JP2007302493A - NiCuZn FERRITE AND ELECTRONIC COMPONENT USING THE SAME - Google Patents

NiCuZn FERRITE AND ELECTRONIC COMPONENT USING THE SAME Download PDF

Info

Publication number
JP2007302493A
JP2007302493A JP2006131035A JP2006131035A JP2007302493A JP 2007302493 A JP2007302493 A JP 2007302493A JP 2006131035 A JP2006131035 A JP 2006131035A JP 2006131035 A JP2006131035 A JP 2006131035A JP 2007302493 A JP2007302493 A JP 2007302493A
Authority
JP
Japan
Prior art keywords
terms
mol
ferrite
oxide
nicuzn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006131035A
Other languages
Japanese (ja)
Other versions
JP4369936B2 (en
Inventor
Ryuichi Wada
龍一 和田
Takashi Suzuki
孝志 鈴木
Takuya Aoki
卓也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006131035A priority Critical patent/JP4369936B2/en
Publication of JP2007302493A publication Critical patent/JP2007302493A/en
Application granted granted Critical
Publication of JP4369936B2 publication Critical patent/JP4369936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an NiCuZn ferrite which can be highly densely sintered while it can retain its fine particle diameter upon a temperature change and consequently has a reduced fluctuation in inductance characteristics upon a firing temperature change. <P>SOLUTION: The NiCuZn ferrite comprises as principal components 47.6-49.8 mol% (in terms of Fe<SB>2</SB>O<SB>3</SB>) iron oxides, 8.1-11.5 mol% (in terms of CuO) copper oxides, 1.0-29.0 mol% (in terms of ZnO) zinc oxides, and the balance (mol% in terms of NiO) of nickel oxides and comprises 0.1-0.4 wt.% (in terms of Bi<SB>2</SB>O<SB>3</SB>), based on the principal components, bismuth oxides. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はNiCuZn系フェライト、およびそれを用いた電子部品に関し、特に、積層型電子部品の材料として用いられるNiCuZn系フェライトおよびそれを用いて製造された電子部品に関する。   The present invention relates to a NiCuZn-based ferrite and an electronic component using the same, and more particularly to a NiCuZn-based ferrite used as a material for a multilayer electronic component and an electronic component manufactured using the same.

従来、Ni、Cu、Zn等を含有した酸化物磁性材料としてのフェライトは、優れた磁気特性を備えているために、例えば、各種の電子部品のコア(磁心)材料として、あるいは、積層チップインダクタなどのインダクタ部品の材料などとして用いられている。   Conventionally, ferrite as an oxide magnetic material containing Ni, Cu, Zn, etc. has excellent magnetic properties. For example, as a core (magnetic core) material of various electronic components or a multilayer chip inductor It is used as a material for inductor parts.

積層チップインダクタなどのコイル導体を備える電子部品を製造するに際し、製造条件の変動、例えば、焼成温度の変動等が生じると、得られたフェライトの特性は変化してしまう。   When manufacturing an electronic component including a coil conductor such as a multilayer chip inductor, if the manufacturing conditions vary, for example, the firing temperature varies, the characteristics of the obtained ferrite will change.

製造条件を厳密に管理すればするほど、製品品質の保証パーセンテージは上がる。しかしながら、特に800〜1200℃程度の高い焼成温度を、±3℃程度の誤差範囲内に厳密管理することは極めて困難であり、管理できたとしてもそのために非常に高いコストがかかってしまう。   The tighter the production conditions, the higher the product quality guarantee percentage. However, it is extremely difficult to strictly manage a high firing temperature of about 800 to 1200 ° C. within an error range of about ± 3 ° C., and even if it can be managed, a very high cost is required.

そのため、焼成温度などの製造条件の変動に対して、特性の変化がきわめて小さく、製造管理が容易となるNiCuZn系フェライトの提案が望まれている。   Therefore, it is desired to propose a NiCuZn-based ferrite in which the change in characteristics is extremely small with respect to fluctuations in manufacturing conditions such as the firing temperature and manufacturing management is easy.

より具体的には、温度変化に対して微細な粒子径を保ったまま高密度に焼結することができ、その結果、焼成温度の変化に対するインダクタンスの特性変動が小さいNiCuZn系フェライトの提案が要望されている。   More specifically, there is a demand for a NiCuZn-based ferrite that can be sintered at a high density while maintaining a fine particle diameter with respect to a temperature change, and as a result, has a small variation in inductance characteristics with respect to a change in firing temperature. Has been.

本願発明と関連すると思われる先行技術として、下記の特許文献が挙げられる。   The following patent documents are listed as prior art that is considered to be related to the present invention.

