JP2007302546A - High-temperature fire-resistant foam insulator - Google Patents

High-temperature fire-resistant foam insulator Download PDF

Info

Publication number
JP2007302546A
JP2007302546A JP2006156610A JP2006156610A JP2007302546A JP 2007302546 A JP2007302546 A JP 2007302546A JP 2006156610 A JP2006156610 A JP 2006156610A JP 2006156610 A JP2006156610 A JP 2006156610A JP 2007302546 A JP2007302546 A JP 2007302546A
Authority
JP
Japan
Prior art keywords
glass fiber
temperature heat
resistant
heat
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006156610A
Other languages
Japanese (ja)
Inventor
Shintaro Takenaka
伸太郎 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinyoh Industries Co Ltd
Original Assignee
Shinyoh Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinyoh Industries Co Ltd filed Critical Shinyoh Industries Co Ltd
Priority to JP2006156610A priority Critical patent/JP2007302546A/en
Publication of JP2007302546A publication Critical patent/JP2007302546A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-temperature fire-resistant foam insulator which, in the event of fire, does not burn with smoke and flame and also bears up under a high temperature and is capable of keeping heat insulation performance. <P>SOLUTION: This high-temperature fire-resistant glass fiber, keeping its shape at around 1,000°C even in the event of fire when it receives heat by far exceeding the glass melting temperature, is produced by forming a heat resistant coating 6 on the surface of a glass fiber 5 by immersing magnesium chloride 4 as a high-temperature heat-resistant treating agent 3 in the space among fibers of a glass fiber 1 or a glass wool 2 in which ultra thin glass fibers are closely packed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

健康被害によるアスベスト使用禁止以来、軽量高温耐火断熱材に乏しく、特に火災時高温の構造物断熱保護で強度保持の不燃断熱材の分野、及び一般の総合的断熱材分野でのガラス繊維の耐熱性向上に関する分野である。  Since the ban on the use of asbestos due to health hazards, it has been lacking in lightweight high-temperature fire-resistant insulation, especially in the field of non-combustible insulation that retains strength by protecting high-temperature structures in the event of a fire, and heat resistance of glass fibers in the general integrated insulation field It is an area related to improvement.

ガラス繊維のみの織布或は不織布、又は短繊維のグラスウ−ル、その他では製造コスト削減面からガラス繊維に有機繊維混入の各種商品、これらの不燃材と称するものは、国家認定を受けていても単に一定量以上の発煙発炎燃焼しなければ合格する現状のJIS規格商品で、火災時の高温には耐え切れず、耐熱温度性能が不足して高温では溶解或は灰化消滅してしまう為に、自然界的環境或は人工的多少の高温環境の断熱剤でしか使えず、火災時等の緊急高温域での人命保護、機器保護等では使用不能が現状で、このような場合にはセラミック素材等の高価な断熱材に移行せざるを得ないのが現状である。  Glass fiber-only woven or non-woven fabric, or short fiber glass wool, and other products that contain organic fibers in glass fiber from the viewpoint of reducing manufacturing costs, these non-combustible materials have received national approval. However, it is a current JIS standard product that passes if it does not burn more than a certain amount of smoke, flames, and cannot withstand the high temperatures at the time of a fire. Therefore, it can only be used with natural or artificial heat insulation in some high-temperature environments, and cannot be used for human life protection and equipment protection in emergency high temperature areas such as fires. At present, there is no choice but to move to expensive heat insulating materials such as ceramic materials.

しかし、現状のガラス繊維は不燃素材である為に種々の域で使用されているが、残念ながら船舶主機シリンダ−排気集合管はシリンダ−側近では温度が1000℃以上にもなる排気管の防護断熱材にはガラス繊維は溶解縮小固形化する為に使用されず、これは時間経過でガラス繊維が順次溶解固形化して全く意味がない。  However, because the current glass fiber is a non-combustible material, it is used in various areas, but unfortunately the ship main engine cylinder-exhaust collecting pipe has a temperature of 1000 ° C or more in the vicinity of the cylinder. The glass fiber is not used in the material for dissolution and solidification, which is meaningless as the glass fiber is sequentially dissolved and solidified over time.

ましてや、金属、LPG或はLNGのタンク或はタンカ−用不燃断熱材としての使用も燃焼性では単に国家認定不燃材を前面にうちだしているものの、一旦火災事故発生の場合には耐熱断熱性能温度の機能は全くないのが現状ある。  In addition, the use of metal, LPG or LNG as a non-combustible heat insulating material for tanks or tankers is simply a nationally recognized non-combustible material in the front, but in the event of a fire accident, once the heat-resistant insulation performance temperature There is currently no function.

