を改善することが開示されている。   In Patent Document 1, in a carbon fiber sheet manufacturing apparatus having a low-temperature heat treatment furnace and a high-temperature heat treatment furnace as basic components, by providing a flame heating straightening furnace downstream of the high-temperature heat treatment furnace, It is disclosed to improve surface quality.

特許文献2には、低温処理前の耐炎繊維シートを熱板や金型で連続加熱加圧することにより、低温処理後のシートの表面品位を改善することが開示されている。   Patent Document 2 discloses that the surface quality of a sheet after low-temperature treatment is improved by continuously heating and pressing the flame-resistant fiber sheet before low-temperature treatment with a hot plate or a mold.

しかし、特許文献1及び2に開示された製造装置は何れも、基本構成の熱処理炉以外にシート表面品位改善のための付帯設備が必要になり、製造装置全体の大型化や、コストが上昇する問題がある。   However, both of the manufacturing apparatuses disclosed in Patent Documents 1 and 2 require an additional facility for improving the sheet surface quality in addition to the heat treatment furnace having the basic configuration, which increases the size of the entire manufacturing apparatus and increases the cost. There's a problem.

炭素繊維シートの製造に際しては、温度域500〜1000℃における低温熱処理(第1炭素化処理)と温度域1500〜2300℃における高温熱処理(第2炭素化処理)の2回の熱処理を行うことが好ましい。   In the production of the carbon fiber sheet, two heat treatments, a low temperature heat treatment (first carbonization treatment) in a temperature range of 500 to 1000 ° C. and a high temperature heat treatment (second carbonization treatment) in a temperature range of 1500 to 2300 ° C., may be performed. preferable.

本発明者の属する研究グループは、加熱処理時に皺やうねり等の形状変化を起こさない炭素繊維シートの製造方法を検討しているうちに、第1炭素化炉における炉内の温度分布を適正にし、更にこの第1炭素化炉内にローラーを配設して原料の耐炎繊維シートにテンションを付与した状態で、ローラーで接圧を負荷しながら加熱処理する方法に想到した。この方法によれば、シートに生ずる熱収縮に起因する皺やうねり等の問題を生ずることなく炭素繊維シートを連続生産できることを知得し、先に出願した(特許文献3)。
特開2004−256959号公報 (特許請求の範囲、段落番号[0008]〜[0010]、[0017]〜[0020]、[0040]、図1〜3) 特開2004−308098号公報 (特許請求の範囲、段落番号[0006]、[0029]〜[0044]、[0062]〜[0069]、図1〜2) 特開2005−344246号公報 (特許請求の範囲、段落番号[0019])
While the research group to which the inventor belongs is studying a method for producing a carbon fiber sheet that does not cause shape changes such as wrinkles and swells during heat treatment, the temperature distribution in the furnace in the first carbonization furnace is made appropriate. Furthermore, the present inventors have conceived a method in which a roller is disposed in the first carbonization furnace and a heat treatment is performed while applying a contact pressure with the roller in a state where tension is applied to the raw flame-resistant fiber sheet. According to this method, it was learned that carbon fiber sheets can be continuously produced without causing problems such as wrinkles and undulations caused by thermal shrinkage occurring in the sheets, and an application was made earlier (Patent Document 3).
JP 2004-256959 A (Claims, paragraph numbers [0008] to [0010], [0017] to [0020], [0040], FIGS. 1 to 3) JP 2004-308098 A (claims, paragraph numbers [0006], [0029] to [0044], [0062] to [0069], FIGS. 1-2) JP 2005-344246 A (Claims, paragraph number [0019])

