JP2007300809A - Method for producing shikimic acid - Google Patents

Method for producing shikimic acid Download PDF

Info

Publication number
JP2007300809A
JP2007300809A JP2006129444A JP2006129444A JP2007300809A JP 2007300809 A JP2007300809 A JP 2007300809A JP 2006129444 A JP2006129444 A JP 2006129444A JP 2006129444 A JP2006129444 A JP 2006129444A JP 2007300809 A JP2007300809 A JP 2007300809A
Authority
JP
Japan
Prior art keywords
acid
producing
shikimic acid
dehydroshikimic
skdh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006129444A
Other languages
Japanese (ja)
Inventor
Kazunobu Matsushita
一信 松下
Hirohide Toyama
博英 外山
Kazuo Adachi
収生 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2006129444A priority Critical patent/JP2007300809A/en
Publication of JP2007300809A publication Critical patent/JP2007300809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing shikimic acid capable of becoming a raw material of a medicine effective for bird influenza, etc., and many other medicines, agrochemicals, etc., simply in a good efficiency and without giving a load to the environment. <P>SOLUTION: This method for producing shikimic acid is provided by passing through each of the processes of (1) a first process of producing 3-dehydroshikimic acid from quinic acid in the presence of an enzyme derived from an acetobactor and (2) a process of producing shikimic acid from the 3-dehydroshikimic acid under the joint actions of shikimic acid dehydrogenase (SKDH) and glucose dehydrogenase (GDH). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酢酸菌を用いたシキミ酸の効率的な製造方法に関する。詳しくは、キナ酸を原料として、酢酸菌により3−デヒドロシキミ酸を合成し、さらに酢酸菌由来の酵素を用いて、3−デヒドロシキミ酸からシキミ酸を製造する方法に関する。   The present invention relates to an efficient method for producing shikimic acid using acetic acid bacteria. Specifically, the present invention relates to a method for synthesizing 3-dehydroshikimic acid by acetic acid bacteria using quinic acid as a raw material, and further producing shikimic acid from 3-dehydroshikimic acid using an enzyme derived from acetic acid bacteria.

シキミ酸は、多数の抗生物質、アルカロイド、除草活性物質などの有用な原料として用いられる芳香族アミノ酸の重要な中間体である。特に近年になって、世界的な流行を引き起こすと懸念されている鳥インフルエンザに対し、最も効果が期待されているタミフル(登録商標)の重要な原料化合物となっている。WHO(世界保健機構)が、広く警告を出しているにもかかわらず、世界中で利用できる程充分な備蓄はない。その理由の1つとして、原料となるシキミ酸の調製が難しいことがあげられる。グルコースからシキミ酸に至るまでシキミ酸経路は、二つの異なった代謝経路より得られたホスホエノールピルビン酸とエリスロースー4−リン酸の縮合反応から始まる多段階の代謝経路を経由しなくてはならない。そのため、最新技術の代謝制御法や遺伝子増幅法を駆使してシキミ酸経路の代謝中間体を効率良く製造しても、シキミ酸まで到達するには障壁が大き過ぎるという欠点があった。本発明者らは、酢酸菌中の細胞膜結合型キナ酸脱水素酵素(Quinoprotein quinate dehydrogenase:QDH)を用いて、キナ酸からシキミ酸経路の中間体である3−デヒドロシキミ酸を製造する方法を明らかにし(特許文献1)、また酢酸菌の単独培養系でキナ酸からシキミ酸を製造する方法も提供している(非特許文献1)。   Shikimic acid is an important intermediate of aromatic amino acids used as a useful raw material for many antibiotics, alkaloids, herbicidal active substances and the like. Particularly in recent years, it has become an important raw material compound of Tamiflu (registered trademark), which is expected to be most effective against avian influenza, which is feared to cause a global epidemic. Despite wide warnings from the World Health Organization (WHO), there is not enough reserve available around the world. One of the reasons is that it is difficult to prepare shikimic acid as a raw material. From glucose to shikimic acid, the shikimic acid pathway must go through a multi-step metabolic pathway starting from the condensation reaction of phosphoenolpyruvate and erythrose-4-phosphate obtained from two different metabolic pathways. . Therefore, even if the metabolic intermediate of the shikimic acid pathway is efficiently produced using the latest metabolic control method and gene amplification method, there is a drawback that the barrier is too large to reach shikimic acid. The present inventors have developed a method for producing 3-dehydroshikimic acid, which is an intermediate of the shikimic acid pathway, from quinic acid using cell membrane-bound quinate dehydrogenase (QDH) in acetic acid bacteria. Clarification (Patent Document 1) and a method for producing shikimic acid from quinic acid in a single culture system of acetic acid bacteria are also provided (Non-Patent Document 1).

現在、中国では、シキミ酸を植物のシキミ(Illicium anisatum)やトウシキミ(Illicium verum)から抽出しているが、天然物であるため、同質の原料を常時入手することは困難である。   At present, in China, shikimic acid is extracted from plant shikimi (Illicium anisatum) and Toshikimi (Illicium verum), but since it is a natural product, it is difficult to always obtain raw materials of the same quality.

有機化学的にシキミ酸を製造する方法については、キナ酸誘導体からフィルスマイヤー試薬を用いて脱水することによりシキミ酸誘導体を製造する方法(特許文献2)、ジアミノシキミ酸誘導体をイソフタル酸誘導体から製造する方法(特許文献3)、あるいは、フランから製造する方法(特許文献4)が知られている。これらはシキミ酸誘導体であり、目的とする物質の製造においては困難な反応を必要とする可能性がある。   Regarding the method of producing shikimic acid organically, a method of producing a shikimic acid derivative by dehydration from a quinic acid derivative using a Filsmeier reagent (Patent Document 2), a diaminoshikimic acid derivative produced from an isophthalic acid derivative (Patent Document 3) or a method of manufacturing from furan (Patent Document 4) is known. These are shikimic acid derivatives and may require difficult reactions in the production of the target substance.