ちなみに、ブタンガスでの1000℃加炎試験では、溶解縮小、最後には消滅したものの、JIS規定では不燃であるが、現実には火災時高温加熱によるガラス繊維自体の耐熱温度は繊維の為に非常に低く、火災時の1000℃前後の域での断熱機能維持には程遠いのが現状である。  By the way, in the 1000 ° C flame test with butane gas, it melts and shrinks, but finally disappears, but it is nonflammable according to JIS regulations, but in reality, the heat resistance temperature of the glass fiber itself due to high temperature heating during fire is very high due to the fiber However, it is far from maintaining the heat insulating function in the region of about 1000 ° C. at the time of fire.

ガラス繊維の耐熱温度向上に関する開示は見当たらない。There is no disclosure regarding the improvement of the heat resistant temperature of glass fiber.

発明が解決しようとする課題Problems to be solved by the invention

ガラス繊維の長尺糸自体、或はガラス繊維撚糸織布、ガラス繊維不織布、長繊維或は短繊維のグラスウ−ル、等々、受熱表面の耐熱温度が極細繊維の為に非常に低く、特に火災時の温度上昇過程の早時に溶解し、ものによっては問題で二次災害の危険性すらある。  Glass fiber long yarn itself, or glass fiber twisted yarn woven fabric, glass fiber nonwoven fabric, long fiber or short fiber glass wool, etc. The heat-resistant temperature of the heat receiving surface is very low due to ultrafine fibers, especially fire It melts early in the process of temperature rise, and in some cases there is a problem and even the risk of a secondary disaster.

従って、主材のガラス繊維自体が不燃材であるということで断熱防護していても、火災加熱の場合には受熱で溶解消滅の上、火災時火炎接触、或は輻射熱によって、表面が受熱温度に耐えられずに溶解して厚みが急激に減少すれば断熱機能も減衰し、最後には短時間で断熱効果は消滅てしまう事が現状市販品の実験結果から明らかな現実として証明されている。  Therefore, even if the main glass fiber itself is a non-combustible material, it is insulated and protected in the case of fire heating. It is proved as an obvious reality from the experimental results of current commercial products that the heat insulation function is attenuated if it melts without being able to withstand and the thickness decreases rapidly, and finally the heat insulation effect disappears in a short time .

これは、建築基準法に基づくJIS検査規定での国家認定書は有るが、あくまでも自己燃焼性を逃げたに過ぎず、不燃材認定取得目的が、現状の建築基準法規定であって実際の火災時の1000℃前後になる受熱では、不燃断熱には程遠い機能である事から、現状市販のガラス繊維断熱材は船舶では使用されない。  Although there is a national certificate in the JIS inspection regulations based on the Building Standards Act, it has only escaped self-combustibility, and the purpose of obtaining the non-combustible material certification is the current Building Standards Law provisions and actual fires At the time of receiving heat at around 1000 ° C., since the function is far from incombustible heat insulation, commercially available glass fiber heat insulating materials are not used on ships.

又、市販品ガラス繊維製品のパンフレットの機能表示欄には、用途記載はあっても、使用環境温度限度の記載が見当たらず、一般建築不燃性の断熱材使用は良いとしても、LNG及びLPGタンクや陸上化学薬品タンクでの使用の限界温度を明記すべきで、万一の事故火災発生した場合にはその火災時受熱吸収断熱が出来ずにタンク自体ガ爆発炎上の危険性が十分にあることの認識を持つべきであり、ユ−ザ−のミスリ−ドにもつながる事は言うまでもない。  In addition, in the function display column of the commercial glass fiber product pamphlet, there is no description of the usage environment temperature limit, and even if it is good to use non-combustible heat insulating material for general buildings, LNG and LPG tanks And the limit temperature for use in terrestrial chemical tanks should be clearly stated, and in the event of an accident fire, heat absorption and insulation during the fire is not possible and the tank itself has a risk of explosion explosion Needless to say, this also leads to user misleading.

各種構築物強度部材保護の不燃断熱材としての使用は、ハンドリング面から軽量でなければならない事は当然で、その為にはガラス繊維不燃断熱材の表面露出部位が高温に耐えられる機能でなければならないが、残念ながら現状のガラス繊維不燃素材には高温域での機能性は無く、高温耐熱断熱材としては高価なセラミック断熱素材、或は大きな質量の耐火素材しかなく、産業界に一石を投じているのが現状である。  The use of non-combustible insulation for protecting various structural strength members must be light from the handling surface, and for that purpose, the exposed surface of the glass fiber incombustible insulation must be able to withstand high temperatures. Unfortunately, the current glass fiber incombustible material has no functionality in the high temperature range, and only high-temperature heat-insulating materials are expensive ceramic heat-insulating materials or large-weight fire-resistant materials. The current situation is.