特開2001−76929公報には、磁性体層の仮焼、焼成時における合成反応がよく、かつ、めっき処理時における不具合の発生が少ない積層型インダクタを得ることを目的として、比表面積10〜20m2/gのBi23を0.1wt%以上0.5wt%未満添加してなるNiCuZn系フェライトが開示されている。しかしながら、当該公報の具体的実施例には本発明の組成のものは開示されておらず、焼成温度などの製造条件の変動に対して特性の変化が極めて小さいという効果が発現するNiCuZn系フェライトは存在しない。また、比表面積が10〜20m2/gと従来のBi23(5〜6m2/g)に比べ非常に微細であるため秤量時の飛散を起こすようになること、Bi23原料の製造方法が気相法になることによる原料のコスト上昇になることがあり好ましくない。それに対し、本発明では従来の比表面積を有するBi23を使用しながらも0.1〜0.4重量%の添加にて、890〜910℃の焼成温度にて焼結できる。 Japanese Patent Application Laid-Open No. 2001-76929 discloses a specific surface area of 10 to 20 m for the purpose of obtaining a multilayer inductor that has a good synthesis reaction during calcining and firing of a magnetic layer and that is less susceptible to defects during plating. A NiCuZn ferrite obtained by adding 2 / g Bi 2 O 3 to 0.1 wt% or more and less than 0.5 wt% is disclosed. However, the specific examples of the publication do not disclose the composition of the present invention, and NiCuZn ferrite that exhibits the effect that the change in characteristics is extremely small with respect to fluctuations in manufacturing conditions such as the firing temperature is not exist. In addition, the specific surface area is 10-20 m 2 / g, which is very fine compared to conventional Bi 2 O 3 (5-6 m 2 / g), so that scattering occurs during weighing, Bi 2 O 3 raw material Since the production method is a gas phase method, the cost of raw materials may increase, which is not preferable. In contrast, in the present invention in addition also 0.1 to 0.4% by weight while using Bi 2 O 3 having a conventional specific surface area, it can be sintered at a sintering temperature of from 890 to 910 ° C..

また、特開2003−243220公報には、焼結体の絶縁抵抗の低下が抑制され、電気的特性の劣化が少ない、信頼性の高い積層インダクタ部品を得ることを目的として、Bi23を含むことのあるNiCuZn系フェライトが開示されている。しかしながら、この場合もやはり前述した特開2001−76929公報と同様に、具体的実施例は、Cu量が6mol%であるため焼結性が低く焼成温度などの製造条件の変動に対して、特性の変化がきわめて小さくなるという効果が発現するNiCuZn系フェライトは存在しない。さらには、Bi23(mol%):0.01、0.2は、重量換算にすると0.04および0.8重量%となり0.04重量%では、粒子径の制御ができず、0.8重量%では、異常成長した粒子が多数発生する。 Japanese Patent Laid-Open No. 2003-243220 discloses Bi 2 O 3 for the purpose of obtaining a highly reliable multilayer inductor component in which a decrease in insulation resistance of a sintered body is suppressed and electrical characteristics are hardly deteriorated. NiCuZn-based ferrites that may be included are disclosed. However, in this case as well, as in the above-mentioned Japanese Patent Application Laid-Open No. 2001-76929, the specific example has a low sinterability because the amount of Cu is 6 mol%, and has characteristics against fluctuations in manufacturing conditions such as the firing temperature. There is no NiCuZn-based ferrite that exhibits the effect that the change in the size is extremely small. Furthermore, Bi 2 O 3 (mol%): 0.01 and 0.2 are 0.04 and 0.8% by weight in terms of weight, and the particle diameter cannot be controlled at 0.04% by weight. At 0.8% by weight, many abnormally grown particles are generated.

また、日本国特許第3201529号公報には、耐衝撃性に優れ、強度及び電磁気特性にも優れるフェライト材料を提供することを目的として、Bi23を含むNiCuZn系フェライトの提案がなされている。しかしながら、焼成温度が1100℃でありフェライト粒子が非常に大きいことが予想され、この場合もやはり、焼成温度などの製造条件の変動に対して、特性の変化がきわめて小さくなるという効果が発現するNiCuZn系フェライトは存在しない。また、焼成温度が1100℃と高温であることから、AgおよびAg−Pd等のコイル導体を用いたフェライトとコイル導体を同時焼成する積層型用のフェライト材料として好ましくない。 Japanese Patent No. 3201529 proposes a NiCuZn-based ferrite containing Bi 2 O 3 for the purpose of providing a ferrite material having excellent impact resistance and excellent strength and electromagnetic characteristics. . However, it is expected that the firing temperature is 1100 ° C. and the ferrite particles are very large. Again, NiCuZn exhibits the effect that the characteristic change is extremely small with respect to fluctuations in manufacturing conditions such as the firing temperature. There is no ferrite. Further, since the firing temperature is as high as 1100 ° C., it is not preferable as a ferrite material for a multilayer type in which a ferrite using a coil conductor such as Ag and Ag—Pd and the coil conductor are simultaneously fired.