また、シキミ酸を安価に製造する方法として、抽出源から抽出した無機塩を多量に含むキナ酸含有原料液から、キナ酸を単離せず、酸又は塩基触媒存在下、アルコール類と反応させてキナ酸エステルに変換した後、酸触媒存在下、ケトン誘導体又はアルデヒド誘導体と反応させてキナ酸エステルのアセタール体を製造し、該キナ酸誘導体からシキミ酸前駆体及びシキミ酸を製造する方法も開示されている(特許文献5)。   In addition, as a method for producing shikimic acid at low cost, quinic acid is not isolated from a quinic acid-containing raw material liquid containing a large amount of an inorganic salt extracted from an extraction source, but reacted with alcohols in the presence of an acid or a base catalyst. Also disclosed is a method for producing a shikimic acid precursor and shikimic acid from the quinic acid derivative by converting it to a quinic acid ester and then reacting with a ketone derivative or an aldehyde derivative in the presence of an acid catalyst to produce an acetal form of the quinic acid ester. (Patent Document 5).

さらに、発酵法によりシキミ酸を製造する方法も知られており、シキミ酸を菌体外に分泌する性質を有するシトロバクター属に属する微生物を用いて、効率的にシキミ酸を製造する方法が開示されている(特許文献6)。しかしながら発酵法による製造法では、培養液中にはシキミ酸の他に多くの物質が存在するため精製工程が煩雑である。
特開2003−70497号公報 特許第3641384号公報 特開2001−354635号公報 特開2001−288152号公報 特開平11−349583号公報 特開2002−281993号公報 Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2124−2131(2003)
Furthermore, a method for producing shikimic acid by a fermentation method is also known, and a method for efficiently producing shikimic acid using a microorganism belonging to the genus Citrobacter having the property of secreting shikimic acid outside the cell is disclosed. (Patent Document 6). However, in the production method by the fermentation method, the purification process is complicated because many substances other than shikimic acid are present in the culture solution.
JP 2003-70497 A Japanese Patent No. 3641384 JP 2001-354635 A JP 2001-288152 A Japanese Patent Application Laid-Open No. 11-349583 JP 2002-281993 A Adachi O. et al. Biosci. Biotecnol. Biochem. 67: 2124-2131 (2003)

本発明は、鳥インフルエンザ等に有効な医薬品のほか、多数の医薬品、農薬等の原料となるシキミ酸を、効率よく、簡便な方法で、また環境に負荷を掛けない方法で製造する方法を提供することを目的とする。   The present invention provides a method for producing shikimic acid, which is a raw material for a large number of pharmaceuticals, agricultural chemicals, etc., in addition to pharmaceuticals effective against avian influenza etc., in an efficient and simple manner and in a manner that does not burden the environment. The purpose is to do.

上記課題を解決すべく鋭意検討した結果、グルコースから始まるシキミ酸経路における中間代謝物から酢酸菌を利用して容易にシキミ酸を製造する方法を開発した。すなわち、本発明は下記の構成を有する。   As a result of intensive studies to solve the above problems, a method for easily producing shikimic acid using an acetic acid bacterium from an intermediate metabolite in the shikimic acid pathway starting from glucose was developed. That is, the present invention has the following configuration.

(1)シキミ酸を製造する方法において、1)酢酸菌由来の酵素存在下で、キナ酸から3−デヒドロシキミ酸を製造する第一工程、2)シキミ酸脱水素酵素(SKDH)とグルコース脱水素酵素(GDH)の共役下、3−デヒドロシキミ酸からシキミ酸を製造する第二工程、の各工程を経由することを特徴とするシキミ酸の製造方法。   (1) In the method for producing shikimic acid, 1) the first step of producing 3-dehydroshikimic acid from quinic acid in the presence of an enzyme derived from acetic acid bacteria, 2) shikimic acid dehydrogenase (SKDH) and glucose dehydration A method for producing shikimic acid, wherein each step of the second step of producing shikimic acid from 3-dehydroshikimic acid under the conjugation of elementary enzyme (GDH) is conducted.

(2)シキミ酸を製造する方法において、キナ酸から3−デヒドロシキミ酸を製造する第一工程の反応を、pH7〜pH9で行い、シキミ酸脱水素酵素(SKDH)とグルコース脱水素酵素(GDH)の共役下、3−デヒドロシキミ酸からシキミ酸を製造する第二工程の反応を、pH6〜pH7で行うことを特徴とする(1)に記載のシキミ酸の製造方法。   (2) In the method for producing shikimic acid, the reaction in the first step of producing 3-dehydroshikimic acid from quinic acid is performed at pH 7 to pH 9, and shikimic acid dehydrogenase (SKDH) and glucose dehydrogenase (GDH) The method for producing shikimic acid according to (1), wherein the reaction in the second step of producing shikimic acid from 3-dehydroshikimic acid is carried out at pH 6 to pH 7 under conjugation.

(3)第二工程における反応液が、NADPと、NADPに対し100〜10000倍モル濃度のグルコースを含むことを特徴とする(1)または(2)に記載のシキミ酸の製造方法。   (3) The method for producing shikimic acid according to (1) or (2), wherein the reaction solution in the second step contains NADP and glucose at a molar concentration of 100 to 10,000 times that of NADP.

(4)第一工程で使用する酢酸菌由来の酵素が、キナ酸脱水素酵素(QDH)であることを特徴とする(1)または(2)に記載のシキミ酸の製造方法。   (4) The method for producing shikimic acid according to (1) or (2), wherein the enzyme derived from acetic acid bacteria used in the first step is quinic acid dehydrogenase (QDH).

(5)第二工程で使用する、シキミ酸脱水素酵素(SKDH)およびグルコース脱水素酵素(GDH)が、酢酸菌由来であることを特徴とする(1)または(2)に記載のシキミ酸の製造方法。   (5) The shikimic acid according to (1) or (2), wherein the shikimate dehydrogenase (SKDH) and glucose dehydrogenase (GDH) used in the second step are derived from acetic acid bacteria. Manufacturing method.

(6)第二工程で使用する、シキミ酸脱水素酵素(SKDH)およびグルコース脱水素酵素(GDH)は、これら両方の酵素を共に生産する能力を有する酢酸菌から得られた両方の酵素を含む粗酵素液の状態で使用するか、あるいは酢酸菌から単離され、精製された2つの酵素として使用することを特徴とする(5)に記載のシキミ酸の製造方法。   (6) Shikimate dehydrogenase (SKDH) and glucose dehydrogenase (GDH) used in the second step include both enzymes obtained from acetic acid bacteria having the ability to produce both of these enzymes together. The method for producing shikimic acid according to (5), wherein the method is used in the state of a crude enzyme solution or is used as two enzymes isolated and purified from acetic acid bacteria.