不燃断熱効果を発揮するには素材が不燃素材が良いことは周知の事実であるが、柔軟性を保持することが商品として用途が広く有利であるが、耐熱温度向上の為の処理剤によってガラス繊維自体の柔軟性が減少すれば用途も減少する。  Although it is a well-known fact that a non-combustible material is good for exerting an incombustible heat insulation effect, it is widely advantageous as a product to maintain flexibility, but glass with a treatment agent for improving the heat-resistant temperature If the flexibility of the fiber itself is reduced, the use is also reduced.

課題を解決するための手段Means for solving the problem

不燃断熱材の目的は、単なる発煙発炎燃焼しないだけでなく、火災時の受熱温度に耐え、しかも火災時高温受熱でも断熱性能維持が条件でなければならない事から下記各条項を全て満たさなければならない。  The purpose of non-combustible insulation is not only to generate smoke, fire and combustion, but also to withstand the heat receiving temperature during fires and to maintain heat insulating performance even under high temperature heat receiving during fires. Don't be.

1、可能な限りガラス繊維のみで、可燃性有機繊維の交織でない事。1. Only glass fiber as much as possible, not woven organic fibers.

2、しかし、用途によっては、原価低減目的で可燃性有機繊維を混織することはやむを得ないが、その場合には高温耐熱不燃処理剤との関係で、化化学繊維よりも自然繊維を混入の事。2. However, depending on the application, it is inevitable to mix flammable organic fibers for the purpose of cost reduction. Thing.

3、ガラス繊維自体の表面周囲を高温断熱剤でコ−ティングすることで、繊維自体での表面高温耐熱層を鋼性し、一次不燃断熱層を構成する。3. By coating the surface periphery of the glass fiber itself with a high temperature heat insulating agent, the surface high temperature heat resistant layer on the fiber itself is made of steel and constitutes a primary incombustible heat insulating layer.

4、この事により、一次断熱層で高温が減衰されて、受熱面より下部位のガラス繊維は、その積層に応じて高温溶解せずに形状を維持する。4. Due to this, the high temperature is attenuated by the primary heat insulating layer, and the glass fiber below the heat receiving surface maintains its shape without being melted at a high temperature in accordance with the lamination.

5、この構成で、ガラス繊維構成による不燃断熱材の厚み選定は、断熱保護される物体の目的温度によって決定され、火災受熱表面に塗布含浸した高温耐熱剤断熱材で、高温断熱を可能にし、あらゆる物体の高温からの保護に効果を表す。5. With this configuration, the thickness selection of the non-combustible heat insulating material by the glass fiber configuration is determined by the target temperature of the object to be heat-insulated, and the high-temperature heat-resistant heat-insulating material coated and impregnated on the heat receiving surface enables high-temperature heat insulation, Effective for protecting all objects from high temperatures.

発明の効果The invention's effect

本発明の、高温耐熱剤に塩化カリュウムを表面に塗布した20mm厚みのガラス繊維不織布で、100mm角の木柱周囲を囲い、柱周囲側近で炎が柱に接する様にしたガソリン充填皿に点火して30分経過後にガソリン消火、柱周囲のガラス繊維不織布を撤去した結果、ガラス繊維不織布断熱材表面が受熱して2mm前後不定型で厚み現象が見られたが、ガラス繊維不織布内部のは以上がなく、形状維持したままで、柱自体は全く色調も変わらず、設置前と同様であった。  I ignite a gasoline filling dish with a 20mm thick glass fiber nonwoven fabric coated with calorium chloride on the surface of a high temperature heat-resistant agent of the present invention, surrounding a 100mm square wooden pillar and making the flame touch the pillar near the pillar. As a result of the fire extinguishing of gasoline after 30 minutes and the removal of the glass fiber nonwoven fabric around the column, the surface of the glass fiber nonwoven fabric heat receiving material was found to have a thickness phenomenon with an irregular shape around 2 mm. Without changing the shape, the color of the column itself was the same as before the installation.