特開2001−76929公報JP 2001-76929 A 特開2003−243220公報JP 2003-243220 A 日本国特許第3201529号公報Japanese Patent No. 3201529

このような実状のもとに、本発明は創案されたものであって、その目的は、前述したように、温度変化に対して微細な粒子径を保ったまま高密度に焼結することができ、その結果、焼成温度の変化に対するインダクタンスの特性変動が小さいNiCuZn系フェライトを提供することにある。   Under such circumstances, the present invention has been invented, and the object thereof is to sinter at a high density while maintaining a fine particle diameter with respect to temperature changes, as described above. As a result, an object of the present invention is to provide a NiCuZn-based ferrite having a small variation in inductance characteristics with respect to a change in firing temperature.

このような課題を解決するために、本発明は、主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.00〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有されて構成されるNiCuZn系フェライトであって、前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなるように構成される。 In order to solve such problems, the present invention is based on iron oxide as a main component in an amount of 47.6 to 49.8 mol% in terms of Fe 2 O 3 and copper oxide in an amount of 8.1 to 11.5 mol in terms of CuO. %, Zinc oxide is 1.00 to 29.0 mol% in terms of ZnO, and nickel oxide is the remaining mol% in terms of NiO. Bi 2 O 3 0.1 to 0.4 configured such that it is contained by weight% in terms of.

また、本発明のNiCuZn系フェライトの好ましい態様として、焼結体の平均結晶粒径が0.6〜1.3μmであるように構成される。   Moreover, as a preferable aspect of the NiCuZn-based ferrite of the present invention, the sintered body has an average crystal grain size of 0.6 to 1.3 μm.

また、本発明は、NiCuZn系フェライトを有してなる電子部品であって、前記フェライトは、主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.00〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有され、前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなるように構成される。 Further, the present invention is an electronic component comprising a NiCuZn-based ferrite, the ferrite is 47.6 to 49.8 mol% of iron oxide calculated as Fe 2 O 3 as a main component, copper oxide CuO 8.1 to 11.5 mol% in terms of conversion, zinc oxide in the range of 1.00 to 29.0 mol% in terms of ZnO, and nickel oxide in the remaining mol% in terms of NiO. Bi 2 O 3 0.1 to 0.4 configured such that it is contained by weight% in terms of.

また、本発明の電子部品の好ましい態様として、前記電子部品はコイル導体を備えるとともに、前記フェライトからなるコア部を備える積層インダクタまたはLC複合部品として構成される。   Moreover, as a preferable aspect of the electronic component of the present invention, the electronic component is configured as a multilayer inductor or an LC composite component including a coil conductor and a core portion made of the ferrite.

また、本発明の電子部品の好ましい態様として、前記フェライトはその平均結晶粒径が0.6〜1.3μmであるように構成される。   Moreover, as a preferable aspect of the electronic component of the present invention, the ferrite is configured such that the average crystal grain size is 0.6 to 1.3 μm.

本発明のNiCuZn系フェライトは、主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.0〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有されており、前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなるように構成されているので、温度変化に対して微細な粒子径を保ったまま高密度に焼結することができ、その結果、焼成温度の変化に対するインダクタンスの特性変動が小さいNiCuZn系フェライトが形成される。 In the NiCuZn ferrite of the present invention, iron oxide as a main component is 47.6 to 49.8 mol% in terms of Fe 2 O 3 , copper oxide is 8.1 to 11.5 mol% in terms of CuO, and zinc oxide is ZnO. 1.0 to 29.0 mol% in terms of conversion, nickel oxide is included in the remaining mol% in terms of NiO, and bismuth oxide is 0.1 to 0.4 wt in terms of Bi 2 O 3 with respect to the main component. %, It can be sintered at a high density while maintaining a fine particle diameter with respect to the temperature change, and as a result, the characteristic variation of the inductance with respect to the change in the firing temperature is small. NiCuZn ferrite is formed.

以下、本発明のフェライト(酸化物磁性材料)について詳細に説明する。   Hereinafter, the ferrite (oxide magnetic material) of the present invention will be described in detail.

本発明のフェライトは、NiCuZn系フェライトであって、その実質的な主成分は、酸化鉄がFe23換算で47.6〜49.8モル%(特に好ましくは、47.7〜49.3モル%)、酸化銅がCuO換算で8.1〜11.5モル%(特に好ましくは、8.1〜10.5モル%)、酸化亜鉛がZnO換算で1.0〜29.0モル%(特に好ましくは、10.0〜27.0モル%)、酸化ニッケルがNiO換算で残部モル%含有されて構成される。
さらに本発明のフェライトにおいては、このような主成分に対して、副成分としての酸化ビスマスがBi23換算で0.1〜0.4重量%(特に好ましくは、0.14〜0.37重量%)含有されている。
The ferrite of the present invention is a NiCuZn-based ferrite, and the substantial main component thereof is iron oxide of 47.6 to 49.8 mol% in terms of Fe 2 O 3 (particularly preferably, 47.7 to 49.49). 3 mol%), copper oxide is 8.1 to 11.5 mol% in terms of CuO (particularly preferably 8.1 to 10.5 mol%), and zinc oxide is 1.0 to 29.0 mol in terms of ZnO. % (Particularly preferably 10.0 to 27.0 mol%), and nickel oxide is contained in the remaining mol% in terms of NiO.
Furthermore, in the ferrite of the present invention, the bismuth oxide as a subcomponent is 0.1 to 0.4% by weight in terms of Bi 2 O 3 (particularly preferably, 0.14 to 0.8%) with respect to such a main component. 37% by weight).