本発明者は、更に温度域500〜1000℃で低温熱処理を行う第1炭素化炉において、接圧ローラー、ニップローラー、プレス等の接圧付与手段を用いて耐炎繊維シートに150Pa以上の接圧を付与する加熱処理を試みた。この接圧を加える方法を採用することにより、加熱処理時に皺やうねり等の形状劣化を起こすことなく、高表面品位の中間シートが得られた。この中間シートを温度域1500〜2300℃の高温熱処理を行う第2炭素化炉において加熱処理することにより、加熱処理時に皺やうねり等の形状変化を起こさない高表面品位の炭素繊維シートが得られることが解った。   In the first carbonization furnace that further performs low-temperature heat treatment in a temperature range of 500 to 1000 ° C., the present inventor uses a contact pressure applying means such as a contact pressure roller, a nip roller, and a press to apply a contact pressure of 150 Pa or more to the flame resistant fiber sheet. Attempts were made to heat-treat. By adopting this method of applying contact pressure, an intermediate sheet having a high surface quality was obtained without causing shape deterioration such as wrinkles and undulations during the heat treatment. By heat-treating this intermediate sheet in a second carbonization furnace that performs high-temperature heat treatment in a temperature range of 1500 to 2300 ° C., a high surface quality carbon fiber sheet that does not cause shape changes such as wrinkles and swells during the heat treatment is obtained. I understood that.

接圧付与手段のうちプレスは通常バッチ操作になる。連続生産を考慮すると、接圧付与手段として接圧ローラー、ニップローラー等のローラーを備える熱処理炉を用いて、原料の耐炎繊維シートにテンションを付与しながらローラーで接圧を負荷させて加熱処理する方法が効率的である。この場合、接圧ローラー間の距離が充分小さい状態で、炉内に数多く配設し、それら接圧ローラー間に耐炎繊維シートをジグザグに張り渡すことにより、耐炎繊維シートとの接触面積が大きくなり、その結果、接圧付与機能が有効に発揮されることが解った。   Of the contact pressure applying means, the press is normally a batch operation. In consideration of continuous production, heat treatment is performed by applying a contact pressure with a roller while applying tension to the raw flame-resistant fiber sheet using a heat treatment furnace having a contact pressure roller, a nip roller, or the like as a contact pressure applying means. The method is efficient. In this case, the contact area with the flame resistant fiber sheet is increased by arranging a large number in the furnace with a sufficiently small distance between the contact pressure rollers, and stretching the flame resistant fiber sheet zigzag between the contact pressure rollers. As a result, it was found that the contact pressure imparting function is effectively exhibited.

炉内に接圧ローラー等を備えていない通常の熱処理炉と比較し、その内部に接圧ローラーを備える熱処理炉は、必然的に耐炎繊維シートの搬送方向に直交する炉内開口断面積や炉内高さが大きくなる。炉内開口断面積が大きくなると、加熱手段を炉内下流側に設置していても、その開口断面を通る加熱手段からの輻射量が多くなることによって炉内の温度は均一化されるため、炉内の入口部の温度を低く保てない。その結果、炉入口部における炉外から炉内に向かう温度上昇が急激なものとなり、耐炎繊維シートは炉入口部を通過する際に急激に加熱され、炉入口部において収縮して皺が発生してしまう。   Compared to a normal heat treatment furnace that does not have a contact pressure roller or the like in the furnace, a heat treatment furnace that has a contact pressure roller in the furnace inevitably has a cross-sectional area in the furnace opening or a furnace perpendicular to the conveyance direction of the flame resistant fiber sheet. The inner height increases. When the furnace opening cross-sectional area is large, even if the heating means is installed on the downstream side in the furnace, the amount of radiation from the heating means passing through the opening cross-section is increased, so the temperature in the furnace becomes uniform, The temperature at the entrance of the furnace cannot be kept low. As a result, the temperature rise from the outside of the furnace to the inside of the furnace at the furnace inlet becomes abrupt, and the flame resistant fiber sheet is heated rapidly when passing through the furnace inlet, and shrinks at the furnace inlet and generates soot. End up.