3、本発明の、高温耐熱剤に塩化カリュウムを表面に塗布した15mm厚みの高温耐熱樹脂発泡断熱材で角型鋼材柱の周囲を囲い、900℃ブタンガスバ−ナ−で炎が柱に当たる様に直噴バ−ナ−点火して10分経過後でも柱鋼材温度は90℃であり、高温耐熱樹脂発泡断熱材表面が受熱して一次断熱層層を形成し、見かけ厚みは約13mmにはなったが、柱鋼材自体の温度は強度劣化温度には程遠い状態で、鋼材表面錆び止め塗料は設置前と変化が無かった事から、高温耐熱樹脂発泡断熱材の厚み選定は目的に応じて決定すれば良く、これこそ二次的災害防止の断熱剤にも大きく貢献するものである。3. The 15 mm thick high temperature heat resistant resin foam insulation with the high temperature heat resistant agent applied to the surface of the high temperature heat resistant agent of the present invention is used to surround the square steel pillars, and so that the flame hits the pillars with a 900 ° C butane gas burner. Even after 10 minutes have passed since the firing burner was ignited, the column steel material temperature was 90 ° C., the surface of the high-temperature heat-resistant resin foam heat insulating material received heat to form a primary heat insulating layer, and the apparent thickness became about 13 mm. However, the temperature of the pillar steel itself is far from the strength deterioration temperature, and the steel surface rust prevention paint has not changed from before installation, so the thickness selection of the high temperature heat resistant resin foam insulation can be decided according to the purpose. Well, this is also a great contribution to secondary disaster prevention insulation.

液化ガスタンクの断熱で、可燃接着剤でタンク内側に断熱剤を装着する場合が多くあるが、タンクの鋼材低温強度減衰防止の為であり、鋼材内部が低温とは言え、外部からの1000℃前後の受熱では液化蒸発爆発の危険性もあり、本発明を、タンク外部や内部に珪酸ナトリュウム又は珪酸カリュウムでタンク鋼材に張りつければ、爆発の危険性は現象する。  Insulation of the liquefied gas tank is often carried out with a flammable adhesive on the inside of the tank, but this is to prevent the tank steel material from damaging the low temperature strength of the tank. There is also a risk of liquefaction, evaporation and explosion when receiving heat, and if the present invention is applied to tank steel with sodium silicate or silicate on the outside or inside of the tank, the danger of explosion will occur.

4、本発明の高温耐熱剤に塩化カリュウム以外の、請求項2乃至13記載の複合種の高温耐熱剤を塗布含浸ものも同様であった。4. The same applies to the high-temperature heat-resistant agent of the present invention coated with and impregnated with the composite high-temperature heat-resistant agent according to any one of claims 2 to 13 other than calcium chloride.

5、短繊維のグラスウ−ル綿塊状に本発明の高温耐熱剤を塗布含浸させたものを、5mm厚みの鋼板表面に、厚み30mmで不燃接着剤で吹きつけ装着し、鋼板表面装着の短繊維状に900℃ブタンガスバ−ナ−で直噴炎で15分間加熱したが、鋼板温度は95℃であり、これから想定すれば火災時の鋼材強度劣化はあり得ない安全な事も判明した。5. Short fiber glass wool flocs coated and impregnated with the high-temperature heat-resistant agent of the present invention are sprayed and attached to a 5 mm thick steel plate surface with a nonflammable adhesive with a thickness of 30 mm, and the short fiber is attached to the steel plate surface. The steel plate was heated for 15 minutes with a 900 ° C butane gas burner with direct flame, but the steel plate temperature was 95 ° C, and it was also found that it was safe to assume that the steel material strength could not be deteriorated during a fire.

上記により、火災時の引火爆発性物質の貯留槽等での保護には安価で効率が良く、この上ない高温耐熱材であることが証明された。  Based on the above, it was proved that it is an extremely high-temperature heat-resistant material that is inexpensive and efficient for protecting a flammable explosive substance in a storage tank in the event of a fire.

発明の実施する為の最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

請求項1」は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として塩化マグネシュウム(4)を塗布含浸させた。  The claim 1 is impregnated by applying magnesium chloride (4) as a high-temperature heat-resistant treatment agent (3) to the glass fiber (1) and the glass wool (2), which are the main materials glass fiber and nonwoven fabric. I let you.

高温耐熱処理剤(3)としての塩化マグネシュウム(4)は、安全性を重視して、古来からの塩田製法で自然の海水を約35倍に濃縮して塩分を概除去し、海水含有の諸ミネラルを含有させたままで塩化マグネシュウム成分%を増大させて使用した。  Magnesium chloride (4) as a high-temperature heat-resistant treatment agent (3) emphasizes safety, concentrates natural seawater approximately 35 times by the traditional salted rice pad manufacturing method, and removes salt content. The magnesium chloride component% was increased and used while containing minerals.

塩分除去後の海水を海水抽出塩化マグネシュウムとして使用したが、その他の含有成分は食品栄養素の一部でもあり、腎機能障害や肝機能障害保持社以外では安全で、ナトリュウム、カルシュウム、鉄、カリュウムでる。  Seawater after removal of salt was used as seawater-extracted magnesium chloride, but the other ingredients are also part of food nutrients, safe except for those with renal or liver dysfunction, and are sodium, calcium, iron, and calum .