上記の主成分の組成範囲において、酸化鉄(Fe23)の含有量が47.6モル%未満となると、焼結性が低下し焼成温度に対する結晶粒子径の制御の効果が低減され、焼成温度に対するμの変化率が大きくなるという不都合が生じる傾向があり好ましくない。この一方で、酸化鉄(Fe23)の含有量が49.8モル%を超えると、焼結性が著しく劣化するという不都合が生じる。 In the composition range of the main component, when the content of iron oxide (Fe 2 O 3 ) is less than 47.6 mol%, the sinterability is reduced, and the effect of controlling the crystal particle diameter with respect to the firing temperature is reduced. This is not preferable because there is a tendency that the rate of change of μ with respect to the firing temperature increases. On the other hand, when the content of iron oxide (Fe 2 O 3 ) exceeds 49.8 mol%, there arises a disadvantage that the sinterability is significantly deteriorated.

また、上記の主成分の組成範囲において、酸化銅(CuO)の含有量が8.1モル%未満となると、焼結性が劣化し焼成温度に対する結晶粒子径の制御の効果が低減され、焼成温度に対するμの変化率が大きくなるという不都合が生じる傾向があり、この一方で、酸化銅(CuO)の含有量が11.5モル%を超えると、フェライト中CuOの解離が生じやすくなり比抵抗が低下し、チップインダクタとした時に外部端子からのメッキ伸びが発生しやすくなるという不都合が生じる傾向がある。また、異常成長した結晶粒を生じ易くなり焼成温度に対するμの変化率が大きくなるという不都合が生じる傾向があり好ましくない。   Further, in the composition range of the main component, when the content of copper oxide (CuO) is less than 8.1 mol%, the sinterability is deteriorated, and the effect of controlling the crystal particle diameter with respect to the firing temperature is reduced, and firing is performed. However, when the content of copper oxide (CuO) exceeds 11.5 mol%, the dissociation of CuO in the ferrite is likely to occur and the specific resistance is increased. When the chip inductor is used, there is a tendency that the plating elongation from the external terminal easily occurs. In addition, abnormally grown crystal grains are likely to be generated, and there is a tendency that the rate of change of μ with respect to the firing temperature tends to increase.

さらに、上記の主成分の組成範囲において、酸化亜鉛(ZnO)の含有量が1.0モル%未満となると、焼結性が悪くなるという不都合が生じる傾向がある。この一方で、酸化亜鉛(ZnO)の含有量が29.0モル%を超えると、異常成長した結晶粒を生じ易くなり焼成温度に対するμの変化率が大きくなるという不都合が生じる傾向があり好ましくない。また、Tc(キュリー温度)も140℃以下になり部品の信頼性に不都合を生じることが懸念される。   Furthermore, when the content of zinc oxide (ZnO) is less than 1.0 mol% in the composition range of the main component, there is a tendency that inconvenience that the sinterability deteriorates. On the other hand, if the content of zinc oxide (ZnO) exceeds 29.0 mol%, abnormally grown crystal grains are liable to be produced, and there is a tendency that the rate of change of μ with respect to the firing temperature tends to increase. . In addition, Tc (Curie temperature) is 140 ° C. or less, and there is a concern that the reliability of the components may be inconvenient.

また、上記の主成分に対して含有される副成分の組成範囲において、酸化ビスマス(Bi23)の含有量が0.1重量%未満となると、結晶粒子径の制御が不十分になり焼成温度に対するインダクタンスの変化を制御できなくなるという不都合が生じる傾向がある。この一方で、酸化ビスマス(Bi23)の含有量が0.4重量%を超えると、異常成長した結晶が生じ、直流重畳特性が悪くなるという不都合が生じる傾向がある。 Further, in the composition range of the subcomponents contained with respect to the main component, if the content of bismuth oxide (Bi 2 O 3 ) is less than 0.1% by weight, the control of the crystal particle size becomes insufficient. There is a tendency that a change in inductance with respect to the firing temperature cannot be controlled. On the other hand, if the content of bismuth oxide (Bi 2 O 3 ) exceeds 0.4% by weight, abnormally grown crystals are produced, and there is a tendency that the direct current superposition characteristics are deteriorated.

なお、上記のNiCuZn系フェライトの製造過程において、粉砕後のフェライト材料の比表面積を6.5〜9.0(m2/g)、特に好ましくは、7.2〜8.4(m2/g)とすることが望ましい。 In the production process of the above NiCuZn-based ferrite, the specific surface area of the ferrite material after grinding 6.5~9.0 (m 2 / g), particularly preferably, from 7.2 to 8.4 (m 2 / g) is desirable.