炉内の入口部の温度を低くするには、上記先願特許(特許文献3)に記載されているように、炉長手方向に沿って隔壁を設け、昇温域温度ゾーン、高温域温度ゾーンなどのゾーンを設けてゾーン間の温度差を大きくすることが考えられる。しかし、ゾーン間の隔壁を接圧ローラー間に設けると、その箇所において接圧ローラー間の距離が増加し、その結果、隔壁設置箇所においてローラーとシートとの非接触部が大きくなる。従って、炉内全体としては、ローラーとシートとの接触面積が小さくなり、接圧付与機能が低下する問題がある。   In order to lower the temperature of the inlet portion in the furnace, as described in the above-mentioned prior patent (Patent Document 3), a partition wall is provided along the longitudinal direction of the furnace, and the temperature rise zone temperature zone, the high temperature zone temperature zone It is conceivable to increase the temperature difference between the zones by providing such zones. However, when the partition between the zones is provided between the contact pressure rollers, the distance between the contact pressure rollers is increased at that location, and as a result, the non-contact portion between the roller and the sheet is increased at the partition installation location. Therefore, as a whole in the furnace, there is a problem that the contact area between the roller and the sheet is reduced, and the contact pressure application function is lowered.

本発明者は、シートの表面品位の改善について更に検討を重ねるうちに、接圧ローラー間に隔壁を設けるのではなく、炉内の上流部と下流部とを仕切る隔壁に形成したシート搬送窓に、断熱ローラーを配置することにより、接圧付与機能を低下させずに、ゾーン間の温度差を大きくすることができ、その結果、加熱処理の際のシートの熱収縮による皺やうねり等を低減できることを知得した。更に上記熱処理炉は、炭素化処理以外の加熱処理にも適用できることを知得した。本発明は上記知見に基づき完成するに至ったもので、その目的とするところは、上記問題を解決した熱処理炉を提供することにある。   While further studying the improvement of the surface quality of the sheet, the inventor does not provide a partition wall between the contact pressure rollers, but a sheet conveyance window formed in the partition wall that partitions the upstream portion and the downstream portion in the furnace. By arranging a heat insulating roller, the temperature difference between zones can be increased without reducing the contact pressure imparting function, and as a result, wrinkles and undulations due to thermal contraction of the sheet during heat treatment are reduced. I learned that I can do it. Furthermore, it has been found that the heat treatment furnace can be applied to heat treatment other than carbonization treatment. The present invention has been completed based on the above findings, and an object of the present invention is to provide a heat treatment furnace that solves the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 原料シートを加熱処理する熱処理炉であって、炉の上流側に原料シート入口部を形成すると共にその内部に1以上のローラーを有する上流炉部と、炉の下流側に製品シート出口部を形成すると共にその内部に1以上のローラーを有する下流炉部と、炉内を上流炉部と下流炉部とに仕切ると共にシート搬送窓を形成した隔壁と、前記シート搬送窓に取り付けた断熱ローラーと、上流炉部、下流炉部に備えた加熱手段であって下流炉部の加熱手段が上流炉部の加熱手段よりも高発熱量である加熱手段とを有する熱処理炉。   [1] A heat treatment furnace for heat-treating a raw material sheet, wherein an upstream furnace portion having a raw material sheet inlet portion on the upstream side of the furnace and having one or more rollers therein, and a product sheet outlet on the downstream side of the furnace A downstream furnace having one or more rollers in the interior, a partition partitioning the interior of the furnace into an upstream furnace and a downstream furnace and forming a sheet conveyance window, and heat insulation attached to the sheet conveyance window A heat treatment furnace having a roller and heating means provided in the upstream furnace part and the downstream furnace part, wherein the heating means in the downstream furnace part has a higher calorific value than the heating means in the upstream furnace part.

本発明の熱処理炉によれば、炉内に隔壁を設け、その隔壁のシート搬送窓に断熱ローラーを取り付けているので、接圧付与機能を低下させずに、ゾーン間の温度差を大きくすることができる。その結果、熱収縮による皺やうねり等を抑制した炭素繊維シート等の製品シートを連続生産できる。   According to the heat treatment furnace of the present invention, the partition is provided in the furnace, and the heat insulating roller is attached to the sheet conveyance window of the partition, so that the temperature difference between the zones is increased without deteriorating the contact pressure imparting function. Can do. As a result, it is possible to continuously produce product sheets such as carbon fiber sheets in which wrinkles and swells due to heat shrinkage are suppressed.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の熱処理炉の一例を示す概略側面図である。2は内部中空の直方体状の熱処理炉で、炉を構成する炉壁5内に断熱材が積層されて断熱材層6が形成されている。   FIG. 1 is a schematic side view showing an example of a heat treatment furnace of the present invention. Reference numeral 2 denotes an internal hollow rectangular parallelepiped heat treatment furnace in which a heat insulating material is laminated in a furnace wall 5 constituting the furnace to form a heat insulating material layer 6.