(7)酢酸菌が、Gluconobacter属菌であることを特徴とする(1)〜(6)のいずれかに記載のシキミ酸の製造方法。   (7) The method for producing shikimic acid according to any one of (1) to (6), wherein the acetic acid bacterium is a genus Gluconobacter.

(8)Gluconobacter属菌が、Gluconobacter oxydans IFO 3244であることを特徴とする、(7)に記載のシキミ酸の製造方法。   (8) The method for producing shikimic acid according to (7), wherein the genus Gluconobacter is Gluconobacter oxydans IFO 3244.

本発明のシキミ酸の製造法により、シキミ酸およびシキミ酸経路の代謝中間体の製造が容易になったため、これらを原料とする有用物質の製造が可能になる。   The method for producing shikimic acid according to the present invention facilitates the production of shikimic acid and metabolic intermediates of the shikimic acid pathway. Therefore, it is possible to produce useful substances using these as raw materials.

本発明者らは、先に、細胞膜結合型キナ酸脱水素酵素(Quinoprotein quinate dehydrogenase:QDH)と3−デヒドロキナ酸デヒドラターゼ(3−Dehydroquinate dehydratase:DQD)が、酢酸菌の細胞質膜外皮上に広く存在し、特にGluconobacter属菌では、通常の発酵生産手法でキナ酸が3−デヒドロキナ酸を経由して3−デヒドロシキミ酸に酸化されることを見出し報告した。(Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2124−2131(2003)(上記非特許文献1)、Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2115−2123(2003)、Vangnai A.S.et al.FEMS Microbiol.Lett.,241:157−162(2004))   The present inventors previously described that cell membrane-bound quinate dehydrogenase (QDH) and 3-dehydroquinate dehydratase (DQD) are widely present on the cytoplasmic membrane coat of acetic acid bacteria. In particular, in the genus Gluconobacter, it was found and reported that quinic acid is oxidized to 3-dehydroshikimic acid via 3-dehydroquinic acid by a normal fermentation production method. (Adachi O. et al. Biosci. Biotechnol. Biochem., 67: 2124-2131 (2003) (Non-Patent Document 1), Adachi O. et al. Biosci. Biotechnol. Biochem., 67: 2111-2123 (2003) Vangnai AS et al. FEMS Microbiol. Lett., 241: 157-162 (2004)).

さらに、酢酸菌の細胞質では、3−デヒドロシキミ酸からシキミ酸を生成する場合と、逆にシキミ酸を酸化して3−デヒドロシキミ酸を生成する、可逆的作用を有するNADP依存性シキミ酸脱水素酵素(Shikimate dehydrogenase:SKDH)が存在することを、1つの細胞系で行った結果明らかにした。(Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2124−2131(2003)(上記非特許文献1)、Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2115−2123(2003)、Adachi O.et al.Biochem.Biophys.Acta,1647:10−17(2003)、Adachi O.et al.Appl.Microbiol.Biotechnol.,60:643−653(2003))   Furthermore, in the cytoplasm of acetic acid bacteria, NADP-dependent shikimate dehydration has a reversible action, in which shikimate is produced from 3-dehydroshikimate, and on the contrary, shikimate is oxidized to produce 3-dehydroshikimate. The presence of elementary enzyme (Shikimate dehydrogenase: SKDH) was clarified as a result of carrying out in one cell line. (Adachi O. et al. Biosci. Biotechnol. Biochem., 67: 2124-2131 (2003) (Non-Patent Document 1), Adachi O. et al. Biosci. Biotechnol. Biochem., 67: 2111-2123 (2003) ), Adachi O. et al. Biochem. Biophys. Acta, 1647: 10-17 (2003), Adachi O. et al. Appl. Microbiol. Biotechnol., 60: 643-653 (2003))

このことから、シキミ酸の製造量を上げるためには、図1に示すような二つの独立した酵素反応系を利用することが必要であることを見出し、二工程からなるシキミ酸の製造方法を完成させた。   From this, it was found that in order to increase the production amount of shikimic acid, it was necessary to use two independent enzyme reaction systems as shown in FIG. 1, and a method for producing shikimic acid comprising two steps was found. Completed.

<反応第一工程>
第一工程では、キナ酸からQDHにより3−デヒドロキナ酸が生成し、3−デヒドロキナ酸からDQDにより3−デヒドロシキミ酸が生成する流れであり、キナ酸と乾燥菌体、あるいは細胞膜とを従来の方法で培養し、培養液中に存在するQDHとDQDにより、3−デヒドロシキミ酸を製造する反応工程である。培養液中には、乾燥菌体、あるいは細胞膜由来のQDHおよびDQDが存在することが必要であり、特にQDHを生成する菌株を選び使用しなければならない。QDHが生成される菌株であればいずれの菌株でも良い。
<First reaction step>
In the first step, 3-dehydroquinic acid is produced from quinic acid by QDH, and 3-dehydroshikimic acid is produced from 3-dehydroquinic acid by DQD, and quinic acid and dried cells or cell membranes are separated from conventional ones. This is a reaction step in which 3-dehydroshikimic acid is produced by QDH and DQD existing in the culture medium after culturing by the method. In the culture solution, it is necessary that dry cells or QDH and DQD derived from cell membranes exist, and in particular, a strain producing QDH must be selected and used. Any strain may be used as long as it can produce QDH.

<反応第二工程>
第二工程では、3−デヒドロシキミ酸からシキミ酸を製造する。これは、細胞質ゲル内に存在する二種類の酵素を共役させて酵素反応を行う工程である。すなわちNADP下、グルコースからグルコノ−δ−ラクトンとNADPHに変換する活性を有するNADP依存性グルコース脱水素酵素(glucose dehydrogenase:GDH)と、SKDHとを同時進行で反応させることにより、3−デヒドロシキミ酸からシキミ酸を製造することができる。この場合、3−デヒドロシキミ酸を添加する前に、反応系にはNADPに対し過剰のグルコースを存在させておくことが望ましい。
<Reaction second step>
In the second step, shikimic acid is produced from 3-dehydroshikimic acid. This is a step of conjugating two kinds of enzymes present in the cytoplasmic gel to carry out an enzyme reaction. That is, under NADP, 3-dehydroshikimic acid is produced by reacting NADP-dependent glucose dehydrogenase (glucose dehydrogenase: GDH) having an activity of converting glucose into glucono-δ-lactone and NADPH simultaneously with SKDH. Shikimic acid can be produced from In this case, before adding 3-dehydroshikimic acid, it is desirable to make excess glucose exist in the reaction system with respect to NADP.