粉砕後のフェライト材料の比表面積において、比表面積が6.5(m2/g)未満となるとμの焼成温度に対する変化率を抑制できない。この一方で、比表面積が9.0(m2/g)を超えると粉砕コストがかかるばかりでなく、塗料化が困難になる。 If the specific surface area of the ferrite material after pulverization is less than 6.5 (m 2 / g), the rate of change with respect to the firing temperature of μ cannot be suppressed. On the other hand, if the specific surface area exceeds 9.0 (m 2 / g), not only the pulverization cost is required, but also the coating becomes difficult.

本発明のフェライトは、例えば、所定形状のコア材に成形加工され、必要な巻線が巻回された後、樹脂モールド(樹脂被覆)され、固定インダクタ、チップインダクタ等として用いられる。これらは、例えば、テレビ、ビデオレコーダ、携帯電話や自動車電話などの移動体通信機等の各種電子機器として使用される。コアの形状は特に限定されるものではないが、例えば、外径、長さ、共に2mm以下のドラム型コアが例示できる。   For example, the ferrite of the present invention is molded into a core material having a predetermined shape, and after necessary windings are wound, it is resin-molded (resin-coated) and used as a fixed inductor, a chip inductor, or the like. These are used as various electronic devices such as mobile communication devices such as televisions, video recorders, mobile phones and automobile phones. The shape of the core is not particularly limited, and for example, a drum core having an outer diameter and a length of 2 mm or less can be exemplified.

モールド材(被覆材)として用いられる樹脂としては、熱可塑性や熱硬化性樹脂が例示できる。より具体的には、ポリオレフィン、ポリエステル、ポリアミド、ポリカーボネート、ポリウレタン、フェノール樹脂、尿素樹脂、エポキシ樹脂等が例示できる。モールド材をモールドする具体的手段としては、ディップ、塗布、吹き付け等を用いることができる。さらには、射出成形、流し込み成形等を用いても良い。   Examples of the resin used as the mold material (coating material) include thermoplastic and thermosetting resins. More specifically, polyolefin, polyester, polyamide, polycarbonate, polyurethane, phenol resin, urea resin, epoxy resin and the like can be exemplified. As a specific means for molding the molding material, dipping, coating, spraying and the like can be used. Furthermore, injection molding, casting molding, or the like may be used.

本発明のフェライトを用いたチップインダクタ(電子部品)の構成を例示すると、当該チップインダクタは、例えば、本発明のフェライトを用いて両端に径の大きな鍔を備える円筒体形状に成形したコアと、このコアの胴部に巻回された巻線と、この巻線の端部と外部電気回路とを接続し、かつコアを樹脂内に固定するためのコア両端に配置された端子電極と、これらの外部を覆うように形成されたモールド樹脂とを備えて構成される。   Exemplifying the configuration of a chip inductor (electronic component) using the ferrite of the present invention, the chip inductor, for example, a core formed into a cylindrical body shape having large diameter ridges at both ends using the ferrite of the present invention, Windings wound around the core of the core, terminal electrodes arranged at both ends of the core for connecting the end of the winding and an external electric circuit and fixing the core in the resin, and these And a molding resin formed so as to cover the outside.

なお、本発明のフェライトは、所定の加工が施された磁性体シートや誘電体シートを積層して焼成して形成される積層型の電子部品、すなわち、積層型インダクタや積層型LC複合部品のコア材料とすることもできる。積層型インダクタでは、コイル状部形成のための内部導体が形成されたフェライト組成物シートを複数枚準備して、これらを積層した後に焼成するようにすればよい。   The ferrite of the present invention is a multilayer electronic component formed by laminating and firing a magnetic sheet or dielectric sheet subjected to predetermined processing, that is, a multilayer inductor or a multilayer LC composite component. It can also be a core material. In a multilayer inductor, a plurality of ferrite composition sheets on which an inner conductor for forming a coil-shaped portion is formed may be prepared, and these may be laminated and fired.

次ぎに、本発明のフェライトの製造方法の一例について説明する。   Next, an example of the method for producing a ferrite of the present invention will be described.

まず、焼成後の主成分組成と副成分(添加物)組成が本発明の所定範囲内となるように、所定原料を所定量配合して準備する。   First, a predetermined amount of a predetermined raw material is blended and prepared so that the main component composition and subcomponent (additive) composition after firing are within the predetermined range of the present invention.