熱処理炉2で熱処理される原料シート4の搬送方向に沿って炉2の最上流側の炉壁5及び断熱材層6には、これらを貫通して原料シート入口部8が設けられている。炉2の最下流側の炉壁5及び断熱材層6には、これらを貫通して製品シート出口部12が設けられている。この製品シート出口部12から製品シート40が搬出される。   A raw material sheet inlet portion 8 is provided through the furnace wall 5 and the heat insulating material layer 6 on the uppermost stream side of the furnace 2 along the conveying direction of the raw material sheet 4 to be heat-treated in the heat treatment furnace 2. A product sheet outlet portion 12 is provided in the furnace wall 5 and the heat insulating material layer 6 on the most downstream side of the furnace 2 so as to pass through them. The product sheet 40 is carried out from the product sheet outlet 12.

原料シート入口部8及び製品シート出口部12は、不図示のシール手段で窒素ガス等の不活性ガスを用いてガスシールされており、これにより炉2内に空気が混入することの無いように構成されている。   The raw material sheet inlet portion 8 and the product sheet outlet portion 12 are gas-sealed using an inert gas such as nitrogen gas by a sealing means (not shown) so that air is not mixed into the furnace 2. It is configured.

炉2内は、シートの搬送方向に垂直に設けられた隔壁14により上流炉部16と下流炉部18とに仕切られている。前記隔壁14にはシート搬送窓20が形成されている。   The furnace 2 is partitioned into an upstream furnace section 16 and a downstream furnace section 18 by a partition wall 14 provided perpendicular to the sheet conveyance direction. A sheet conveying window 20 is formed in the partition wall 14.

炉2内には、複数(本図においては5本)のローラー22a、22b、22c、22d、22eが上流側から下流側に向かって順次配設されている。更に詳述すると、上流炉部16内にはシートに接触してシート表面を押圧する接圧ローラー22a、22bが配設され、シート搬送窓20には断熱ローラー22cが取り付けられ、下流炉部18内には接圧ローラー22d、22eが配設されている。   In the furnace 2, a plurality (five in this figure) of rollers 22a, 22b, 22c, 22d, and 22e are sequentially arranged from the upstream side to the downstream side. More specifically, contact pressure rollers 22a and 22b that contact the sheet and press the sheet surface are disposed in the upstream furnace section 16, and a heat insulating roller 22c is attached to the sheet conveyance window 20, and the downstream furnace section 18 is provided. Inside, pressure roller 22d, 22e is arrange | positioned.

上記断熱ローラー22cは接圧ローラーとしても作用している。   The heat insulating roller 22c also functions as a contact pressure roller.

図2は、図1の装置におけるA〜A線に沿った正面断面部分拡大図であり、隔壁14、シート搬送窓20、断熱ローラー22c及びその付近を示している。   FIG. 2 is a partially enlarged front sectional view taken along line AA in the apparatus of FIG. 1, and shows the partition 14, the sheet conveyance window 20, the heat insulating roller 22 c and the vicinity thereof.

図2に示されるように、断熱ローラー22cは、内部中空で軸方向両端が閉塞された円筒状のケーシング24と、前記ケーシング24と軸芯を一致させてケーシング24内に挿入された回転軸26とからなる。ケーシング24と回転軸26との間の中空部28には断熱材が充填されている。   As shown in FIG. 2, the heat insulating roller 22 c includes a cylindrical casing 24 that is hollow inside and closed at both ends in the axial direction, and a rotary shaft 26 that is inserted into the casing 24 with the casing 24 aligned with the axial center. It consists of. The hollow portion 28 between the casing 24 and the rotating shaft 26 is filled with a heat insulating material.