<酢酸菌の選択>
本発明で用いる酢酸菌としては、QDHを多く有する菌が望ましく、Gluconobacter oxydansやGluconobacter melanogenusなどが好ましく、特にGluconobacter oxydans IFO 3244が最も好ましい。
<Selection of acetic acid bacteria>
As the acetic acid bacterium used in the present invention, a bacterium having a large amount of QDH is desirable, and gluconobacter oxydans and gluconobacter melanogenus are preferable, and gluconobacter oxydans IFO 3244 is most preferable.

<酵素の調製>
第二工程で使用するGDHおよびSKDHは、酢酸菌から精製して得ることができる。GDHおよびSKDHは、両方の酵素を共に生産する能力を有する酢酸菌を培養して、該酢酸菌の細胞質内に前記酵素を蓄積させ、該菌体の破砕液から抽出することにより得られた両方の酵素を含む粗酵素液の状態でも使用でき、あるいは前記の菌体破砕液から、別々に単離し、精製した二つの酵素として使用することもできる。GDHの精製は、Adachiらの方法(Adachi O.et al.Agric.Biol.Chem.,44:301−108(1980))を用いることができる。
<Preparation of enzyme>
GDH and SKDH used in the second step can be obtained by purification from acetic acid bacteria. GDH and SKDH are both obtained by culturing an acetic acid bacterium having the ability to produce both enzymes together, accumulating the enzyme in the cytoplasm of the acetic acid bacterium, and extracting it from the disruption solution of the microbial cell. It can also be used in the state of a crude enzyme solution containing any of these enzymes, or it can be used as two enzymes that have been isolated and purified separately from the above-mentioned microbial cell disruption solution. For purification of GDH, the method of Adachi et al. (Adachi O. et al. Agric. Biol. Chem., 44: 301-108 (1980)) can be used.

また、SKDHは以下の方法で精製して得ることができる。酢酸菌を、メルカプトエタノールを含むリン酸Buffer中でホモゲナイズし、遠心分離により得られた上清をカラムクロマトグラフィーにより精製する。カラムクロマトグラフィーは、定法に従って行うが、SKDHの精製においては、DEAE−celluloseカラム、DEAE−Sephadexカラム、Blue−Dextran Sepharoseカラム等を用いKClを含有させたメルカプトエタノールで溶出する。溶出液からは、定法に従って、硫酸アンモニウム沈殿法により精製することができる。   SKDH can be obtained by purification by the following method. Acetic acid bacteria are homogenized in a phosphate buffer containing mercaptoethanol, and the supernatant obtained by centrifugation is purified by column chromatography. Column chromatography is performed according to a conventional method. In the purification of SKDH, a DEAE-cellulose column, a DEAE-Sephadex column, a Blue-Dextran Sepharose column or the like is used and eluted with mercaptoethanol containing KCl. The eluate can be purified by an ammonium sulfate precipitation method according to a conventional method.

<酵素反応条件>
本発明における第一工程および第二工程での反応温度は、反応が進行すれば、特に限定されない。基質の溶解度、使用される酵素の安定性を考慮すると、20℃〜50℃、好ましくは25℃〜30℃の温度で反応させることが望ましい。
<Enzyme reaction conditions>
The reaction temperature in the first step and the second step in the present invention is not particularly limited as long as the reaction proceeds. Considering the solubility of the substrate and the stability of the enzyme used, the reaction is desirably carried out at a temperature of 20 ° C. to 50 ° C., preferably 25 ° C. to 30 ° C.

第一工程における酵素反応液のpHは、使用される酵素の安定性、生成物の安定性
を考慮することが必要である。pH4〜pH9の反応液で20時間酵素反応を行った場合のキナ酸から3−デヒドロシキミ酸への変換状況は、ペーパークロマトグラフィー法で確認することができる。図2に示す結果から、pH4〜pH5では3−デヒドロシキミ酸への変換を全く確認できず、pH6では約50%の変換を認め、pH7〜pH9では高効率な変換を確認した。この結果から、反応は、pH7〜pH9で行うことが好ましいと推定された。しかしながら、長時間反応した場合には、副生成物のプロトカテキン酸が生成されることが確認されており、反応は短時間(20時間程度)で終わらせることが望ましい。
The pH of the enzyme reaction solution in the first step needs to consider the stability of the enzyme used and the stability of the product. The state of conversion from quinic acid to 3-dehydroshikimic acid when an enzyme reaction is carried out in a reaction solution of pH 4 to pH 9 for 20 hours can be confirmed by a paper chromatography method. From the results shown in FIG. 2, no conversion to 3-dehydroshikimic acid was confirmed at pH 4 to pH 5, about 50% conversion was observed at pH 6, and highly efficient conversion was confirmed at pH 7 to pH 9. From this result, it was estimated that the reaction was preferably performed at pH 7 to pH 9. However, it has been confirmed that by-product protocatechinic acid is produced when reacted for a long time, and the reaction is preferably completed in a short time (about 20 hours).

第二工程において、3−デヒドロシキミ酸の還元反応によりシキミ酸を生成する反
応系で使用するSKDHは、3−デヒドロシキミ酸からシキミ酸が生成する還元反応と、シキミ酸から3−デヒドロシキミ酸が生成する逆向きの酸化反応とが、pHに依存して平衡状態に達することを前記で述べたが、本発明者らは、さらに以下の知見を得ている。高純度に精製されたSKDHは、pH10.0では、SKDH酸化活性を示しシキミ酸に対する酵素活性は60units/mgであり、pH6〜pH7においては、還元活性を示し3−デヒドロシキミ酸に対する酵素活性は25units/mgであった。またKm(ミカエリス‐メンテン定数)を示すと、pH10.0におけるシキミ酸に対する酸化反応では0.5mM、pH5〜pH7における3−デヒドロシキミ酸に対する還元反応では0.2mMであった。従って、本発明の第二工程において、3−デヒドロシキミ酸から有効にシキミ酸を製造するためには、反応液をpH6〜pH7、好ましくはpH7に保つことが望ましい。
In the second step, SKDH used in the reaction system for producing shikimic acid by the reduction reaction of 3-dehydroshikimic acid is a reduction reaction in which shikimic acid is produced from 3-dehydroshikimic acid, and 3-dehydroshikimic acid from shikimic acid. As described above, the reverse oxidation reaction generated by ## STR4 ## reaches an equilibrium state depending on the pH. The present inventors have further obtained the following knowledge. SKDH purified to high purity shows SKDH oxidation activity at pH 10.0 and enzyme activity against shikimic acid is 60 units / mg, and pH 6 to pH 7 shows reduction activity and enzyme activity against 3-dehydroshikimic acid. 25 units / mg. The Km (Michaelis-Menten constant) was 0.5 mM in the oxidation reaction to shikimic acid at pH 10.0, and 0.2 mM in the reduction reaction to 3-dehydroshikimic acid at pH 5 to pH 7. Therefore, in the second step of the present invention, in order to effectively produce shikimic acid from 3-dehydroshikimic acid, it is desirable to keep the reaction solution at pH 6 to pH 7, preferably pH 7.