次いで、このように準備しておいた原料をボールミル等を用いて湿式混合する。これを乾燥させた後、仮焼きする。仮焼きは酸化性雰囲気中、例えば、空気中で行なわれる。仮焼き温度は、500〜900℃、仮焼き時間は1〜20時間とすることが好ましい。次いで、得られた仮焼物をボールミル等により、上述した所定の大きさ(比表面積を6.5〜9.0(m2/g))に粉砕する。なお、本発明のフェライトにおいては、当該粉砕の際に(あるいは粉砕後)、副成分の原料を添加して混合するようにすることが望ましい。 Next, the raw material prepared in this way is wet-mixed using a ball mill or the like. This is dried and then calcined. The calcination is performed in an oxidizing atmosphere, for example, in the air. The calcining temperature is preferably 500 to 900 ° C., and the calcining time is preferably 1 to 20 hours. Next, the obtained calcined product is pulverized to a predetermined size (specific surface area of 6.5 to 9.0 (m 2 / g)) by a ball mill or the like. In the ferrite of the present invention, it is desirable to add and mix the raw materials of the subcomponents during the pulverization (or after pulverization).

仮焼き物を粉砕した後、例えばポリビニルアルコール等の適当なバインダを適当量加えて、所望の形状に成形する。   After calcining the calcined product, an appropriate amount of an appropriate binder such as polyvinyl alcohol is added to form the desired shape.

ついで、成形体を焼成する。焼成は、酸化性雰囲気中、通常は、空気中で行なわれる。焼成温度は890、900、910℃程度で、焼成温度は2時間程度とされる。   Next, the molded body is fired. Firing is performed in an oxidizing atmosphere, usually in air. The firing temperature is about 890, 900, and 910 ° C., and the firing temperature is about 2 hours.

以下、具体的実施例を挙げて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

組成物中の主成分としてFe23、NiO、CuO、およびZnOが下記表1に示される組成割合となるように各原料を所定量配合した後、鋼鉄製のボールミルで20時間ほど湿式混合した。 Each raw material is blended in a predetermined amount such that Fe 2 O 3 , NiO, CuO, and ZnO as the main components in the composition have the composition ratios shown in Table 1 below, and then wet mixed in a steel ball mill for about 20 hours. did.

さらにこれらの混合粉を乾燥させた後、空気中所定の温度で仮焼きして仮焼粉を得た。この仮焼粉に副成分としてBi23が下記表1の組成割合となるように添加し、鋼鉄製ボールミルで80時間粉砕し、粉砕粉を得た。 Further, these mixed powders were dried and then calcined at a predetermined temperature in the air to obtain calcined powders. Bi 2 O 3 was added to the calcined powder as an auxiliary component so as to have the composition ratio shown in Table 1 below, and pulverized with a steel ball mill for 80 hours to obtain a pulverized powder.

このようにして得られた粉砕粉(フェライト粉)に、ポリビニルアルコール溶液を加えて混合した後、スプレードライヤを用いて造粒粉を得た。   After the polyvinyl alcohol solution was added to and mixed with the pulverized powder (ferrite powder) thus obtained, granulated powder was obtained using a spray dryer.

このようにして得られた顆粒を用いて、成形密度3.10Mg/m3となるように外径13mm、内径6mm、高さ3mmのトロイダル形状に成形した。 The granules thus obtained were molded into a toroidal shape having an outer diameter of 13 mm, an inner diameter of 6 mm, and a height of 3 mm so that the molding density was 3.10 Mg / m 3 .

このように成形した成形体を大気中で3種類の焼成温度、すなわち、890℃、900℃、および910℃のそれぞれの焼成温度で2時間焼成し、異なる焼成温度で作製されたトロイダルコアサンプルを得た。   Toroidal core samples produced at different firing temperatures were obtained by firing the molded body thus molded in air at three firing temperatures, that is, 890 ° C., 900 ° C., and 910 ° C. for 2 hours. Obtained.

これらの各サンプルについて(1)焼結密度df、(2)100kHzにおける初透磁率の焼成温度依存性、および(3)フェライト粒子径(平均粒子径)を、それぞれ求めた。
なお、上記(1)〜(3)の測定は以下の要領で行った。
For each of these samples, (1) the sintered density d f , (2) the firing temperature dependence of the initial permeability at 100 kHz, and (3) the ferrite particle diameter (average particle diameter) were determined.
In addition, the measurement of said (1)-(3) was performed in the following ways.

(1)焼結密度
焼結体の密度(df:単位はMg/m3)を、アルキメデス法を利用して得られた数値に基いて算出した。
(1) Sintering density The density (d f : unit is Mg / m 3 ) of the sintered body was calculated based on the numerical value obtained using the Archimedes method.

(2)100kHzにおける初透磁率μiの焼成温度依存性
890℃、900℃、および910℃の各焼成温度で製造した各サンプルについて、トロイダルコアサンプルにワイヤを20回巻回した後、LCRメータにてインダクタンス値等を測定し、100kHz、25℃における初透磁率μi890、μi900、およびμi910(下付きの添字は焼成温度を示している)を求めた。
(2) Calcination temperature dependence of initial permeability μi at 100 kHz For each sample manufactured at each calcination temperature of 890 ° C., 900 ° C., and 910 ° C., after winding the wire around the toroidal core sample 20 times, Inductance values and the like were measured, and initial magnetic permeability μi 890 , μi 900 , and μi 910 at 100 kHz and 25 ° C. were obtained (the subscript indicates the firing temperature).