断熱ローラー22cのケーシング24の材料は、使用温度に応じて適宜選択される材料(金属、セラミック、カーボン等)が適用できる。   As a material of the casing 24 of the heat insulating roller 22c, a material (metal, ceramic, carbon, or the like) appropriately selected according to the use temperature can be applied.

中空部28に充填する断熱材としては、使用温度に応じて適宜選択される断熱材(ガラス、セラミック、カーボンよりなるウェブ、紙、フェルト、不織布等)が適用できる。   As the heat insulating material filled in the hollow portion 28, a heat insulating material (such as glass, ceramic, carbon web, paper, felt, non-woven fabric, etc.) appropriately selected according to the operating temperature can be applied.

図1の熱処理炉2において、30a、30bは上部加熱手段収納ボックスで、上部加熱手段収納ボックス30aには上流側から下流側に向かって順次上部加熱手段32a、32bが収納され、上部加熱手段収納ボックス30bには上流側から下流側に向かって順次同様の上部加熱手段32c、32dが収納されている。   In the heat treatment furnace 2 of FIG. 1, reference numerals 30a and 30b denote upper heating means storage boxes. The upper heating means storage box 30a sequentially stores the upper heating means 32a and 32b from the upstream side to the downstream side, and the upper heating means storage. The box 30b accommodates similar upper heating means 32c and 32d sequentially from the upstream side toward the downstream side.

34a、34bは下部加熱手段収納ボックスで、上部加熱手段収納ボックス30aと同様に、下部加熱手段収納ボックス34aには下部加熱手段36a、36bが収納され、下部加熱手段収納ボックス34bには下部加熱手段36c、36dが収納されている。   Reference numerals 34a and 34b denote lower heating means storage boxes. Similarly to the upper heating means storage box 30a, the lower heating means storage box 34a stores lower heating means 36a and 36b, and the lower heating means storage box 34b stores lower heating means. 36c and 36d are accommodated.

加熱手段としては、電熱ヒーター、スチームヒーター、赤外ヒーター等が例示される。前記下流炉部18の加熱手段32c、32d、36c、36dの発熱量は、上流炉部16の加熱手段32a、32b、36a、36bの発熱量よりも大きくなるように設計されている。これにより上流炉部16よりも下流炉部18の炉内温度が高くなるようになっている。   Examples of the heating means include an electric heater, a steam heater, and an infrared heater. The amount of heat generated by the heating means 32c, 32d, 36c, 36d of the downstream furnace section 18 is designed to be greater than the amount of heat generated by the heating means 32a, 32b, 36a, 36b of the upstream furnace section 16. Thereby, the in-furnace temperature of the downstream furnace part 18 becomes higher than the upstream furnace part 16.

38は上流炉部16に取り付けられた排ガス処理室で、炉2内で発生する排ガスを燃焼処理する。   Reference numeral 38 denotes an exhaust gas treatment chamber attached to the upstream furnace unit 16, which combusts exhaust gas generated in the furnace 2.

上記熱処理炉2は、対象とする原料シート、製品シート等その目的に応じて寸法等が適宜決定される。   The heat treatment furnace 2 is appropriately determined in dimensions and the like according to the purpose, such as a target raw material sheet and product sheet.

炉長、炉高、滞留時間は、原料シート4の目付や熱処理条件によって異なる。例えば、硬く、曲げ強度が低いシートを焼成する場合は、下流炉部18内に設置する接圧ローラー22d、22eの径を、シートが破断しない程度に大きくする必要がある。これらは適宜決定される。   The furnace length, furnace height, and residence time vary depending on the basis weight of the raw material sheet 4 and heat treatment conditions. For example, when firing a sheet that is hard and has low bending strength, it is necessary to increase the diameters of the contact pressure rollers 22d and 22e installed in the downstream furnace 18 so that the sheet does not break. These are determined as appropriate.