<ペーパークロマトグラフィ法>
本発明の酵素反応により生成する、3−デヒドロキナ酸、3−デヒドロシキミ酸、シキミ酸、および原料であるキナ酸の確認は、ペーパークロマトグラフィ法により行うことができる。YoshidaとHasegawaの方法(Yoshida S.and Hasegawa M.Arch.Biochem.Biophys.,70:377−388(1957))に準じ、本発明者らが先に報告した方法(Adachi O.et al.Biosci.Biotecnol.Biochem.,67:2124−2131(2003))でペーパークロマトグラフィーを行う場合は、ギ酸を2%含む、ベンジルアルコール:2−ブタノール:2−プロパノール:水=3:1:1:1(W/V)の展開溶媒を用いて、存在する物質をペーパー上に分離したのち、乾燥する。1Mの酢酸と1Mの酢酸ナトリウムの混合溶液12.5mlにメタ過ヨーソ酸ナトリウム160mgを溶解した液をスプレーし、20分後に3%アニリンのアルコール溶液をスプレーする。この条件では、原料のキナ酸と酸化代謝物の3−デヒドロキナ酸は、ほぼ同じRf値を示すが、スポットの色が異なり、キナ酸は淡いピンク色を呈し、3−デヒドロキナ酸は黄色を呈する。さらに3−デヒドロキナ酸の上方にシキミ酸の赤いスポットを、さらに上方に3−デヒドロシキミ酸の黄色のスポットを確認することができる。
<Paper chromatography method>
Confirmation of 3-dehydroquinic acid, 3-dehydroshikimic acid, shikimic acid and quinic acid which is a raw material produced by the enzyme reaction of the present invention can be performed by a paper chromatography method. According to the method of Yoshida and Hasegawa (Yoshida S. and Hasegawa M. Arch. Biochem. Biophys., 70: 377-388 (1957)), the method previously reported by the present inventors (Adachi O. et al. Biosci). Biotechnol.Biochem., 67: 2124-2131 (2003)), 2% formic acid, benzyl alcohol: 2-butanol: 2-propanol: water = 3: 1: 1: 1 Using a developing solvent of (W / V), the existing substances are separated on paper and then dried. A solution of 160 mg of sodium metaperiodate dissolved in 12.5 ml of a mixed solution of 1M acetic acid and 1M sodium acetate is sprayed, and after 20 minutes, an alcohol solution of 3% aniline is sprayed. Under this condition, the raw material quinic acid and the oxidative metabolite 3-dehydroquinic acid show almost the same Rf value, but the spot colors are different, quinic acid has a light pink color, and 3-dehydroquinic acid has a yellow color. . Further, a red spot of shikimic acid can be confirmed above 3-dehydroquinic acid, and a yellow spot of 3-dehydroshikimic acid can be confirmed further above.

以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定さ
れるものではない。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

3−デヒドロシキミ酸の製造
1gのキナ酸と2.5gの酢酸菌Gluconobacter oxydans IFO 3244の細胞膜乾燥体を、500mlのエルレンマイアーフラスコに入れ、100mlのMcIlvaine buffer(pH8)を加え、30℃で20時間振盪して反応させた。反応を終了させるためトリクロロ酢酸(TCA)を5.5%になるように添加し、遠心分離により菌体等を除き、3−デヒドロシキミ酸を含む上清を得た。
Preparation of 3-dehydroshikimic acid 1 g of quinic acid and 2.5 g of acetic acid bacterium Gluconobacter oxydans IFO 3244 cell membrane were placed in a 500 ml Erlenmeyer flask, 100 ml of McIlvaine buffer (pH 8) was added, and at 30 ° C. The reaction was shaken for 20 hours. To complete the reaction, trichloroacetic acid (TCA) was added to 5.5%, and the cells were removed by centrifugation to obtain a supernatant containing 3-dehydroshikimic acid.

3−デヒドロシキミ酸の確認
上記で得られた上清に0.1Mの酢酸buffer(pH6.0)を加えて50倍に希釈した。3−デヒドロシキミ酸の生成を確認するため、希釈液の1部を取り0.25μモルのNADPH(オリエンタル酵母社製)とSKDH(3−デヒドロシキミ酸の還元活性として1unit)を加えて0.1Mの酢酸buffer(pH6.0)で1mlとし、25℃で反応させた。NADPHのNADPへの変換が平衡に達する時点で確認したところ、3−デヒドロシキミ酸の最終濃度は約40mMであった。これは、キナ酸の75%が3−デヒドロシキミ酸に変換したことを示す。
Confirmation of 3-dehydroshikimic acid To the supernatant obtained above, 0.1 M acetate buffer (pH 6.0) was added and diluted 50 times. In order to confirm the formation of 3-dehydroshikimic acid, 1 part of the diluted solution was taken and 0.25 μmol NADPH (manufactured by Oriental Yeast) and SKDH (1 unit as the reducing activity of 3-dehydroshikimic acid) were added. The volume was adjusted to 1 ml with 1M acetate buffer (pH 6.0) and reacted at 25 ° C. When the conversion of NADPH to NADP reached equilibrium, the final concentration of 3-dehydroshikimic acid was about 40 mM. This indicates that 75% of the quinic acid has been converted to 3-dehydroshikimic acid.