この塩化マグネシュウム(4)高率含有海水を、ガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として塗布含浸し、微細なガラス繊維(5)表面を覆うことにより、表面に耐熱皮膜(6)を構成し、周知の既成事実である微細ガラス繊維の溶解温度を遥かに越える受熱にも耐えて形状を維持し、断熱性能の劣化を極力防止する。  This magnesium chloride (4) high-rate seawater is coated and impregnated as a high-temperature heat-resistant treatment agent (3) on glass fiber woven fabric and non-woven glass fiber (1) and glass wool (2). By covering the surface of the glass fiber (5), a heat-resistant film (6) is formed on the surface, and it is resistant to heat receiving well beyond the melting temperature of fine glass fiber, which is a well-known fact, maintaining its shape and heat insulation performance As much as possible to prevent deterioration.

液体塩化マグネシュウム(4)は、加熱すれば無水物とならずに600℃前後で酸化マグネシュウムとなり、耐熱性能を持ち、市販工業用をも別途使用したが、機能性は全く同様であった。    Liquid magnesium chloride (4) did not become anhydrous when heated and became magnesium oxide at around 600 ° C., had heat resistance, and was used separately for commercial industries, but the functionality was exactly the same.

請求項2は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として酸化マグネシュウム(7)を塗布含浸させたが、機能性は塩化マグネシュウム(4)と同様であった。  Claim 2 is made by applying and impregnating magnesium oxide (7) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2) which are glass fiber woven fabric and nonwoven fabric which are main materials. However, the functionality was similar to that of magnesium chloride (4).

酸化マグネシュウム(7)は、融点が2800℃で高く、高温耐火機能性がある。  Magnesium oxide (7) has a high melting point of 2800 ° C. and high temperature fire resistance.

請求項3は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として硝酸マグネシュウム(8)を水に溶解し、水性硝酸マグネシュウム(8)として塗布含浸させたが、機能性は、塩化マグネシュウム(4)と同様であった。  According to claim 3, magnesium nitrate (8) is dissolved in water as a high-temperature heat-resistant treatment agent (3) in woven and non-woven glass fibers (1) and glass wool (2) as the main materials. Although it was applied and impregnated as aqueous magnesium nitrate (8), the functionality was the same as that of magnesium chloride (4).

請求項4は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として水酸化マグネシュウム(9)を塗布含浸させたが、機能性は、塩化マグネシュウム(4)よりも多少機能性は弱いが、ほぼ使用の域に当たる。  Claim 4 impregnates and impregnates the main material glass fiber woven fabric and nonwoven glass fiber (1) and glass wool (2) with magnesium hydroxide (9) as a high-temperature heat-resistant treatment agent (3). Although the functionality is somewhat weaker than that of magnesium chloride (4), it is almost in the range of use.

請求項5は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として炭酸マグネシュウム(10)を塗布含浸させたが、炭酸マグネシュウム(10)は、700℃加熱によって酸化マグネシュウムになり、機能性は、塩化マグネシュウム(4)と、ほぼ使用同等であった。  Claim 5 is made by applying and impregnating magnesium carbonate (10) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2) which are glass fiber woven fabric and nonwoven fabric which are main materials. However, magnesium carbonate (10) became magnesium oxide by heating at 700 ° C., and the functionality was almost the same as that of magnesium chloride (4).

請求項6は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として硫酸マグネシュウム(11)を塗布含浸させたが、硫酸マグネシュウム(11)反応は中性で、加熱すれば無水物となり、1124℃で分解するが、火災温度からみて、機能性は、塩化マグネシュウム(4)と同等であった。  Claim 6 is made by applying and impregnating magnesium sulfate (11) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2) made of glass fiber as the main material. However, the magnesium sulfate (11) reaction was neutral and became anhydrous when heated and decomposed at 1124 ° C., but its functionality was equivalent to that of magnesium chloride (4) from the viewpoint of fire temperature.

請求項7は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)としてポリ塩化アルミニュウム(12)を塗布含浸させたが、pH反応はほぼ中性で、一般的には排水処理剤であるにもかかわらず、、ガラス繊維に塗布含浸すればガラス繊維の耐熱性向上に効果があり、機能性は、塩化マグネシュウム(4)よりも多少劣るが、十分に800℃前後で形状維持の効果があった。  Claim 7 applies and impregnates polyaluminum chloride (12) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2), which are glass fiber woven fabric and nonwoven fabric, which are the main materials. However, despite the fact that the pH reaction is almost neutral and is generally a wastewater treatment agent, it is effective to improve the heat resistance of the glass fiber by applying and impregnating the glass fiber. Although slightly inferior to magnesium (4), the shape was sufficiently maintained at around 800 ° C.