図1の熱処理炉2で対象とする原料シート4には、樹脂フィルム、セラミックシート、耐炎短繊維を抄紙した紙、紡績糸やフィラメント束の織物、ステープルの不織布、ウェブをニードルパンチしたフェルト等が適用できる。   The raw material sheet 4 targeted in the heat treatment furnace 2 of FIG. 1 includes a resin film, a ceramic sheet, a paper made of flame-resistant short fibers, a spun yarn or filament bundle fabric, a staple nonwoven fabric, a web needle-punched felt, or the like. Applicable.

なお、上記断熱ローラーとしてはその内部に断熱材を入れたが、必ずしも断熱材を入れる必要はなく、中空のまま使用しても良い。更に、内部を中空にすることなく、ローラー自体を断熱材で製作しても良い。   In addition, although the heat insulating material was put in the inside as the said heat insulation roller, it is not necessary to put a heat insulating material, and you may use it with a hollow. Further, the roller itself may be made of a heat insulating material without making the inside hollow.

製品シートとして電極材料用の炭素繊維シートを製造する場合、この処理対象の原料シートの耐炎繊維シートは、厚さ0.1〜2mm、目付50〜400g/m2が好ましい。厚さが0.1mm未満の場合はシートの強度が不足する。厚さが2mmを超える場合は最終製品が大きくなり過ぎる。目付が50g/m2未満の場合はシートの強度が不足する。目付が400g/m2以上を超える場合はシートが柔軟性に欠ける。 When manufacturing the carbon fiber sheet for electrode materials as a product sheet, the flame resistant fiber sheet of the raw material sheet to be processed preferably has a thickness of 0.1 to 2 mm and a basis weight of 50 to 400 g / m 2 . When the thickness is less than 0.1 mm, the strength of the sheet is insufficient. If the thickness exceeds 2 mm, the final product becomes too large. When the basis weight is less than 50 g / m 2 , the strength of the sheet is insufficient. When the basis weight exceeds 400 g / m 2 or more, the sheet lacks flexibility.

上記原料シート4を焼成する場合、隔壁14は原料シート4の熱収縮の30〜60%が完了する位置に設ける。通常この位置は、炉2の最下流側断熱材層6から炉長の40%以上、60%以下の位置である。   When baking the said raw material sheet 4, the partition 14 is provided in the position where 30 to 60% of the thermal contraction of the raw material sheet 4 is completed. Usually, this position is a position of 40% or more and 60% or less of the furnace length from the most downstream heat insulating material layer 6 of the furnace 2.

更に、上部加熱手段32c、32d、下部加熱手段36c、36dからの輻射熱等の伝熱、並びに、上部加熱手段32a、32b、下部加熱手段36a、36bにより上流炉部16は上流から下流に向かうに従って高温になる温度勾配を有する昇温域が形成されても良い。   Furthermore, heat transfer such as radiant heat from the upper heating means 32c, 32d and the lower heating means 36c, 36d, and the upstream furnace section 16 as it goes from upstream to downstream by the upper heating means 32a, 32b, lower heating means 36a, 36b. A temperature rising region having a temperature gradient that becomes high temperature may be formed.

なお、上記説明においては、断熱ローラーを隔壁に形成した1個のシート搬送窓20に設けたが、これに限られず隔壁を複数形成して各隔壁にそれぞれ断熱ローラーを取り付けることにより、更に精密な炉内温度設定を行っても良い。その他本発明の要旨を変更しない限り、適宜変形して差支えない。   In the above description, the heat insulating roller is provided in one sheet conveyance window 20 formed on the partition wall. However, the present invention is not limited to this, and by forming a plurality of partition walls and attaching the heat insulating roller to each partition wall, more precise. The furnace temperature may be set. Other modifications may be made as appropriate unless the gist of the present invention is changed.

図1に示す熱処理炉2を用いて製品シート40(本例の場合は炭素繊維シート)を製造した。   A product sheet 40 (carbon fiber sheet in this example) was manufactured using the heat treatment furnace 2 shown in FIG.