3−デヒドロシキミ酸の精製
上記、0.1Mの酢酸buffer(pH6.0)を加えて50倍に希釈した3−デヒドロシキミ酸を含む画分は、Dowex50を充填したカラムクロマトグラフィーに供し、アルカリで中和したのち、凍結乾燥した。この凍結乾燥体を少量の水に溶解し、不溶性物質を遠心分離より除去した。この結果、シキミ酸製造の原料となる3−デヒドロシキミ酸濃度は2.1Mであった。
Purification of 3-dehydroshikimic acid The above-mentioned fraction containing 3-dehydroshikimic acid diluted 50-fold by adding 0.1 M acetic acid buffer (pH 6.0) was subjected to column chromatography packed with Dowex 50, After neutralization with lyophilization, it was freeze-dried. This lyophilized product was dissolved in a small amount of water, and insoluble substances were removed by centrifugation. As a result, the 3-dehydroshikimic acid concentration used as a raw material for shikimic acid production was 2.1M.

シキミ酸脱水素酵素の精製
菌体(湿重量約300g)を、5mMのβ−メルカプトエタノールを含む2mMのリン酸カリウムbuffer(pH7.2:KPB)1lに懸濁した。この菌体懸濁液を、加圧式ホモジナイザー(Mini−Lab、type 8.30H、Rannie社製、デンマーク)に二回かけ、菌体を破砕した。得られた菌体破砕液を、68,000×gで90分間遠心分離して不溶固体を除き、上清を取り出した。ここで得られた上清1100mlをDEAE−celluloseカラム(5×30cm)に供し、KPBで平衡化した。100mM KClを含有するKPBでカラムを洗い流し、次いで、200mM KClを含有するKPBでSKDHを溶出した。次に、溶出したSKDHを、KPBで100mM KCl濃度とし、DEAE−Sephadex A−50カラム(2.5×20cm)に供した。150mM KClを含有するKPBでカラムを洗い流し、次いで、段階的に、175mM、200mM、220mMのKClを含有するKPBでSKDHを溶出した。次に、175mMと200mMのKClを含有するKPBで溶出した画分を合わせ、KPBで100mM KCl濃度とし、Blue−Dextran Sepharose 4Bカラム(1.5×20cm)に供した。100mM KClを含有するKPBでカラムを洗浄した後、300mM KClを含有するKPBでSKDHを溶出した。SKDH画分を硫酸アンモニウム沈殿法で処理してSKDHの沈殿を得た。沈殿を少量のKPBに溶解し、KPBで平衡化したSephadex G−75カラム(1.5×125cm)に供した。溶出液は、35滴(約1.2ml)ずつ分画した。SKDH活性が最も高かったのは第92番目の画分であった。SKDH活性を有する画分を集め、硫酸アンモニウム沈殿法を行うことにより、菌体破砕で得られた上清と比べ、その比活性が2550倍に高められたSKDHを得た。
Purification of shikimate dehydrogenase Cells (wet weight of about 300 g) were suspended in 1 liter of 2 mM potassium phosphate buffer (pH 7.2: KPB) containing 5 mM β-mercaptoethanol. This bacterial cell suspension was applied twice to a pressure type homogenizer (Mini-Lab, type 8.30H, manufactured by Rannie, Denmark) to disrupt the bacterial cells. The obtained cell disruption solution was centrifuged at 68,000 × g for 90 minutes to remove insoluble solids, and the supernatant was taken out. 1100 ml of the supernatant obtained here was applied to a DEAE-cellulose column (5 × 30 cm) and equilibrated with KPB. The column was washed away with KPB containing 100 mM KCl, and then SKDH was eluted with KPB containing 200 mM KCl. Next, the eluted SKDH was adjusted to a concentration of 100 mM KCl with KPB and applied to a DEAE-Sephadex A-50 column (2.5 × 20 cm). The column was washed away with KPB containing 150 mM KCl, and then SKDH was eluted stepwise with KPB containing 175 mM, 200 mM, 220 mM KCl. Next, the fractions eluted with KPB containing 175 mM and 200 mM KCl were combined, adjusted to 100 mM KCl with KPB, and applied to a Blue-Dextran Sepharose 4B column (1.5 × 20 cm). After the column was washed with KPB containing 100 mM KCl, SKDH was eluted with KPB containing 300 mM KCl. The SKDH fraction was treated with an ammonium sulfate precipitation method to obtain SKDH precipitate. The precipitate was dissolved in a small amount of KPB and applied to a Sephadex G-75 column (1.5 × 125 cm) equilibrated with KPB. The eluate was fractionated by 35 drops (about 1.2 ml). The 92nd fraction had the highest SKDH activity. Fractions having SKDH activity were collected and subjected to ammonium sulfate precipitation to obtain SKDH having a specific activity increased 2550 times compared to the supernatant obtained by disrupting the cells.

シキミ酸の製造
実施例1で得られた3−デヒドロシキミ酸250mg(約1.4mモル)と、上記の方法で得られたSKDH(3−デヒドロシキミ酸の還元活性として20units)、NADP(5μモル:オリエンタル酵母社製)、GDH(1000units)、グルコースを(約5.0mモル)加え、5mMのβ−メルカプトエタノールと5mM EDTAを含む、30mMのKPB(pH7.0)で全量を20mlとした。反応は25℃で行い、反応液0.1mlを取り出し60%TCAを10μl加えて反応を終了させ、沈殿物を遠心分離により除去した。反応の途中、および終了時点で、このように反応液の一部を経時的に取り出して、ペーパークロマトグラフィー法による分析を行った結果を図3(上)に示した。3−デヒドロシキミ酸からシキミ酸への還元反応は、未反応の3−デヒドロシキミ酸が消滅した90分で完了したことが明らかになった。
Production of shikimic acid 250 mg (about 1.4 mmol) of 3-dehydroshikimic acid obtained in Example 1, SKDH (20 units as the reducing activity of 3-dehydroshikimic acid) obtained by the above method, NADP (5 μm) Mole: manufactured by Oriental Yeast Co., Ltd., GDH (1000 units), glucose (about 5.0 mmol), 5 mM β-mercaptoethanol and 5 mM EDTA, and 30 mM KPB (pH 7.0) to make a total volume of 20 ml . The reaction was carried out at 25 ° C., 0.1 ml of the reaction solution was taken out, 10 μl of 60% TCA was added to terminate the reaction, and the precipitate was removed by centrifugation. In the middle of the reaction and at the end of the reaction, a part of the reaction solution was taken out over time and analyzed by the paper chromatography method as shown in FIG. 3 (upper). It was revealed that the reduction reaction from 3-dehydroshikimic acid to shikimic acid was completed in 90 minutes when unreacted 3-dehydroshikimic acid disappeared.