これらの測定された値を用いて、下記式で定義されるΔμi900-10、およびΔμi900+10をそれぞれ求めた。Δμi900-10の値は、焼成温度が900℃から−10℃変動した場合の初透磁率の変動値を示しており、Δμi900+10の値は、焼成温度が900℃から+10℃変動した場合の初透磁率の変動値を示している。焼成温度900℃のサンプルが基準である。 Using these measured values, Δμi 900-10 and Δμi 900 + 10 defined by the following formulas were obtained, respectively. The value of Δμi 900-10 shows the variation value of the initial permeability when the firing temperature varies from 900 ° C. to −10 ° C. The value of Δμi 900 + 10 varies the firing temperature from 900 ° C. to + 10 ° C. The fluctuation value of the initial permeability in the case is shown. A sample having a firing temperature of 900 ° C. is the standard.

Δμi900-10=(μi890−μi900)/μi900
Δμi900+10=(μi910−μi900)/μi900
Δμi 900 −10 = (μi 890 −μi 900 ) / μi 900
Δμi 900 + 10 = (μi 910 −μi 900 ) / μi 900

(3)フェライト粒子径(平均粒子径)
作製した焼結体の100μm2以上の範囲について、以下の測定を行った。
(3) Ferrite particle size (average particle size)
The following measurements were performed for a range of 100 μm 2 or more of the produced sintered body.

まず、結晶粒子のピクセル数を面積に変換する方法による画像解析により個々の結晶粒子の断面積を求めた。次に、この求めた断面積と同じ断面積を有する円の直径の長さを求め、この直径の値にπ/2を乗じることにより算出される値を結晶粒子の粒子径とし、各粒子の平均を計算することにより平均(結晶)粒子径とした。つまり、個々の粒子の断面積を円に近似することにより平均粒子径を算出した。   First, the cross-sectional area of each crystal particle was determined by image analysis using a method of converting the number of pixels of the crystal particle into an area. Next, the length of the diameter of a circle having the same cross-sectional area as the calculated cross-sectional area is obtained, and the value calculated by multiplying the value of this diameter by π / 2 is the particle diameter of the crystal particles, The average (crystal) particle diameter was obtained by calculating the average. That is, the average particle diameter was calculated by approximating the cross-sectional area of each particle to a circle.

結果を下記表1に示した。   The results are shown in Table 1 below.

なお、表1のデータにおいて、焼結密度dfは5.1(Mg/m3)以上、Δμi900-10は、その絶対値が10%以内、Δμi900+10その絶対値が10%以内、平均フェライト粒子径(平均結晶粒径)は、0.6〜1.3μmが目標値である。 Note that in the data in Table 1, the sintered density d f is 5.1 (Mg / m 3) or more, Derutamyuai 900-10, the absolute value within 10%, Δμi 900 + 10 that the absolute value within 10% The average ferrite particle diameter (average crystal particle diameter) is a target value of 0.6 to 1.3 μm.

なお、チップインダクタにおいての粒子径は890℃焼成の粒子径と同等であった。   Note that the particle size in the chip inductor was equivalent to the particle size of 890 ° C. firing.

Figure 2007302493
Figure 2007302493

上記の結果より本発明の効果は明らかである。すなわち、本発明のNiCuZn系フェライトは、主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.0〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有されており、前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなるように構成されているので、温度変化に対して微細な粒子径を保ったまま高密度に焼結することができ、その結果、焼成温度の変化に対するインダクタンスの特性変動が小さいNiCuZn系フェライトを形成することができる。 The effects of the present invention are clear from the above results. That, NiCuZn ferrite of the present invention, from 47.6 to 49.8 mol% iron oxide in terms of Fe 2 O 3 as a main component, 8.1 to 11.5 mol% of copper oxide in terms of CuO, zinc oxide There 1.0 to 29.0 mol% in terms of ZnO, nickel oxide and remaining mol% in terms of NiO, with respect to the main component, bismuth oxide calculated as Bi 2 O 3 from 0.1 to 0. Since it is configured to contain 4% by weight, it can be sintered at a high density while maintaining a fine particle diameter with respect to temperature change, and as a result, the characteristic variation of inductance with respect to change in firing temperature Can be formed.