シート搬送方向の炉内長さは上流炉部16で2m、下流炉部18で2m、炉内幅は1.2m、炉内高さは0.8mであった。隔壁14の位置は、炉2の最下流側断熱材層6から炉長の50%の位置であった。接圧ローラー22a、22b、22d、22e、断熱ローラー22cの径は何れも0.5mであった。   The length in the furnace in the sheet conveying direction was 2 m in the upstream furnace section 16, 2 m in the downstream furnace section 18, the furnace width was 1.2 m, and the furnace height was 0.8 m. The position of the partition wall 14 was 50% of the furnace length from the most downstream side heat insulating material layer 6 of the furnace 2. The diameters of the contact pressure rollers 22a, 22b, 22d, 22e and the heat insulating roller 22c were all 0.5 m.

断熱ローラー22cのケーシング24の材料はカーボンであり、中空部28に充填した断熱材は、カーボンよりなる不織布であった。   The material of the casing 24 of the heat insulating roller 22c was carbon, and the heat insulating material filled in the hollow portion 28 was a nonwoven fabric made of carbon.

炉2内は、窒素雰囲気下加熱し、原料シート入口部8の炉内部分の温度を50℃、上流炉部16の隔壁14近傍の温度を550℃、下流炉部18の隔壁14近傍の温度を650℃、炭素繊維シート出口部12の炉内部分の温度を700℃に調節した。   The inside of the furnace 2 is heated in a nitrogen atmosphere, the temperature in the furnace portion of the raw material sheet inlet portion 8 is 50 ° C., the temperature in the vicinity of the partition wall 14 in the upstream furnace portion 16 is 550 ° C., and the temperature in the vicinity of the partition wall 14 in the downstream furnace portion 18. Was adjusted to 650 ° C., and the temperature in the furnace portion of the carbon fiber sheet outlet portion 12 was adjusted to 700 ° C.

この熱処理炉2内を、厚さ0.4mm、幅1000mm、目付200g/m2の耐炎繊維シートを、接圧ローラー22a、22b、22d、22e、断熱ローラー22cにおける接圧150Pa、搬送速度50m/hrで搬送させた。 In the heat treatment furnace 2, a flame resistant fiber sheet having a thickness of 0.4 mm, a width of 1000 mm, and a basis weight of 200 g / m 2 is applied to a contact pressure roller 22a, 22b, 22d, 22e, a contact pressure of 150 Pa in a heat insulating roller 22c, and a conveyance speed of 50 m / m. It was conveyed by hr.

得られた炭素繊維シートは、厚さ0.38mm、目付154g/m2のものであり、皺、うねりの無い高品位のものであった。 The obtained carbon fiber sheet had a thickness of 0.38 mm and a basis weight of 154 g / m 2 , and had a high quality without wrinkles or undulations.

本発明の熱処理炉の一例を示す概略側面図である。It is a schematic side view which shows an example of the heat processing furnace of this invention. 図1の熱処理炉におけるA〜A線に沿った正面断面図であり、隔壁、シート搬送窓、断熱ローラー及びその付近を示す拡大図である。It is front sectional drawing along the AA line in the heat processing furnace of FIG. 1, and is an enlarged view which shows a partition, a sheet conveyance window, a heat insulation roller, and its vicinity.

符号の説明Explanation of symbols

2 熱処理炉
4 原料シート
5 炉壁
6 断熱材層
8 原料シート入口部
12 製品シート出口部
14 隔壁
16 上流炉部
18 下流炉部
20 シート搬送窓
22a、22b、22d、22e 接圧ローラー
22c 断熱ローラー
24 ケーシング
26 断熱ローラーの回転軸
28 断熱ローラーの中空部
30a、30b 上部加熱手段収納ボックス
32a、32b、32c、32d 上部加熱手段
34a、34b 下部加熱手段収納ボックス
36a、36b、36c、36d 下部加熱手段
38 排ガス処理室
40 製品シート
2 Heat treatment furnace 4 Raw material sheet 5 Furnace wall 6 Heat insulation material layer 8 Raw material sheet inlet part 12 Product sheet outlet part 14 Bulkhead 16 Upstream furnace part 18 Downstream furnace part 20 Sheet conveying window 22a, 22b, 22d, 22e Contact pressure roller 22c Thermal insulation roller 24 Casing 26 Rotating shaft of heat insulating roller 28 Hollow portion of heat insulating roller 30a, 30b Upper heating means storage box 32a, 32b, 32c, 32d Upper heating means 34a, 34b Lower heating means storage box 36a, 36b, 36c, 36d Lower heating means 38 Exhaust gas treatment chamber 40 Product sheet