また、別途サンプル液を、0.25μモルのNADP存在下、SKDH(酸化活性として1unit)と50mMグリシン− NaOH buffer(pH10.0)を加えて1時間反応させ、シキミ酸量を酵素変換した3−デヒドロシキミ酸量として340nmの吸光度で測定した結果を図3(下)に示した。その結果、3−デヒドロシキミ酸からシキミ酸への酵素反応は100%進行しており、ペーパークロマトグラフィーと一致した。   Separately, SKDH (1 unit as oxidation activity) and 50 mM glycine-NaOH buffer (pH 10.0) were added to the sample solution in the presence of 0.25 μmol of NADP and reacted for 1 hour, and the amount of shikimic acid was enzymatically converted 3 -The result of measuring the absorbance at 340 nm as the amount of dehydroshikimic acid is shown in Fig. 3 (bottom). As a result, the enzyme reaction from 3-dehydroshikimic acid to shikimic acid proceeded 100%, which was consistent with paper chromatography.

本発明により、コーヒー糟などキナ酸を含む材料の有効利用が可能になり、また、シキミ酸およびシキミ酸経路の代謝中間体を原料とする医薬品等の有用物質の製造が可能となる。   According to the present invention, it becomes possible to effectively use a material containing quinic acid such as coffee lees, and it is possible to produce useful substances such as pharmaceuticals using shikimic acid and metabolic intermediates of shikimic acid pathway as raw materials.

シキミ酸の製造方法における二工程を示した図面である。反応第一工程は、酢酸菌細胞膜存在下、キナ酸からGDHにより3−デヒドロキナ酸が生成し、3−デヒドロキナ酸からDQDにより3−デヒドロシキミ酸が生成することを表し、反応第二工程は、細胞質由来のGDHにより、NADP存在下、グルコースがグルコノ−δ−ラクトンとNADPHに変換することにより、3−デヒドロシキミ酸が細胞質由来のSKDHによりシキミ酸に変換されることを表している。It is drawing which showed two processes in the manufacturing method of shikimic acid. The reaction first step represents that 3-dehydroquinic acid is produced from quinic acid by GDH in the presence of acetic acid bacteria cell membrane, and 3-dehydroshikimic acid is produced from 3-dehydroquinic acid by DQD. This shows that 3-dehydroshikimic acid is converted to shikimic acid by cytoplasm-derived SKDH by converting glucose into glucono-δ-lactone and NADPH in the presence of NADP by cytoplasm-derived GDH. 種々のpHにおける3−デヒドロシキミ酸生成を確認するために行ったペーパークロマトグラフィーの図面に代わる写真である。キナ酸(QA)、3−デヒドロキナ酸(DQA)、3−デヒドロシキミ酸(DSA)のスポットを表している。It is the photograph replaced with drawing of the paper chromatography performed in order to confirm 3-dehydroshikimic acid production | generation in various pH. It represents spots of quinic acid (QA), 3-dehydroquinic acid (DQA), and 3-dehydroshikimic acid (DSA). (上)シキミ酸生成を確認するために、経時的に反応液0.1mlを取り出し、反応を停止させて行ったペーパークロマトグラフィーの図面に代わる写真である。シキミ酸(SKA)、3−デヒドロシキミ酸(DSA)のスポットを表している。(下)反応液の一部を経時的に取り出して酵素反応を行い、3−デヒドロシキミ酸からシキミ酸に変換された割合を表した図面である。(Upper) It is a photograph replacing a drawing of paper chromatography performed by taking out 0.1 ml of the reaction solution over time and stopping the reaction in order to confirm the formation of shikimic acid. It represents spots of shikimic acid (SKA) and 3-dehydroshikimic acid (DSA). (Lower) It is a drawing showing the ratio of 3-dehydroshikimic acid converted to shikimic acid by taking out part of the reaction solution over time and carrying out an enzyme reaction.

Claims (8)

シキミ酸を製造する方法において、1)酢酸菌由来の酵素存在下で、キナ酸から3−デヒドロシキミ酸を製造する第一工程、2)シキミ酸脱水素酵素(SKDH)とグルコース脱水素酵素(GDH)の共役下、3−デヒドロシキミ酸からシキミ酸を製造する第二工程、の各工程を経由することを特徴とするシキミ酸の製造方法。   In the method for producing shikimic acid, 1) the first step of producing 3-dehydroshikimic acid from quinic acid in the presence of an enzyme derived from acetic acid bacteria, 2) shikimate dehydrogenase (SKDH) and glucose dehydrogenase ( A method for producing shikimic acid, wherein each step of the second step of producing shikimic acid from 3-dehydroshikimic acid under conjugation of GDH) is conducted. シキミ酸を製造する方法において、キナ酸から3-デヒドロシキミ酸を製造する第一工程の反応を、pH7〜pH9で行い、シキミ酸脱水素酵素(SKDH)とグルコース脱水素酵素(GDH)の共役下、3−デヒドロシキミ酸からシキミ酸を製造する第二工程の反応を、pH6〜pH7で行うことを特徴とする請求項1に記載のシキミ酸の製造方法。   In the method for producing shikimic acid, the reaction in the first step of producing 3-dehydroshikimic acid from quinic acid is performed at pH 7 to pH 9, and the conjugate of shikimic acid dehydrogenase (SKDH) and glucose dehydrogenase (GDH) The method for producing shikimic acid according to claim 1, wherein the reaction in the second step of producing shikimic acid from 3-dehydroshikimic acid is performed at pH 6 to pH 7. 第二工程における反応液が、NADPと、NADPに対し100〜10000倍モル濃度のグルコースを含むことを特徴とする請求項1または2に記載のシキミ酸の製造方法。   The method for producing shikimic acid according to claim 1 or 2, wherein the reaction solution in the second step contains NADP and glucose having a molar concentration of 100 to 10,000 times that of NADP. 第一工程で使用する酢酸菌由来の酵素が、キナ酸脱水素酵素(QDH)であることを特徴とする請求項1または2に記載のシキミ酸の製造方法。   The method for producing shikimic acid according to claim 1 or 2, wherein the enzyme derived from acetic acid bacteria used in the first step is quinic acid dehydrogenase (QDH). 第二工程で使用するシキミ酸脱水素酵素(SKDH)、およびグルコース脱水素酵素(GDH)が、酢酸菌由来であることを特徴とする請求項1または2に記載のシキミ酸の製造方法。   The method for producing shikimic acid according to claim 1 or 2, wherein shikimate dehydrogenase (SKDH) and glucose dehydrogenase (GDH) used in the second step are derived from acetic acid bacteria. 第二工程で使用する、シキミ酸脱水素酵素(SKDH)およびグルコース脱水素酵素(GDH)は、これら両方の酵素を共に生産する能力を有する酢酸菌から得られた両方の酵素を含む粗酵素液の状態で使用するか、あるいは酢酸菌から単離され、精製された2つの酵素として使用することを特徴とする請求項5に記載のシキミ酸の製造方法。   Shikimate dehydrogenase (SKDH) and glucose dehydrogenase (GDH) used in the second step are crude enzyme solutions containing both enzymes obtained from acetic acid bacteria having the ability to produce both of these enzymes together. The method for producing shikimic acid according to claim 5, wherein the method is used in the state of (2), or is used as two enzymes isolated and purified from acetic acid bacteria. 酢酸菌が、Gluconobacter属菌であることを特徴とする請求項1〜6のいずれかに記載のシキミ酸の製造方法。   The method for producing shikimic acid according to any one of claims 1 to 6, wherein the acetic acid bacterium is a genus Gluconobacter. Gluconobacter属菌が、Gluconobacter oxydans IFO 3244であることを特徴とする請求項7に記載のシキミ酸の製造方法。   The method for producing shikimic acid according to claim 7, wherein the genus Gluconobacter is Gluconobacter oxydans IFO 3244.
JP2006129444A 2006-05-08 2006-05-08 Method for producing shikimic acid Pending JP2007300809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006129444A JP2007300809A (en) 2006-05-08 2006-05-08 Method for producing shikimic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006129444A JP2007300809A (en) 2006-05-08 2006-05-08 Method for producing shikimic acid