Claims (5)

主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.00〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有されて構成されるNiCuZn系フェライトであって、
前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなることを特徴とするNiCuZn系フェライト。
As main components, iron oxide is 47.6 to 49.8 mol% in terms of Fe 2 O 3 , copper oxide is 8.1 to 11.5 mol% in terms of CuO, and zinc oxide is 1.00 to 29.9 in terms of ZnO. NiCuZn-based ferrite composed of 0 mol% and nickel oxide remaining in mol% in terms of NiO,
A NiCuZn-based ferrite comprising 0.1 to 0.4 wt% of bismuth oxide in terms of Bi 2 O 3 with respect to the main component.
焼結体の平均結晶粒径が0.6〜1.3μmである請求項1に記載のNiCuZn系フェライト。   The NiCuZn ferrite according to claim 1, wherein the sintered body has an average crystal grain size of 0.6 to 1.3 μm. NiCuZn系フェライトを有してなる電子部品であって、
前記フェライトは、主成分として酸化鉄がFe23換算で47.6〜49.8モル%、酸化銅がCuO換算で8.1〜11.5モル%、酸化亜鉛がZnO換算で1.00〜29.0モル%、酸化ニッケルがNiO換算で残部モル%含有され、
前記主成分に対して、酸化ビスマスがBi23換算で0.1〜0.4重量%含有されてなることを特徴とする電子部品。
An electronic component comprising NiCuZn-based ferrite,
As for the ferrite, iron oxide as a main component is 47.6 to 49.8 mol% in terms of Fe 2 O 3 , copper oxide is 8.1 to 11.5 mol% in terms of CuO, and zinc oxide is 1. in terms of ZnO. 00 to 29.0 mol%, nickel oxide is contained in the remaining mol% in terms of NiO,
An electronic component comprising 0.1 to 0.4% by weight of bismuth oxide in terms of Bi 2 O 3 with respect to the main component.
前記電子部品はコイル導体を備えるとともに、前記フェライトからなるコア部を備える積層インダクタまたはLC複合部品である請求項3に記載の電子部品。   The electronic component according to claim 3, wherein the electronic component is a multilayer inductor or an LC composite component including a coil conductor and a core portion made of the ferrite. 前記フェライトはその平均結晶粒径が0.6〜1.3μmである請求項3または請求項4に記載の電子部品。
The electronic component according to claim 3 or 4, wherein the ferrite has an average crystal grain size of 0.6 to 1.3 µm.
JP2006131035A 2006-05-10 2006-05-10 NiCuZn-based ferrite and electronic component using the same Active JP4369936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131035A JP4369936B2 (en) 2006-05-10 2006-05-10 NiCuZn-based ferrite and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131035A JP4369936B2 (en) 2006-05-10 2006-05-10 NiCuZn-based ferrite and electronic component using the same

Publications (2)

Publication Number Publication Date
JP2007302493A true JP2007302493A (en) 2007-11-22
JP4369936B2 JP4369936B2 (en) 2009-11-25

Family

ID=38836759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131035A Active JP4369936B2 (en) 2006-05-10 2006-05-10 NiCuZn-based ferrite and electronic component using the same

Country Status (1)

Country Link
JP (1) JP4369936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321733B1 (en) 2013-04-12 2013-10-29 김철주 Ferrite usung core and its production method
KR20160061139A (en) 2014-11-21 2016-05-31 삼성전기주식회사 ferrite and chip electronic component comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147638B2 (en) * 2013-10-07 2017-06-14 Tdk株式会社 Ferrite composition and electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321733B1 (en) 2013-04-12 2013-10-29 김철주 Ferrite usung core and its production method
KR20160061139A (en) 2014-11-21 2016-05-31 삼성전기주식회사 ferrite and chip electronic component comprising the same
US9630882B2 (en) 2014-11-21 2017-04-25 Samsung Electro-Mechanics Co., Ltd. Ferrite and coil electronic component including the same

Also Published As

Publication number Publication date
JP4369936B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
TWI294627B (en)
CN109053178B (en) Ferrite composition and electronic component
TW543044B (en) Magnetic material and inductor
JP4532401B2 (en) NiCuZn-based ferrite and electronic component using the same
KR102232105B1 (en) Ferrite composition and multilayer electronic component
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
WO2010113772A1 (en) Ferrite material and electronic component
JP4369936B2 (en) NiCuZn-based ferrite and electronic component using the same
JP2007063123A (en) Ferrite material and electronic component using the same
CN113053649A (en) Method for manufacturing magnetic body and coil component including magnetic body
US9434622B2 (en) Sintered ferrite material, wire wound component, and producing method of sintered ferrite material
JPWO2013115064A1 (en) Wire-wound coil component having a magnetic material and a core formed using the same
JP2006151742A (en) Ferrite material and electronic component using the same
JP2004296865A (en) Ferrite core for winding chip inductor, manufacturing method thereof, and winding chip inductor
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP2006210493A (en) Antenna coil and transponder
JP2006151741A (en) Ferrite material and electronic component using the same
JP5098782B2 (en) NiCuZn-based ferrite and electronic component using the same
JP4835969B2 (en) Magnetic oxide material and multilayer inductor using the same
JP5105660B2 (en) Ferrite material and ferrite core using the same
JP2006206355A (en) Antenna coil and transponder
JP4766339B2 (en) Sintered ferrite and manufacturing method thereof
JP7426818B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP6064525B2 (en) Ferrite composition, ferrite core and electronic component
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4