Claims (1)

原料シートを加熱処理する熱処理炉であって、炉の上流側に原料シート入口部を形成すると共にその内部に1以上のローラーを有する上流炉部と、炉の下流側に製品シート出口部を形成すると共にその内部に1以上のローラーを有する下流炉部と、炉内を上流炉部と下流炉部とに仕切ると共にシート搬送窓を形成した隔壁と、前記シート搬送窓に取り付けた断熱ローラーと、上流炉部、下流炉部に備えた加熱手段であって下流炉部の加熱手段が上流炉部の加熱手段よりも高発熱量である加熱手段とを有する熱処理炉。 A heat treatment furnace for heat-treating a raw material sheet, in which a raw material sheet inlet portion is formed on the upstream side of the furnace, an upstream furnace portion having one or more rollers therein, and a product sheet outlet portion on the downstream side of the furnace And a downstream furnace part having one or more rollers therein, a partition partitioning the inside of the furnace into an upstream furnace part and a downstream furnace part and forming a sheet conveyance window, a heat insulating roller attached to the sheet conveyance window, A heat treatment furnace comprising heating means provided in an upstream furnace part and a downstream furnace part, wherein the heating means in the downstream furnace part has a higher calorific value than the heating means in the upstream furnace part.
JP2006133318A 2006-05-12 2006-05-12 Heat treatment furnace Pending JP2007303029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006133318A JP2007303029A (en) 2006-05-12 2006-05-12 Heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006133318A JP2007303029A (en) 2006-05-12 2006-05-12 Heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2007303029A true JP2007303029A (en) 2007-11-22

Family

ID=38837199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006133318A Pending JP2007303029A (en) 2006-05-12 2006-05-12 Heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2007303029A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141762A (en) * 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141762A (en) * 2013-01-25 2014-08-07 Toray Ind Inc Carbon fiber bundle and production method thereof

Similar Documents

Publication Publication Date Title
KR101045839B1 (en) Furnace Equipment for Hot Stamping
US8696350B2 (en) Heat-treating furnace
EP0848090A3 (en) A heat treatment furnace for fiber and a yarn guide roller for the same
WO2011015713A1 (en) Method and strand sintering equipment for continuous sintering of pelletized mineral material
EP2297054A1 (en) Cellular ceramic plates with asymmetrical cell structure and manufacturing method thereof
JP2007303029A (en) Heat treatment furnace
WO2001092800A1 (en) Heat treatment apparatus
JP5556994B2 (en) Method for producing flame resistant fiber
CN211255684U (en) Controllable air supporting of multizone temperature heats thin glass&#39;s device
JP6083156B2 (en) Rapid heating apparatus and rapid heating method for continuous annealing equipment
CN110698045A (en) Multi-zone temperature-controllable air-flotation thin glass heating device and working method thereof
JPS627288B2 (en)
JP2004115983A (en) Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant
JP4471779B2 (en) Flameproofing furnace
JP2007084953A (en) Heat treating furnace and method of heat treatment
CN112939431A (en) Low-stress high-generation substrate glass online annealing equipment and annealing method
JP4292771B2 (en) Heat treatment furnace
JP2006045709A (en) Method for producing carbonaceous sheet
JP2005344246A (en) Apparatus of baking furnace
JPS6026845B2 (en) Vertical flame retardant treatment equipment
EP3027991A2 (en) A radiating heating module for continuous-cycle firing kilns of ceramic products
CN215864498U (en) Novel non-woven fabric oven
JP2005206968A (en) Method for producing carbon fiber sheet
JP2010196201A (en) Apparatus and method for continuously heat-treating porous carbon fiber sheet precursor
US1770103A (en) Furnace