Publications (1)

Publication Number Publication Date
JP2007300809A true JP2007300809A (en) 2007-11-22

Family

ID=38835316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006129444A Pending JP2007300809A (en) 2006-05-08 2006-05-08 Method for producing shikimic acid

Country Status (1)

Country Link
JP (1) JP2007300809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215266A (en) * 2008-03-12 2009-09-24 Kose Corp Skin lightening agent containing shikimic acid as beneficial ingredient
WO2012121381A1 (en) 2011-03-10 2012-09-13 高砂香料工業株式会社 Taste improvement agent
WO2013035473A1 (en) 2011-09-07 2013-03-14 国立大学法人信州大学 Method for producing useful metabolite from filamentous fungus
WO2014007273A1 (en) * 2012-07-03 2014-01-09 株式会社ジナリス Useful microorganism, and method for producing desired substance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215266A (en) * 2008-03-12 2009-09-24 Kose Corp Skin lightening agent containing shikimic acid as beneficial ingredient
WO2012121381A1 (en) 2011-03-10 2012-09-13 高砂香料工業株式会社 Taste improvement agent
WO2013035473A1 (en) 2011-09-07 2013-03-14 国立大学法人信州大学 Method for producing useful metabolite from filamentous fungus
US9834796B2 (en) 2011-09-07 2017-12-05 Shinshu University Method for producing useful metabolite from filamentous fungus
WO2014007273A1 (en) * 2012-07-03 2014-01-09 株式会社ジナリス Useful microorganism, and method for producing desired substance
JPWO2014007273A1 (en) * 2012-07-03 2016-06-02 株式会社ジナリス Method for producing useful microorganism and target substance
US10047382B2 (en) 2012-07-03 2018-08-14 Kao Corporation Useful microorganism and method for producing substance of interest
US10781461B2 (en) 2012-07-03 2020-09-22 Kao Corporation Useful microorganism and method for producing substance of interest

Similar Documents

Publication Publication Date Title
Ward et al. Enzymatic asymmetric synthesis by decarboxylases
US20210254109A1 (en) D-Glucaric Acid Producing Bacterium, and Method for Manufacturing D-Glucaric Acid
van den Heuvel et al. Enzymatic synthesis of vanillin
Cha et al. Simultaneous enzyme/whole‐cell biotransformation of C18 ricinoleic acid into (R)‐3‐hydroxynonanoic acid, 9‐hydroxynonanoic acid, and 1, 9‐nonanedioic acid
KATAokA et al. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system
Bisagni et al. Exploring the substrate specificity and enantioselectivity of a Baeyer–Villiger monooxygenase from Dietzia sp. D5: Oxidation of sulfides and aldehydes
Kataoka et al. 3, 4‐Dihydrocoumarin hydrolase with haloperoxidase activity from Acinetobacter calcoaceticus F46
Beneventi et al. Discovery of Baeyer–Villiger monooxygenases from photosynthetic eukaryotes
Gocke et al. Comparative characterisation of thiamin diphosphate-dependent decarboxylases
Zeng et al. Engineering Escherichia coli for high-yielding hydroxytyrosol synthesis from biobased L-tyrosine
JP2007300809A (en) Method for producing shikimic acid
de Gonzalo et al. Multienzymatic processes involving Baeyer–Villiger monooxygenases
US6340582B1 (en) Process for preparing xylitol
Griffiths et al. Cloning, isolation and characterization of the Thermotoga maritima KDPG aldolase
Honda Industrial applications of multistep enzyme reactions
JPS6044917B2 (en) Method for producing 2-keto-D-gluconic acid and hydrogen peroxide
EP2655650B1 (en) Enzymatic synthesis of active pharmaceutical ingredient and intermediates thereof
Kim et al. Construction of an engineered biocatalyst system for the production of medium‐chain α, ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids
CN108949657B (en) A kind of engineering bacteria and its application in danshensu and α-ketoglutaric acid coproduction
Gargouri et al. Bienzymatic reaction for hydroperoxide production in a multiphasic system
Nagaoka Ability of different biomaterials to enantioselectively catalyze oxidation and reduction reactions
Pezzotti et al. Enantioselective oxidation of thioanisole with an alcohol oxidase/peroxidase bienzymatic system
Rashamuse et al. A novel recombinant ethyl ferulate esterase from Burkholderia multivorans
Nagaoka Chiral resolution function with immobilized food proteins
JP3245254B2 (en) Novel microorganism and method for producing nootkatone using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129