請求項8は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として水酸化アルミニュウム(13)を塗布含浸させたが、高温加熱すればアルミナになり、酸にもアルカリにも溶けて、酸溶解はアルミニュウム塩に、アルカリ溶解はアルミン酸塩となり、機能性は、塩化マグネシュウム(4)と同等の形状維持の効果があった。  Claim 8 applies and impregnates the main material glass fiber woven fabric and nonwoven glass fiber (1) and glass wool (2) with aluminum hydroxide (13) as a high-temperature heat-resistant treatment agent (3). However, when heated at high temperature, it becomes alumina, it dissolves in both acid and alkali, acid dissolution becomes aluminum salt, alkali dissolution becomes aluminate, and its functionality is the same shape as magnesium chloride (4). There was an effect.

請求項9は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として硫酸アルミニュウム(14)を塗布含浸させたが、水溶液は酸性で排水処理剤に使われるが、水溶液を高温加熱すれば塩基性硫酸アルミニュウムとなり、機能性は、塩化マグネシュウム(4)と同等の形状維持の効果があった。  Claim 9 is made by applying and impregnating aluminum sulfate (14) as a high-temperature heat-resistant treatment agent (3) to the glass fiber (1) and the glass wool (2) of the glass fiber as the main material. However, the aqueous solution is acidic and used as a wastewater treatment agent. However, when the aqueous solution is heated to a high temperature, it becomes basic aluminum sulfate, and its functionality has the effect of maintaining the same shape as magnesium chloride (4).

請求項10は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)としてケイ酸アルミニュウム(15)を塗布含浸させたが、人工製造原料珪酸ナトリュウムとミョウバンで、カ性ソ−ダ液で加熱すれば完全に溶け、水溶液を塗布含浸すれば、機能性は、塩化マグネシュウム(4)と同等の形状維持の効果があった。  Claim 10 is made by applying and impregnating aluminum silicate (15) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2), which are glass fiber woven fabrics and main materials. However, when sodium silicate and alum, which are raw materials for artificial production, are heated with caustic soda solution, they are completely dissolved, and if they are impregnated with an aqueous solution, their functionality is the same as that of magnesium chloride (4). was there.

請求項11は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)としてアンモニュウムミョウバン(16)を塗布含浸させたが、水溶液は酸性で、高温加熱では650℃前後で酸化アルミニュウムとなり、機能性は、塩化マグネシュウム(4)と同等の800℃以上でも形状維持の効果があった。  Claim 11 is made by applying and impregnating ammonium alum (16) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2), which are the main materials of glass fiber. However, the aqueous solution was acidic, and when heated at high temperature, it became aluminum oxide at around 650 ° C., and the functionality was effective in maintaining the shape even at 800 ° C. or higher, which is equivalent to magnesium chloride (4).

請求項12は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)としてコロイダル・シリカ(17)を塗布含浸させたが、コロイダル・シリカ(17)は超微粒子の為に塗布含浸すれば高圧蜜織りのガラス繊維織布であっても,如何なる部位にでも浸透し、無水珪酸を約30%含有し、pH10前後でガラス繊維への異常影響はなく、酸にも安定で、水とは容易に混合でき、機能性は塩化マグネシュウム(4)と同等の800℃以上でも形状維持の効果があった。  Claim 12 applies and impregnates colloidal silica (17) as a high-temperature heat-resistant treatment agent (3) to glass fiber (1) and glass wool (2) which are glass fiber woven fabric and nonwoven fabric which are main materials. However, colloidal silica (17) penetrates into any part of glass fiber woven fabric of high-pressure bees if it is coated and impregnated due to ultrafine particles, contains about 30% silicic acid anhydride, and has a pH of 10 There was no abnormal influence on the glass fiber before and after, it was stable to acid, it could be easily mixed with water, and the functionality was effective in maintaining the shape even at 800 ° C. or higher equivalent to magnesium chloride (4).

請求項13は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として硫酸チタン(18)を塗布含浸させたが、チタンの融点は1858℃であり、毒性はなく、塗布含浸すれば、機能性は、塩化マグネシュウム(4)と同等の800℃以上でも形状維持の効果があった。  Claim 13 is made by applying and impregnating titanium sulfate (18) as a high-temperature heat-resistant treatment agent (3) to the glass fiber (1) and glass wool (2), which are the main materials, glass fiber woven fabric and nonwoven fabric. However, the melting point of titanium was 1858 ° C., and there was no toxicity. When coated and impregnated, the functionality was effective in maintaining the shape even at 800 ° C. or higher, which is equivalent to magnesium chloride (4).

請求項14は、主材であるガラス繊維の織布と不織布のグラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として、塩化マグネシュウム(4)、酸化マグネシュウム(7)、硝酸マグネシュウム(8)、水酸化マグネシュウム(9)、炭酸マグネシュウム(10)、硫酸マグネシュウム(11)、ポリ塩化アルミニュウム(12)、水酸化アルミニュウム(13)、硫酸アルミニュウム(14)、ケイ酸アルミニュウム(15)、アンモニュウムミョウバン(16)、コロイダル・シリカ(17)、硫酸チタン(18)を、複数種で混合して塗布含浸させたが、機能性は、800℃以上でも形状維持の効果があった。  Claim 14 is based on glass fiber (1) and non-woven glass fiber (1) and glass wool (2), which are the main materials, as high-temperature heat-resistant treatment agent (3), magnesium chloride (4), magnesium oxide. (7) Magnesium nitrate (8), Magnesium hydroxide (9), Magnesium carbonate (10), Magnesium sulfate (11), Aluminum chloride (12), Aluminum hydroxide (13), Aluminum sulfate (14), Silica Aluminum oxide (15), ammonium alum (16), colloidal silica (17), and titanium sulfate (18) were mixed and impregnated with multiple types, but the functionality is the effect of maintaining the shape even at 800 ° C or higher. was there.

高温耐熱ガラス繊維。High temperature heat resistant glass fiber.

長ガラス繊維のグラスファイバ−不織布布全体に高温耐熱処理剤塗布構成の、斜視図である。It is a perspective view of the high-temperature heat-resistant processing agent application structure to the whole glass fiber-nonwoven fabric cloth of long glass fiber. ガラス繊維表面に高温耐熱処理剤塗布構成のA−A拡大断面図である。It is an AA expanded sectional view of high temperature heat-resistant processing agent application composition on the glass fiber surface. 鋼製柱周囲に装着した高温耐熱樹脂発泡断熱材の斜視断面図である。It is a perspective sectional view of the high temperature heat resistant resin foam heat insulating material attached around the steel column. 重要施設電気コントロ−ル電線保護の高温耐熱樹脂発泡断熱材の斜視断面図である。It is a perspective sectional view of a high-temperature heat-resistant resin foam insulation for important facility electrical control electric wire protection. 防火扉内部充填の高温耐熱樹脂発泡断熱材の斜視図である。It is a perspective view of the high temperature heat-resistant resin foam heat insulating material with a fire door inside filling.

符号の説明Explanation of symbols

1 織布及び不織布グラスファイバ−
2 グラスウ−ル
3 高温耐熱処理剤
4 塩化マグネシュウム
5 ガラス繊維
6 耐熱被服
7 酸化マグネシュウム
8 硝酸マグネシュウム
9 水酸化マグネシュウム
10 炭酸マグネシュウム
11 硫酸マグネシュウム
12 ポリ塩化アルミニュウム
13 水酸化アルミニュウム
14 硫酸アルミニュウム
15 珪酸アルミニュウム
16 アンモニュウムミョウバン
17 コロイダル・シリカ
18 硫酸チタン
1 Woven and non-woven glass fiber
2 Glasswool 3 High-temperature heat-resistant treatment agent 4 Magnesium chloride 5 Glass fiber 6 Heat-resistant clothing 7 Magnesium oxide 8 Magnesium nitrate 9 Magnesium hydroxide 10 Magnesium carbonate 11 Magnesium sulfate 12 Polyaluminum chloride 13 Aluminum hydroxide 14 Aluminum sulfate 15 Aluminum silicate 16 Ammonium Alum 17 Colloidal silica 18 Titanium sulfate

Claims (14)

織布及び不織布グラスファイバ−(1)、及びグラスウ−ル(2)に、高温耐熱処理剤(3)として、塩化マグネシュウム(4)を塗布含浸することにより、ガラス繊維(5)表面に耐熱皮膜(6)を構成し、周知のガラス繊維耐熱温度では溶解せずに形状維持し、周知のガラス溶解温度でも形状維持する、高温耐熱ガラス繊維。  By coating and impregnating woven and non-woven glass fiber (1) and glass wool (2) with magnesium chloride (4) as a high-temperature heat-resistant treatment agent (3), a heat-resistant film is formed on the surface of glass fiber (5). A high-temperature heat-resistant glass fiber that constitutes (6), maintains its shape without melting at a known glass fiber heat-resistant temperature, and maintains its shape even at a known glass-melting temperature. 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、酸化マグネシュウム(7)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with magnesium oxide (7) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、硝酸マグネシュウム(8)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with magnesium nitrate (8) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、水酸化マグネシュウム(9)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with magnesium hydroxide (9) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、炭酸マグネシュウム(10)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with magnesium carbonate (10) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、硫酸マグネシュウム(11)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with magnesium sulfate (11) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、ポリ塩化アルミニュウム(12)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with polyaluminum chloride (12) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、水酸化アルミニュウム(13)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with aluminum hydroxide (13) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、硫酸アルミニュウム(14)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with aluminum sulfate (14) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、珪酸アルミニュウム(15)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with aluminum silicate (15) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、アンモニュウムミョウバン(16)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with ammonium alum (16) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、コロイダル・シリカ(17)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein the high-temperature heat-resistant treatment agent (3) is coated and impregnated with colloidal silica (17) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)に代わって、硫酸チタン(18)を塗布含浸した、請求項1記載の、高温耐熱ガラス繊維。  The high-temperature heat-resistant glass fiber according to claim 1, wherein titanium sulfate (18) is applied and impregnated as a high-temperature heat-resistant treatment agent (3) instead of magnesium chloride (4). 高温耐熱処理剤(3)として、塩化マグネシュウム(4)酸化マグネシュウム(7)、硝酸マグネシュウム(8)、水酸化マグネシュウム(9)、炭酸マグネシュウム(10)、硫酸マグネシュウム(11)、ポリ塩化アルミニュウム(12)、水酸化アルミニュウム(13)、硫酸アルミニュウム(14)、珪酸アルミニュウム(15)アンモニュウムミョウバン(16)、コロイダルシリカ(17)、硫酸チタン(18)の各種を、複数種混合で塗布含浸した、請求項1乃至12記載の、高温耐熱ガラス繊維。  As high-temperature heat-resistant treatment agent (3), magnesium chloride (4) magnesium oxide (7), magnesium nitrate (8), magnesium hydroxide (9), magnesium carbonate (10), magnesium sulfate (11), polyaluminum chloride (12) ), Aluminum hydroxide (13), aluminum sulfate (14), aluminum silicate (15) ammonium alum (16), colloidal silica (17), and titanium sulfate (18) are coated and impregnated in a mixture. Item 13. A high-temperature heat-resistant glass fiber according to item 1 to 12.
JP2006156610A 2006-05-08 2006-05-08 High-temperature fire-resistant foam insulator Pending JP2007302546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156610A JP2007302546A (en) 2006-05-08 2006-05-08 High-temperature fire-resistant foam insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156610A JP2007302546A (en) 2006-05-08 2006-05-08 High-temperature fire-resistant foam insulator

Publications (1)

Publication Number Publication Date
JP2007302546A true JP2007302546A (en) 2007-11-22

Family

ID=38836810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156610A Pending JP2007302546A (en) 2006-05-08 2006-05-08 High-temperature fire-resistant foam insulator

Country Status (1)

Country Link
JP (1) JP2007302546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694256A (en) * 2019-01-23 2019-04-30 中山大学 Ultra-thin glass, the method for ultra-thin ceramic and its manufactured goods and application are manufactured with fiber assist formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694256A (en) * 2019-01-23 2019-04-30 中山大学 Ultra-thin glass, the method for ultra-thin ceramic and its manufactured goods and application are manufactured with fiber assist formation

Similar Documents

Publication Publication Date Title
EP2830718B1 (en) Fire extinguisher and fire extinguisher medium
CN104926267B (en) A kind of fireproof coating and processing technique thereof
CN107955632B (en) Phase-change material temperature-sensitive cell coat, composite inhibitor and preparation method thereof
CN104446316A (en) Fireproof door core board material, fireproof door core board and manufacturing methods thereof
JP2007302546A (en) High-temperature fire-resistant foam insulator
CN107605371B (en) A kind of resistance to bubble fire resistant doorsets
CN103992670A (en) Novel tunnel fireproof paint
JP2007302855A (en) Heat insulator of high temperature-resistant resin foam
CN105854214B (en) Anti- re-ignition dry powder fire extinguishing agent and its preparation method
JPH0649391A (en) Asbestos scattering preventive and treating method
CN103790499B (en) Labeled door
TW200942584A (en) Heat insulation fireproof coating
CN107970552A (en) A kind of fire-extinguishing composite based on phosphoric acid dry powder
EP3736123A1 (en) Insulation blanket having a deposited passivator for industrial insulation applications
CN105776950A (en) Fireproof thermal insulation material
RU148402U1 (en) FIRE PROTECTION DEVICE
EP1441021A2 (en) Compositions for fire-resistant coating, fire extinguishing and fire protecting
CN102604499A (en) Crystallized hydrate heat-insulation fireproof coating and preparation method
CN108300013A (en) A kind of Water-borne inflation type refractory coating
CN207575586U (en) Fire in high buildings hedging exempts to escape lifesaving appliance
RU53921U1 (en) FIRE PROTECTION DEVICE
CN205678270U (en) Foam glass insulation conduit saddle
RU2614963C1 (en) Method for fire fighting
CN104072068A (en) Fire-resistant flame retardant material
CN107141845A (en) A kind of fire proof and thermo-insulation coating material and preparation method thereof